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Cooling an atom in a weakly driven high-Q cavity

Gerald Hechenblaikner, Markus Gangl, Peter Horak,* and Helmut Ritsch
Institut für Theoretische Physik, Universita¨t Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

~Received 1 April 1998!

We investigate the external and internal dynamics of a two-level atom in a standing wave cavity. In the
strong coupling regime, where the atom field couplingg dominates the atomic and cavity decay rates~G,k!, a
cooling mechanism entirely different from free-space Doppler cooling appears. Under suitable operating con-
ditions, the cavity dynamics induces a Sisyphus type cooling, which is the dominant contribution to the total
friction force acting on a moving atom. Simple equations describing the key properties of this effect are
derived from a completely classical picture and confirmed by a semiclassical approach. The model is investi-
gated in the bad and good cavity limits, and analytic expressions for the friction coefficient and the momentum
diffusion for slow atoms are derived. Using a continued fractions expansion the cooling force for arbitrary
velocities is evaluated numerically. The result is used to calculate the equilibrium temperatures of the atom of
the order ofkT'\k, which can be much lower than the free-space Doppler limit and agree well to those
obtained by quantum wave-function simulations.@S1050-2947~98!02310-5#

PACS number~s!: 32.80.Pj, 42.50.Vk, 42.50.Lc
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I. INTRODUCTION

It is well known that radiative properties of atoms a
changed inside a cavity@1#, since the electric field eigen
modes in a cavity are different from free space. Already
1946 Pourcel predicted an enhancement in the spontan
decay rate for an atom placed in a resonant cavity@2#. Later
Kleppner pointed out the opposite possibility of inhibitin
spontaneous emission@3#. Since the early days of quantum
optics the simplest theoretical representation of such a
tem, namely the Jaynes-Cummings model@4# of a two-level
atom coupled to a single radiation mode of an optical re
nator, has become one of the most thoroughly investiga
models both theoretically~cavity-QED! and experimentally,
using microwave cavities@5# and recently also optical high
finesse resonators@6#. With the advent of laser cooling o
free atoms also the question of atomic motion and cav
induced light forces was considered in various papers.
example, a possible scheme to cool free atoms in so-ca
colored vacua characteristic for cavities was proposed
@7,8#. Laser cooling in a squeezed vacuum@9–11# and adia-
batic cooling in cavities@12# has also been investigate
Similarly Ciracet al. dealt with the interaction between th
cavity mode and an atom, which was additionally stron
driven by a laser, in the bad cavity limit@13#. Many dynami-
cal aspects of atomic motion in cavities have been caref
investigated also in a series of recent papers by Parkins
co-workers@14,15#. They show that spontaneous transitio
together with the dipole force leads to strong heating a
finally expulsion of the atom from the cavity mode. In th
tight-binding ~Lamb-Dicke! regime, where the atom is con
fined to less than an optical wavelength, they also cons
the influence of quantized atomic motion on the dynam
@16#.

In the meantime advances in cavity technology have
lowed one to experimentally reach the so-called stro

*Present address: Laboratoire Kastler-Brossel, Ecole Norm
Superieure, 24 rue Lhomond, 75231 Paris Cedex 05, France.
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coupling limit in the optical domain@17,18#, so that already
a single atom strongly modifies the cavity dynamics@7,19–
26#. As a striking example the influence of a single atom
transmission and intracavity intensity of a driven cavity c
be measured@6#. The cavity output may be continuousl
monitored to determine the atomic position at high reso
tions @23,27#. Spontaneous emission of an atom moving in
cavity standing wave has also been examined@28,29#. In
some recent theoretical work we have suggested that l
forces which appear in the coupled atom-cavity dynamics
this strong-coupling regime can be used to cool and tra
single atom exactly at the antinodes of the cavity field, wh
one has the strongest atom-field coupling@30#. In this work
we extended this treatment to a much larger parameter
gime, including blue detuned light fields and faster atoms
the extended semiclassical model explicit analytical expr
sions for forces, diffusion, and kinetic temperature are
rived.

This work is organized as follows: in Sec. II the model
an atom interacting with a quantized standing wave in
weakly driven cavity will be introduced and a simple clas
cal analog of this system will be discussed. In Sec. III
semiclassical version of this model, where the light field a
the internal atomic degrees of freedom are quantized, is
sented. The friction force is analytically calculated and t
physical origin of its various contributions is discussed.
nally the two limiting cases of a strongly and a weak
damped cavity are elaborated. In Sec. IV the so-ca
dressed state approach is used to help in the physical in
pretation of the results in analogy to the well-known Sis
phus cooling@31,32# in optical molasses. The cooling forc
for arbitrary velocities using the method of continued fra
tions is presented in Sec. V, while Sec. VI is devoted to
derivation of the momentum diffusion using the quantu
regression theorem, which contains additional terms aris
from the cavity dynamics. This allows one to give estima
of the equilibrium temperature and allows us to make co
parisons to results obtained through a numerical fully qu
le
3030 © 1998 The American Physical Society
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PRA 58 3031COOLING AN ATOM IN A WEAKLY DRIVEN HIGH- Q CAVITY
tum treatment of the problem including quantization of t
external motion of the atom.

II. CLASSICAL MODEL

Let us in the following look at a two-level atom strong
coupled to a single isolated mode of frequencyv0 of a
weakly driven cavity. Losses from spontaneous emission~G!
and cavity decay~k! are included in our model via couplin
to external reservoirs. The atom is allowed to move along
standing wave to which it is coupled with a strength det
mined by a local coupling functiong(x)5gu(x), where
u(x) is the normalized mode function. The cavity is assum
to be externally driven by a monochromatic field of fr
quencyvp and effective amplitudeh. A graphic scheme of
our model is given in Fig. 1.

Before going to a quantum description let us start from
completely classical point of view of a massive pointli
dipole in an optical resonator. As we will see later, the eq
tions derived here strongly resemble those found in a se
classical treatment in the good cavity limit.

Let us consider a cavity field mode coupled to an ato
driven by an external pump field and damped due to
conductivitys of the cavity mirrors. The cavity field induce
a dipole moment of the atom, which in turn contributes to
electric field as a driving term in the wave equation@33#,

S 2D1
1

c2

]2

]t2DEW ~xW ,t !1m0s
]

]t
EW ~xW ,t !

52m0

]2

]t2 PW ~xW ,t !1m0s
]

]t
EW ext~xW ,t !, ~1!

where the damping term was modeled asm0(]/]t)(sEW ) and
the external pump was taken into account bym0s(]/]t)EW ext.
For simplicity we assume a quasi-1D situation, where
field is a plane wave propagating in thex direction, which
leads to

]2

]t2 E~x,t !1
s

e0

]

]t
E~x,t !2c2

]2

]x2 E~x,t !

52
1

e0

]2

]t2 P~x,t !1
s

e0

]

]t
Eext~x,t !. ~2!

We can expand this into normal modes

E~x,t !5 (
n50

`

Ẽn~ t !cos~Knx!, ~3!

with eigenfrequenciesvn5cKn5npc/d, whered denotes
the cavity length. After some straightforward manipulatio
we arrive at the equation for the dynamics of the cavity mo

FIG. 1. Particle moving in a weakly driven cavity with loss
from spontaneous emissionG and cavity decayk.
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with eigenfrequencyvc and wave vectorK, which is as-
sumed to be quasiresonant with the pump field of freque
vp ,

Ë̃1
s

e0
E8 1vc

2Ẽ52
1

e0
P̈̃1

s

e0

]

]t
Ẽext, ~4!

with P̃(t)5(2/d)*2d/2
d/2 dx P(x,t)cos(Kx) and analogously for

Ẽext.
Now we can make the following ansatz for the elect

fields and the polarization:

Ẽext~z,t !5E ext~ t !e2 ivpt1c.c., Ẽ~ t !5E~ t !e2 ivpt1c.c.,

P̃~ t !5P~ t !e2 ivpt1c.c., ~5!

where the amplitudes are assumed to vary slowly compa
to the rapidly oscillating exponential functions, i.e.,uĖu
!vpuEu and analogously forP and E ext. Using the above
approximations we find the following equation for the mo
amplitude:

Ė1~k2 iDc!E'
ivpP
2e0

1kE ext, ~6!

whereDc5vp2vc andk5s/(2e0). As a next step we have
to introduce the dynamics of the atomic dipole, which
simply modeled as an elastically bound electron. Thus
elongation is governed by the equation of a damped h
monic oscillator driven by an electric field at the atom
positionxa :

ÿ~ t !12G ẏ~ t !1v0
2y~ t !5

e

m
E~xa ,t !. ~7!

Let us now introduce the slowly varying complex amp
tudeY(t) via the ansatz

y~ t !5Y~ t !e2 ivpt1Y* ~ t !eivpt. ~8!

Upon inserting this into Eq.~7! and solving for the steady
state, we obtain

Y~ t !5
eE~ t !/m

2vp~2 iG1~v0
22vp

2!/2vp!
cos~Kxa!. ~9!

For a pointlike particle the polarization density can
defined asP(x,t)5ey(t)d(x2xa)/A whereA is the cavity
cross section andV is the cavity volume. This yields the
following expression for the slowly varying amplitude:

P~ t !5 i
e2

mvpV

cos2~Kxa!

~G2 iDa!
E~ t !, ~10!

where Da5vp2v0 and the approximation (v0
22vp

2)/
(2vp)5(v02vp)(v01vp)/(2vp)'2Da was made. Put-
ting everything together and splitting the polarization into
real and an imaginary part, Eq.~6! leads to the following
equation for the slowly varying field amplitude:

Ė~ t !5@2k2g~xa!1 iDc2 iU ~xa!#E~ t !1kE ext, ~11!
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whereDc5vp2vc and

U~xa!5
Da

G21Da
2 g0

2 cos2~Kxa!,

g~xa!5
G

G21Da
2 g0

2 cos2~Kxa!. ~12!

Hereg0
25e2/(2Ve0m) is a measure for the cavity-atom co

pling strength. The force on the atom is then given by

f ~xa!5¹@ey~xa ,t !E~xa ,t !#

52¹F e2

2vpm

Da

G21Da
2 E 2 cos2~Kxa!G . ~13!

We rewrite Eqs.~11! and~13! in terms of a dimensionles
parametera whose squared absolute value is associated w
the average cavity photon number,

ua2u5
e0uE 2uV

\vp
, ~14!

and obtain the following set of equations for the atom-cav
dynamics:

ȧ5@2k2g~x!1 iDc2 iU ~x!#a1h,

ṗ52uau2
d

dx
U~x!, ~15!

ẋ5
p

m
,

whereh characterizes the driving laser strength and the
dex a for the atomic position has been omitted for conv
nience. These equations can be easily generalized to t
dimensions. Integration of Eq.~15! gives a useful physica
picture of the particle being cooled down until it is trapped
a periodic potential. This is shown in Fig. 2, where a parti
moves along a laser standing wave with detunings and de

FIG. 2. The particle is cooled while moving along the cav
standing wave until its kinetic energy gets so low that it is trapp
in a potential well where it oscillates back and forth.
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rates chosen such that this ‘‘cavity cooling’’ force is op
mized. Note that it does not take into account diffusion
any kind nor does it include Doppler cooling, which is, how
ever, small for the chosen parameters. The cooling force
be understood from the purely classical viewpoint as aris
from the strong dependence of the intracavity intensity
the position of the atom within the cavity standing wave. F
certain parameters the intensity reaches a maximum fo
atom at a node whereas the potentialU(x) is a minimum
there. However, if the particle is slowly moving along th
potentialU(x) the maximum field intensity will be reache
after it has passed the potential minimum due to the fin
cavity response time. Accordingly the particle sees a hig
intensity and thus a stronger damping force when going
U(x) than it sees an antidamping one when going do
U(x). On average this leads to a damping force.

III. SEMICLASSICAL ANALYSIS OF
POTENTIALS AND FORCES

For a better understanding of this cooling force fou
above we will in the following develop a more appropria
semiclassical model of the atom-cavity system, where
internal atomic degrees of freedom as well as the ca
mode are treated quantum mechanically, but the atomic
tion is treated classically. The master equation describing
model, cf. Fig. 1, is given in the rotating-wave approxim
tion and in a frame rotating with the pump frequencyvp as

ṙ52
i

\
@HJC,r#2

i

\
@HP ,r#2G~$s1s2,r%122s2rs1!

2k~$a1a,r%122ara1!, ~16!

where

HJC52\Das1s22\Dca
†a1\g~x!~as11s2a†!,

HP52 i\h~a2a†! ~17!

are the Jaynes-Cummings and the pump Hamiltonian,
spectively,a is the annihilation operator of the cavity mod
and s2 that of the atomic transition.g(x)5g0 cos(kx) de-
notes the atom-cavity coupling strength, which varies si
soidally according to the cavity standing wave. Instead
solving the master equation one can equivalently deal w
the Heisenberg equations for atomic and mode operat
The coupling to the vacuum field resulting in spontaneo
emission and cavity decay then accounts for the appear
of noise terms in the Heisenberg equations@34#. One finds

ȧ5 iDca2 ig~x!s22ka1h1F1 , ~18a!

ṡ25 iDas21 ig~x!sza2Gs21szF2 , ~18b!

where sz5@s1,s2#. F1 and F2 are noise operators tha
essentially contain only free input field operators. Here, i
only important to know that they yield zero when applied
the vacuum,

F1uvac&5F2uvac&50. ~19!

d
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A. Steady-state force on a motionless atom

In order to linearize Eqs.~18! we assume that the cavity i
very weakly driven. In this case there is at most one pho
in the cavity and only the combined atom-cavity statesu1,g&
~one photon in the cavity mode, atom in the ground sta!,
u0,e& ~no photon, atom in the excited state!, and u0,g& con-
tribute to the system dynamics. Thus,

^sza&52^a&. ~20!

One has to keep in mind that this is valid only for low sa
ration when the excited state is hardly occupied. Then
time evolution of the expectation values may be written a

^YẆ &5A^YW &1ZW h , ~21!

where

YW 5S a
s2 D , A5S iDc2k 2 ig~x!

2 ig~x! iDa2G
D , ZW h5S h

0 D .

~22!

Similarly one can derive equations for the expectat
values of the normally ordered operator products

XW 5S X1

X2

X3

X4

D 5S a†s21s1a
1

i
~a†s22s1a!

a†a
s1s2

D , ~23!

which read

^XẆ &5B^XW &1h^ IW&, ~24!

where

B5S 2g 2D 0 0

D 2g 22g 2g

0 g 22k 0

0 2g 0 22G

D , IW5S s21s1

1

i
~s22s1!

a1a†

0

D ,

~25!

with D5Da2Dc andg5G1k. Note that the normal orde
is important to obtain vanishing averages of products invo

ing noise operators. Solving those equations for^XẆ &50 one
obtains for the expectation values of the motionless atom
steady state

^XW &05
h2

udet~A!u2 @2Dag~x!,22g~x!G,Da
21G2,g~x!2#,

~26!

where det(A) is the determinant ofA, given by

det~A!5Gk1g~x!22DaDc2 i ~DcG1Dak!. ~27!

Comparing Eq.~26! with the solution of Eq.~21! one
finds the equalities

^a†s2&5^a†&^s2&, ~28!
n

-
e

n

-

at

^a†a&5^a†&^a&.

This shows that the operator products factorize for the ste
state of a motionless atom in the limit of a weakly drive
cavity. One finds for the average photon number from E
~26!

^a†a&5h2
Da

21G2

@Gk1g~x!22DaDc#
21~Dak1DcG!2 .

~29!

This result differs from what one obtains from ordina
input-output formalism with no atom inside the cavity, whe
maximum transmission occurs when the cavity is driv
resonantly and most light is reflected back at the input mir
when there is a large detuning between cavity and pu
laser. If the atom is present inside the cavity, it may shift
cavity resonance frequency due to its interaction with
cavity mode. If the pump is detuned from cavity resonan
the strong atom-cavity coupling for an atom at an antino
may shift the pump into resonance so that maximum tra
mission occurs. For the force acting on the atom we find@31#

F~x!5 Ṗ5
i

\
@H,P#52\¹g~x!~a†s21s1a! , ~30!

and inserting Eq.~26! yields

f ~x!5^F~x!&

52\h2
Da¹g~x!2

@Gk1g~x!22DaDc#
21~Dak1DcG!2 .

~31!

This expression for the force may be integrated to find
potential. For negative detuningDa,0 the atom is attracted
to the antinodes~high field seeker!, whereas the opposite
holds for positive detuning.

B. Friction force on a slowly moving atom

It is straightforward to find an expression for the frictio
coefficient, i.e., the linear velocity dependence of the fo
for small velocities. We will follow a procedure complete
analogous to the one outlined in@31,35#, which is valid if the
atom moves only a fraction of a wavelength before eithe
cavity or an atomic decay occurs, i.e., if

kv!G,k. ~32!

In general it is not necessary for both ratios to be mu
smaller than one, depending on which decay channel
dominates. We define the friction coefficient as the for
term linear inv and expand the density matrix in powers
v with r0 denoting the zeroth andr1 the first order inv,
respectively. We may then write for the master equation
first order inv:

v
]

]x
r05Lr1 , ~33!

where
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Lr52
i

\
@H,r#2G~s1s2r1rs1s222s2rs1! ,

~34!

and the system was assumed to be in steady state with a
atomic velocity. We then find the following equations:

v
]

]x
^YW &05A^YW &1 ,

~35!

v
]

]x
^XW &05B^XW &11h^ IW&1 ,

where^¯&0 , ^¯&1 denote the zeroth-order expectation v
ues, which have been calculated in the previous subsec
and first-order expectation values, respectively. Thus w
the notation of Eqs.~23! the friction force is given by

f 1~x!52\¹g^X1&1 . ~36!

The full expression for Eq.~36! is listed in Appendix A.
Here we only want to note thatf 1 consists of two parts
where each of these can be obtained as the full force
certain limit, which also give physical interpretations f
these terms. These limits will be discussed in the follow
two subsections.

C. Strongly damped cavity

The first limit in which we want to study the behavior o
our system is the limit of a strongly damped cavity; i.e., t
cavity relaxation is assumed to be much faster than
atomic relaxation so that the cavity adiabatically follows t
atomic evolution. As a consequence one can get rid of
cavity operators and find a master equation for the ato
degrees of freedom alone. This can be derived withou
weak driving field approximation from the Heisenberg equ
tion for the mode operator~18a!, which is already linear.
Settingȧ50 in Eq.~18a! and solving fora, one expressesa
through atomic and noise operators, which may subseque
be substituted into the Heisenberg equation for the ato
operator~18b!. From this one is able to deduce the mas
equation for the atomic density operator

dr

dt
52

i

\
@Hat,r#1Lr, ~37!

where

Hat52\D̃~x!s1s21\g̃~x!~s11s2!,

Lr52G̃~x!~s1s2r1rs1s222s2rs1!, ~38!

and

D̃~x!5Da2Dc

g~x!2

Dc
21k2 ,

g̃~x!5
g~x!h

ADc
21k2

, ~39!
ed

n,
h

a

g

e

e
ic
a
-

tly
ic
r

G̃~x!5G1k
g~x!2

Dc
21k2 .

The general expression for the force with the mode adiab
cally eliminated reads

F~x!52
]Hat

]x

52\Dc

¹g~x!2

Dc
21k2 s1s2

2\¹g~x!
h

ADc
21k2

~s11s2!. ~40!

Noting the analogy of Eqs.~37! and ~38! to the optical
Bloch equations we can immediately take their well-know
solutions@31# and apply them to Eq.~40! to find for the force

f ~x!5^F~x!&52\Dc

¹g~x!2

Dc
21k2

1

2

s

s11

2\¹g~x!
h

ADc
21k2

D̃

2g̃~x!

s

s11
,

~41!

wheres is defined ass52g̃(x)2/(D̃21G̃2).
It should be emphasized again that Eq.~41! is valid for

any driving amplitudeh. It can be shown by expanding Eq
~41! in powers ofh2 that the expression for the force w
found before in Eq.~31! is just the contribution proportiona
to h2 of Eq. ~41!. Alternatively it is possible to linearize Eq
~37! for weak pumping and to obtain the correspondi
Heisenberg equation for the atomic operators2:

^ṡ2&5~ i D̃2G̃ !^s2&2 i g̃~x!. ~42!

As the expectation values factorize for weak pumping
can use

^s1s2&5^s1&^s2& ~43!

and Eq.~40! to calculate the force on the motionless ato
To do so we can set̂ṡ2&050 and solve for̂ s2&0 and we
find again Eq.~31! for the force on the motionless atom. T
obtain the friction coefficient we expand Eq.~42! in powers
of v to obtain the operator expectation values to first ord
yielding

^s2&15
v¹^s2&0

~ i D̃2G̃ !
, ~44!

and insert this into the expression for the force~40!, which
gives the friction forcef at in the bad cavity limit

f at52\Dc

¹g~x!2

Dc
21k2 ~^s1&1^s

2&01^s1&0^s
2&11c.c.!

2\¹g~x!
h

ADc
21k2

~^s1&11c.c.!. ~45!
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The somewhat unhandy expression is given in Appendix
In a previous paper@36# dealing with the same system th

cavity dynamics was assumed to be unaffected by the ato
motion and the cavity mode was assumed to be in a qu
coherent state. Hence the cavity mode operatora can be
replaced by ac-numbera, which is calculated for the stead
state of the motionless atom and then reinserted into
master equation. The resulting equations can be consid
as optical Bloch equation analogs where the effective c
pling strength is given byg0a. The cooling or heating of the
atom is then solely governed by the Doppler effect. This
the ultimate case of the limit discussed in this subsec
when the cavity mode completely decouples from the sys
dynamics. Following these assumptions one finds for
steady-state force on the motionless atom again Eq.~31!, and
the friction force coincides with the friction force in the ba
cavity limit f at for k@G,g. Hence we will from now on also
refer to f at as the ‘‘Doppler cooling force.’’ As a final remar
let us note that in general the bad cavity limit is a go
approximation if k@g and theatom is driven near reso-
nance.

D. Weakly damped cavity

In the opposite limit of a very good cavity one can assu
the internal atomic dynamics to be much faster than the c
ity dynamics. Proceeding analogously to the preceding s
tion one setsṡ250 in the linearized Heisenberg equation
the atomic operators2 ~18b! and uses this to eliminates2

in Eq. ~18a!. Finally one obtains the master equation of t
cavity mode density operator

dr

dt
52

i

\
@Hca ,r#1Lr, ~46!

with

Hca52\a†aS Dc2Da

g~x!2

Da
21G2D 2 ih~a2a†!,

~47!

Lr52S k1G
g~x!2

Da
21G2D ~a†ar1ra†a22ara†!.

Equivalently the equation fora5^a& can be derived,

ȧ5@2k2g~x!1 iDc2 iU ~x!#a1h, ~48!

whereg(x) and U(x) are given by Eq.~12!. For the force
one finds

F~x!52
]

]x
Hca52a†a

d

dx
U~x!. ~49!

Upon substitution of the complex numbera for the mode
operatora one obtains exactly the classical equations of m
tion ~15!. One can see now that in the limit in which th
cavity dynamics is predominant and the driving field is s
ficiently weak the semiclassical model can be seen in c
plete analogy to the classical treatment of an atomic dip
oscillating in a cavity standing wave.

Now one can calculate the steady-state force for a mot
less or slowly moving atom noting again that operator pr
.
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ucts factorize for a weakly driven cavity, i.e.,̂a†a&
5^a†&^a&. After solving Eq.~48! for ^a&0 , where^ȧ&050,
one finds again Eq.~31! for the force on the motionless atom
For very small velocities one proceeds analogously to
previous section. From Eq.~48! one calculates the operato
expectation values to first order inv,

^a&15
v¹^a&0

2k2g~x!1 iDc2 iU ~x!
, ~50!

and inserts this into an expansion of the force~49!. Finally
one obtains the friction force in the good cavity limit

f ca52~^a†&0^a&11^a†&1^a&01c.c.!
d

dt
U~x!, ~51!

which is fully listed in Appendix A.
The friction force in the bad cavity limitf at and the fric-

tion force in the good cavity limitf ca add up to the total
friction force f 1 obtained in Eq.~36!, i.e.,

f 15 f at1 f ca. ~52!

In general the good cavity limit is a good approximatio
if g,G@k and thecavity is driven near resonance, i.e., spo
taneous decay rate and detuning from the atomic transi
are larger than the cavity decay.

A numerical example of the total friction forcef 1 can be
found in Fig. 3, where we give a contour plot for this qua
tity versus the cavity and atomic detunings. We find that o
for small detunings the Doppler forcef at predominates, see
the features marked ‘‘Doppler peak’’ in Fig. 3, whereas f
most parameter regimes the friction forcef ca, which is in-
duced by the strong atom-cavity coupling, is the major co
tribution to the total force. In the following section we wi
investigate this force in more detail and give a more intuit
interpretation of its properties in terms of a Sisyphus cool
mechanism invoking the dressed state formalism.

IV. THE DRESSED-STATE APPROACH:
SISYPHUS COOLING

In this section we will interpret the new cavity coolin
force found in the previous section using dressed states@31#,
which are defined as the energy eigenstates of the compo

FIG. 3. Contour plot of the friction force forG5k, g053 1
3 k.

The long stretched features are due to the cavity-induced forcef ca

and the two sharp peaks are due the Doppler forcef at .
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atom-cavity system. The basic idea is to describe the coo
mechanism as due to transitions between a few of th
dressed states, where these transitions are either induce
the pump field or occur due to radiative decays of the at
or the cavity.

A. Adiabatic potentials

The interaction between the cavity mode and the at
shifts the energies of the unperturbed system. The un
turbed eigenvectors can be grouped pairwise into manifo
such that the interaction term in the Jaynes-Cummi
Hamiltonian~17! only acts between states of the same ma
fold.

On diagonalizing the Jaynes-Cummings Hamiltonian
pressed in the basis of a given manifold we find the eig
values corresponding to the upper and the lower eigen
ergy, respectively,

l152~n11!Dc2
D

2
1

Vn

2
,

~53!

l252~n11!Dc2
D

2
2

Vn

2
,

where the effective Rabi frequency

Vn5AD214g~x!2~n11! ~54!

was introduced. The corresponding eigenvectors are

u1,n&5cosunue,n&1sin unug,n11&,
~55!

u2,n&52sin unue,n&1cosunug,n11&,

where the angleu is defined by

sin 2un5
2g~x!An11

Vn
, cos 2un52

D

Vn
. ~56!

The index n denotes the corresponding manifold in t
dressed states ladder. It is now possible to express the w
master equation in the basis formed by the eigenstates~55!.
Without the pump beam the system decays to the gro
stateug,0& and there is no occupation of higher levels in t
dressed ladder. Due to the low intensity of the pump be
driving the cavity we assume that the system is excited o
to the first dressed-atom manifold consisting ofu1,0& and
u2,0&, which are linear combinations ofue,0& and ug,1&.
Thus we only consider the three states@37#

u0&[ug,0&, u1&[u1,0&, u2&[u2,0& ~57!

and their respective couplings. Couplings to or populatio
of higher manifolds may be omitted in the ‘‘weak driving
approximation. Using only this three-dimensional state sp
it is possible to express the master equation in this basis
to obtain the corresponding equations for populations
coherences, e.g.,
g
se
by

r-
s
s
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-
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n-

ole

d
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ṙ015 il1r012G~r01 cos2 u2r02 sin u cosu!

2k~r01 sin2 u1r02 cosu sin u!1h,
~58!

ṙ1152G~r112 cos2 u2~r211r12!sin u cosu!

2k~r112 sin2 u1~r211r12!sin u cosu!

1h~r101r01!.

These equations can be solved easily for the steady sta
dependence on the various system parameters, such as d
ings and coupling strengths. As expected one finds tha
the dressed levels are well separated in energy, i.e.,uDu
@g,G, and the pump laser is tuned to resonance with one
the dressed energies~53!, preferentially this dressed stat
gets populated whereas the population of the other state
mains negligible. However, it turns out that this coupling
the ground state to the lowest dressed states is much m
efficient, if the pump is tuned to that state which turns in
ug,1& at positions of zero coupling (g50) than if it is tuned
to the other. This is due to the fact that the pump laser dri
the cavity and thus is only coupled via the cavity mode to
atom. Hence, in the following we will concentrate on th
more efficient scheme.

The force acting on an atom in one of the dressed st
can be calculated by expressing Eq.~31! in terms of our
dressed basis, which yields

f ~x!52
\¹V

2
~r112r22!2\V¹u~r211r12!.

~59!

Expanding Eq.~58! up to first order ing/D, and neglecting
coherences and populations of any dressed level other
the one the laser is assumed to drive resonantly one
again derive Eq.~11!, which we obtained from a completel
classical viewpoint and in the ‘‘weakly damped cavity’’ lim
~48! before. The same can be done with the force~59! so that
the dynamics is described by the set of equations~15!.
Therefore, assuming large detuningD and the pump in reso
nance with the dressed state consisting essentially of the
stateug,1&, one obtains the same expression for the force
the average photon number as in the good-cavity limit d
cussed in the previous section.

B. Sisyphus interpretation of the cooling mechanism

Analogously to the interpretation given by Dalibard a
Cohen-Tannoudji for the movement of an atom in a fr
standing wave@32#, one can create a similar picture fo
atomic motion along a weakly pumped cavity standing wa
As an example let us assume that initially the atom-cav
system is in the stateug,0& and the atom moves along th
cavity axis with a small velocityv. Furthermore we assum
Dc50 andD.0. In this case the dressed stateu1&, Eq. ~57!,
is resonant with the driving field, if the atom is located a
node of the cavity field. Hence the system will be prefere
tially pumped intou1& at these positions. After this pumpin
process the system will remain in this state while the at
moves further and thus the system energy will vary acco
ing to l1 , Eq. ~53!. If the atom moves so slowly (kv/k
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!1) that a spontaneous decay of the cavity or of the a
occurs before it reaches the top of the potentiall1 , it loses
some of its kinetic energy. This scheme is called Sisyp
cooling and has been treated in detail in connection w
atomic movement in a strong standing wave@32# or polar-
ization gradient cooling@38# before.

The sign ofD and the cavity-pump detuningDc determine
whether the atom is mainly moving upwards or downwa
the adiabatic potentialsl6 and thus whether on average it
gaining or losing kinetic energy. As has been seen in Fig
there are two main parameter regions of cooling for a highQ
cavity (g.G,k).

The first one arises for

Dc50, D.0 ~60!

and corresponds to driving the cavity resonantly, i.e., pum
ing the atom at the minima of theupper dressed levell1 ,
from where it loses kinetic energy on the way up. This
shown schematically in Fig. 4.

The second parameter region, which leads to cooling
around

Dc52
D

2
2

1

2
AD214g0

2, D,0, ~61!

which corresponds to pumping the system into minima of
lower dressed levell2 , as is shown in Fig. 5. Note that i
both cases the level that is pumped is the one that turns
ug,1& for zero atom-mode coupling@g(x)50# and contains
only small admixtures ofue,0& at the antinodes of the cavit
standing wave.

FIG. 4. vc.v10: The atom is pumped at the minima of th
upper dressed level from where it moves upwards and decays
to the flat ground level.

FIG. 5. Sisyphus cooling scheme forvc,v10: The atom is
pumped to the minima of the lower dressed level from where
moves upwards and decays back to the flat ground level.
m
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The parameter regimes where the friction force is po
tive, i.e., accelerating the atom, can be explained an
gously. We find for these heating regions

Dc50, D,0 and Dc52
D

2
1

1

2
AD214g0

2, D.0.

~62!

The very good agreement of the friction force maxima w
the predictions of the dressed state scheme is again foun
Fig. 6 for similar parameters, where the bold lines are dra
according to Eqs.~61! and ~62! for D,0 ~cooling! and D
.0 ~heating!, respectively.

Figure 6 shows that the features of the total friction for
can be explained very well by the predictions of the Sisyph
cooling picture. The two peaks around the origin arise
small detuningsDa'G and result from the Doppler cooling
force. They can be plotted independently by using the D
pler cooling forcef at calculated above. However, forall pa-
rameters a small contribution of the Doppler force exis
This contribution is a damping one, increasing the ove
cooling force ifDa,0 and the minima of the lower dresse
level are pumped as shown in Fig. 5, because the laser is
detuned in this case. On the other hand, forDa.0 and
pumping of the minima of the upper level as shown in Fig.
the opposite holds and the additional Doppler contribution
an antidamping one because the pump laser is blue detu

V. FRICTION FORCE FOR ARBITRARY VELOCITIES

So far we have only calculated the forces on a motionl
or a very slowly moving particle. If one is, however, inte
ested in a particle moving with a speedkv/k.1 it is neces-
sary to use the method of continued fractions as introdu
in @39# to calculate the force. We will follow a procedur
analogous to the one outlined in@40# and only briefly sketch
it.

First, mode and atomic operators are combined with th
adjoints to form the Hermitian operatorZW whose eigenvalues
are real, which is a prerequisite for the above-mentioned p
cedure@40#. Starting from Eq.~21! we find

^ZẆ &5C^ZW &12heW1 , ~63!

where

ck

it

FIG. 6. Contour plot of the friction force forG5k, g055.5k.
The bold lines indicate the pumping of the minima ofl2 ~left-hand
side! and of the maxima ofl1 ~right-hand side!, respectively.
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^ZW &5S ^a1a1&
1

i
^a2a1&

^s21s1&
1

i
^s22s1&

D ,

C5S 2k 2Dc 0 g

Dc 2k 2g 0

0 g 2G 2Da

2g 0 Da 2G

D ~64!

andeW15(1,0,0,0). Then the atom and mode operator exp
tation values are expanded into Fourier series according

^ZW &5(
n

einkvtzWn , ^XW &5(
n

einkvtxWn , ~65!

whereXW was defined in Eq.~23!.
These Fourier expansions are substituted into Eqs.~24!

and ~63! to find recurrence relations for the Fourier coef
cients. The recurrence relations forzWn may be solved for a
given number of recursions and the result inserted into
recurrence relations forxWn , which may in turn be solved
recursively. As a result we obtain the position averaged fo
on the atom through the first Fourier component of the fi
vector elementx1

1. This procedure may be repeated for d
ferent values of the atomic velocity for given detunings a
system parameters to yield the velocity dependence of
cooling force. In Fig. 7 the force is plotted against the atom
velocity where the driving laser is tuned to the minima of t
upper dressed level, cf. the discussion in Sec. IV B. In t
case Sisyphuscooling appears for low atomic velocitie
kv/k,1. However, for increasing velocity the Sisyphus e
fect becomes small and Dopplerheatingbecomes predomi
nant. Hence the force changes from a damping to an a
damping one and reaches its heating maximum for a sp
kv'Da before the Doppler effect becomes smaller again
larger velocities.

Following the discussions of Sec. IV B cooling can alte
natively be achieved by pumping the minima of thelower
level. An example for this is given in Fig. 8. For low veloc

FIG. 7. The averaged dipole force is plotted against the velo
for G5k, g0531

1
3 k, D57k, Dc50.
c-
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ties Sisyphus cooling prevails again, but for higher velocit
it becomes less efficient and Doppler cooling becomes do
nant, thereby increasing the overall cooling effect.

VI. STEADY-STATE MOMENTUM DISTRIBUTION
AND TEMPERATURE

In the previous sections we have only dealt with the fr
tion force which for properly chosen parameters decelera
the moving atom. However, momentum diffusion count
acts this cooling and leads to a finite steady-state temp
ture. There are two major contributions to the moment
diffusion. One of these is the random momentum transfe
absorbed and emitted photons and the second process
ferred to as dipole heating, is associated with the rand
jumps between different optical potentials for the ato
These processes prohibit that the atom completely stops
field antinode, and a finite equilibrium momentum distrib
tion is reached when the contributions of friction and heat
cancel.

A. Diffusion

Similarly to Brownian motion an approximate equilibrium
temperature can be inferred from the knowledge of the m
mentum diffusionD and the friction coefficientb. The deri-
vation of the total diffusionD ~for an atom withv50! is
rather long and is therefore given in Appendix B. As a res
we obtain

D tot5DSE1Ddp

5\2k2g2
h2G

udet~A!u2

1\2~¹g!2
h2G

udet~A!u2 S 11
4Dag2

G

DcG1Dak

udet~A!u2 D .

~66!

Apart from the last term appearing in the brackets in
expression forDdp this expression for the total diffusion i
equivalent to the expression that is found when the ca
mode is treated classically and assumed to decouple from
atomic dynamics, as discussed at the end of Sec. III C.
the same diffusion in the weak intensity limit as was calc
lated in@31,35# for an atom moving in a free standing wav

y FIG. 8. The averaged dipole force is plotted against the velo

for G5k, g053 1
3 k, D527k, Dc521 1

3 .
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The expression derived above now shows that the quan
nature of the mode introduces a correction term.

In fact, this correction term can be much larger than
remaining terms, if the cavity is driven near resonance
the detuningD between cavity and atomic transition is larg
This corresponds exactly to the parameter regime where
cavity-induced cooling mechanism predominates, i.e., wh
f ca @Eq. ~51!# is the dominant contribution of the total fric
tion force. On the other hand, if the atom is driven resonan
and the Doppler cooling forcef at @Eq. ~45!# is dominant,
Da'0 and the correction term disappears. This is shown
Fig. 9 where the wavelength averaged diffusion with a
without the correction term is plotted against the pum
laser–cavity detuningDc for fixed D. WhenDc is large and
the atom is driven resonantly the correction term is sm
whereas it is significant forDc'0 when Sisyphus cooling
dominates over Doppler cooling. Figure 10 shows a plot
the total friction force and the Doppler and cavity coolin
components of which it is composed. One can see the st
Sisyphus effect forDc'0. The cooling is a maximum whe
the lower dressed level is excited at its minima and turns
a heating force when the cavity is pumped resonantly,Dc
50. For larger detunings the cavity mediated force becom
diminishingly small and the total force is dominated by t
Doppler component, which has its peaks for atom detuni
Da'6G.

FIG. 9. The total diffusion and the diffusion without the corre
tion term due to the quantum nature of the cavity mode are plo

against the cavity detuningDc for D527k, G5k, g053 1
3 k.

FIG. 10. The total friction forcef 1 ~solid curve!, the Doppler
force f at ~dashed!, and the cavity-mediated forcef ca ~dotted! are
plotted against the laser-cavity detuningDc for the same parameter
as in Fig. 9
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Let us note again that, as discussed above and as ca
clearly seen from Figs. 9 and 10, the cavity-induced fricti
force and the quantum correction term of the moment
diffusion coefficient assume their respective maxima for
same parameters.

B. Steady-state temperature

The values for the friction coefficient and the diffusio
averaged over a wavelength may be related to the temp
ture by

kBT5
D tot

f̄ 1

, ~67!

as has been investigated in more detail in@31#.
For cooling a two-level atom in a free standing wave t

so-called Doppler limit, given bykBTmin5\G, imposes a
lower limit on the attainable temperatures. One must c
sider that for Doppler cooling the energy transfer channe
the atomic spontaneous decay and equilibrium temperat
can be as low as the width of this transfer channel, i.e.,
natural linewidth.

In our case of cavity-induced cooling the dominant tran
fer channel is through the cavity decay and temperatu
should therefore be limited by the cavity decay rate. This c
be seen clearly in Fig. 11 where the equilibrium temperat
is plotted against the cavity loss ratek and where a linear
dependence is observed for smallk giving rise to final tem-
peratures of the order of\k/kB . If k becomes larger than th
spatial modulation of the dressed levels the effect washes
and Doppler cooling becomes dominant with final tempe
tures around the Doppler limit. The results are nicely co
firmed by fully quantum Monte Carlo simulations, denot
by the crosses in Fig. 11, where the external degrees of f
dom are also quantized.

VII. CONCLUSION

We have shown that one of the key effects leading t
reduction of the kinetic energy of a particle strongly coupl
to a cavity field can be understood from a purely classi
model of a point dipole coupled to the field inside an optic

d

FIG. 11. Going beyond the Doppler limit forG@k. g052G,
D521.9G, Dc521.3G. T is given in units of\G/kB and k in
units of G. The crosses mark the results obtained from quant
Monte Carlo simulations.
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resonator, where the only dissipative process is cavity da
ing. Via this damping kinetic energy will be extracted fro
the moving dipole until it comes to a complete stop at a fi
antinode. Including quantum mechanics in the atomic a
field dynamics implies spontaneous emission of the atom
quantizing the cavity field as well as atomic motion. Th
leads to various heating processes as well as extra coo
forces such as, e.g., the Doppler cooling mechanism. He
the atom reaches~at least approximately! a certain steady-
state temperature determined by all these heating and co
mechanisms. This temperature of the order ofkT'\k can
be much smaller then the optical potential depth so that
atom can be well trapped. Of course in a realistic setup
transverse motion of the atom has to be included as w
Due to the finiteness of the effective mode volume the p
ticle will of course eventually escape. We have perform
some preliminary calculations in 2D and 3D, which sho
long confinement times (.ms) for a transverse Gaussia
profile of 10–100mm width. This should provide for enoug
time for typical cavity QED experiments. A second intere
ing question considers the dynamics of several atoms in s
a cavity. In this case one finds cooling but also a stro
cavity mediated correlation effect on the dynamics of
atoms. Of course one could go to the extreme limit of stor
a Bose condensate in such a cavity dipole trap. Here
requirements on the cavity finesse and coupling are redu
because of the large number of atoms, which will lead
strong cavity field phase shifts anyway. On the other han
avoid spontaneous emission, large detunings between p
field and atomic transition have to be used. Eventually t
could provide an excellent method to store, observe,
manipulate a condensate.
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APPENDIX A: FRICTION FORCE FOR THE GOOD
AND BAD CAVITY LIMITS

The total friction forcef 1 was shown to be the sum of th
cavity mediated forcef ca, which is obtained after adiabati
elimination of the atomic operators and the Doppler fo
f at, which is obtained after adiabatic elimination of the mo
operators,

f 15 f ca1 f at. ~A1!

The respective expressions are given below:
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f at52\~¹g!2h24~2Da
3Dc

4G2Da
2Dc

3g2G1DaDc
2g4G

1Dcg
6G2DaDc

4G31Dc
3g2G322Da

3Dc
2g2k12Dag6k

12Dcg
4G2k22Da

3Dc
2Gk22Da

2Dcg
2Gk213Dag4Gk2

22DaDc
2G3k21Dcg

2G3k222Da
3g2k3

2Da
3Gk42DaG3k4!

1

udet~A!u6 , ~A2!

f ca52\~¹g!2h24~22Da
2Dc

2G12g4G22Dc
2G324Da

3Dck

14Da
2g2k24DaDcG

2k14g2G2k

12Da
2Gk212G3k2!

Dag2

udet~A!u6 . ~A3!

APPENDIX B: CALCULATION OF THE DIFFUSION

We will in the following give a short derivation of the
diffusion constant in a cavity standing wave by use of t
quantum regression theorem~QRT!. The QRT states that op
erator two-time averages^an(t)am(t8)& obey the same equa
tions of motion as single-time averages^an(t)&. If one can
write

d

dt
^an~ t !&5Lnm^am~ t !& , ~B1!

it follows that

d

dt
^an~ t !al~ t8!&5Lnm^am~ t !al~ t8!&. ~B2!

The diffusion is defined as the momentum spread a
related to integrals involving force correlations@31,35#,

2D5
d

dt
DP2~ t !5Re E

0

`

dt@^F~0!F~ t !&2^F~0!&^F~ t !&#,

~B3!

where quasistationary conditions were assumed. One co
bution to the total diffusion is due to spontaneous emissi
Although the forcef vac arising from the atom-vacuum cou
pling,

f vac52d¹Efree, ~B4!

whered5dW (s11s2) is the electric dipole operator, yield
zero when averaged over the vacuum field its fluctuati
give rise to diffusion. Thus its contribution to Eq.~B3! reads

DSE5Re E
0

`

dt^d~0!¹Efree~0!d~ t !¹Efree~ t !&. ~B5!

Using the rotating-wave approximation one obtains for
integrand
^s1~0!s2~ t !dW ¹Efree
1 ~0!dW ¹Efree

2 ~ t !&5^s1~0!s2~ t !&(
Dk

~dW eW k!
2ukW u2

\vk

2e0V
e1 ivkt5^s1~0!s2~ t !&\k22Gd~ t !, ~B6!
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where the last line has been found by taking the sum over
two polarization directions, converting the sum into an in
gral over frequency, and including the free space density
modes. Then the Markoff approximation was made by
suming the factors appearing next to the exponential to
quasiconstant over the range of integration, so that they
be taken out of the integral, which then can be approxima
by a d function. Taking the characteristic dipole radiatio
pattern into account this result would have to be modified
a constant factor~ 2

5 for circularly polarized light, for in-
stance!. Substituting this result for the integrand back in
Eq. ~B5! and using Eq.~26! for ^s1s2& at steady state, we
finally obtain

DSE5\2k2G
h2g2

udet~A!u2 . ~B7!

The second contribution to the diffusion is due to t
fluctuations of the dipole force. With the notations of E
~25! the dipole force operator reads

F~x!52\g~x!X1 . ~B8!

We introduce the abbreviation

^an ,am&5^dandam&5^anam&2^an&^am&, ~B9!

where dan5an2^an& is the fluctuation of the operatoran

around its mean and̂an ,am& is the operator covariance. Th
part of the diffusion due to the dipole fluctuations can
written as

Ddp5\2~¹g!2 Re E
0

`

dt^dX1~0!dX1~ t !&. ~B10!

Starting from Eqs.~24! and ~21! we can derive the fol-
lowing covariance equations where the QRT is invoked
obtain equations for the two-time averages:

d

dt
^X1~0!,YW ~ t !&5A^X1~0!,YW ~ t !&, ~B11!

where

^X1~0!,YW ~ t !&5S ^X1~0!,a~ t !&
^X1~0!,s2~ t !& D . ~B12!

Similarly one finds

d

dt
^X1~0!,XW ~ t !&5B^X1~0!,XW ~ t !&1h^X1~0!,IW& ,

~B13!

with an analogous meaning of^X1(0),XW (t)&.
These two linear coupled systems of first-order differe

tial equations can be solved conveniently by performing
Laplace transform that is defined for a functionf (t) as

L$g~ t !%5E
0

`

dt e2stg~ t !5g̃~s! , ~B14!

with the property
he
-
of
-
e

an
d

y

.

o

-
a

LH d

dt
g~ t !J 52g~0!1sg̃~s!. ~B15!

We can see from Eq.~B10! that we are only interested in
the integral over the force correlation, which amounts to s
ting s50 in our Laplace transformed sets of equation
~B11! can then be solved by inversion ofA and the result
substituted into Eq.~B13!, considering thatIW is a linear com-
bination ofYW ,YW † ~25!. Equation~B13! in turn can be solved
by inversion ofB and the solution vector contains the desir
correlation as its first element. We still have to calculate
initial conditions for the operator covariances that appea
when we Laplace transformed our two sets of equatio
They can be calculated as follows.

The mode operators obey the relation

@a,a†#51. ~B16!

As the atom is only very weakly driven we may compare
to a harmonic oscillator of which only the first two levels a
occupied at most. Therefore we have

@s2,s1#51. ~B17!

Now we can solve the linearized equations~18! for steady
state, i.e., we demandȧ5ṡ250 and obtain expressions o
the form

ast5ca1F1, sst
25cs1F2, ~B18!

whereca , cs are c numbers corresponding to the expec
tion values in steady state andF1,F2 are noise operators
Instead of specifying them we require the commutation pr
erties~B16!, ~B17! to be fulfilled, from which we deduce

@F1,F1
1#51, @F2,F2

1#51. ~B19!

These properties allow averages over operator produc
be calculated easily when applying Eq.~B18! and consider-
ing that the noise operators yield zero when applied to
vacuum, as an example:

^a†s2s1a&5^~ca* 1F1
1!~cs1F2!~cs* 1F2

1!~ca1F1!&

5^a†a&^s1s2&1^a1a&. ~B20!

All terms containing noise operators are zero except for
following one, where they appear in antinormal order,

^ca* F2F2
1ca&5ca* ca5^a†a&. ~B21!

Consequently the initial conditions may be calculated eas
i.e.,

^X1~0!,X1~0!&5^X1~0!X1~0!&2^X1~0!&^X1~0!&

5^s1s2&1^a†a&. ~B22!

We find analogous results for all the other initial cond
tions. Inserting them all into the inverted and Laplace tra
formed Eq.~B13! and taking the real parts of the first solu
tion vector element as demanded by Eq.~B10! we finally
find the total diffusion given in Eq.~66!.
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