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Semiclassical Moyal quantum mechanics for atomic systems
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The Moyal formalism utilizes the Wigner transform and associated Weyl calculus to define a phase-space
representation of quantum mechanics. In this context, the Weyl symbol image of the Heisenberg evolution
operator admits a generic semiclassical expansion that is based on classical transport and(&@ted
guantum corrections. For two atom systems with a mutual pair interaction described by a spherically symmet-
ric potential, the predictive power and convergence properties of this semiclassical expansion are investigated
via numerical calculation. The rotational invariance and tensor structure present are used to simplify the
semiclassical dynamics to the point where numerical computation in the six-dimensional phase space is fea-
sible. For a variety of initial Gaussian wave functions and a selection of different observablex/itheand
O(#?) approximations for time dependent expectation values are determined. The interactions used are the
Lennard-Jones potentials, which model helium, neon, and argon. The numerical results obtained provide a first
demonstration of the practicality and usefulness of Moyal quantum mechanics in the analysis of realistic
atomic systemd.S1050-2947©8)08110-4

PACS numbds): 03.65.Nk, 03.65.Sq, 34.50s

. INTRODUCTION Py respectively.pperatqr functions ﬁ%(&l,az,ag) alone
o r p alone, sayf(q) or g(p), have symbolg(q) andg(p).
Moyal quantum mechanics gives a complete statement o? Quantum flow in symbol space is theimage of Heisen-

quantum thgory that is_ set in cIassjca_tI phase space. It 9”[‘.)'erg picture evolution. A system defined by a Hamiltonian
ploys equations of motion that are similar to those of Hamil- torfl has Schirdi lutionU (1) = ik
tonian mechanics. In this paper we study the predictiveOIOera or as Schrdinger evolutionU(t) =exp(-i )

power and the computational usefulness of Moyal quantun"f‘nd an assouatedAHe|senberg evolution opefty. For a
mechanicghereafter, MQM in describing interatomic sys- 9eneral observabla, this is

tems, specifically helium, neon, and argon. Although there is . . .

now an extensive literature which establishes the mathemati- A(t)=T(H)A=U"(H)AU(t). 1.2

cal and structural aspects of MQM, this formalism has ha . .
limited application to, and interaction with, realistic physicaldrhe Weyl;symkzol image of Eq(1.2) replaces the pair of
systems. A remarkable feature of MQM is the simple struc-OperatorsA(t), A by their corresponding phase space sym-
ture assumed by the semiclassical expansion for the HeiseROISA(t), A. We refer to the linear transformatidry from
berg picture quantum flow. Through numerical calculationA—A(t) as the Heisenberg-Weyl evolution operator. In
we investigate the convergence and the accuracy of thigiew of the invertibility of o, the operatol’; takes the form
semiclassical expansion.

The Moyal formalism[1-30] is based on the Wigner- A =TA, (1.33
Weyl isomorphism that maps Hilbert space operators to
functions (symbolg on classical phase space. The transfor-
mation of an operatoA on Hilbert spaceH=L*(R%) to a  The transformatiort’, is the fundamental evolution operator
corresponding Weyl symbd\ on phase spacﬁ*(RB):Rg in MQM.

X R? is denotedA=cA. The mapo is defined by the The origin of semiclassical behavior for the Heisenberg-
Wigner transforn{31], Weyl evolution arises from the notion of operators that are
smooth in Planck’s constafit A HamiltonianH is said to be
A(q'p):f dx e 1P (g + %X|A|q— 1x). (L)) semiclassically admissible if its symbidl(#,z) has a regular
R3 asymptotic expansion abotit=0,

=0l (t)o L. (1.3b

In the integral above(x|Aly) denotes the coordinate space r

kernel of A written in Dirac notation. H(ﬁ'z):Hc(ZHZl T hi(2). (1.4
The inverse maw ! sends symbols to operatof@/eyl

quantizatior)l [32] and is given by the inverse Fourier trans- |n the notation above:(q,p) denotes a point in phase
form to Eq.(1.1). The mapo is a linear bijective correspon- space. Thefi-independent portion of the symbeél(%,z),
dence. Obs:ervable(i-lermltlan operatopshave real-valued namely,H,(2), is the classical counterpart . Nearly all
symbols. IfA is the identity operator, theA(q,p)=1. The  Hamiltonians of physically significant systems are semiclas-
quantum positiong; and momentum operatorp; = sically admissible. A system without higher ordeterms in
—ifdyl 9q; have as symbols the coordinate functionsnd  Eq. (1.4) has the feature that the Weyl symbd(7,z) is
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exactly the classical HamiltoniaH.(z). Such systems are representations used to describe the noncommutative star

referred to as Weyl quantized. product* of symbols[2,19] as well as the semiclassical ex-
In the circumstance whereifl is semiclassically admis- Pansion of the Moyal bracket. Appendix B derives the phase
sible, thenl, admits a smalf asymptotic expansion space tensor structure of the Weyl calculus. Appendix C dis-
plays results that show how the various terms contributing to
N zn semiclassical expansion behave in phase space. This last ap-
TA=TMA=2 —y"A #lO. (1.5  pendix also describes some of the consistency tests em-
n=o N ployed to verify the correctness of the numerical calcula-
tions.

The “coefficients” y{" associated with powers df are op-
erators in the space of Weyl symbols. Expandib) is the
generic(Heisenberg pictujegform of semiclassical expansion

[30] in MQM. The leading termy{”) is determined by the  The basic equations of motion for the flow operatBf®
classical flow inT*(R®) generated by.. _ andT'{® are reviewed in this section in sufficient detail to
The final stage of Ehe Moyal formalism obtains quantumgefine these operators as solutions of a family of ordinary
expectation values. Let=|#)( | be the density matrix for a differential equations suitable for numerical calculation. In
unit normalized initial stateye H. The Wigner distribution particular, we characterize the Jacobi field and quantum tra-
is the o image ofp, specifica||ywi//=h*3a-;)_ The time de- jectory ingredients rec;uired to determine the semiclassical
pendent expectation fak(t) is determined via the trace for- OP€rators 7 and ¥*. Recent work of Oshorn and
mulas Molzahn[30] has derived explicit formulas fop{" that are
based on a connected graph representation of the exact evo-
" " lution T'y. The following summary of this version of the
(A(t)y=Tr PA(t):j dzw,(z2)T'\A(z) (1.6 Moyal formalism exploits the simplifications that result
when the system has a static Hamiltonian and a static' Schro
dinger picture observable.
:f dzw,(2)T{VA(2). (1.6b By and large, Refg.1-35] cited for Moyal quantum me-
chanics are those papers that proved helpful in the develop-

Here thedz integral is over all phase space and Tr denotegnent of the connected graph representatiori’af A good
the trace or4. overview of the large body of mathematical literature on this

For the physical systems considered in this paper thé&pic is found in the book25] by Folland.
HamiltonianH has a symboH (%,z) with a purely classical

II. QUANTUM FLOW OPERATORS

form A. Moyal equation of motion
2 For a systenH and observablé the Heisenberg picture
H(#%,2)=H(2)= 2p_+v(q)_ (1.7 equation of motion has the standard form
m
d .1 SN
The interatomic potentiab(q) will be the spherically sym- S TOA= = [F(OAH]. 21

metric phenomenologically determined Lennard-Jones inter-

action. The fact thatH(#,z) is invariant underhi— —#% Taking the Weyl symbol image of this yields the Moyal
means that all the operatorg™ with odd n vanish. This  equation of motion,

eliminates half of the semiclassical coefficients(in5). In

this context the next quantum correction beyond t;lf%)
term is y{?).

This paper is organized as follows. Section Il states the
explicit formulas defining semiclassical flow operat(ﬂ‘;oo) with initial condition I'yA=A. The bracket of functions in
andI'{? as they occur for static Hamiltonian systems. SecEq.(2.2) is the Moyal bracket, cf. E{A4). A key feature of
tion 1ll shows how one may incorporate rotational invariancethe bracket-, -}, is that it has an ascending expansion in
and tensor structure to obtain simplified systems of ordinarypowers of?, cf. Eq. (A8b), whose leading term is the Pois-
differential equationgODE’s) for the functions required in son bracket-,-}.
the construction of the semiclassical flow operators. Section The isomorphic nature af means that’; acquires all the
IV derives the reduced phase-space representations neededstructural evolution properties df(t). As a result one has
calculate time dependent quantum expectation values fdhe following.

Gaussian initial wave functions. In Section V we summarize Properties ofl’;. For allt R, the evolution operatal’,
the computations that numerically implement the Moyal(d) is linear on the space of symbol&) obeys the compo-
semiclassical expansion for systems that incorporate the irsition law: for all re R, I't'=TI";_,I',; (c) has inversel“{l
teratomic potentials appropriate to helium, neon, and argon=T"_;; (d) maps the constant symbol into its€lf1=1; (e)
The conclusions and related discussion are found in Sec. Veommutes with thes and Moyal bracket operations; for all

There are three appendices. Appendix A records the corsymbolsX,Y:
ventions and notations employed for the Weyl calcyR@]
of phase-space functions. Also, one finds in Appendix A the I'i(X*Y)=T(X)*T'(Y), Td{X,Y}u={T«(X),[«(Y)}m-

17
EFIA:{FtA’H}M y (2.2)
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The semiclassical approximatidt N) mirrors thel'; evo- trivial to calculate. AIthougﬂ“t(O) is determined by(t), this
lution properties to orde®(AN"2). In detail, propertiegb), O(%°) version of semiclassical dynamics is not pure classi-
(c), and (e) are valid to ordetO(AN"?), while features(a) cal mechanics. In the evaluation of expectation values via
and(d) remain exact. The fact th&l) holds implies that the Eg. (1.6 complex valued wave functions and associated
flow FEN) conserves wave function norm. This statement ignterference effects are fully present. What is absent, at this

verified by noting that the identity operatdr=1 gives the Li . level of approximation, are the noncommutative effects
probability expectation valudiy||2=Tr A|y)(y|. Now ob- of the* product.
serve thaty(Y1=1 andy{"1=0, n=1. This latter identity

follows from the derivative nature of{", n=1 [cf. Eq. C. Higher-order semiclassical flow

(2.12)]. Thus Although the operatoryﬁz) is also a function of the flow
g(t) its construction requires a number of auxiliary func-
f dzl“<_’\'t)w¢(z)=f dzw¢(z)l"{“)1=f dzw¢(2)=||¢||2. tions. The basic form oﬂz) is determined as a consequence
of the # expansion ofl"; in Eq. (1.5 combined with the

(2.33 expansion of the Moyal bracket. The connected graph based

The work of Antonets[13,14 has established that the formula for y(* hazs the following characterization.
exact Heisenberg-Weyl evolutidn, converges to the semi-  The opgrgtory§ )is defined via two basic ingredients—
classical evolution™(*) in the limit # | 0. For a class of ob- the Jacobi field35] along the trajectory(t|z) and the no-

servables, namely e CZ(R®), and any finite time interval tion of a quantum trajectory. Consider first the relevant Ja-
[0T] it was proveél thaf13] ' cobi fields. Jacobi fields describe the stability of a trajectory

with respect to small modifications of its initial data. Differ-
H[Ft_Fgo)]A||L2(R6)<h2C(TaA)7 te[0T]. (2.3p  entiating(2.4b in the parameter gives

The exposed factor of? arises from the difference of the _|d —

Moyal gnd the Poisson bracket, ofA8b). The constant JOV(t|z)= dt JVVH((1]2) [Vg(t]2)=0.
C(T,A) is a growing function of timel. More recent work (2.6
[34] on error bounds estimates the differendgrl’;
—TM]A| and studies how the bounding const&}(T,A)
behaves for largd.

The solutionsf(t) to the homogeneous equatiQrt)f(t)

=0 are called Jacobi fields. Thex matrix Vg(t|z) obeys

the initial conditionVg(0|z)=4 (the identity matrix and
each column is a Jacobi field. For alandz, Vg(t|z) is a
symplectic matrix and thereby d€g(t|2)=1. This latter fact

Let H be the Weyl quantized Hamiltoniaii=o'H.. IS a statement of the incompressible nature of classical flow

From now on we drop the ubiquitous subscripfound on ~ @nd ensures that the matrixg(t|z) has a nonsingular

He. If A is a semiclassically admissible operator with7an inverse—namely, that there are no caustics.

. 0 : The notion of a quantum trajectory arises from computing
independent symbol, the(#7) part of £q.(2.2) is seen to be the Heisenberg-Weyl flow of the coordinate functions

=(a,p)=(z1,...2),
Z,(th;2)=Tz,. 2.7

One immediately recognizes E(.43 as a Poisson bracket The coordinate functions are semiclassically admissible and
e((qou)atlon of motion for the unknown phase space functioryg z,, admits the standard asymptotic expansiork in
A,

As is well known, Eq.(2.48 may be solved via classical
transport. Specifically, leg(t|z) be the classical flow defined
as a solution to Hamilton’s equation,

B. First-order semiclassical flow

%F{O)A(z)={FEO)A,H}(z). (2.43

ﬁZ
Z,(t,h;2)=0,(t|2)+ 7z§3>(t|z) +0(h%. (2.9

The coefficient functiorz{?(t|z) obeys[30] an inhomoge-
neous Jacobi equation,

d
9t =IVH(g(t]2)). (2.49
| - LT ) and T 1027 (1]2) = = §Wap(1]2) 4, H 0,9 8]2)
Here VH denotes the phase space gradi ,V,H) an
J is the Poisson matrix, cf. EqA3), resfgnsiblpe for the + 12 Wapy(112)3,,H:0p,,(9(12))
symplectic structure of Hamiltonian mechanics. The initial (2.9
condition for (2.4b) is g(0|z)=z. The flow g(t) preserves
phase-space volume and is defined fortalGiven the clas-  with initial condition z7)(0|z)=0. The right-hand side of
sical flowg(t), the solution of Eq(2.43 is the composition Eq. (2.9) utilizes tensor notation for derivatives, namely
H.,z denotes thay, 8 matrix element of the HessiaWiVH,
T'OA(z2)=A(g(t]2))=[Ag(1)](2). (2.5 etc. Unless otherwise noted we employ the tensor summation
convention on repeated indices. The Greek indiegs: -v
As is evident'{”’A acquires its time dependence via the run from 1 to 6. Furthermore, the expressions involving ten-

classical motiorg(t). In this sense the flow operatﬁlgo) is  sorsw,; andw,g, are defined as
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W,o5(t|2)=B1,<g,(1),05()>(2),  (2.108

W ,(1]2) = B12B23<0,(1),9,(1),9,(t)>(2)
=—JVg,(t|2)-VVg,(t|2)IVg,(t|2).
(2.10H

The derivative operatorsB;; are the extended Poisson

bracket operators that appear in tfieexpansion of the

Moyal bracket, cf. Appendix A. It is often useful to decom-

pose bothy(t|z) andz(?)(t|z) into their coordinate and mo-
mentum parts. For trajectories we writeg(t|z)
=(q(t|2),p(t|z)). Similarly zZ?)(t|z) breaks intoq‘®(t|z)
andp@(t|z).

Oncez?)(t|z) has been determined from the solution of

Eq.(2.9), the semiclassical flow operatgf? is given by the
expression

Y2A(2) =22 (t|2)A, (9(t]2)— §W,4(t|2)A. . 5(9(t|2))
+ﬁwaﬁ'y(tlz)A;aﬁy(g(uz))- (21])

A number of comments about the nature ¢f’ are in

order. Expression(2.11]) defines a linear operator on a
smooth symbolA. It is globally defined throughout phase

space for all timet. Each of the terms in Eq2.11) follows
the classical trajectorg(t|z). Finally, Eq.(2.11) is also seen
to be a derivative expansion in tlzedependence of. The
analysis establishing Ed2.11) is found in Ref.[30]. The
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A. Trajectory tensor structure

Consider the quantum trajectory defined in Eg.7).
Each coordinate rotatioq—q’ = Rqwith R=R;(¢) defines
a point canonical phase space rotatiam—>z'=Rz
=(Rq,Rp), cf. Appendix B. The first basic assertion is that
the set of functiongZ,(t,%;z):u=1-6} transforms as a
rank one phase-space tensor under rotaRon

(3.29

Putting the semiclassical expansio(&8) into Eq. (3.29
shows that thdi-coefficient symbols are also rank one ten-
sors, namely,

Z,(t,hRz)=R,,Z,(1,h;2).

0.(tIR2)=R,,9.(1|2), (3.2b

(3.20

In order to verify the claim(3.23 first note that quantum
evolution U(t) and unitary rotationJ(R) commute. Now

conjugatel’'(t)z with U(R) to obtain

(n) — (n)
2, (t|R2)=R,,,2,"(t|2).

UT(R)I'(1)z,)U(R) =T () (UT(R)z,U(R))

=R, (L(1)z,). (3.3

The second equality above uses the metaplectic identity

(B3). Equation(3.3) shows thaf‘(t)% is a rank ondoperator
valued phase-space tensor. Applying the Weyl symbol ten-

connected graph character of this formula is evident fron$Or transformation ruled6) and(B7) establishes Eq3.23.

equationg2.109 and(2.100. Thew,; term is composed of
two vertex functiongy,, ,gz, which are linked by two copies
of the edge operatd8,,. Thew,z, term is a tree graph on
the verticesy,, ,g;,9, with edgesB;,,B,3. In Appendix A
formula(2.11) is verified by deriving it with a technique that
does not employ the connected graph method of R3é.

. SYMMETRIES AND CONSTANTS OF MOTION

Observe that transforng3.2b for classical trajectories
may be obtained directly fronfH,L;}=0 in combination
with Hamilton’s equation of motion. The geometrical mean-
ing of Eq. (3.2 is that both the classical trajectory and the
guantum corrections act as rigid objects under the rotation

An important simplifying feature of classical motion,
which conserves angular momentum, is that trajectories lie in
a two-dimensional plane. So it is useful to find the Moyal

The presence of symmetries at either the quantum or thequivalent of this property. Let;(t)=T'(t)L; denote the
classical level simplifies the calculation of dynamics. Theygjsenberg evolution olf.j. Commutation ofl. andH im-

main symmetry for the interatomic Hamiltonidh.?) is an-

lies thatI:j(t) = I:j(0)= I:J- . The quantum planar motion re-

gular momentum conservation. Most observables and d)}? S
. " . . striction is
namical quantities such as the quantum trajectories and Ja-

cobi fields are tensors. In this section, we determine the

tensor character and rotational invariance properties of all the

ingredients of the semiclassical expansion.

Let ﬁjzejkmakf)m denote thgth component of the angu-
lar momentum operator ifi{. The Weyl symbol of this op-
erator isL;= €jmdxPm- The hypothesis of rotational invari-
ance stated in both the operator and symbol form is

[H.L;]1=0, (3.13

{H.Lj}m={H,L;}=0. (3.1b
The vanishing of the commutatdB.18 requires that the
Moyal bracket in Eq.(3.1b be zero. The equality of the
Moyal and Poisson brackets results from theuadratic
form of L;. Specifically, all higher-order terms in thieex-
pansion of{H,L}y are zero.

q(t)-L=0, p(t)-L=0. (3.4

Identities (3.4) result when the skew symmetric tensgg,

is contracted into gk symmetric produci;(t)qy(t), etc.

Take the Wigner transform of E¢3.4) and expand the
result in powers offi. The leadingO(%°) contribution is
given by the algebraic product of symbols and upon utilizing
Eq. (2.8) is obviously

Li(9(t[2)=L;(2), (3.59
q(tjz)-L(2)=0, (3.5
p(t|z)-L(z)=0. (3.50

These results are purely classical. They state the planar
motion restriction for the trajectorg(t|z). Next calculate
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the O(A") identities generated by E@3.4). For this purpose In combination(3.89 and(3.89 provide a Euler angle, sca-

it is helpful to note that the product withL is a truncated: lar invariant coordinatization of phase spacez

series. For any smooth symbbl =z(a,B,v;r,pr,0). As a shorthand notation, we often refer
to thee;-e, plane as the, plane.

h? 7t(2) The Jacobi field Vg(t|2)],, =9, and the related func-

Zeikmapkaqm' tion [VVg(t|2)].,,=9,:, are rank 2 and rank 3 tensors,

(3.6 respectively. Thus if one determingg., on thez, plane, it

may be extended to al="TRz, by

ifh
fxLi(z2)="f(z)L;j(2)+ I?{f,L]-}(z)ﬁL

In the present applicatiof is either o(q(t)) or o(p(t)).
The O(%') contribution is proportional to{q;(g(t)), 9un(tl2) =R (@, B, V) Ran (@, 8,7)9u\ (1 Z0).
L;@(t)}(2)={q;,L;}og(t|2). Since{q;,L;}=0, this term (3.9
vanishes. TheD(%2) term has contributions from the last
factor in Eq.(3.6) and thez\?)(t|z) part of Eq.(2.9) alto-
gether giving

A similar relationship holds fog,,.,, -

In view of Eg. (3.9 we may restrict, without loss of gen-
erality, the numerical calculation dfg and VVg to the z,
92q:(t]2) plane. In this plane these tensors can be block diagonalized

J (3.7a in the following fashion. Letv” denote the Hessian af,
whoseijth matrix element is

(2) . =i, 7
Q212 L@D= Fepn o oo

. pi(t) () v'(r) '(r)
PE(H2)-L(@)= ~Semgo 5o (37D vij(q>=(vr—2—vr—3)qiqj+%&j. (3.108

These identities impose a constraint on the allowed forms ofyith this notation the Jacobi field equatio®.6) for
q®)(t|2) andp®)(t|2). Vo(t|z,) reads

d ( 0 —mlﬁﬂ( Y.x(t|zo))
. . . —+ =0, A=1-6.
In this subsection we develop representations of the Ja- [dt |V” 0 W\ (t]zo)
cobi field tensorvg(t|z) and VVg(t|z), which exploit the (3.100
planar motion and rotational invariance of the classical tra- )
jectories. The goal is to obtain reduced equations of motiod? EQ. (3.100 we have named the top half3 portion of
for these tensors that are suitable for numerical calculationY 9(t|Zo) asY(t|zo) and the lower half ag/(t|z,). From Eq.
For example, rotational invariance allowgg(t|z) to be (3.10D one has immediately thaW(t|z,)=mY(t|z,). Using
block diagonalized and described by 20 nonzero tensor conthis last relation, the equation fof becomes
ponents instead of the 36 components that a general rank 2
tensor requires.
First, it is useful to have a coordinate description of
T*(Rg) that incorporates the maximum scalar structure. Let

{e;:i=1-3} be a right-handed orthogonal basis f&f. A  with initial conditions Yin(0]|zg)= 6,y , Yix(0|Zo)

B. Jacobi field symmetries

d2
mazﬂLV"(quo)) Y .(t]zg)=0 (3.100

standard 36] fixed axis Euler angle representationfofro- ~ =m=15, 5, .

tation isR(a,B,y)= Res(“) Rez(,B) Rea(y). In terms of the Next consider the symmetry based simplifications of Eq.
a,B,y variables theR rotation of an initial phase space point (3.109. The classical trajectorg(t|z) remains in thez,
Zo=(qo,Po) becomes plane and s@;(t|z) = ge(t|zg) =0. Thus the Hessian of the

potential is block diagonalized as
q:R(avﬁv’)/)qu p:R(aaﬁr’Y)pO' (383

The threeR invariant scalars formed f identl Vau Vi O
e re Invariant scalars rorme rom,p are eviaen

P Y V(@Qtlzo)=| Vo1 Vo2 O |.  (3.10d
lal=|dol=r, [pP|=|Pol=Pr, 4-P=0o-Po=rp; COSH. 0 0 Vg

(3.8b

_ . As a result(3.109 decouples into two parts
Here @ is the opening angle between the vectggsandpg.

Note that the three vectotg),pg,doX Po defir_le a rigid boqu d2 Vir Vao\ |/ Y, (tlz)

and that transforn{3.8g rotates that body into all possible maz"' Voo V Yor(tzg)] =0
orientations. The scalar variableg, ,# may be interpreted 12 Y22 20

as characterizing the “internal” geometrical structure of this 2

rigid body. For convenience we select the coordinate system M—s + Vas| Yau (t]22) =0 310
{e;} so thate;=qyX po/|doX Pol ande,=py/|po|. In terms a2 = "3 a(llz0)=0. (3.109

of the scalar invariants the poirj is then represented by
Equations(3.10¢ are homogeneous second-order ODE's for
Qo= (r sin §)e;+(r coshe,, Oe[0,7); Po=p/es- Y(t|zp). Note that if \=3,6 while i=1,2 thenY;,(t|z,)
(3.80 =0. This is a consequence of the initial condition
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Yir(0|20) =Y, (0|zo) = 0. For similar reasons, k=1,2,4,5 Xt 0
andi=3, a zero valued solution occurs. In matrix form we 0 X-| neA
have bb
and (3.12b
O1;1 912 0 014 915 O 0 X
Y(t|zg)=| 921 922 O 924 925 O Xe 0| neB.

0 0 933 O 0 93
(3.10f So the tensoW Vg(t|z,) with 216 entries has 112 nonzero
values. The transpose symmel, = X7, X¢ =X, and
The lower half of Vg(t|z) is recovered fromW(t|zo) X% =X£.T implies there are only 68 distinct time dependent
=mY(t|zo). From Eq.(3.109 all 36 values ofg,,;,(t|zo)  functionsg,., ,(t|z).
may be efficiently computed. The planar motion symmetry The basic mechanism that force§,, to be zero is
has forced 16 of the tensor values to be zero. simple. The vanishing initial values o¥;,,(0|z,) and
To find the optimal decoupled equations BV g(t|zo) ¥, (0|zp) mean that the solutions of the second-order
return to Eq.(3.109 and take the, derivative of that equa- Qpg’s Egs.(3.113 and(3.11b are nonzero only if the RHS

tion. Then proceeding as above one obtains inhomogeneous term is nonzero. Thus it suffices to catalog
the index valuesh p for which the termVj;, Y, Yy, is zero.
d> (Vi Vi Y1,(tlzo) VY in Yke To begin, observe that the third derivatig (q(t|zo)) is
mW“L Vi Vil || Yar,(t]2o) = Vi Yin Yo/’ zero if one of the three indices is 3 while the other two are in

(3.11a (1.2. Also note thatVs34q(t|z5))=0. The zero values of
Y(t|zo), as seen in E3.10f), when combined with th¥/,
behavior above show tha; Y;, Yy, vanishes in two differ-
Y3}\p(t|20):_v3jij)\Ykp' (3.11H e_nt_ s_,ituations. Case I: for=1-2 where _the paihp are
disjointly assigned tA andB. Case IlI: fori=3 where the
pair Ap are either both i or in B. These two cases produce
HereY;,,=0i.,, and thejk tensor contractions run over the the zero block structure displayed in E§.12b.
1-3 index set. The initial conditions ardmp(0|zo)
=Yi,,(0]zo)=0. Given Y;,; for i=1-3 the momentum C. Equation of motion for z(®(t|z,)

type fieldsg; 3 are determined by; 3.,,=mY;,,. Equa- Having obtained, for a given trajectog(t|z,), the asso-
tions (3.119 and (3.110 require the third derivative of the ciated values oW g(t|z,) andVVg(t|z,) from the solutions
potential. This is of Egs.(3.100 and(3.11) one has all the functions required
to determinez(?)(t|z,). At this stage it is useful to have a
v™(r) 3v"(r) 3v'(r) symmetry reduced form of the inhomogeneous Jacobi equa-
Vijk:( 3Tt )QinQk tion (2.9 for the unknownz(?(t|z,).
The planar motion invariance implies that to ord( 2)

v"(r) wv'(r) the quantum trajectory stays in the classical plane of motion.

+( iz r_3)(Qi51k+q15ik+QI<5ii)' In order to verify this claim note that(z,)=L3(z,)e; SO
(3.110 that the constraint conditio(8.73 reads

05 (t120)L3(20) = (Y1:55~ Y1:62 + (Y261~ Y2:09)

Rotational invariance causes many of the components of
VVg(t|zy) to be zero. Let us first record this pattern of zeros +(Y3;22= Y3;50). (3.13
and then analyze how they arise from E8}11). To assist in
representing’ Vg, introduce a partition of the index set 1-6
into A=(1,2,4,5) andB=(3,6). IndicesA describe the al-
lowed e;-e, planar variables while the s& is associated
with the directione;. For each giveru, VVg, is a 6x6
symmetric matrix with entrieg,,.,,. Reorder the rows and
columns of VVg, by the index transformatiorZ(1-6)
=(1,2,4,5,3,6) and denote tletransformed representation
by ZVVg,Z *. In block matrix form

2
{mW+V33

The first fourY terms are in case | above, while the last two
are in case Il. So all terms on the right side of E8.13
vanish. Since L3(zg)#0 for 6e(0,m) we have that
a$?)(t|z5)=0. A parallel reasoning shows thati?(t|z)
=0.

To find a suitable reduced ODE faf?)(t|z,) start from
Eq.(2.9. The right side of Eq(2.9) is a 6 component vector.
The top half of this vector is zero since it is built from the
g,p mixed partial derivatives ofl which vanish. The Jacobi
operator on left of Eq(2.9) has the matrix form displayed in

Xia Xab Eq. (3.10D. It immediately follows that

aa

IVVg, I 1=
I T x, Xt

. (3.12a

d 1

aq(z)(ﬂz): ap@)(tlz). (3.19
Here X%, is the 4X2 rectangular matrix on the indices

X B, etc. TheIVVgMI‘1 matrix has two forms depending Inserting this result back into the block matrix form of Eqg.
on the indexu, (2.9 leads to
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d2
m 502 (t]20) + Vi (a(t|zo) o (t] 20)

= — §Wk(t]Zo) Vijk (a(t| o))

+ 15Wikm(t|Z0) Vijkm(a(t|Zo)). (3.19

Since q?)(t|z5) =0 thei,j indices on the left side of Eq.
(3.15 are restricted to the sét,2}. Thereby Eq(3.15 is a
two-dimensional system of equations fofq{?)(t|z,),
a$2(t|zo)}. The values op®)(t|z,) are recovered from Eq.
(3.19.

In summary, the construction g£? requires the 92 non-
zero components of the tensdvg, VVg, andz(®). These
time dependent functions are obtained as solutions of
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Next consider the general features of fhéntegration in
Eq. (4.1). Utilizing the distribution (4.2 means that this
integral has the form

H(f:D)zfd?’pf(p)exq—o%*'é‘(p—ﬁ)ﬂ. (433

For functionsf that are smooth ip e R® this integral has a
standard larg® asymptotic expansion,
i 4)
ol )}

%
(4.3b
g)n_e may verify Eq(4.3b by Taylor expanding aboutp

3 2

(Apf )(p)+0

H(f;D)= f(p)+

D

linked set of second-order ODE systems with dimensions 16 P and integrating by parts. Due to the symmetry of the

(Vg), 36 (VVg), and 2 ¢?)), respectively.

IV. EXPECTATION VALUES

Gaussian all the odd order terms vanish. The notatigh
indicates the Laplacian df. Observe that the parametdds
and 7 occurring in Eq.(4.3 appear in the combination
(#/D). Thus Eq.(4.3b is also a smalk expansion.

The final stage of calculation is to determine the quantum Substituting formula4.3b) in Eqg. (4.1) lets us write

expectation vaIue(sA(t)) y for physically interesting observ-
ablesA and suitable initial wave functiong. We selecty to

be a Gaussian wave function that is sharply peaked in its
introduce an
asymptotic expansion of the momentum portion of the

momentum variable. This allows us to

phase-space integral in Eql.69. As a result the six-

= . 3qa- D 2(q-a)%F )
(PO o= (rrys | dae Ty (0.P)

+of 3/}

dimensional phase space integral is reduced to a thre%\?here the tensor structure is
dimensional one. In addition, by exploiting the tensor struc-

ture of an observable, the remaining three-dimensional =
coordinate integral may be further reduced to a two-

dimensional integral.

A. Asymptotic expansion for gaussian wave functions

Observables are most often tensor operatorsz'l,ue.t. "
1 n

be an arbitrary phase space tensor operator having a smooth

real valued Weyl symboTMl...#n. For each unit normalized

stateye H with associated Wigner distributiow,(z), the
Moyal version of expectation value evolution fsf. Eq.

(1.6a]
(TOT )= L*(Rs)dzw¢(z)FtTM1...Mn(z). (4.2)

We specialize Eq(4.1) by choosingy to be the displaced
Gaussian,

2
i 1(q-q
expg(p-q)ex;{—i(ﬂ }
(4.2a9

1 3/4
Y(q)= (W)

Here the mean position and momentum values (afrj%
=q;, <|5j>¢= p; - The parameteD specifies the half-width,
namely,((q;—q;)?),=3D?. The Wigner distribution fory

w3 o551

(4.2b

(4.439
T,u,l--‘p,n(qv_)=FtT,u,l~~~,un(q!H)
i 2
+Z 5) (AthT,u,l,u,n(qvp)) p:B
(4.4b

B. Tensor reduction

We choose the phase-space positions@ that its mean

angular momentum Xalies along the positive; axis. This
is achieved if

q=be,;+ye,, p=p,e,, b=0, p,=0. (4.53

The asymptotic expansio@.4a fixes the momentum coor-

dinate to have just one valye= p. This restricts the allowed
class of rigid body rotation$3.89 to those which preserve
thee, axis, namel;Rez(a) wherea €[0,27). The pointq is
now represented via cylindrical coordinates withas the
angle variable ané, as the axis, specifically,

—b sina

k! —sine 0 cosa/ \0
(4.5b

Here the matrix is thele;}-basis representation d?. ()

andqgy=(b,y,0) denotes thex=0 orientation ofqg.
In the present context the tensor transformati®m) sim-
plifies to
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TABLE |. Potential parameters for He, Ne, Ar.
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He Ne Ar
e (cm™h 7.103 296 24.812 881 87.018 840
Fmin (A) 2.87 3.131 3.822
o (A) 2.56 2.789 3.405
&R 1.8 2.1 3.1
a (cm YAS) —4.466 95X 10° —3.156 23X 10° —1.583 900 10*
b (cm YA% +4.270 465 10° +3.519 84% 1¢° +2.605 358 10°
¢ (cm YA3) —1.63936X% 10 —1.576 16X 10 —1.720481 10°
d (cm YA?) +3.160 42% 10 +3.544 344 10° +5.703 965¢ 10°
e (cmYA) —3.061 69 10 —4.004 87610 —9.498 71 10°
f (cm™) +1.193 284 10" +1.82042% 10 +6.359 796< 10°
Mass(amy 4.0026 20.179 39.948

T (00 =T, s (Re 80, Re,P)

gence of the semiclassical expansion is determined by the
relative size of they® and y{? terms. In Eq.(4.7) all %
dependence is explicit. In the following sections for reasons

=R (@) R, , ()T, ..., (do.P).

of brevity, the# dependence is implicitly contained in the

(468 notationy{?=3142y{? andA,=}(#/D)?A,. Note that the

The @ dependence in integréd.43 is confined to the factor

(q—a)2 and the matrice® ,,(«). Denote this generic cou-
pling factor by

pendent off.

function  and they,b coordinate part ofv,(z) are inde-

V. NUMERICAL RESULTS

Q

iyt vy 0)

(T4 R p[zbE
=/ o Mlyl(a) Mnyn(a)ex EQ—COSLI’

This section presents a number of computational results
that serve to profile the convergence and accuracy aspects of
the MQM semiclassical expansion. The time dependence of
the I'{®) and I'{?) approximations to expectation values for

(4.6b) various observables and initial quantum states is computed.
' The effect of changing the initial mean wave packet velocity
The function(} is a linear combination of modified Bessel is studied. The relative size of thg® and y{*) terms is

functionsl with argument »b/D? and ordek=0, ... n.

determined in the intermediate and long time limit. This ratio

The final form of the semiclassical prediction for the ob-is also computed as a function of mass. Finally, we contrast

servabIeTMl...M

with Egs. (4.4 and (4.6). Keeping terms to orde®(#?)
gives

(COT )y

atom systems.

1 * ® 21y )24 b2+ b2
= —D ™ [(y—y)“+Db“+b7]
—,—5(7712[)) fo bdbfﬁwdye

XQ/.Ll"'Mn ;Vlmvn(b)[ 7§O)TV1~-'Vn(qO !a)

46[(0’/r)12—(0/r)6],
arS+bri+cri+dr+er+f, 0<r<¢.

1 _ o
+ EﬁZ’Y%Z)TVl---vn(QO,p) U( )

1
4

% 2
5) Ap(* Ty (A0, P))|

p=p

] +O(h4).

repulsive core with a

is obtained by combining Eq1.5) together  the success of the semiclassical expansion for differing two-

The system interaction is given by a modified version of
the Lennard-Jonegl2—6 potential. The MQM formalism
assumes that the Hamiltonian is a differentiable and non-
singular function. The Lennard-Jones potential has a strong
singularity at the origin. In this
core region we modify the potential so that it is a polynomial
in r. It remains strongly repulsive in this core sector. The
polynomial coefficients are determined by requiring that the
potential have five continuous derivatives, specifically,

=< (5.9

The parametef is the radial distance where the smooth inner
core region is fitted onto the Lennard-Jones form. The poten-
tial energy at this match point is at least three times greater

(4.7  than the total mean energy of the system for the calculations
displayed in this section. The constants in the forn{5ld)
The fundamental semiclassical expansf@rd) resides in  are found in Table I. The parameter valueand o for He,
the two termsy{®) and y{*). The additional contribution of Ne, and Ar are found in Ref§37-39, respectively.
order (:/D)? is not a basic feature of the Moyal semiclassi- The general effect of the strong repulsive core is to make
cal dynamics but rather is an artifact of our method of ap-the quantum wave function exponentially small within the
proximating the momentum integration. The rate of conver<ore volume. For this reason one expects that the smooth
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TABLE Il. Linear observables for He at=450 m/s.

Time (72(a) (YP(ay) (Bp%ay) (72(a2)) (YP(az) (Bp7%(a2))
(107 1%s) A)
0.0000 2.000 0 0 —1.400x 10"2 0 0
0.2800 2.000 2.51910°° 2.575<10°° —1.403<10"! 7.446< 1073 —5.790< 104
0.3111 1.999 14721074 1.669<10°* —1.229x 1071 3.851x 1072 2.816x 1073
0.3422 1.997 4.59910* 5.357x 1074 1.367x 10" 1.120x 1071 1.558x 1072
0.3533 1.997 6.14210°4 7.150x10°* 1.858< 10" 1.474x 1071 2.191x 1072
0.3667 1.996 8.18010° ¢ 9.476x10™* 2.446x 10! 1.937x 107! 2.992x 1072
0.4889 1.985 2.86710°° 3.179x 1073 7.830x 10™* 6.551x 1071 1.014x 1071
0.4978 1.984 3.01710°° 3.341x 1073 8.221x 10" 6.888x 107! 1.065x 1071
Time (vO(py)) Y (py) (B (py)) (72(p2)) (Y (p2) By (p2))
(10710g) (amu m/$
0.0000 0 0 0 90.058 0 0
0.2800 —2.322x1072 3.474x1073 3.795< 1073 89.740 0.948 0.022
0.3111 —7.733x 1072 1.351x 1072 1.592x 1072 89.092 3.292 0.497
0.3422 —1.382x1071 2.614x 1072 3.063x 1072 88.452 6.025 1.086
0.3533 —1.524x 1071 2.926x 1072 3.376x 1072 88.317 6.677 1.180
0.3667 —1.631x1071 3.168x 1072 3.579x 1072 88.220 7.176 1.214
0.4889 —1.721x 1071 3.378x 1072 3.654x 1072 88.144 7.602 1.157
0.4978 —1.721x 1071 3.378x 1072 3.654x 1072 88.144 7.602 1.157

modification of the potential within the core region will have that the potential energy of the system is negligidlg@art in
no noticeable effect on observable quantities. We have0') relative to the kinetic energy. The large value of the
checked this assumption by changing the He matching radiusalf width D causes the asymptotic momentum expansion
from £&=1.8 A to ¢=1.7 A. This rialductmn of¢ INCTEASES  factor A, to be comparable to theg{?) term. The initial
the energy ofv(¢£) from 1710.8 cm™ to 3531.6 cm~. To

the level of accuracy displayed in Tables 1l-V none of theC!0Sing velocityc=p,/m will take on a range of values.
reported values change. In order to obtain accurate values for the two dimensional

The atomic systems studied here are identical pairs dfiteégral in Eq.(4.7), which determines quantum averages, a
helium, neon, and argon atoms. These systems vary by |grge number of integration points is required. A typical ex-
factor of 10 in mass, and as Fig. 1 shows have attractiv@ectation value reported in the tables uses about 32 000

potential well depths that also vary by approximately a factoPhase space points. Each point is an initial value of a trajec-
of 10. tory. Along each trajectory we solve the ODE system de-

The preevolution state of the system will always be thescribed in Sec. Il for the 92 time dependent functions
displaced Gaussian Wigner distribution(z). This function  needed for the calculation of?.
(4.2b is determined by four parametets, y, D, andp,.
The first three of these will have a fixed set of values chosen _ _
to represent an initial state consistent with scattering bound- A. General features of the numerical solutions
ary conditions. These fixed values afe=2A, y= Let us first examine the He atom system with initial ve-
—140 A, andD=20 A. These values ensure at tiie 0 locity v=450 m/s. The pair of plots in Fig. 2 contrasts the

r'{9z=q(t|2) (classical and I'®z (quantum trajectories

=20 projected onto they;-q, (or b-y) plane. For large impact

g parametetb>4 A there is little difference in the spray of
by 0 these two sets of trajectories, but for smhll(where the

B —20 potential is largg they are often strikingly different. Both

§ sets of trajectories stay outside the smooth core region
g —40 <&, which is indicated by the closed curve about0. At

2 b=23.06 A the classical trajectory has the same initial and
§ —60 final impact parameter. This defines classical glory scatter-
g 80 ing. Whenb=3.62 A the classical trajectory undergoes rain-
g bow scattering and has its maximum angular displacement
E -00—5 3 35 1 n with respect to the axis. It is interesting to note that, once

the impact parameter is outside the region between glory
scattering and rainbow scattering, the large time behavior of
FIG. 1. Lennard-Jones potentials for He, Ne, and Ar. the classical and quantum trajectories is very similar.

Interatomic Distance r (&)
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A useful quantity in describing the system evolution is the
mean closest approach time, At this time the wave packet
is centered above the origin and potential dependent effect=
are strongest. Technically, we define the titgeto be the
time for which(T'{®’g?),, has its minimum.

Table Il records the expectation values of all the nonzero
linear canonical operatorsi{,q,,ps1,p,) for eight different
times. In the second, third, and fourth columns, the displayec
averages correspond to the”, %), andA ,»{®) contribu-
tions to(I'(t)q,), . respectively. The mean closest approach
occurs att,=0.3111. At the final time 0.4978, the system is
in a postscattering configuration where the potential-energy
effects are negligible. For linear observabl@éz,) is deter-
mined solely by the quantum trajectories; thig; andw,,,
portions ofy{?) vanish in this case. The units for momentum

are amu m/s. The operatags andps are not listed in Table <&
Il. The planar motion invariance causes these expectatior =
values to be zero.

As the collision process takes place the wave function
will lose its initial coherent statéGaussiah character. Cor-
respondingly, the product of uncertaintiép;Aq; appearing
in the Heisenberg uncertainty relatiafnijquéﬁ will
grow in time. Table Il displays this changing uncertainty
computed to orde®(#%2) for the canonical pairsq ,p;j), j
=1,2. The effect of the collision processes produces a sub

4
3
2
1
0

Displacement y (

Displacement

stantial deviation from the initial coherent state. Cylindrical Impact Parameter b (A)
symmetry about they axis implies that the uncertainty _ _ )
AgsAp; is the same adq;Ap;. FIG. 2. (a) Classical andb) quantum trajectories for He at

In Table IV the same system and initial state are em-~450M/s.

ployed as in Tables Il and Ill. These results display the ex-
pectation values for the potential and all the scalar qua- (% values remain close to zero. Throughout, corrections

dratic observablesqf,p?,q-p). The apparent trend that ... ¢ h - = (0)
holds for the eight observables shown in Tables Il and IV isarlsmg fom the asymptotic momentum expansibpy;

that the leading semiclassical terpi® significantly domi- &€ ©Of the same order of magnitude as thosedt.

nates the second ordef?) corrections, typically by a factor
of 10 or more. The potential is a particularly sensitive test
observable since it depends on all parts of 4@ operator. The next set of calculations, shown in Table V, explores
The quadratic observables have no contribution from théhe role of the initial wave-packet energy and how it effects
W, s, terms. At closest approach time 0.3111 @:2) cor- the convergence of the semiclassical expansion. The system
rection for the potential is 8.5% of the leading’’(v) term.  remains He and as varies(and hence the incident enejgy

Of the eight observables examined here the largest relativine parameterd,y,D are kept fixed to the values used
corrections occur fop;. However, this observable is non- above. The times in the list shown correspond to the closest
typical in that its initial mean value is zero and its later time approach time. The general outcome is that the relative size

B. Convergence and stability of classical flow

TABLE lll. Heisenberg uncertainty.

Time Aqg Ap, 2 Agy Ap, 2
7 Ag,Ap? 7 AgpAp?
(10 9s) A) (amu m/3 R) (amu m/$

0.0000 14.1421 22.453 1.0000 14.1421 22.453 1.0000
0.2800 14.4893 36.219 1.6527 14.4658 60.518 2.7570
0.3111 14.5801 47.999 2.2039 14.5521 92.936 4.2590
0.3422 14.6997 53.105 2.4584 14.7831 112.59 5.2419
0.3533 14.7514 53.595 2.4898 14.9192 115.94 5.4474
0.3667 14.8205 53.803 2.5112 15.1219 118.21 5.6292
0.4889 15.8169 53.888 2.6842 18.5840 119.91 7.0178
0.4978 15.9135 53.888 2.7006 18.9222 119.91 7.1455

%;,=1.054572 K10 %4 J.s=635.078 07 A amu m/s.
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TABLE IV. Potential and quadratic observables for He.

i o - - o - .
Time (¥Ov)) (YP)) (BpyO)) (?(a-p) (¥?(q-p)) (Bpr(a-p))
(10 9s) (cm™d) (amu A%/107 0 s)
0.0000 —1.251x10°° 0 0 —1.261x10"® 0 0
0.2800 —1.862x10°? 1.177x 1073 9.618<10°* —1.261x10™4 -0.223 211.50
0.3111 —2.955x1072 2.517x 1073 2.628x< 1073 1.384x10™! 0.396 234.35
0.3422 —1.813x1072 1.983x 1073 1.301x 1073 1.263<10™* 2.079 257.32
0.3533 —1.210x10°? 1.433x 1073 5.170x10™* 1.713x10™* 2.628 265.69
0.3667 —6.349x10°3 8.219x 10™* —4.888<10°° 2.254x10"* 3.103 275.74
0.4889 —6.307x10°8 3.281x107° —3.621x10°8 7.206x10"* 3.582 368.21
0.4978 —4.058<10°8 9.261x 10”1 —5.077x10°° 7.566x10"* 3.582 374.91
; 0)( 2 ~ Y 0)( 2 ~ X
Time (¥O(a?) (7?(a?) (3pr%(a?) (H(P) 72() (Bpr(p?)
(1077s) (A3 [(amu m/s§]
0.0000 2.026x10™4 0 0 8.111x10"® 0 1512.5
0.2800 8.00k10"? —6.553<10°3 2.961x10"! 8.119x10"° —56.370 1466.4
0.3111 6.04%10%2 —7.211x1078 3.654x 101 8.125x10"° —120.52 1386.6
0.3422 8.00%10"? 3.016x 1072 4.418<10"1 8.119x10™° —94.962 1450.2
0.3533 9.66X10™? 5.641x 1072 4.709x 10" 8.116x10™° —68.615 1487.7
0.3667 1.2310"3 9.483x 1072 5.069x 10"® 8.114x10™° —39.343 1514.8
0.4889 7.00&10"3 5.254x10° 1 9.002x 10™* 8.111x10™° 0.014 1512.5
0.4978 7.66%10%3 5.572x 107! 9.332x10™* 8.111x10"° 0.014 1512.5

of the 72 vis-avis the y{) contributions systematically de- Whereuv(r) is the effective potentiab(r)+L?/(2mr?). A
crease with increasing energy. At velocities below 290 m/dixed point occurs if the right-hand sides of E§.2) vanish.
@ numerically diverges at finite time displacement and theT hiS point is stable ib¢(r)>0 and unstable ib¢(r)<0. For
approximation fails. given L denote byr, the radial value of the unstable fixed

It is important to isolate which features of the dynamicsPoint.
are responsib]e for this convergence behavior. S|mp|y put, Consider the famlly of circular orbits. Whenever initial
the stability of the classical motion controls whether or notdata satisfieso(r)=0 and p,=0 circular motion results.
one obtains accurate approximation valid for times exceedFor v4(r)>0 the orbit is the stable minimum energy state
ing the duration of the scattering process. consistent withL. On the other hand, whe{{(ro) <O then

To begin we identify the unstable classical trajectoriesan unstable orbit arises. As one increases the energy the radii
present in this problem. All these motions are associatedf the stable and unstable orbits approach each other and
with an unstable equilibrium point. In spherical coordinatescoalesce when(r)=0. This happens at the critical energy

the radial pair of Hamilton’s equations are E.=ze, cf. (5.1). The unstable fixed points have a finite
. . ) range of energies, QE< ge.
r=p./m, p;=-vg(r), (5.2 A related class of unstable motions are those that con-

TABLE V. Velocity dependence and semiclassical convergence for He.

Velocity Time  (%{(ay) GP(a) (v(a-p)) GPapy (1) GR(B)
ETRCH) W(a-p) (%))
(m/ls (10 05) (A) (amu A2/107 0 5) (A?)
280 0.5000 1.998 —2.117x 1073 3.0603 1.0x10%? 197.523 1.x10°
290 0.4828 1.998 —2.896x 1072 3.6331 —2.378 197.575 —5.512x10°2
300 0.4667 1.998 —2.453<10°° 4.2491 —1.415 197.609 —3.256x10?
350 0.4000 1.998 —6.177x10"* 7.5245 -0.1781 197.858 —5.766x10° 3
400 0.3500 1.999 —1.588<10* 10.770 —0.009 70 198.201 5.22810 2
450 0.3111 1.999 7.38810°° 13.840 0.02861 198.475 5.7030 3
500 0.2800 1.999 1.12810 4 16.724 0.03757 198.666 4.4870°3
550 0.2545 2.000 1.15210°4 19.427 0.03808 198.796 3.2%30°3
600 0.2333 2.000 1.06210°4 21.963 0.03594 198.885 2.2930°°

650 0.2154 2.000 9.44210°° 24.356 0.03307 198.948 1.6460 3
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verge to the fixed point as—o. Among these are the 0.0003 T T T T

trapped scattering states. These states have an initial radial i

positionr >r, and an energy equal to thg(rg). Ast—o =

thenr(t)—r, andp,(t)—0. =20.0002 - -
The stability aspect of a periodic flow is determined by its &

Lyapunov [40] exponents. For any poir#, on a circular = i T

orbit, a simple calculation in spherical coordinates shows ”30.0001
JVVH(g(t|z.)) to be a time independent matrix. Thus the Z.
Jacobi field has the exponential representation - r y

@
t

Vo(t]zg) =WV VH(z), (5.3 %% 0.5 1 15 2 2.5
Time (10_10 s)

It is readily found thatJVVH(z.) has the eigenvalue\
=+/—va(r(z;))/m. This is positive ifr (z;) =r, and verifies FIG. 3. Time dependence of relative size of correction.
that the associated state is an unstable periodic orbit. A simi-
lar analysis applies to the trapped scattering trajectoryt As  Two qualifying remarks need to be made about the impli-
—oo the matrix JVVH(g(t|z)) converges toJVVH(z,). cations of the long time accuracy displayed in Fig. 3. The
Again one has exponential growth of the Jacobi field. first is that the set of scattering trajectories that entercthe
Away from the family of unstable motions, complete in- =450 m/s expectation value calculation are not close to the
tegrability of the system guarantees that there is stable clasmstable motions, so one would not expect thé TA] time
sical flow. The three constants of motion afiéz), L?(2), restriction to apply. Second, it should be emphasized that our
andL3(z). These functions are all in involution, and inde- calculations only report the values (Jﬂ”)AL,,, n=0,2 and
pendent inRngg except on a set of measure zero that in-not the differencéFtAN,—(FgN)A)w. Although our calcula-
cludes all unstable orbits. For bounded motion witf{r)  tions do not directly show the IA(%) time restriction, its
#0 one may show that the Jacobi field written in action-underlying cause—unstable classical flow—does play a con-
angle variables is a linear function of time. For scatteringtrolling role in determining the range of initial energies for
trajectories withv 4(r) # 0 a similar result holds. The numeri- which there is an accurate two term semiclassical approxi-
cal values of the Jacobi fields reflect exactly this predictednation.
behavior.
With these considerations in mind let us return to the D. Mass and system dependence

interpretation of the numerical results in Table V. The veloc- . .
: . . . As the mass of the atom increases, the system dynamics
ity c. corresponding to the critical ener@y. is 260 m/s. For

incident velocities that are 20% greater thap we have will become more classical. We measure this effect by cal-

uniformly good convergence of the two-term semiclassicafulating the ratio of 752)(A)>/<7§(_))(A)> for the observable
expansion at post collision times. However, for velocities®=9-P, while artificially increasing the mass from @,
sufficiently nearc, some of the trajectories used in the ex- 10 120mHe. Figure 4 shows that this ratio varies basically as
pectation value formul#4.7) closely approach the unstable M~ for largem. _ _ _
trapped scattering trajectory. In these circumstances the tra- OUr last calculation compares the semiclassical conver-
jectory will loop around the origin a finite number of times 9ence as one varies the atomic system among He, Ne, and
before moving away from the potential region. When thisAr- These calculations have common initial velocity
happendcf. c=280 case in Table Mthe Jacobi fields grow c¢=450 m/s and display théy{?(A)) and the(¥{?(A))/
rapidly; at a finite time displacement® has unbounded (¥{*(A)) ratio at timet, of closest approach as well astat
numerical values. the postcollision time. The observablésarep,, q-p, and
02. Increased mass makes th§’ effects smaller while in-
C. Long-time behavior creased potential makes it larger. Table VI clearly shows that

An aspect of semiclassical approximation that has
received much attention in the literature is its long time 10-? E ]
behavior. For dynamical systems that have regions of insta: ~ .
bility (positive Lyapunov exponent) it is expected[41— & 101 £

44,34 that the approximatiofI',A) ,~(I'{VA),, can be ac- =

curate only for a finite time interva]O,T] of the order 7& r

T~constA tIn(A™Y). For this reason it is of interest to > 107

study the long time regime for our expansi@h?). & E
ey}

In order to profile numerically the typical—o structure =
we examine the expectation valthtq2>¢,. This quantity S
has quadratic growth for largeand is sensitive to both wave L
packet transport and spreading. For mean veloditigseater 1077
than the unstable casg it is found that the fractional cor-

rection (¥{2(g?))/(¥{°(q%)) becomes constant as—o.
Figure 3 shows this result far=450 m/s. FIG. 4. Mass dependence 6§{2(q-p))/(12(q-p)).

1078 |

1 10
mass/(mass of helium)
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TABLE VI. Atomic system comparison.

(7)) (?(a-p) GPapy @) GR@)

(¥Ap2) (¥(a-p) (YO
(amu m/$ (amu A?/107 10 s) (A?)
t,=0.3111x 10 ° s
Helium 89.092 3.69%10°? 1.384x10"! 2.861x10°% 204.958 —2.780<10°°
Neon 448.96 1.05610 % 1.054x 10"2 158910 % 204.991 —9.185x10°°
Argon 880.21 3.91810°° 3.492<10"2 —2.270x10°%  205.865 —2.159x10°°
t;=0.4978x10 05
Helium 88.144  8.62%10°° 7.566x 10"* 4.734<107° 275503 —1.646x10°%
Neon 444.29 2.38410°* 3.816x10"° 2.067x10°8 272374 —5.629<10°°
Argon 861.31 1.02x10°4 7.554x 10"° 5.940<10°7  346.050 —9.706x10°*
the mass effect dominates this balance. be the least phase space displacement such that
2 2

VI. DISCUSSION AND CONCLUSIONS h fi
02|25 222, [62,6251= 5 Iwap(tl2)],

The MQM semiclassical expansion approximates the
Heisenberg-Weyl evolution operatby by I'N) . The semi- 5
classical evolutiorﬂN) is given by a power series it with |5Za523527|> ﬁ_ |Wagy(t|2)|-
operator valued coefficientg™ that map the Weyl symbol 4
of an observable onto its related dynamical value. The lead- ) . . .
ing 7(%) term is determined by classical flow in phase space” Taylor(g)e”es expansion d¥(g(t|2) + 62) in the variable
The connected graph approach of Osborn and Mol#8bh 6z has y A(z_) as its first term. The next three denyatlve
shows that the higher-order coefficient operatcyfg), n t-erm.s are all individually Iargl;erztr(lgn the correspondlng de-
=1, are given by a universal function of the Poisson bracke_['vat'ves in formula(2.11) for §h, vi"A(2). The concllu5|on
operatorsB;; and finite-order phase-space gradients. Quan'> that wheneveA(g(t|2) + 62) is accurately approximated
tum expectation values are phase-space integrals. The aﬁy_'ts two term Taylor series expansionda (roughly, when
proximate evolutiorTﬁN) preserves wave-function norm. For is slowly varym% with rgspeqt to the phgse-§paqe d|s.tance
Weyl quantized system3/,§2) is the first nonzero correction |42)), then theO(#") semiclassical approximation is valid.

b d the leadi © Th " b The simplicity of the MQM semiclassical expansion has
eyond the leading termy™. The operatorsy;” are ob-  \oqnt that we have been able to calculate both of the semi-
tained computationally from finite systems of ODE'’s.

These features show that this semiclassical approximatio(f}llassicalI evolution operatoi® andI':™); and further, to
is structurally very different from the better known WKB ake a detailed comparison of their predictions for expecta-

o X tion values. Specifically, the Lennard-Jones potential)

(N) d
[45,46,33 approxmatlon. ]n the MQMI éxpansion there; provides a consistent description of the helium-helium atom
are no caustics, no multiple two-point boundary conditiongy tem for collision energies that range from the inelastic
trajectories, and no essential singularitiesid®. For these  inreshold down to zero. For helium the first excited state

reasons the MQM semiclassical expansion is more readily . ;rs atE=159 850 cm® and the corresponding incident
applied to physical problems than is the WKB expansion. e|ocity for the threshold isc=43700 m/s. Assuming
_A remaining question that is important to resolve is: g sgian Wigner distributions for the initial state, the Moyal
1W2h5}t2) is the small param(eot)er” responsible for making gemiciassical expansian.?) is valid from 350 mi/s to 43 700
2%y;™ @ small correction toy; 2" The mathematical pro- /s Similar remarks apply to the neon and argon systems.
cedures used in the derivation of expansiarb) and what  cojlectively, our numerical results establish the computa-
one does in the practical applicatiof@s reported in Sec. V. tional feasibility and accuracy of the MQM semiclassical ex-

are near opposites. In obtaining Hd.5 analytically, it is  pansjon for a wide range of initial states in the helium, neon,
assumed that is small and one can scale this parameter togng argon systems.

zero. In this fashion, the formulas fof™ are derived and
the error bound estimat@.3b acquires significance. How-
ever, in a numerical modeling of a realistic system, the value
fi is set to its physical value and cannot vary. So, what is the The authors would like to thank our colleagues F. H.
scaling structure that makes the semiclassical expansioolzahn, M. V. Karasev, and S. F. Fulling for critically
valid? The following argument gives a simple guide thatreading the manuscript and suggesting a number of improve-
shows when the higher-ord@(#2) corrections cease to be ments. We are especially thankful for the assistance of M. F.
significant. Observe that the derivative structureyf [cf. Kondrat'eva who, in addition to help with the manuscript,
Eq. (2.11] is similar to the terms appearing in a Taylor se- checked many of the equations in the text. This research was
ries expansion of a symbdl about the poing(t|z). Let 5z  supported in part by grants to T.A.O. and G.C.T. from the
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This formal expression foX*Y follows easily[30] from
APPENDIX A: ASPECTS OF WEYL SYMBOL CALCULUS (A2).

The Moyal formalism requires several basic features of It is important to have smak asymptotic expansions of

the Weyl symbol calculus. These identities and expansion%he.r']vlo(f;l)b;gglziz)sucgcir;;i(pans'on is obtained on com-
are collected together in this appendix. ining » Shecinically,
The linear operators on Hilbert space form a Lie algebra 5 5
the bracket of which is the commutator. The Wigner trans- (X, Y}Iu(2)= ~ sin(—Blz) <X,Y>(2) (A8a)
form from operators to symbols is a homomorphism that h 2
preserves the brackétommutatoy operation. In order that
the product of Hilbert space operators correspond to a 2 3
“product” of symbols, a noncommutative extension of sca- :{X,Y}(Z)—(§> 3 BL<XY>(2)+-.

lar multiplication is required. This is the product. LetX,Y (A8b)

be two operators with symbo}s,Y. The* operation on this

symbol pair is defined as The asymptotic expansiofA8b) shows how the Moyal
bracket modifies the classical Poisson bracket via the addi-

X*Y=g(XY). (A1) tion of an ascending series of higher-ordercorrection

terms.

A well-known integral formuld 6] for this product is In the density matrix formalism, quantum expectation val-
ues are determined in terms of traces of Hilbert space opera-

X*Y(z) tors. Fortunately the link between the trace evaluation and
the symbol is straightforward. We require two identities:

=(wﬁ)—6f f dedg X(z+ ) Y(z+ §’)exr{%§~\]§’}.

g — oy =h—3
A2) TrX—qu(q|X|q>—h fde(z), (A9a)

HereJ is the Poisson matrix “n
Tr XY=h’SJ dzX(2)Y(z). (A9b)

0 ¢

J:
-0 0

: (A3) Utilizing Eq. (A9a) to obtain Eq.(A9b) initially leads to an

integrandX=Y(z). However, using the representatiGh7)
The * operation is a noncommutative associative product ofoupled with an integration by parts argument shows that all

symbols. the higher-orderB7, terms vanish leaving the result dis-
The Moyal bracket is ther image of the quantum com- played in Eq.(A9b).
mutator, The operator valued semiclassical expansibrb) with

the accompanying representation fyzfrz) is the basis of all

the subsequent numerical calculations. It is useful to tie these
results into the mathematical literature on Weyl symbol cal-
culus and to obtain an independent check on fornfalal).

Like the commutator, the Moyal bracket is bilinear, skew,An % expansion having similar content to E4.5) is found

and obeys the Jacobi identity. in the works[28,47] of Karasev and Maslov.

Frequently the symbols of operators are smooth differen- Denote byf(M a set of noncommuting selfadjoint opera-
tiable functions on phase space. In this casestgoduct tors with smooth Weyl symbolX ,(z). Construct operator
a}nd the Moyal bracket admit derlvat.lve based representg;gued functions oﬁ(M in the following fashion. Letf:R®
g?gi'vl‘le_f]%f.diggrt% %r:] ?ﬁée?fsgj;,'isg? ttr’]r;’“;kcetito?]pglfatoLR be a smooth function having Fourier transfofmThen

B, is (after diagonal evaluation’ =z)

1 1
{X,Y}MEG(E[X,Y]) = (X*Y=Y*X).  (Ad)

] f(5()=f(5(1,...,5(6)EJ6du~f(u)e‘”'x (A10a)
BL<XY> (D) =X\ (DI I, Yiwgoow (). R
(A5) defines a Weyl symmetrized function &fu. In the special
If n=1 then Eq.(A5) reproduces the Poisson bracket case wheréX ,=z,,, the functionf (2) is the symbol off(z).
In Ref. [28] (cf. Appendix 1, Sec. 1)4the following
Bo<X,Y>(2)={X,Y}(2)=VX(2)-IVY(z). (A6) asymptotic expansion was established:
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_0.1 1 1 1 1 1 1 1 1

—160 —150 —140 —120

Displacement y (A)

—130

FIG. 5. y dependence of the{%(p,) term.

af(X)(2)=1(X(2)) +H2[— 55BI<Xo . Xp> (D)F,05(X(2))
- iBlZBZS<xa ixB 1xy> (Z)f;aﬁy(x(z))]
+0(h%). (A10b)

Now consider quantum flow. Write the observable in
Weyl symmetrized formA=A(z), i.e., A=cA=f. The
Heisenberg-Weyl evolution is

[oA=ol(t)A=of([(1)2). (A11)
Apply Eg. (A10b) to of(I'(t)2) by settingX,=T(t)z, and
X (2)=Z,(t,h;2). Employ expansion2.8) for Z (t,%;2)
and then Taylor expand the functional arguments about

g(t|z). One immediately recovers expansith5) to order
O(%?) and reproduces Eq2.11).

APPENDIX B: PHASE SPACE ROTATIONS
AND TENSOR REPRESENTATIONS

The Wigner transform maps operator valued tensorg{on
to Weyl symbol valued tensors of* (R%). This appendix

reviews the definition of these symbol valued tensors and

obtains their transformation properties under rotations.
Each linear invertible coordinate transformatuﬁ]lﬂR3

—>]R3 defines a point canonical transformation Bh(IR®) in

the followmg fashion:

detQ#0.

q'=Qaq, (B1)

The induced transformation of the momentum variable is

p'=(Q Y Tp. The combined coordinate and momentum
mapz=(q,p)—z'=(q’,p’) is canonical for allQ.

Write, for arbitrary unit vectoe, thee, ¢ rotation in Rg
asR=R.(¢). SettingQ=R, we note thap' =Rpresults as
a consequence of the real orthogonal propertyRofThe
resultant transformation’ =Rz is a rotation in phase space.
A convenient notation foR is the block matrix decomposi-

0

tion,
( Re( )

The transformatioriR is both a real orthogonal and a sym-
plectic six-dimensional matrix.

Re(¢)
0

q/
p/

q

) R=Re($)=

):R } (B2)
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Z 01
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Z -02
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<
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FIG. 6. y dependence of théa) ¥((p,) and (b) A,%*(p,)
terms.

The suitable definition of tensor operators which incorpo-
rate the phase space rotatinis revealed by examining the

canonical operatorg andp. Both of these ar&® rank one
tensor operators Under the quantum rotation generated by

L= q>< p this pair of operators transforms as

U'(R)Z,U(R)=R,,Z,, (B3)

whereU (R) = exp(—ige-L/A).
A family {XM.M} of operators or{=L2(R?) is defined
to be a rankn phase-space tensor operatibrunder conju-
gation withU(R) it transforms as

Mnynxyl...,,n

X! :
(B4)

My M

=UT(R)X U(R)=

K1 Mn uvy R

Taking the Wigner transform of identit{B4) just replaces
the operatorsX;, ..., ,X, ..., by their corresponding sym-
bols X;Ll,,,ﬂn D%
The most useful form of the symbol image of E&4)
incorporates the affine covariance propeft§0] of the
Wigner transform. In the form required here, this property
states: Suppos§ is a symplectic matrix and tha (S) is a
unitary operator obeyinyl (S) 'zM (S) = Sz. Namely,M(S)
is a metaplectic operator. Then thetransform of an arbi-
trary A conjugated withM (S) satisfies

Vl"

gt

a(M(S)TAM(S))(z)=A(Sz). (B5)
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%(0)( 2) (amu m/s)

% (p) (amu m/s)

Impact Parameter b (A)

FIG. 7. (@ %%(p,) b functional dependencéb) detail of (a).

Note that if we seS=R then Eq.(B3) confirms thalU(R) is
a metaplectic operator. Thus the covariance idefB) im-
plies

Xt D=0 U RIK, - URD(D) =Xy (R2).

(B6)

Myt Mp

Combining Eqs(B6) and (B4) establishes the Weyl symbol

tensor transformation rule,

Xy (RD=R,, -+ R

W2 (B

i Koy
APPENDIX C: SOLUTION STRUCTURE
AND CONSISTENCY CHECKS

The action of the semiclassical evolution operatg{%
and 752) on the Weyl symbol of a typical observab‘l‘gl..#n

SEMICLASSICAL MOYAL QUANTUM MECHANICS . ..
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FIG. 8. (@ %?(py) and (b) A,%%(p,) b functional depen-
dence.

The curves in Fig. 5 show the{”(p,) portion of the
integrand of Eq.(4.7) for five different times: 0, 0.2800,
0.3111, 0.3422, and 0.4978 (1¥s). The smooth upper
and lower curves denote the integrand at the precollision
time 0 and the postcollision time 0.4978, respectively. The
upper curve is determined solely by the Wigner function

w,(2). Its slow variation is the result of the large valuelbf
The %{%(p,) plot is read as follows. For the intermediate
time 0.3111 they function begins at the left on the top
branch. In the region around= — 142 A the trajectories are
undergoing active interaction with the potential and there the
curve abruptly shifts to the smooth lower branch. Similar
interpretations apply for the other two intermediate times.

The two curves in Fig. 6 display thg behavior of the

¥P(p,) andA,%%(p,) contributions for the time 0.3111.

is often elaborate, exhibiting both a short range and long
range structure in phase space. In this appendix we illustrat
several examples of this behavior. Furthermore, we outline
some of the consistency checks we have developed to ensui
that the computed values of® and y? are correct. The g
reported results are all for the helium atom system.
First consider the integrand of the expectation value m

<F(t)TM1...ﬂn>¢ as a function of the variablg for fixed im-
pact parameteb. We choose the observable to bg=2z,
with x=5, namely, the momentum coordinate functios
For the trajectory with initial impact parametbr=1.33 A
and velocity 450 m/s, the three componentg®{, %%,

pyto)) of the integrand in Eq4.7) are seen in the follow-
ing two figures.

~—

U

60

40

20

0
—20

—40

—60 1 1 1 1 1 1
0.149 0.150 0.151 0.152 0.153 0.154 0.155 0.156
Time (10710 5)

FIG. 9. Component cancellation 72 (H).
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TABLE VII. Consistency checks.

Time (7O(H)) (Y(H)) (O(H*L?)) (YA (H*L2)
(10 9s) (cm™b) (cm™ (1002 £cem ) (10029 2cm9)

0.0000 16.9386795 4 38.784 211 10%2
0.1556 16.938 679 4 6.868L0~ 1 38.784 210 3.218107°
0.1889 16.9386794 1.30510 % 38.784 210 9.03810°°
0.2800 16.9386765 1.66910°8 38.784 204 7.77410°°
0.3111 16.938676 6 7.46710° 8 38.784 204 1.35%10°4
0.3422 16.938676 6 1.7%10°7 38.784 204 9.30%10°°
0.4889 16.9386765 2.94010°7 38.784 204 2.95810° 7
0.4978 16.9386765 2.94010°7 38.784 204 2.95810° 7

There are similar rapid variations of these quantities for theof a four stage hierarchical calculation it is worthwhile to
times 0.2800 and 0.3422. establish its correctness via a series of consistency checks.
Our computation of the expectation val(#7) first com-  One of the most effective of these involves observables that
pletes they integration and then carries out the integral overare simultaneously classical and quantum constants of mo-
the impact parameter. For the same observaiple the tion. In this case exact results are known. Obvious choices

b-dependent components of Eg.7) are displayed in Figs. 7 are H,[? L;. Furthermore, one can form additional con-

and 8. stants of motion from the products of these operators. Con-
The pair of curves in Fig. 7 describes th contribution  sider the product{2 whose symbol isH*L2 Since

on two differentb scales. The near commdenc_e of the five I',(H*L?)=const one has

curves occurs at the forward glory scattering valbe

=3.06 A. The subsequent maximum set of deflections oc- Y2 (H*L?) =@ (H*L?)=0. (C1)

curs for the rainbow scattering bt=3.62 A. The associated 5. ) )

maximum angle of deflection is-0.93 radians measured 1h€ SymbolH*L is a phase space function with an elabo-

relative to they axis. The next pair of curves in Fig. 8 are the @€ structure. Numerically verifying E¢C1) is a demand-

Y2(p,) andApygo)(pz) contributions, respectively. Again ing check on accuracy and con&stencyy{*ff . Figure 9 and

their maximum values are concentrated in the impact param-[able Vil shovy this consistency.
The three time dependent curves here arezthe W,

eter region near the glory and rainbow values of the impact q FO(H) [labeled 12,3 in Fig. B
arameter. As time increases the valuesy&f and  2NdWag, cOmponents ok;"(H) [labeled 1,2,3 in Fig.
b y& (p2) evaluated along a trajectory with initial date=2.27 A,y

A _~(0)
Apyi(p2) grow. _ _=—70A, and velocity 450 m/s. The cancellation of their
In order to integrate accurately over the fine structure i

: . "sum to zero is accurate to at least seven digits. Table VII
bothb andy variables it is necessary to have a large number isplavs the quantum average lfand (L2 at eight differ-
of integration points in both these dimensions. Here and ir?jl piay quantum averag '9 :

the tables of results listed in Sec. V we have used 250 point@nt times. The deviation of the average valuesyBP(H)
in the y variable and 130 points in the variable. These and%z)(H* L?2) from zero is a measure of the accumulated
static mesh points cover the region in phase space that supfror in our numerical calculations. It is always extremely
ports the Wigner functiom ,(2). small relative to the scale set by théo) terms. More con-

In view of the fact that the operatgt® is the final result  sistency checks are described by McQuaj+ig].
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