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Cooling an atom in a weakly driven high-Q cavity
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We investigate the external and internal dynamics of a two-level atom in a standing wave cavity. In the
strong coupling regime, where the atom field couplingominates the atomic and cavity decay rdié%), a
cooling mechanism entirely different from free-space Doppler cooling appears. Under suitable operating con-
ditions, the cavity dynamics induces a Sisyphus type cooling, which is the dominant contribution to the total
friction force acting on a moving atom. Simple equations describing the key properties of this effect are
derived from a completely classical picture and confirmed by a semiclassical approach. The model is investi-
gated in the bad and good cavity limits, and analytic expressions for the friction coefficient and the momentum
diffusion for slow atoms are derived. Using a continued fractions expansion the cooling force for arbitrary
velocities is evaluated numerically. The result is used to calculate the equilibrium temperatures of the atom of
the order ofkT~% k, which can be much lower than the free-space Doppler limit and agree well to those
obtained by quantum wave-function simulatiof81050-294{©8)02310-5

PACS numbe(s): 32.80.Pj, 42.50.Vk, 42.50.Lc

I. INTRODUCTION coupling limit in the optical domaifl17,18, so that already
a single atom strongly modifies the cavity dynamiésl9—

It is well known that radiative properties of atoms are 26]. As a striking example the influence of a single atom on
changed inside a cavitjl], since the electric field eigen- transmission and intracavity intensity of a driven cavity can
modes in a cavity are different from free space. Already inge measured6]. The cavity output may be continuously
1946 Pourcel predicted an enhancement in the spontaneoy,nitored to determine the atomic position at high resolu-
decay rate for an atom placed in a resonant ca@lyLater tions[23,27]. Spontaneous emission of an atom moving in a

Kleppner pointed out the opposite possibility of inhibiting ; . .
spontaneous emissidR]. Since the early days of quantum cavity standing wave has also been examifi2,29. In

optics the simplest theoretical representation of such a sy$°Me recent theoretical work we have suggested that light
tem, namely the Jaynes-Cummings moglof a two-level forces which appear in the coupled atom-cavity dynamics in

atom coupled to a single radiation mode of an optical resothis strong-coupling regime can be used to cool and trap a
nator, has become one of the most thoroughly investigategingle atom exactly at the antinodes of the cavity field, where
models both theoreticallycavity-QED and experimentally, one has the strongest atom-field coupli3g]. In this work

using microwave cavitieg5] and recently also optical high we extended this treatment to a much larger parameter re-
finesse resonator$]. With the advent of laser cooling of gime, including blue detuned light fields and faster atoms. In
free atoms also the question of atomic motion and cavitythe extended semiclassical model explicit analytical expres-

induced light forces was considered in various papers. Fogions for forces, diffusion, and kinetic temperature are de-
example, a possible scheme to cool free atoms in so-calle

colored vacua characteristic for cavities was proposed in

[7.8]. Laser cooling in a squeezed vacu{@+11] and adia- This work is organized as follows: in Sec. Il the model of
batic cooling in cavities[12] has also been investigated. 2" atom interacting with a quantized standing wave in a

Similarly Ciracet al. dealt with the interaction between the Weakly driven cavity will be introduced and a simple classi-
cavity mode and an atom, which was additionally stronglyc@l analog of this system will be discussed. In Sec. Ill a
driven by a laser, in the bad Cavity ||n[|13] Many dynami_ semiclassical version of this model, where the ||ght field and
cal aspects of atomic motion in cavities have been carefullyhe internal atomic degrees of freedom are quantized, is pre-
investigated also in a series of recent papers by Parkins arfggnted. The friction force is analytically calculated and the
co-workers[14,15. They show that spontaneous transitionsphysical origin of its various contributions is discussed. Fi-
together with the dipole force leads to strong heating andhally the two limiting cases of a strongly and a weakly
finally expulsion of the atom from the cavity mode. In the damped cavity are elaborated. In Sec. IV the so-called
tight-binding (Lamb-Dicke regime, where the atom is con- dressed state approach is used to help in the physical inter-
fined to less than an optical wavelength, they also considepretation of the results in analogy to the well-known Sisy-
the influence of quantized atomic motion on the dynamicgphus cooling[31,32 in optical molasses. The cooling force
[16]. for arbitrary velocities using the method of continued frac-
In the meantime advances in cavity technology have altions is presented in Sec. V, while Sec. VI is devoted to a
lowed one to experimentally reach the so-called strongderivation of the momentum diffusion using the quantum
regression theorem, which contains additional terms arising
from the cavity dynamics. This allows one to give estimates
*Present address: Laboratoire Kastler-Brossel, Ecole Normalef the equilibrium temperature and allows us to make com-
Superieure, 24 rue Lhomond, 75231 Paris Cedex 05, France.  parisons to results obtained through a numerical fully quan-
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r with eigenfrequencyw, and wave vectoK, which is as-
N sumed to be quasiresonant with the pump field of frequency
e O ~ 1. o9
_ o ) o E+ —E+wE=——P+—— E®™, (4
FIG. 1. Particle moving in a weakly driven cavity with losses € ) €p Ot

from spontaneous emissidhand cavity deca.
with P(t) = (2/d) f¥2,dx P(x,t)cosKx) and analogously for
tum treatment of the problem including quantization of thegext
external motion of the atom. Now we can make the following ansatz for the electric
fields and the polarization:
Il. CLASSICAL MODEL

Fex _ cex —iwpt E — —iwpt
Let us in the following look at a two-level atom strongly E¥(z=£% (e " +ec, E()=&be i+,

coupled to a single isolated mode of frequenoy of a ~ Lot
weakly driven cavity. Losses from spontaneous emis&ion P()=P()e “r+c.c., ®)
and cavity decay«) are included in our model via coupling here the amplitudes are assumed to vary slowly compared

to external reservoirs. The atom is allowed to move along the

standing wave to which it is coupled with a strength deter0 the rapidly oscillating exponential functions, i.4¢]

mined by a local coupling functiog(x)=gu(x), where <wpl|&| and analogously fo® and £ Using the above

u(x) is the normalized mode function. The cavity is assume(ﬁpprc_)ximations we find the following equation for the mode
to be externally driven by a monochromatic field of fre- @mplitude:

quencyw, and effective amplitude;. A graphic scheme of

our model is given in Fig. 1. E+(k—iAy)E~
Before going to a quantum description let us start from a

completely classical point of view of a massive pointlike where ;= w,— w, andi = o/(2e). As a next step we have

dipole in an optical resonator. As we will see later, the equa-" . . e T
b b d o introduce the dynamics of the atomic dipole, which is

tions derived here strongly resemble those found in a semid ! )
classical treatment in the good cavity limit. simply modeled as an elastically bound electron. Thus its

Let us consider a cavity field mode coupled to an atomelongation is governed by the equation of a damped har-
driven by an external pump field and damped due to thgnonic oscillator driven by an electric field at the atomic

conductivity o of the cavity mirrors. The cavity field induces positionX,:
a dipole moment of the atom, which in turn contributes to the

P
0T ke ©)
260

electric field as a driving term in the wave equat{@3], S'/(t)+21“y(t)+w(2)y(t)= EE(xa,t). (7)
m
16\ . . J - - , _ _
—A+ Z 2 E(X,t)—l—,u,oaﬁ E(x,t) Let us now introduce the slowly varying complex ampli-

tudeY(t) via the ansatz
92 d

=~ oz PO + poo - E¥(X,H), (1) y()=Y(t)e "ent+ Y* (t)elent. 8)

. Upon inserting this into Eq(7) and solving for the steady
where the damping term was modeledwagd/dt)(cE) and  state, we obtain
the external pump was taken into accountuyr(a/at) E&*
For simplicity we assume a quasi-1D situation, where the Y(t) = e&(t)/m
field is a plane wave propagating in tledirection, which 2wp(—iF+(w§—w,23)/2wp)
leads to

cogKXx,). (9

For a pointlike particle the polarization density can be
defined asP(x,t) =ey(t) 5(x—x,)/A whereA is the cavity
cross section an is the cavity volume. This yields the
following expression for the slowly varying amplitude:

azE t+U&E t 2‘92E t
atz (X! ) EO 0t (X, ) c (9)(2 (X! )

2 o d
= — — — __E€X
€p WP(X,t)+ €p at E [(X't). (2) eZ COSZ(KXa)

PO = oV T=ia,)

&(t), (10
We can expand this into normal modes

where A,=wp,—wo and the approximation ofj— w?)/
(20p) = (wo— wp)(wo+ w,)/ (20p)~—A, was made. Put-
ting everything together and splitting the polarization into a
real and an imaginary part, E¢6) leads to the following
with eigenfrequencies,=cK,=nmwc/d, whered denotes equation for the slowly varying field amplitude:

the cavity length. After some straightforward manipulations .

we arrive at the equation for the dynamics of the cavity mode E()=[—k—y(Xg) +iA.—iU(Xy)JE)+kE (11)

E(x,t)=n§0 E,(t)cogKx), (3)
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100

rates chosen such that this “cavity cooling” force is opti-
mized. Note that it does not take into account diffusion of
any kind nor does it include Doppler cooling, which is, how-
i ever, small for the chosen parameters. The cooling force can
20 | ] be understood from the purely classical viewpoint as arising
from the strong dependence of the intracavity intensity on
the position of the atom within the cavity standing wave. For
certain parameters the intensity reaches a maximum for an
atom at a node whereas the potentiflx) is a minimum
there. However, if the particle is slowly moving along the
potentialU(x) the maximum field intensity will be reached
after it has passed the potential minimum due to the finite
cavity response time. Accordingly the particle sees a higher
intensity and thus a stronger damping force when going up
] , .. 0o U(x) than it sees an antidamping one when going down
fime unifs of ()] U(x). On average this leads to a damping force.
FIG. 2. The particle is cooled while moving along the cavity

standing wave until its kinetic energy gets so low that it is trapped [ll. SEMICLASSICAL ANALYSIS OF
in a potential well where it oscillates back and forth. POTENTIALS AND FORCES

Position [units of (k)]

20 40 100
time [units of (x™)]

P [units of (Ak)]

20 40

whereA .= w,— w, and For a better understanding of this cooling force found
above we will in the following develop a more appropriate

A, semiclassical model of the atom-cavity system, where the

U(xq) = TZ+A2 g5 cog(Kx,), internal atomic degrees of freedom as well as the cavity

mode are treated quantum mechanically, but the atomic mo-
tion is treated classically. The master equation describing our
Y(Xa) = =5 290 cog(Kx,). (12) model, cf. Fig. 1, is given in the rotating-wave approxima-
I“+A3 tion and in a frame rotating with the pump frequeney as

Hereg?,: e?/(2Veym) is a measure for the cavity-atom cou-

i
pling strength. The force on the atom is then given by — g[HJC,p]— %[Hp,p]—F({o*a*,ph—ZU*po*)

(%) = V[ eY(Xa DE(Xq . 1)] —«({a*a,p}, —2apa®), (16)
eZ

=-V Aa E? cog(K 13
= 2me2+A2 cos(Kxy) |- (13 where

- _ + - t + —at
We rewrite Eqs(11) and(13) in terms of a dimensionless Hic=—hldz07 0" —fhAaathg(x)(ac” +o al),
parameterr whose squared absolute value is associated with

: - At
the average cavity photon number, Hp=—ifin(a—a’) 17
) €o|E3V are the Jaynes-Cummings and the pump Hamiltonian, re-
|a?|= foy ! (14 spectively,a is the annihilation operator of the cavity mode,

and o~ that of the atomic transitiorg(x) =gg coskX) de-
and obtain the following set of equations for the atom-cavitynotes the atom-cavity coupling strength, which varies sinu-

dynamics: soidally according to the cavity standing wave. Instead of
solving the master equation one can equivalently deal with

d=[—K—y(x)+iAC—iU(x)]a+ 7, the Heisenberg equations for atomic and mode operators.

The coupling to the vacuum field resulting in spontaneous

: , d emission and cavity decay then accounts for the appearance
p=—|al ax Y (15  of noise terms in the Heisenberg equati¢84]. One finds
P a=iAa—ig(x)o —ka+p+Fy, (189
X=—,
m

o =iAo +ig(X)o,a—To +o,F,, (18
where 7 characterizes the driving laser strength and the in-

dex a for the atomic position has been omitted for conve-where o,=[c",07]. F; and F, are noise operators that
nience. These equations can be easily generalized to thregsentially contain only free input field operators. Here, it is

dimensions. Integration of Eq15) gives a useful physical only important to know that they yield zero when applied to
picture of the particle being cooled down until it is trapped inthe vacuum,
a periodic potential. This is shown in Fig. 2, where a patrticle

moves along a laser standing wave with detunings and decay F,|vag=F,|vac=0. (19
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A. Steady-state force on a motionless atom (ata)=(a')(a).
In order to linearize Eqg18) we assume that the cavity is _ )
very weakly driven. In this case there is at most one photorTh'S shows that the operator products factorize for the steady

in the cavity and only the combined atom-cavity stdteg) state of a motionless atom in the limit of a weakly driven
(one photon in the cavity mode, atom in the ground 3tate cavity. One finds for the average photon number from Eq.

|0,e) (no photon, atom in the excited statand|0,g) con- (26)
tribute to the system dynamics. Thus, A2+ T2
ta) = .2 a
(o) = —(a). (20 (88) = 7 (07— Bad Pt (A T AT)2"

o o (29
One has to keep in mind that this is valid only for low satu-

ration when the excited state is hardly occupied. Then th&his result differs from what one obtains from ordinary
time evolution of the expectation values may be written as input-output formalism with no atom inside the cavity, where
maximum transmission occurs when the cavity is driven

(Y)=A(V)+Z,, (21)  resonantly and most light is reflected back at the input mirror

when there is a large detuning between cavity and pump

where laser. If the atom is present inside the cavity, it may shift the
. . cavity resonance frequency due to its interaction with the

o_| @ :( 1Ac—x —lg(x)> > :( 77) cavity mode. If the pump is detuned from cavity resonance,
o) —ig(x) iA,—T')" ~7 \0) the strong atom-cavity coupling for an atom at an antinode

(22 may shift the pump into resonance so that maximum trans-

- . . ._mission occurs. For the force acting on the atom we ff81d
Similarly one can derive equations for the expectation

values of the normally ordered operator products i
F(x)=P= %[H,P]z—ﬁVg(x)(aTa‘wLa*a), (30)

atc +ota
X1 1
. X Ziatem — ot and inserting Eq(26) yields
= 2= T®T T e
3 a'a f(x)=(F(x))
Xa oto™ 2
- _ ﬁ 2 Aan(X)
which read 7 Tkt 007 = A AT (A gk + AT
- . . (3D
(X)=B(X)+ (), (24)
This expression for the force may be integrated to find the
where potential. For negative detunink,<0 the atom is attracted
~ot to the antinodeghigh field seeker whereas the opposite
-y —A O 0 L g e holds for positive detuning.
-y —29 29 - | =(c7—0")
B= 0 —2k 0 s =1 , B. Friction force on a slowly moving atom
9 a+a' . . , . -
0 -g 0 —oT 0 It is straightforward to find an expression for the friction
(25) coefficient, i.e., the linear velocity dependence of the force

for small velocities. We will follow a procedure completely
with A=A,—A, and y=T+ . Note that the normal order analogous to the one outlined[i81,35, which is valid if the
is important to obtain vanishing averages of products involy-&tom moves only a fraction of a wavelength before either a

. : . . = cavity or an atomic decay occurs, i.e., if
ing noise operators. Solving those equations(¥y=0 one
obtains for the expectation values of the motionless atom at kv<T, k. (32
steady state
5 In general it is not necessary for both ratios to be much
S " 2, 12 2 smaller than one, depending on which decay channel pre-
<X>°_|de(A)|2[2A"j‘g(X)' 2000, AL+T5,0()7, dominates. We define the friction coefficient as the force
(26)  term linear inv and expand the density matrix in powers of
. . ) v with py denoting the zeroth angd, the first order inv,
where det) is the determinant oA, given by respectively. We may then write for the master equation to

detA) =T k+g(x)2—A,A— i (AT +A6).  (27) first order inv:

. _ ) ;

_ Comparing _E_q.(26) with the solution of Eq.(21) one b~ po=Lpy, 33
finds the equalities ax

(ao™)=(a" (o), (28)  where
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; 2
| ~ X
Lp=— g[H,p]—F(a'Jra'*p-i-p(r*a'*—20'7pa'+) , F(X):F+KA92(T),<2-
Cc
(34)

The general expression for the force with the mode adiabati-
and the system was assumed to be in steady state with a fixeglly eliminated reads

atomic velocity. We then find the following equations:

IH 4
I . . FOX)==—4
v —(V)o=A(Y),
Vg(x)?
; (39 =—hAc—2—Agi )20+0'
- . N K
v = {(X)o=B(X)1+ n(l)1, ¢
ax
n
. —hVg(X) —=—=(c"+07). 40
where(--+)o, {---); denote the zeroth-order expectation val- g(x) W—ACJFKZ( ) (40)

ues, which have been calculated in the previous subsection,
and first-order expectation values, respectively. Thus with Noting the analogy of Eq9.37) and (38) to the optical
the notation of Egs(23) the friction force is given by Bloch equations we can immediately take their well-known
solutiong[31] and apply them to Eq40) to find for the force
f1(x)=—AVg(X1)1. (36
Vg(x)?21 s

The full expression for Eq(36) is Iisteq in Appendix A. f(x)=(F(x))= _ﬁAc_A§+ W225+1
Here we only want to note that; consists of two parts,
where each of these can be obtained as the full force in a X

certain limit, which also give physical interpretations for —hVg(x) 7 _ S ,

these terms. These limits will be discussed in the following \/A§+ k? 2g(x) St 1

two subsections. (41
C. Strongly damped cavity wheres is defined as=2g(x)%/(A2+12).

AR . i It should be emphasized again that E41l) is valid for
The first limit in which we want to study the behavior of any driving amplitudes,. It can be shown by expanding Eq.
our_system is_the !imit of a strongly damped cavity; i.e., the(41) in powers of 72 that the expression for the force we
cavity relaxation is assumed to be much faster than the, ng pefore in Eq(31) is just the contribution proportional
atomic relaxation so that the cavity adiabatically follows the;, 72 of Eq. (41). Alternatively it is possible to linearize Eq.

ator_nic evolution. As a conseguence one can get rid of th%ﬂ) for weak pumping and to obtain the corresponding
cavity operators and find a master equation for the atom"Heisenberg equation for the atomic operator:

degrees of freedom alone. This can be derived without a

weak driving field approximation from the Heisenberg equa- (&‘)=(iZ—1~“)(o‘>—i§(x). (42)
tion for the mode operatofl18a, which is already linear.

Settinga=0 in Eq.(18a and solving fora, one expresses  As the expectation values factorize for weak pumping we
through atomic and noise operators, which may subsequentfan use

be substituted into the Heisenberg equation for the atomic . i,

operator(18b). From this one is able to deduce the master (077 )=(0")}(o7) (43)

equation for the atomic density operator and Eq.(40) to calculate the force on the motionless atom.

dp i To do so we can sétr )o=0 and solve fo{o ), and we
ar %[Hat,p]JrEp, (387)  find again Eq(31) for the force on the motionless atom. To
obtain the friction coefficient we expand E@2) in powers

where of v to obtain the operator expectation values to first order,

yielding
H.=—hA(X)ot o~ +hg(X) (o +0o7), oo
~ (0" h=——"7, (44)
Lp=—TX)(c o p+poctoc —20 pas*), (39 (IA=T)
and and insert this into the expression for the fod€), which
gives the friction forcef 4 in the bad cavity limit
A(x)=A,—A 909° Vg(x)?
B TCALH K fa= —ﬁAcm(<U+>1(0‘_>o+<U+>o<0_>1+ c.c)
C
~ g(x)n

300~ s (39 —ﬁVg(waLTKZ«oﬂﬁc.c.). (45
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The somewhat unhandy expression is given in Appendix A.
In a previous papdi36] dealing with the same system the
cavity dynamics was assumed to be unaffected by the atomic
motion and the cavity mode was assumed to be in a quasi-

coherent state. Hence the cavity mode operataran be
replaced by a&-numbera, which is calculated for the steady
state of the motionless atom and then reinserted into the
master equation. The resulting equations can be considered
as optical Bloch equation analogs where the effective cou- k \
pling strength is given bgga. The cooling or heating of the
atom is then solely governed by the Doppler effect. This is
the ultimate case of the limit discussed in this subsection
when the cavity mode completely decouples from the system
dynamics. Following these assumptions one finds for therh
steady-state force on the motionless atom again &k}, and
the friction force coincides with the friction force in the bad
cavity limit f, for «>1I",g. Hence we will from now on also
refer tof ,; as the “Doppler cooling force.” As a final remark
let us note that in general the bad cavity limit is a good
approximation if k>g and theatom is driven near reso-

| DopplerPsok

2 N

|

2 B

A, [units of (k)]

Doppler Peak

-15 -5 5 15
A, [units of (k)]

FIG. 3. Contour plot of the friction force fofF = «, gO=3%K.
e long stretched features are due to the cavity-induced fqgce
and the two sharp peaks are due the Doppler fégce

ucts factorize for a weakly driven cavity, i.e{a'a)
=(a')(a). After solving Eq.(48) for (a),, where(a),=0,

one finds again Eq31) for the force on the motionless atom.
For very small velocities one proceeds analogously to the

nance. ) .
ance previous section. From E@48) one calculates the operator
) expectation values to first order in
D. Weakly damped cavity
In the opposite limit of a very good cavity one can assume (a),= vV{(a)o (50)
the internal atomic dynamics to be much faster than the cav- 1 — k= y(X)+iA—iUX)’

ity dynamics. Proceeding analogously to the preceding sec- o . .
tion one setsr~ =0 in the linearized Heisenberg equation of @d inserts this into an expansion of the fofé). Finally

the atomic operatos— (18b) and uses this to eliminate™ one obtains the friction force in the good cavity limit
in Eqg. (1839. Finally one obtains the master equation of the

. . d
cavity mode density operator fea= _(<aT>o<a>1+<aT>1<a>o+ c.c.)&U(x), (51)
dp i _ o .
G %[Hca,p]-i-ﬁp, (46)  which is fully listed in Appendix A.
The friction force in the bad cavity limit; and the fric-
with tion force in the good cavity limitf ., add up to the total
friction force f, obtained in Eq(36), i.e.,
L g%\ R
Hca——ﬁa a AC—AaW —inp(a—a'), flzfat+fca- (52
a
4
) “7 In general the good cavity limit is a good approximation,
Lop=—|k+T gz(x) , (a'ap+pata—2apah). if g,I'> «k and thecavityis driven near resonance, ?.e., spon-
AZ+T taneous decay rate and detuning from the atomic transition
. ] ) are larger than the cavity decay.
Equivalently the equation fox=(a) can be derived, A numerical example of the total friction fordg can be
. ] . found in Fig. 3, where we give a contour plot for this quan-
a=[—k—y(X)+iA.—~iUX)]a+ 7, (48) tity versus the cavity and atomic detunings. We find that only

for small detunings the Doppler fordg; predominates, see
the features marked “Doppler peak” in Fig. 3, whereas for
most parameter regimes the friction fortg, which is in-
J d duced by the strong atom-cavity coupling, is the major con-
F(X)=——H¢= —a'a —U(x). (49 tribution to the total force. In the following section we will
X dx . X : ) . . Lo
investigate this force in more detail and give a more intuitive
Upon substitution of the complex number for the mode interpret_ation of it_s properties in terms of a Sis_yphus cooling
operatora one obtains exactly the classical equations of mo/n€chanism invoking the dressed state formalism.
tion (15). One can see now that in the limit in which the

where y(x) andU(x) are given by Eq(12). For the force
one finds

cavity dynamics is predominant and the driving field is suf- IV. THE DRESSED-STATE APPROACH:

ficiently weak the semiclassical model can be seen in com- SISYPHUS COOLING

plete analogy to the classical treatment of an atomic dipole

oscillating in a cavity standing wave. In this section we will interpret the new cavity cooling

Now one can calculate the steady-state force for a motionforce found in the previous section using dressed s{&®Hs
less or slowly moving atom noting again that operator prodwhich are defined as the energy eigenstates of the compound
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atom-cavity system. The basic idea is to describe the cooling
mechanism as due to transitions between a few of these
dressed states, where these transitions are either induced by
the pump field or occur due to radiative decays of the atom
or the cauvity.

pos=iAspos—T(pos COF 68— poy_ Sin 6 cos 6)

—k(po4+ SIN? 6+ po_ cos b sin 6)+ 7, 58

pri=—T(pss2cof 6—(p_.+p._)sin 6 cos6)

A. Adiabatic potentials —K(py42Sirf 6+ (p_,+p,_)sin 6 cos6)

The interaction between the cavity mode and the atom +7(protpo+)-
shifts the energies of the unperturbed system. The unper- . ) )
turbed eigenvectors can be grouped pairwise into manifolgdhese equations can be solved easily for the steady state in

such that the interaction term in the Jaynes-Cumminggepe”dence on the various system parameters, such as detun-

Hamiltonian(17) only acts between states of the same maniiNgs and coupling strengths. As expected one finds that, if

fold.

the dressed levels are well separated in energy, |id.,

On diagonalizing the Jaynes-Cummings Hamiltonian ex>9.I", and the pump laser is tuned to resonance with one of
pressed in the basis of a given manifold we find the eigenthe dressed energig§3), preferentially this dressed state
values corresponding to the upper and the lower eigener@iets populated whereas the population of the other state re-

ergy, respectively,

A Q,
)\+:_(n+1)AC__+_,
2 2

(53

3 DA A Q,

A== (n+DAc- 5 - 5

where the effective Rabi frequency

Q,=VJA%+4g(x)%(n+1) (54)

was introduced. The corresponding eigenvectors are

+,ny=cosf,|e,n)+sin 6,/g,n+1),

| —,n)=—sin 6,/e,n)+cos d,|g,n+ 1),
where the angl® is defined by

2g(x)yn+1 A
=%, cos Y= — —. (56)
n

n 26, Q
n

The index n denotes the corresponding manifold in the
dressed states ladder. It is now possible to express the whol

master equation in the basis formed by the eigensta®s

mains negligible. However, it turns out that this coupling of
the ground state to the lowest dressed states is much more
efficient, if the pump is tuned to that state which turns into
|g,1) at positions of zero couplingg& 0) than if it is tuned
to the other. This is due to the fact that the pump laser drives
the cavity and thus is only coupled via the cavity mode to the
atom. Hence, in the following we will concentrate on the
more efficient scheme.

The force acting on an atom in one of the dressed states
can be calculated by expressing H81) in terms of our
dressed basis, which yields

AVQ
f(x)=— T(P++_P——)_ﬁQVG(P—++P+—)-

(59

Expanding Eq(58) up to first order ing/A, and neglecting
coherences and populations of any dressed level other than
the one the laser is assumed to drive resonantly one can
again derive Eq(11), which we obtained from a completely
classical viewpoint and in the “weakly damped cavity” limit
(48) before. The same can be done with the fq&® so that

the dynamics is described by the set of equati¢hs).
Therefore, assuming large detuniagand the pump in reso-
nance with the dressed state consisting essentially of the pure
state|g,1), one obtains the same expression for the force and
Ige average photon number as in the good-cavity limit dis-
cussed in the previous section.

Without the pump beam the system decays to the ground

state|g,0) and there is no occupation of higher levels in the

B. Sisyphus interpretation of the cooling mechanism

dressed ladder. Due to the low intensity of the pump beam  apalogously to the interpretation given by Dalibard and

to the first dressed-atom manifold consisting|ef,0) and
| —,0), which are linear combinations d&,0) and |g,1).
Thus we only consider the three staf83]

[+)=[+.0),

10)=19.,0), =)=I-.0 (57

standing wave[32], one can create a similar picture for
atomic motion along a weakly pumped cavity standing wave.
As an example let us assume that initially the atom-cavity
system is in the statfy,0) and the atom moves along the
cavity axis with a small velocity. Furthermore we assume
A.=0 andA>0. In this case the dressed stat, Eq.(57),

and their respective couplings. Couplings to or populationds resonant with the driving field, if the atom is located at a
of higher manifolds may be omitted in the “weak driving” node of the cavity field. Hence the system will be preferen-
approximation. Using only this three-dimensional state spac#ially pumped into|+) at these positions. After this pumping

it is possible to express the master equation in this basis argtocess the system will remain in this state while the atom
to obtain the corresponding equations for populations anehoves further and thus the system energy will vary accord-

coherences, e.g.,

ing to A, Eq. (53). If the atom moves so slowlyk{/«



PRA 58 COOLING AN ATOM IN A WEAKLY DRIVEN HIGH- Q CAVITY 3037

I+ 6
A>0 § \ K\
5 2 N LN .
I-> 2 BN ===
3 - Po—
10> = N §
<
o N
-1 0 1 i
X [units of (A)]
-25 -10 10 25
FIG. 4. w.>wq: The atom is pumped at the minima of the A [units of (k)]
upper dressed level from where it moves upwards and decays back
to the flat ground level. FIG. 6. Contour plot of the friction force foF = «x, go=>5.5«.

The bold lines indicate the pumping of the minimahaf (left-hand

<1) that a spontaneous decay of the cavity or of the atorsid® and of the maxima ok . (right-hand sidg respectively.
occurs before it reaches the top of the poterttial, it loses
some of its kinetic energy. This scheme is called Sisyphus The parameter regimes where the friction force is posi-
cooling and has been treated in detail in connection witHive, i.e., accelerating the atom, can be explained analo-
atomic movement in a strong standing wd@2] or polar-  gously. We find for these heating regions
ization gradient cooling38] before.

The sign ofA anq the gavity-pu'mp detuning, determine A.=0, A<O and A.=— é + 1 \/mg, A>0.
whether the atom is mainly moving upwards or downwards 2 2
the adiabatic potentiabs. and thus whether on average it is (62)
gaining or losing kinetic energy. As has been seen in Fig.
there are two main parameter regions of cooling for a Iggh-
cavity (g>T, k).

The first one arises for

3I'he very good agreement of the friction force maxima with

the predictions of the dressed state scheme is again found in

Fig. 6 for similar parameters, where the bold lines are drawn

according to Egs(61) and (62 for A<0 (cooling and A
A.,=0, A>0 (60) >0 (heating, respectively.

Figure 6 shows that the features of the total friction force
and corresponds to driving the cavity resonantly, i.e., pumpcan be explained very well by the predictions of the Sisyphus
ing the atom at the minima of thepperdressed levek,,  cooling picture. The two peaks around the origin arise for
from where it loses kinetic energy on the way up. This isSmall detuningsi,~I" and result from the Doppler cooling
shown schematically in Fig. 4. force. They can be plotted independently by using the Dop-

The second parameter region, which leads to cooling, i®er cooling forcef calculated above. However, fafl pa-
around rameters a small contribution of the Doppler force exists.
This contribution is a damping one, increasing the overall
A 1 cooling force ifA,<0 and the minima of the lower dressed
A=~ 275 \/A2+4g(2), A<O, (61 level are pumped as shown in Fig. 5, because the laser is red
detuned in this case. On the other hand, foy>0 and
, , ) . umping of the minima of the upper level as shown in Fig. 4,
which corresponds to pumping the system into minima of thge gpposite holds and the additional Doppler contribution is

lower dressed levek _, as is shown in Fig. 5. Note that in 5 antidamping one because the pump laser is blue detuned.
both cases the level that is pumped is the one that turns into

|g,1) for zero atom-mode couplingg(x) =0] and contains
only small admixtures ofe,0) at the antinodes of the cavity
standing wave. So far we have only calculated the forces on a motionless
or a very slowly moving particle. If one is, however, inter-
ested in a particle moving with a spekd/«>1 it is neces-

|+ sary to use the method of continued fractions as introduced
A<0 in [39] to calculate the force. We will follow a procedure
analogous to the one outlined ii0] and only briefly sketch
it.

V. FRICTION FORCE FOR ARBITRARY VELOCITIES

First, mode and atomic operators are combined with their

adjoints to form the Hermitian operatﬁrwhose eigenvalues
are real, which is a prerequisite for the above-mentioned pro-

-1 ,0 1 cedure[40]. Starting from Eq(21) we find
X [units of (A)]

FIG. 5. Sisyphus cooling scheme far,<w;o: The atom is (Z}ZC(Z)+217§1, (63
pumped to the minima of the lower dressed level from where it
moves upwards and decays back to the flat ground level. where



3038 HECHENBLAIKNER, GANGL, HORAK, AND RITSCH PRA 58

& 04 =
2 =00
£ £
£ 02 £ 02
o 5
S £ 03
0 b
3 g 04
0.2 L ‘ : :
2 4 6 8 1 3 5 7 9
kv/x kv/x
FIG. 7. The averaged dipole force is plotted against the velocity  FIG. 8. The averaged dipole force is plotted against the velocity
forI'=«, gop=3+3k, A=7k, A;=0. for T=«, gO=3%K1 A=—Tk, A= _1%.
(at+a’) ties Sisyphus cooling prevails again, but for higher velocities
1 o it becomes less efficient and Doppler cooling becomes domi-
. i—(a a’) nant, thereby increasing the overall cooling effect.
<Z> - <0.* + 0.+> 1]
1 . VI. STEADY-STATE MOMENTUM DISTRIBUTION
o7 —a7) AND TEMPERATURE
In the previous sections we have only dealt with the fric-
-k —A, O g tion force which for properly chosen parameters decelerates
A -k -9 0 the moving atom. However, momentum diffusion counter-
C= 0 T A (64)  acts this cooling and leads to a finite steady-state tempera-
9 a ture. There are two major contributions to the momentum
-g 0 A, -T diffusion. One of these is the random momentum transfer of

absorbed and emitted photons and the second process, re-
andélz(l,0,0,0). Then the atom and mode operator expecferred to as dipole heating, is associated with the random
tation values are expanded into Fourier series according tojumps between different optical potentials for the atom.

These processes prohibit that the atom completely stops at a

field antinode, and a finite equilibrium momentum distribu-

- L - L tion is reached when the contributions of friction and heating
(2)= ; ez, (X)= ; e, 69 cancel.

whereX was defined in Eq(23). A. Diffusion
These Fourier expansions are subsituted into E2. Similarly to Brownian motion an approximate equilibrium

and (63) to find recurrence reIatioDs for the Fourier coeffi- temperature can be inferred from the knowledge of the mo-

cients. The recurrence relations fay may be solved for a mentum diffusionD and the friction coefficien. The deri-

given number of recursions and the result inserted into thgation of the total diffusiorD (for an atom witho =0) is

recurrence relations fofn, which may in turn be solved rather long and is therefore given in Appendix B. As a result

recursively. As a result we obtain the position averaged forceve obtain

on the atom through the first Fourier component of the first

vector elemenk}. This procedure may be repeated for dif- Diot=Dset Dap

ferent values of the atomic velocity for given detunings and 72T

system parameters to yield the velocity dependence of the =h2k?Q° ———

cooling force. In Fig. 7 the force is plotted against the atomic |detA)|

velocity where the driving laser is tuned to the minima of the , , 7T 4A,0% AT+ A

upper dressed level, cf. the discussion in Sec. IV B. In this +44(VQ) 5| 1+ >

case Sisyph li for | i iti |detA)] r |det(A)]

yphusooling appears for low atomic velocities

kv/k<1. However, for increasing velocity the Sisyphus ef- (66)

fect becomes small and Doppleeatingbecomes predomi-

nant. Hence the force changes from a damping to an anti- Apart from the last term appearing in the brackets in the

damping one and reaches its heating maximum for a speeskpression foD 4, this expression for the total diffusion is

kv~ A, before the Doppler effect becomes smaller again forequivalent to the expression that is found when the cavity

larger velocities. mode is treated classically and assumed to decouple from the
Following the discussions of Sec. IV B cooling can alter-atomic dynamics, as discussed at the end of Sec. Il C. It is

natively be achieved by pumping the minima of floever  the same diffusion in the weak intensity limit as was calcu-

level. An example for this is given in Fig. 8. For low veloci- lated in[31,35 for an atom moving in a free standing wave.
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FIG. 11. i he D ler limit fdr>«k. gy=2T"
FIG. 9. The total diffusion and the diffusion without the correc- G Going beyond the Doppler limit fdr> «. go '

tion t due 1o th i ¢ f th it d lott (@:—1.91“, A.=—13. T is given in units ofal'/kg and « in
ion term due to the quantum nature ot the cavity mode are plotte,iis of ' The crosses mark the results obtained from quantum

against the cavity detuning, for A= —7«, I'=k, gozséx. Monte Carlo simulations.

Let us note again that, as discussed above and as can be
The expression derived above now shows that the quantuglearly seen from Figs. 9 and 10, the cavity-induced friction
nature of the mode introduces a correction term. force and the quantum correction term of the momentum
In fact, this correction term can be much larger than thediffusion coefficient assume their respective maxima for the
remaining terms, if the cavity is driven near resonance angame parameters.
the detuningA between cavity and atomic transition is large.
This corresponds exactly to the parameter regime where the B. Steady-state temperature

cavity-induced cooling mechanism predominates, i.e., where The values for the friction coefficient and the diffusion

fea[EQ. (51)] is the dominant contribution of the total fric- averaged over a wavelength may be related to the tempera-
tion force. On the other hand, if the atom is driven resonanth{ure by

and the Doppler cooling forcé, [Eq. (45)] is dominant,
A,~0 and the correction term disappears. This is shown in
Fig. 9 where the wavelength averaged diffusion with and P

. . . . Dot
without the correction term is plotted against the pump- kpgT= —, (67)
laser—cavity detuning . for fixed A. WhenA, is large and fi
the atom is driven resonantly the correction term is small
whereas it is significant foA.~0 when Sisyphus cooling
dominates over Doppler cooling. Figure 10 shows a plot ofas has been investigated in more detail3].
the total friction force and the Doppler and cavity cooling For cooling a two-level atom in a free standing wave the
components of which it is composed. One can see the strorgp-called Doppler limit, given bykgTi,=~I", imposes a
Sisyphus effect for\,~0. The cooling is a maximum when lower limit on the attainable temperatures. One must con-
the lower dressed level is excited at its minima and turns intsider that for Doppler cooling the energy transfer channel is
a heating force when the cavity is pumped resonantly, the atomic spontaneous decay and equilibrium temperatures
=0. For larger detunings the cavity mediated force becomesan be as low as the width of this transfer channel, i.e., the
diminishingly small and the total force is dominated by thenatural linewidth.
Doppler component, which has its peaks for atom detunings In our case of cavity-induced cooling the dominant trans-
Ay~=T. fer channel is through the cavity decay and temperatures
should therefore be limited by the cavity decay rate. This can
be seen clearly in Fig. 11 where the equilibrium temperature
is plotted against the cavity loss rakeand where a linear
dependence is observed for smalgiving rise to final tem-
peratures of the order dfx/kg . If xk becomes larger than the
spatial modulation of the dressed levels the effect washes out
and Doppler cooling becomes dominant with final tempera-

o
=3

o
IS

Friction Force {units of hvk’(m/x)}

0 tures around the Doppler limit. The results are nicely con-
firmed by fully quantum Monte Carlo simulations, denoted
0.4 by the crosses in Fig. 11, where the external degrees of free-
dom are also quantized.
-2 2 6 10
A, [units of (i)} VII. CONCLUSION
FIG. 10. The total friction forcef, (solid curve, the Doppler We have shown that one of the key effects leading to a

force f,, (dashed, and the cavity-mediated forck, (dotted are  reduction of the kinetic energy of a particle strongly coupled
plotted against the laser-cavity detunifig for the same parameters to a cavity field can be understood from a purely classical
as in Fig. 9 model of a point dipole coupled to the field inside an optical
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resonator, where the only dissipative process is cavity dampf_ = —#(Vg)25?4(— A3A4F AZACgZF+A Acg

ing. Via this damping kinetic energy will be extracted from

the moving dipole until it comes to a complete stop at a field + AT — A A3+ ASg T3 - 2A5A20% k + 24 ,0%

antinode. Including quantum mechanics in the atomic and 3.2 2

field dynamics implies spontaneous emission of the atom and +2A0g°T 20— 28 AT 1~ AZAG?T 1%+ 34,9 *

guantizing tr_le cavity _field as well as atomic motion. Thi_s — 2A A2 3%+ A g2T 32— 243243

leads to various heating processes as well as extra cooling

forces such as, e.g., the Doppler cooling mechanism. Hence 3 4 34 1

the atom reache&t least approximatelya certain steady- A& = Ak e (A2)
: . . |de(A)|

state temperature determined by all these heating and cooling

mechanisms. This temperature of the ordek®f%x can  f = —4(Vg)27?4(—2A2A%T +2g*T' — 2A2T"3— 4A3A («

be much smaller then the optical potential depth so that the

atom can be well trapped. Of course in a realistic setup the ~ +4A30%k —4A,A T2k +492T %k

transverse motion of the atom has to be included as well. Ag2
Due to the finiteness of the effective mode volume the par- +2A2T K2+ 2I3k2) ad _ (A3)
ticle will of course eventually escape. We have performed |detA)|

some preliminary calculations in 2D and 3D, which show

long confinement times>ms) for a transverse Gaussian = APPENDIX B: CALCULATION OF THE DIFFUSION
profile of 10—100um width. This should provide for enough We will in the following give a short derivation of the
time for typical cavity QED experiments. A second interest- iffusion constant in a cavity standing wave by use of the
ing question considers the dynamics of several atoms in Sucﬁhantum regression theoref@RT). The QRT states that op-

a cavity. In this case one finds cooling but also a Stron%rator two-time averagda, ()a,, (.t )) obey the same equa-
cavity mediated correlation effect on the dynamics of the tions of motion as single-time averag(as,,(t)) If one can
atoms. Of course one could go to the extreme limit of storqume

a Bose condensate in such a cavity dipole trap. Here the

requirements on the cavity finesse and coupling are reduced

because of the large number of atoms, which will lead to gila)=A,.(a, 1), (BD)
strong cavity field phase shifts anyway. On the other hand to

avoid spontaneous emission, large detunings between punifpfollows that

field and atomic transition have to be used. Eventually this q

could provide an excellent method to store, observe, and el I — /

manipulate a condensate. d't<a”(t)aA V) =Auu(3u03(1))- B2)

The diffusion is defined as the momentum spread and
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work was supported by the gBerreichischer Fonds zur dt 0
Forderung der wissenschaftlichen Forschung under Project (B3)

No. S06506-PHY. where quasistationary conditions were assumed. One contri-

bution to the total diffusion is due to spontaneous emission.

APPENDIX A: FRICTION FORCE FOR THE GOOD Although the forcef,,. arising from the atom-vacuum cou-
AND BAD CAVITY LIMITS pling,
The total friction forcef,; was shown to be the sum of the fuac= — AV Efee, (B4)

cavity mediated forcd .,, which is obtained after adiabatic

elimination of the atomic operators and the Doppler forcewhered=d(o*+0~) is the electric dipole operator, yields
fat, Which is obtained after adiabatic elimination of the modezero when averaged over the vacuum field its fluctuations
operators, give rise to diffusion. Thus its contribution to E@3) reads

flzfca+fat- (Al) DSE:Re J'O dt<d(o)vEfree(o)d(t)VEfree(t)>- (BS)

Using the rotating-wave approximation one obtains for the
The respective expressions are given below: integrand

<a+(0)a—(t)&VE;ee(O)&VEf;ee(t))=<a+(0)a—(t)>§ (&ék)2||2|22h€w{‘/ etled=(g"(0)o (1))hk?2I' (1), (B6)
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where the last line has been found by taking the sum over the d -

two polarization directions, converting the sum into an inte- L( &g(t)] =—9(0)+sy(s). (B15)

gral over frequency, and including the free space density of

modes. Then the Markoff approximation was made by as- \ye can see from EqB10) that we are only interested in
suming the factors appearing next to the exponential to behe integral over the force correlation, which amounts to set-
quasiconstant over the range of integration, so that they caflyg s=0 in our Laplace transformed sets of equations.
be taken out of the integral, which then can be approximate@g11) can then be solved by inversion &f and the result

by a & functlon. Takmg the characteristic dipole raqmlon substituted into Eq(B13), considering that is a linear com-
pattern into account this result would have to be modified by | 5 Gt ) )
a constant factor2 for circularly polarized light, for in- Pination ofY,Y" (25). Equation(B13) in turn can be solved
stance. Substituting this result for the integrand back into by inversion ofB and the solution vector contains the desired
Eq. (B5) and using Eq(26) for (o* o) at steady state, we correlation as its first element. We still have to calculate the
i ’ initial conditions for the operator covariances that appeared

finally obtain !
when we Laplace transformed our two sets of equations.
7%92 They can be calculated as follows.
DSEzﬁzkzrw. (B7) The mode operators obey the relation
[a,a']=1. (B16)

The second contribution to the diffusion is due to the
(25) the dipole force operator reads to a harmonic oscillator of which only the first two levels are
occupied at most. Therefore we have
F(x)=—1g(x)Xs. (B8) P

—,07]=1. B1
We introduce the abbreviation [o707] (B17)

<avva,u>=<5a1/5ap.>=<avay>_<av><aﬂ>1 (B9)

where da,=a,—(a,) is the fluctuation of the operatar,

around its mean angh, ,a,,) is the operator covariance. The
part of the diffusion due to the dipole fluctuations can be
written as

Now we can solve the linearized equatiqas) for steady

state, i.e., we demana=c =0 and obtain expressions of
the form

ast= Ca'H:_l: Ugt:C(r+F_21 (818)

wherec,, c, arec numbers corresponding to the expecta-
o tion values in steady state arkéh,F, are noise operators.

Dap=%%(Vg)? Re J dt(5X1(0)8X4(t)). (B10) Instead of specifying them we require the commutation prop-
0 erties(B16), (B17) to be fulfilled, from which we deduce

Starting from Eqs(24) and (21) we can derive the fol- T E 41— T 1
lowing covariance equations where the QRT is invoked to [FuFa7]=1, [Fa R ]=1. (B19
obtain equations for the two-time averages: These properties allow averages over operator products to
d be calculated easily when applying E&18) and consider-
—(Xl(O),\?(t))=A(X1(O),\?(t)>, (B11) ing that the noise operators yield zero when applied to the
dt vacuum, as an example:
where (@'~ ot ay=((ch +F1)(c, +Fo)(ch+F, ) (cat Fy))
v (X1(0),a(t)) =(a'a)(cto ) +(ata). B20
0¥ 0)=| oy e @12 (@ayotor)(aa (820
(X1(0),07 (1)) . .
All terms containing noise operators are zero except for the
Similarly one finds following one, where they appear in antinormal order,

d R R . C¥F,F,tc,)=clc,=(a'a). B21
Gr(X2(0).X(1) =B(X1(0), X (1)) + n(X1(0).T), GaFeFe ca meic (@ ® (B2
(B13) Consequently the initial conditions may be calculated easily,

ie.,

with an analogous meaning 0K;(0),X(t)). -~

These two linear coupledésystems of>first-order differen- {X2(0).X1(0)) = {X1(0)X1(0)) = {X1(0)}{X1(0))
tial equations can be solved conveniently by performing a :<(,+0*>+<a’ra>_ (B22)
Laplace transform that is defined for a functibft) as

We find analogous results for all the other initial condi-
tions. Inserting them all into the inverted and Laplace trans-
formed Eq.(B13) and taking the real parts of the first solu-
tion vector element as demanded by EB10) we finally
with the property find the total diffusion given in Eq66).

L{g(t)}= f:dte*stgm:a(s), (B14)
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