
PHYSICAL REVIEW A OCTOBER 1998VOLUME 58, NUMBER 4
Semiclassical Moyal quantum mechanics for atomic systems
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~Received 18 December 1997!

The Moyal formalism utilizes the Wigner transform and associated Weyl calculus to define a phase-space
representation of quantum mechanics. In this context, the Weyl symbol image of the Heisenberg evolution
operator admits a generic semiclassical expansion that is based on classical transport and relatedO(\2)
quantum corrections. For two atom systems with a mutual pair interaction described by a spherically symmet-
ric potential, the predictive power and convergence properties of this semiclassical expansion are investigated
via numerical calculation. The rotational invariance and tensor structure present are used to simplify the
semiclassical dynamics to the point where numerical computation in the six-dimensional phase space is fea-
sible. For a variety of initial Gaussian wave functions and a selection of different observables, theO(\0) and
O(\2) approximations for time dependent expectation values are determined. The interactions used are the
Lennard-Jones potentials, which model helium, neon, and argon. The numerical results obtained provide a first
demonstration of the practicality and usefulness of Moyal quantum mechanics in the analysis of realistic
atomic systems.@S1050-2947~98!08110-4#

PACS number~s!: 03.65.Nk, 03.65.Sq, 34.50.2s
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I. INTRODUCTION

Moyal quantum mechanics gives a complete statemen
quantum theory that is set in classical phase space. It
ploys equations of motion that are similar to those of Ham
tonian mechanics. In this paper we study the predict
power and the computational usefulness of Moyal quan
mechanics~hereafter, MQM! in describing interatomic sys
tems, specifically helium, neon, and argon. Although ther
now an extensive literature which establishes the mathem
cal and structural aspects of MQM, this formalism has h
limited application to, and interaction with, realistic physic
systems. A remarkable feature of MQM is the simple str
ture assumed by the semiclassical expansion for the Hei
berg picture quantum flow. Through numerical calculati
we investigate the convergence and the accuracy of
semiclassical expansion.

The Moyal formalism@1–30# is based on the Wigner
Weyl isomorphism that maps Hilbert space operators
functions ~symbols! on classical phase space. The transf
mation of an operatorÂ on Hilbert spaceH5L2(R3) to a
corresponding Weyl symbolA on phase spaceT* (R3).Rq

3

3Rp
3 is denotedA5sÂ. The map s is defined by the

Wigner transform@31#,

A~q,p!5E
R3

dx e2 ip•x/\^q1 1
2 xuÂuq2 1

2 x&. ~1.1!

In the integral above,̂xuÂuy& denotes the coordinate spa
kernel of Â written in Dirac notation.

The inverse maps21 sends symbols to operators~Weyl
quantization! @32# and is given by the inverse Fourier tran
form to Eq.~1.1!. The maps is a linear bijective correspon
dence. Observables~Hermitian operators! have real-valued
symbols. IfÂ is the identity operator, thenA(q,p)51. The
quantum position q̂ j and momentum operatorsp̂ jc5
2 i\]c/]qj have as symbols the coordinate functionsqj and
PRA 581050-2947/98/58~4!/2944~18!/$15.00
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pj , respectively. Operator functions ofq̂5(q̂1 ,q̂2 ,q̂3) alone
or p̂ alone, sayf (q̂) or g( p̂), have symbolsf (q) andg(p).

Quantum flow in symbol space is thes image of Heisen-
berg picture evolution. A system defined by a Hamiltoni
operator Ĥ has Schro¨dinger evolutionU(t)5exp(2iĤt/\)
and an associated Heisenberg evolution operatorG(t). For a
general observableÂ, this is

Â~ t !5G~ t !Â[U†~ t !ÂU~ t !. ~1.2!

The Weyl-symbol image of Eq.~1.2! replaces the pair of
operatorsÂ(t), Â by their corresponding phase space sy
bols A(t), A. We refer to the linear transformationG t from
A°A(t) as the Heisenberg-Weyl evolution operator.
view of the invertibility of s, the operatorG t takes the form

A~ t !5G tA, ~1.3a!

G t5sG~ t !s21. ~1.3b!

The transformationG t is the fundamental evolution operato
in MQM.

The origin of semiclassical behavior for the Heisenbe
Weyl evolution arises from the notion of operators that a
smooth in Planck’s constant\. A HamiltonianĤ is said to be
semiclassically admissible if its symbolH(\,z) has a regular
asymptotic expansion about\50,

H~\,z!5Hc~z!1(
r 51

`
\ r

r !
hr~z!. ~1.4!

In the notation abovez5(q,p) denotes a point in phas
space. The\-independent portion of the symbolH(\,z),
namely,Hc(z), is the classical counterpart ofĤ. Nearly all
Hamiltonians of physically significant systems are semicl
sically admissible. A system without higher order\ terms in
Eq. ~1.4! has the feature that the Weyl symbolH(\,z) is
2944 © 1998 The American Physical Society
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exactly the classical HamiltonianHc(z). Such systems are
referred to as Weyl quantized.

In the circumstance whereinĤ is semiclassically admis
sible, thenG t admits a small\ asymptotic expansion

G tA.G t
~N!A[ (

n50

N
\n

n!
g t

~n!A, \↓0. ~1.5!

The ‘‘coefficients’’ g t
(n) associated with powers of\ are op-

erators in the space of Weyl symbols. Expansion~1.5! is the
generic~Heisenberg picture! form of semiclassical expansio
@30# in MQM. The leading termg t

(0) is determined by the
classical flow inT* (R3) generated byHc .

The final stage of the Moyal formalism obtains quantu
expectation values. Letr̂5uc&^cu be the density matrix for a
unit normalized initial statecPH. The Wigner distribution
is thes image ofr̂, specificallywc5h23sr̂. The time de-
pendent expectation forÂ(t) is determined via the trace for
mulas

^Â~ t !&c5Tr r̂Â~ t !5E dzwc~z!G tA~z! ~1.6a!

.E dzwc~z!G t
~N!A~z!. ~1.6b!

Here thedz integral is over all phase space and Tr deno
the trace onH.

For the physical systems considered in this paper
HamiltonianĤ has a symbolH(\,z) with a purely classical
form

H~\,z!5Hc~z!5
p2

2m
1v~q!. ~1.7!

The interatomic potentialv(q) will be the spherically sym-
metric phenomenologically determined Lennard-Jones in
action. The fact thatH(\,z) is invariant under\→2\
means that all the operatorsg t

(n) with odd n vanish. This
eliminates half of the semiclassical coefficients in~1.5!. In
this context the next quantum correction beyond theg t

(0)

term isg t
(2) .

This paper is organized as follows. Section II states
explicit formulas defining semiclassical flow operatorsG t

(0)

andG t
(2) as they occur for static Hamiltonian systems. S

tion III shows how one may incorporate rotational invarian
and tensor structure to obtain simplified systems of ordin
differential equations~ODE’s! for the functions required in
the construction of the semiclassical flow operators. Sec
IV derives the reduced phase-space representations need
calculate time dependent quantum expectation values
Gaussian initial wave functions. In Section V we summar
the computations that numerically implement the Moy
semiclassical expansion for systems that incorporate the
teratomic potentials appropriate to helium, neon, and arg
The conclusions and related discussion are found in Sec

There are three appendices. Appendix A records the c
ventions and notations employed for the Weyl calculus@33#
of phase-space functions. Also, one finds in Appendix A
s
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representations used to describe the noncommutative
product* of symbols@2,19# as well as the semiclassical ex
pansion of the Moyal bracket. Appendix B derives the pha
space tensor structure of the Weyl calculus. Appendix C d
plays results that show how the various terms contributing
semiclassical expansion behave in phase space. This las
pendix also describes some of the consistency tests
ployed to verify the correctness of the numerical calcu
tions.

II. QUANTUM FLOW OPERATORS

The basic equations of motion for the flow operatorsG t
(0)

and G t
(2) are reviewed in this section in sufficient detail

define these operators as solutions of a family of ordin
differential equations suitable for numerical calculation.
particular, we characterize the Jacobi field and quantum
jectory ingredients required to determine the semiclass
operators g t

(0) and g t
(2) . Recent work of Osborn and

Molzahn @30# has derived explicit formulas forg t
(n) that are

based on a connected graph representation of the exact
lution G t . The following summary of this version of th
Moyal formalism exploits the simplifications that resu
when the system has a static Hamiltonian and a static Sc¨-
dinger picture observable.

By and large, Refs.@1–35# cited for Moyal quantum me-
chanics are those papers that proved helpful in the deve
ment of the connected graph representation ofG t . A good
overview of the large body of mathematical literature on t
topic is found in the book@25# by Folland.

A. Moyal equation of motion

For a systemĤ and observableÂ the Heisenberg picture
equation of motion has the standard form

]

]t
G~ t !Â5

1

i\
@G~ t !Â,Ĥ#. ~2.1!

Taking the Weyl symbol image of this yields the Moy
equation of motion,

]

]t
G tA5$G tA,H%M , ~2.2!

with initial condition G0A5A. The bracket of functions in
Eq. ~2.2! is the Moyal bracket, cf. Eq.~A4!. A key feature of
the bracket$•,•%M is that it has an ascending expansion
powers of\, cf. Eq. ~A8b!, whose leading term is the Pois
son bracket$•,•%.

The isomorphic nature ofs means thatG t acquires all the
structural evolution properties ofG(t). As a result one has
the following.

Properties ofG t . For all tPR, the evolution operatorG t
~a! is linear on the space of symbols,~b! obeys the compo-
sition law: for all tPR, G t5G t2tGt ; ~c! has inverseG t

21

5G2t ; ~d! maps the constant symbol into itselfG t151; ~e!
commutes with the* and Moyal bracket operations; for a
symbolsX,Y:

G t~X* Y!5G t~X!* G t~Y!, G t$X,Y%M5$G t~X!,G t~Y!%M .



t i

e
-

l

e

t
io

l
d

ia

he

si-
via

ted
this
cts

c-
ce

sed

Ja-
ry

r-

ow

ing

and

ly

tion

n-

2946 PRA 58B. R. McQUARRIE, T. A. OSBORN, AND G. C. TABISZ
The semiclassical approximationG t
(N) mirrors theG t evo-

lution properties to orderO(\N12). In detail, properties~b!,
~c!, and ~e! are valid to orderO(\N12), while features~a!
and~d! remain exact. The fact that~d! holds implies that the
flow G t

(N) conserves wave function norm. This statemen

verified by noting that the identity operatorÂ5I gives the
probability expectation value,ici25Tr Âuc&^cu. Now ob-
serve thatg t

(0)151 andg t
(n)150, n>1. This latter identity

follows from the derivative nature ofg t
(n) , n>1 @cf. Eq.

~2.11!#. Thus

E dzG2t
~N!wc~z!5E dzwc~z!G t

~N!15E dzwc~z!5ici2.

~2.3a!

The work of Antonets@13,14# has established that th
exact Heisenberg-Weyl evolutionG t converges to the semi
classical evolutionG t

(0) in the limit \↓0. For a class of ob-
servables, namely,APC0

`(R6), and any finite time interva
@0,T# it was proved that@13#

i@G t2G t
~0!#AiL2~R6!,\2C~T,A!, tP@0,T#. ~2.3b!

The exposed factor of\2 arises from the difference of th
Moyal and the Poisson bracket, cf.~A8b!. The constant
C(T,A) is a growing function of timeT. More recent work
@34# on error bounds estimates the differencei@G t

2G t
(N)#Ai and studies how the bounding constantC(T,A)

behaves for largeT.

B. First-order semiclassical flow

Let Ĥ be the Weyl quantized Hamiltonian,Ĥ5s21Hc .
From now on we drop the ubiquitous subscriptc found on
Hc . If Â is a semiclassically admissible operator with an\
independent symbol, theO(\0) part of Eq.~2.2! is seen to be

]

]t
G t

~0!A~z!5$G t
~0!A,H%~z!. ~2.4a!

One immediately recognizes Eq.~2.4a! as a Poisson bracke
equation of motion for the unknown phase space funct
G t

(0)A.
As is well known, Eq.~2.4a! may be solved via classica

transport. Specifically, letg(tuz) be the classical flow define
as a solution to Hamilton’s equation,

d

dt
g~ tuz!5J¹H„g~ tuz!…. ~2.4b!

Here¹H denotes the phase space gradient (¹qH,¹pH) and
J is the Poisson matrix, cf. Eq.~A3!, responsible for the
symplectic structure of Hamiltonian mechanics. The init
condition for ~2.4b! is g(0uz)5z. The flow g(t) preserves
phase-space volume and is defined for allt. Given the clas-
sical flowg(t), the solution of Eq.~2.4a! is the composition

G t
~0!A~z!5A„g~ tuz!…5@A+g~ t !#~z!. ~2.5!

As is evident,G t
(0)A acquires its time dependence via t

classical motiong(t). In this sense the flow operatorG t
(0) is
s

n

l

trivial to calculate. AlthoughG t
(0) is determined byg(t), this

O(\0) version of semiclassical dynamics is not pure clas
cal mechanics. In the evaluation of expectation values
Eq. ~1.6b! complex valued wave functions and associa
interference effects are fully present. What is absent, at
G t

(0) level of approximation, are the noncommutative effe
of the * product.

C. Higher-order semiclassical flow

Although the operatorg t
(2) is also a function of the flow

g(t) its construction requires a number of auxiliary fun
tions. The basic form ofg t

(2) is determined as a consequen
of the \ expansion ofG t in Eq. ~1.5! combined with the\
expansion of the Moyal bracket. The connected graph ba
formula for g t

(2) has the following characterization.
The operatorg t

(2) is defined via two basic ingredients—
the Jacobi field@35# along the trajectoryg(tuz) and the no-
tion of a quantum trajectory. Consider first the relevant
cobi fields. Jacobi fields describe the stability of a trajecto
with respect to small modifications of its initial data. Diffe
entiating~2.4b! in the parameterz gives

J~ t !¹g~ tuz![F d

dt
2J¹¹H„g~ tuz!…G¹g~ tuz!50.

~2.6!

The solutionsf (t) to the homogeneous equationJ(t) f (t)
50 are called Jacobi fields. The 636 matrix¹g(tuz) obeys
the initial condition¹g(0uz)5d ~the identity matrix! and
each column is a Jacobi field. For allt andz, ¹g(tuz) is a
symplectic matrix and thereby det¹g(tuz)51. This latter fact
is a statement of the incompressible nature of classical fl
and ensures that the matrix¹g(tuz) has a nonsingular
inverse—namely, that there are no caustics.

The notion of a quantum trajectory arises from comput
the Heisenberg-Weyl flow of the coordinate functionsz
5(q,p)5(z1 ,...z6),

Zm~ t,\;z![G tzm . ~2.7!

The coordinate functions are semiclassically admissible
so Zm admits the standard asymptotic expansion in\

Zm~ t,\;z!5gm~ tuz!1
\2

2
zm

~2!~ tuz!1O~\4!. ~2.8!

The coefficient functionzm
(2)(tuz) obeys@30# an inhomoge-

neous Jacobi equation,

J~ t !mnzn
~2!~ tuz!52 1

8 wab~ tuz!JmgH ;abg„g~ tuz!…

1 1
12 wabg~ tuz!JmrH ;abgr„g~ tuz!…

~2.9!

with initial condition zm
(2)(0uz)50. The right-hand side of

Eq. ~2.9! utilizes tensor notation for derivatives, name
H ;ab denotes thea,b matrix element of the Hessian¹¹H,
etc. Unless otherwise noted we employ the tensor summa
convention on repeated indices. The Greek indicesab¯n
run from 1 to 6. Furthermore, the expressions involving te
sorswab andwabg are defined as
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wab~ tuz!5B12
2 aga~ t !,gb~ t !s~z!, ~2.10a!

wabg~ tuz!5B12B23aga~ t !,gb~ t !,gg~ t !s~z!

52J¹ga~ tuz!•¹¹gb~ tuz!J¹gg~ tuz!.

~2.10b!

The derivative operatorsBi j are the extended Poisso
bracket operators that appear in the\-expansion of the
Moyal bracket, cf. Appendix A. It is often useful to decom
pose bothg(tuz) andz(2)(tuz) into their coordinate and mo
mentum parts. For trajectories we writeg(tuz)
5„q(tuz),p(tuz)…. Similarly z(2)(tuz) breaks intoq(2)(tuz)
andp(2)(tuz).

Oncez(2)(tuz) has been determined from the solution
Eq. ~2.9!, the semiclassical flow operatorg t

(2) is given by the
expression

g t
~2!A~z!5za

~2!~ tuz!A;a„g~ tuz!…2 1
8 wab~ tuz!A;ab„g~ tuz!…

1 1
12 wabg~ tuz!A;abg„g~ tuz!…. ~2.11!

A number of comments about the nature ofg t
(2) are in

order. Expression~2.11! defines a linear operator on
smooth symbolA. It is globally defined throughout phas
space for all timet. Each of the terms in Eq.~2.11! follows
the classical trajectoryg(tuz). Finally, Eq.~2.11! is also seen
to be a derivative expansion in thez dependence ofA. The
analysis establishing Eq.~2.11! is found in Ref.@30#. The
connected graph character of this formula is evident fr
equations~2.10a! and~2.10b!. Thewab term is composed o
two vertex functionsga ,gb , which are linked by two copies
of the edge operatorB12. The wabg term is a tree graph on
the verticesga ,gb ,gg with edgesB12,B23. In Appendix A
formula ~2.11! is verified by deriving it with a technique tha
does not employ the connected graph method of Ref.@30#.

III. SYMMETRIES AND CONSTANTS OF MOTION

The presence of symmetries at either the quantum or
classical level simplifies the calculation of dynamics. T
main symmetry for the interatomic Hamiltonian~1.7! is an-
gular momentum conservation. Most observables and
namical quantities such as the quantum trajectories and
cobi fields are tensors. In this section, we determine
tensor character and rotational invariance properties of all
ingredients of the semiclassical expansion.

Let L̂ j[e jkmq̂kp̂m denote thej th component of the angu
lar momentum operator inH. The Weyl symbol of this op-
erator isL j[e jkmqkpm . The hypothesis of rotational invari
ance stated in both the operator and symbol form is

@Ĥ,L̂ j #50, ~3.1a!

$H,L j%M5$H,L j%50. ~3.1b!

The vanishing of the commutator~3.1a! requires that the
Moyal bracket in Eq.~3.1b! be zero. The equality of the
Moyal and Poisson brackets results from thez-quadratic
form of L j . Specifically, all higher-order terms in the\ ex-
pansion of$H,L j%M are zero.
e

y-
a-
e
e

A. Trajectory tensor structure

Consider the quantum trajectory defined in Eq.~2.7!.
Each coordinate rotationq°q85Rq with R5Rn̂(f) defines
a point canonical phase space rotationz°z85Rz
5(Rq,Rp), cf. Appendix B. The first basic assertion is th
the set of functions$Zm(t,\;z):m51 – 6% transforms as a
rank one phase-space tensor under rotationR,

Zm~ t,\;Rz!5RmnZn~ t,\;z!. ~3.2a!

Putting the semiclassical expansions~2.8! into Eq. ~3.2a!
shows that the\-coefficient symbols are also rank one te
sors, namely,

gm~ tuRz!5Rmngn~ tuz!, ~3.2b!

zm
~n!~ tuRz!5Rmnzn

~n!~ tuz!. ~3.2c!

In order to verify the claim~3.2a! first note that quantum
evolution U(t) and unitary rotationU(R) commute. Now
conjugateG(t) ẑ with U(R) to obtain

U†~R!„G~ t !ẑm…U~R!5G~ t !„U†~R!ẑmU~R!…

5Rmn„G~ t !ẑn…. ~3.3!

The second equality above uses the metaplectic iden
~B3!. Equation~3.3! shows thatG(t) ẑ is a rank one~operator
valued! phase-space tensor. Applying the Weyl symbol te
sor transformation rules~B6! and~B7! establishes Eq.~3.2a!.

Observe that transform~3.2b! for classical trajectories
may be obtained directly from$H,L j%50 in combination
with Hamilton’s equation of motion. The geometrical mea
ing of Eq. ~3.2! is that both the classical trajectory and th
quantum corrections act as rigid objects under the rota
R.

An important simplifying feature of classical motion
which conserves angular momentum, is that trajectories li
a two-dimensional plane. So it is useful to find the Moy
equivalent of this property. LetL̂ j (t)5G(t)L̂ j denote the
Heisenberg evolution ofL̂ j . Commutation ofL̂ and Ĥ im-
plies thatL̂ j (t)5L̂ j (0)5L̂ j . The quantum planar motion re
striction is

q̂~ t !•L̂50, p̂~ t !•L̂50. ~3.4!

Identities~3.4! result when the skew symmetric tensore jkm

is contracted into aj↔k symmetric productq̂ j (t)q̂k(t), etc.
Take the Wigner transform of Eq.~3.4! and expand the

result in powers of\. The leadingO(\0) contribution is
given by the algebraic product of symbols and upon utilizi
Eq. ~2.8! is obviously

L j„g~ tuz!…5L j~z!, ~3.5a!

q~ tuz!•L~z!50, ~3.5b!

p~ tuz!•L~z!50. ~3.5c!

These results are purely classical. They state the pla
motion restriction for the trajectoryg(tuz). Next calculate
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theO(\n) identities generated by Eq.~3.4!. For this purpose
it is helpful to note that the* product withL is a truncated\
series. For any smooth symbolf

f * L j~z!5 f ~z!L j~z!1
i\

2
$ f ,L j%~z!1

\2

4
e jkm

]2f ~z!

]pk]qm
.

~3.6!

In the present applicationf is either s„q̂(t)… or s„p̂(t)….
The O(\1) contribution is proportional to$qj„g(t)…,
L j„g(t)…%(z)5$qj ,L j%+g(tuz). Since $qj ,L j%50, this term
vanishes. TheO(\2) term has contributions from the las
factor in Eq. ~3.6! and thez(2)(tuz) part of Eq. ~2.8! alto-
gether giving

q~2!~ tuz!•L~z!52 1
2 e jkm

]2qj~ tuz!

]pk]qm
, ~3.7a!

p~2!~ tuz!•L~z!52 1
2 e jkm

]2pj~ tuz!

]pk]qm
. ~3.7b!

These identities impose a constraint on the allowed form
q(2)(tuz) andp(2)(tuz).

B. Jacobi field symmetries

In this subsection we develop representations of the
cobi field tensor¹g(tuz) and ¹¹g(tuz), which exploit the
planar motion and rotational invariance of the classical
jectories. The goal is to obtain reduced equations of mo
for these tensors that are suitable for numerical calculat
For example, rotational invariance allows¹g(tuz) to be
block diagonalized and described by 20 nonzero tensor c
ponents instead of the 36 components that a general ra
tensor requires.

First, it is useful to have a coordinate description
T* (Rq

3) that incorporates the maximum scalar structure.
$ei : i 51 – 3% be a right-handed orthogonal basis forRq

3 . A
standard@36# fixed axis Euler angle representation ofR3 ro-
tation is R(a,b,g)5Re3

(a)Re2
(b)Re3

(g). In terms of the
a,b,g variables theR rotation of an initial phase space poi
z05(q0 ,p0) becomes

q5R~a,b,g!q0 , p5R~a,b,g!p0 . ~3.8a!

The threeR invariant scalars formed fromq,p are evidently

uqu5uq0u[r , upu5up0u[pr , q•p5q0•p05rpr cosu.
~3.8b!

Hereu is the opening angle between the vectorsq0 andp0 .
Note that the three vectorsq0 ,p0 ,q03p0 define a rigid body
and that transform~3.8a! rotates that body into all possibl
orientations. The scalar variablesr ,pr ,u may be interpreted
as characterizing the ‘‘internal’’ geometrical structure of th
rigid body. For convenience we select the coordinate sys
$ei% so thate35q03p0 /uq03p0u ande25p0 /up0u. In terms
of the scalar invariants the pointz0 is then represented by

q05~r sin u!e11~r cosu!e2 , uP@0,p!; p05pre2 .
~3.8c!
of

a-

-
n
n.

-
2

f
t

m

In combination~3.8a! and~3.8c! provide a Euler angle, sca
lar invariant coordinatization of phase space,z
5z(a,b,g;r ,pr ,u). As a shorthand notation, we often ref
to thee1-e2 plane as thez0 plane.

The Jacobi field@¹g(tuz)#ml5gm;l and the related func-
tion @¹¹g(tuz)#mlr5gm;lr are rank 2 and rank 3 tensor
respectively. Thus if one determinesgm;l on thez0 plane, it
may be extended to allz5Rz0 by

gm;l~ tuz!5Rmm8~a,b,g!Rll8~a,b,g!gm8;l8~ tuz0!.
~3.9!

A similar relationship holds forgm;lr .
In view of Eq. ~3.9! we may restrict, without loss of gen

erality, the numerical calculation of¹g and¹¹g to the z0
plane. In this plane these tensors can be block diagonal
in the following fashion. LetV9 denote the Hessian ofv,
whosei j th matrix element is

Vi j ~q!5S v9~r !

r 2 2
v8~r !

r 3 Dqiqj1
v8~r !

r
d i j . ~3.10a!

With this notation the Jacobi field equation~2.6! for
¹g(tuz0) reads

F d

dt
1S 0 2m21d

V9 0 D G S Y
•l~ tuz0!

W
•l~ tuz0! D50, l51 – 6.

~3.10b!

In Eq. ~3.10b! we have named the top half 336 portion of
¹g(tuz0) asY(tuz0) and the lower half asW(tuz0). From Eq.
~3.10b! one has immediately thatW(tuz0)5mẎ(tuz0). Using
this last relation, the equation forY becomes

Fm
d2

dt2
1V9„q~ tuz0!…GY•l~ tuz0!50 ~3.10c!

with initial conditions Yil(0uz0)5d il , Ẏil(0uz0)
5m21d i 13,l .

Next consider the symmetry based simplifications of E
~3.10c!. The classical trajectoryg(tuz0) remains in thez0
plane and sog3(tuz0)5g6(tuz0)50. Thus the Hessian of the
potential is block diagonalized as

V9„q~ tuz0!…5S V11 V12 0

V21 V22 0

0 0 V33

D . ~3.10d!

As a result~3.10c! decouples into two parts

Fm
d2

dt2
1S V11 V12

V12 V22
D G S Y1l~ tuz0!

Y2l~ tuz0! D50,

Fm
d2

dt2
1V33GY3l~ tuz0!50. ~3.10e!

Equations~3.10e! are homogeneous second-order ODE’s
Y(tuz0). Note that if l53,6 while i 51,2 then Yil(tuz0)
50. This is a consequence of the initial conditio
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Yil(0uz0)5Ẏil(0uz0)50. For similar reasons, ifl51,2,4,5
and i 53, a zero valued solution occurs. In matrix form w
have

Y~ tuz0!5S g1;1 g1;2 0 g1;4 g1;5 0

g2;1 g2;2 0 g2;4 g2;5 0

0 0 g3;3 0 0 g3;6

D .

~3.10f!

The lower half of ¹g(tuz) is recovered fromW(tuz0)
5mẎ(tuz0). From Eq. ~3.10e! all 36 values ofgm;l(tuz0)
may be efficiently computed. The planar motion symme
has forced 16 of the tensor values to be zero.

To find the optimal decoupled equations for¹¹g(tuz0)
return to Eq.~3.10c! and take thez0 derivative of that equa-
tion. Then proceeding as above one obtains

Fm
d2

dt2
1S V11 V12

V21 V22
D G S Y1lr~ tuz0!

Y2lr~ tuz0! D52S V1 jkYj lYkr

V2 jkYj lYkr
D ,

~3.11a!

Fm
d2

dt2
1V33GY3lr~ tuz0!52V3 jkYj lYkr . ~3.11b!

HereYilr5gi ;lr and thejk tensor contractions run over th
1–3 index set. The initial conditions areYilr(0uz0)
5Ẏilr(0uz0)50. Given Yilb for i 51 – 3 the momentum
type fieldsgi 13 are determined bygi 13;lr5mẎilr . Equa-
tions ~3.11a! and ~3.11b! require the third derivative of the
potential. This is

Vi jk5S v-~r !

r 3 2
3v9~r !

r 4 1
3v8~r !

r 5 Dqiqjqk

1S v9~r !

r 2 2
v8~r !

r 3 D ~qid jk1qjd ik1qkd i j !.

~3.11c!

Rotational invariance causes many of the component
¹¹g(tuz0) to be zero. Let us first record this pattern of zer
and then analyze how they arise from Eq.~3.11!. To assist in
representing¹¹g, introduce a partition of the index set 1–
into A5(1,2,4,5) andB5(3,6). IndicesA describe the al-
lowed e1-e2 planar variables while the setB is associated
with the directione3 . For each givenm, ¹¹gm is a 636
symmetric matrix with entriesgm;lr . Reorder the rows and
columns of ¹¹gm by the index transformationI(1 – 6)
5(1,2,4,5,3,6) and denote theI transformed representatio
by I¹¹gmI21. In block matrix form

I¹¹gmI215FXaa
m Xab

m

Xba
m Xbb

m G . ~3.12a!

Here Xab
m is the 432 rectangular matrix on the indicesA

3B, etc. TheI¹¹gmI21 matrix has two forms dependin
on the indexm,
y

of
s

FXaa
m 0

0 Xbb
m G , mPA

and ~3.12b!

F 0 Xab
m

Xba
m 0 G , mPB.

So the tensor¹¹g(tuz0) with 216 entries has 112 nonzer
values. The transpose symmetryXaa

m 5Xaa
m T, Xbb

m 5Xbb
m T, and

Xab
m 5Xba

m T implies there are only 68 distinct time depende
functionsgm;lr(tuz0).

The basic mechanism that forcesYilr to be zero is
simple. The vanishing initial values ofYilr(0uz0) and
Ẏilr(0uz0) mean that the solutions of the second-ord
ODE’s Eqs.~3.11a! and~3.11b! are nonzero only if the RHS
inhomogeneous term is nonzero. Thus it suffices to cata
the index valuesilr for which the termVi jkYj lYkr is zero.
To begin, observe that the third derivativeVi jk„q(tuz0)… is
zero if one of the three indices is 3 while the other two are
~1,2!. Also note thatV333„q(tuz0)…50. The zero values of
Y(tuz0), as seen in Eq.~3.10f!, when combined with theVi jk
behavior above show thatVi jkYj lYkr vanishes in two differ-
ent situations. Case I: fori 51 – 2 where the pairlr are
disjointly assigned toA andB. Case II: fori 53 where the
pair lr are either both inA or in B. These two cases produc
the zero block structure displayed in Eq.~3.12b!.

C. Equation of motion for z„2…„tzz0…

Having obtained, for a given trajectoryg(tuz0), the asso-
ciated values of¹g(tuz0) and¹¹g(tuz0) from the solutions
of Eqs.~3.10c! and~3.11! one has all the functions require
to determinez(2)(tuz0). At this stage it is useful to have
symmetry reduced form of the inhomogeneous Jacobi eq
tion ~2.9! for the unknownz(2)(tuz0).

The planar motion invariance implies that to orderO(\2)
the quantum trajectory stays in the classical plane of mot
In order to verify this claim note thatL(z0)5L3(z0)e3 so
that the constraint condition~3.7a! reads

q3
~2!~ tuz0!L3~z0!5~Y1;532Y1;62!1~Y2;612Y2;43!

1~Y3;422Y3;51!. ~3.13!

The first fourY terms are in case I above, while the last tw
are in case II. So all terms on the right side of Eq.~3.13!
vanish. Since L3(z0)Þ0 for uP(0,p) we have that
q3

(2)(tuz0)50. A parallel reasoning shows thatp3
(2)(tuz0)

50.
To find a suitable reduced ODE forz(2)(tuz0) start from

Eq. ~2.9!. The right side of Eq.~2.9! is a 6 component vector
The top half of this vector is zero since it is built from th
q,p mixed partial derivatives ofH which vanish. The Jacob
operator on left of Eq.~2.9! has the matrix form displayed in
Eq. ~3.10b!. It immediately follows that

d

dt
q~2!~ tuz!5

1

m
p~2!~ tuz!. ~3.14!

Inserting this result back into the block matrix form of E
~2.9! leads to
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m
d2

dt2
qi

~2!~ tuz0!1Vi j „q~ tuz0!…qj
~2!~ tuz0!

52 1
8 wjk~ tuz0!Vi jk„q~ tuz0!…

1 1
12 wjkm~ tuz0!Vi jkm„q~ tuz0!…. ~3.15!

Since q3
(2)(tuz0)50 the i , j indices on the left side of Eq

~3.15! are restricted to the set$1,2%. Thereby Eq.~3.15! is a
two-dimensional system of equations for$q1

(2)(tuz0),
q2

(2)(tuz0)%. The values ofp(2)(tuz0) are recovered from Eq
~3.14!.

In summary, the construction ofg t
(2) requires the 92 non

zero components of the tensors¹g, ¹¹g, andz(2). These
time dependent functions are obtained as solutions o
linked set of second-order ODE systems with dimensions
(¹g), 36 (¹¹g), and 2 (z(2)), respectively.

IV. EXPECTATION VALUES

The final stage of calculation is to determine the quant
expectation valueŝÂ(t)&c for physically interesting observ
ablesÂ and suitable initial wave functionsc. We selectc to
be a Gaussian wave function that is sharply peaked in
momentum variable. This allows us to introduce
asymptotic expansion of the momentum portion of t
phase-space integral in Eq.~1.6a!. As a result the six-
dimensional phase space integral is reduced to a th
dimensional one. In addition, by exploiting the tensor str
ture of an observable, the remaining three-dimensio
coordinate integral may be further reduced to a tw
dimensional integral.

A. Asymptotic expansion for gaussian wave functions

Observables are most often tensor operators. LetT̂m1¯mn

be an arbitrary phase space tensor operator having a sm
real valued Weyl symbolTm1¯mn

. For each unit normalized

statecPH with associated Wigner distributionwc(z), the
Moyal version of expectation value evolution is@cf. Eq.
~1.6a!#

^G~ t !T̂m1¯mn
&c5E

T* ~R3!
dzwc~z!G tTm1¯mn

~z!. ~4.1!

We specialize Eq.~4.1! by choosingc to be the displaced
Gaussian,

c~q!5S 1

pD2D 3/4

exp
i

\
~ p̄•q!expF2

1

2
S q2q̄

D
D 2G .

~4.2a!

Here the mean position and momentum values are^q̂ j&c

5q̄ j , ^ p̂ j&c5 p̄ j . The parameterD specifies the half-width,
namely,^(q̂ j2q̄ j )

2&c5 1
2 D2. The Wigner distribution forc

is

vc~z!5S 2

hD 3

expF2S q2q̄

D
D 2

2S D

\ D 2

~p2 p̄!2G .

~4.2b!
a
0

ts

e-
-
al
-

oth

Next consider the general features of thep integration in
Eq. ~4.1!. Utilizing the distribution ~4.2b! means that this
integral has the form

H~ f ;D ![E d3p f~p!exp@2D2\22~p2 p̄!2#. ~4.3a!

For functionsf that are smooth inpPR3 this integral has a
standard largeD asymptotic expansion,

H~ f ;D !5S p1/2\

D D 3F f ~ p̄!1
1

4 S \

D D 2

~Dpf !~ p̄!1OXS \

D D 4CG .
~4.3b!

One may verify Eq.~4.3b! by Taylor expandingf aboutp
5 p̄ and integrating by parts. Due to the symmetry of t
Gaussian all the odd order terms vanish. The notationDpf
indicates the Laplacian off . Observe that the parametersD
and \ occurring in Eq. ~4.3! appear in the combination
(\/D). Thus Eq.~4.3b! is also a small\ expansion.

Substituting formula~4.3b! in Eq. ~4.1! lets us write

^G~ t !T̂m1¯mn
&c5

1

~p1/2D !3 E d3qe2D22~q2q̄!2
T̃m1¯mn

~q,p̄!

1OXS \

D D 4C, ~4.4a!

where the tensor structure is

T̃m1¯mn
~q,p̄!5G tTm1¯mn

~q,p̄!

1
1

4 S \

D D 2

~DpG tTm1¯mn
~q,p!!U

p5 p̄

.

~4.4b!

B. Tensor reduction

We choose the phase-space position ofc so that its mean
angular momentumq̄3 p̄ lies along the positivee3 axis. This
is achieved if

q̄5b̄e11 ȳe2 , p̄5 p̄2e2 , b̄>0, p̄2>0. ~4.5a!

The asymptotic expansion~4.4a! fixes the momentum coor
dinate to have just one valuep5 p̄. This restricts the allowed
class of rigid body rotations~3.8a! to those which preserve
thee2 axis, namelyRe2

(a) whereaP@0,2p). The pointq is
now represented via cylindrical coordinates witha as the
angle variable ande2 as the axis, specifically,

S q1

q2

q3

D 5S cosa 0 sin a

0 1 0

2sin a 0 cosa
D S b

y
0
D 5S b cosa

y
2b sin a

D .

~4.5b!

Here the matrix is the$ei%-basis representation ofRe2
(a)

andq05(b,y,0) denotes thea50 orientation ofq.
In the present context the tensor transformation~B7! sim-

plifies to
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TABLE I. Potential parameters for He, Ne, Ar.

He Ne Ar

e (cm21) 7.103 296 24.812 881 87.018 840
r min ~Å! 2.87 3.131 3.822
s ~Å! 2.56 2.789 3.405
j ~Å! 1.8 2.1 3.1
a (cm21/Å 5) 24.466 9523105 23.156 2323105 21.583 9003104

b (cm21/Å 4) 14.270 4653106 13.519 8493106 12.605 3583105

c (cm21/Å 3) 21.639 3623107 21.576 1693107 21.720 4813106

d (cm21/Å 2) 13.160 4293107 13.544 3443107 15.703 9653106

e (cm21/Å) 23.061 6923107 24.004 8763107 29.498 7113106

f (cm21) 11.193 2843107 11.820 4233107 16.359 7963106

Mass~amu! 4.0026 20.179 39.948
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T̃m1¯mn
~q,p̄!5T̃m1¯mn

~Re2
q0 ,Re2

p̄!

5Rm1n1
~a!¯Rmnnn

~a!T̃n1¯nn
~q0 ,p̄!.

~4.6a!

The a dependence in integral~4.4a! is confined to the factor
(q2q̄)2 and the matricesRmn(a). Denote this generic cou
pling factor by

Vm1¯mn ;n1¯nn
~b!

5E
0

2p

daRm1n1
~a!¯Rmnnn

~a!expF2bb̄

D2 cosaG .

~4.6b!

The functionV is a linear combination of modified Bess
functionsI k with argument 2bb̄/D2 and orderk50, . . . ,n.

The final form of the semiclassical prediction for the o
servableT̂m1¯mn

is obtained by combining Eq.~1.5! together

with Eqs. ~4.4! and ~4.6!. Keeping terms to orderO(\2)
gives

^G~ t !T̂m1¯mn
&c

5
1

~p1/2D !3 E
0

`

bdbE
2`

`

dye2D22[ ~y2 ȳ!21b21b̄2]

3Vm1¯mn ;n1¯nn
~b!H g t

~0!Tn1¯nn
~q0 ,p̄!

1
1

2
\2g t

~2!Tn1¯nn
~q0 ,p̄!

1
1

4 S \

D D 2

Dp„g t
~0!Tn1¯nn

~q0 ,p!…U
p5 p̄

J 1O~\4!.

~4.7!

The fundamental semiclassical expansion~1.5! resides in
the two termsg t

(0) andg t
(2) . The additional contribution of

order (\/D)2 is not a basic feature of the Moyal semiclas
cal dynamics but rather is an artifact of our method of a
proximating the momentum integration. The rate of conv
-
-

gence of the semiclassical expansion is determined by
relative size of theg t

(0) and g t
(2) terms. In Eq.~4.7! all \

dependence is explicit. In the following sections for reaso
of brevity, the\ dependence is implicitly contained in th
notationg̃ t

(2)[ 1
2 \2g t

(2) and D̃p[ 1
4 (\/D)2Dp . Note that the

function V and they,b coordinate part ofvc(z) are inde-
pendent of\.

V. NUMERICAL RESULTS

This section presents a number of computational res
that serve to profile the convergence and accuracy aspec
the MQM semiclassical expansion. The time dependenc
the G t

(0) and G t
(2) approximations to expectation values f

various observables and initial quantum states is compu
The effect of changing the initial mean wave packet veloc
is studied. The relative size of theg t

(0) and g̃ t
(2) terms is

determined in the intermediate and long time limit. This ra
is also computed as a function of mass. Finally, we cont
the success of the semiclassical expansion for differing t
atom systems.

The system interaction is given by a modified version
the Lennard-Jones~12–6! potential. The MQM formalism
assumes that the Hamiltonian is a differentiable and n
singular function. The Lennard-Jones potential has a str
repulsive core with ar 212 singularity at the origin. In this
core region we modify the potential so that it is a polynom
in r . It remains strongly repulsive in this core sector. T
polynomial coefficients are determined by requiring that
potential have five continuous derivatives, specifically,

v~r !5H 4e@~s/r !122~s/r !6#, r>j

ar51br41cr31dr21er1 f , 0<r<j.
~5.1!

The parameterj is the radial distance where the smooth inn
core region is fitted onto the Lennard-Jones form. The pot
tial energy at this match point is at least three times gre
than the total mean energy of the system for the calculati
displayed in this section. The constants in the formula~5.1!
are found in Table I. The parameter valuese ands for He,
Ne, and Ar are found in Refs.@37–39#, respectively.

The general effect of the strong repulsive core is to ma
the quantum wave function exponentially small within t
core volume. For this reason one expects that the smo
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TABLE II. Linear observables for He atc5450 m/s.

Time ^g t
(0)(q1)& ^g̃ t

(2)(q1)& ^D̃pg t
(0)(q1)& ^g t

(0)(q2)& ^g̃ t
(2)(q2)& ^D̃pg t

(0)(q2)&
(10210 s) ~Å!

0.0000 2.000 0 0 21.40031012 0 0
0.2800 2.000 2.51031025 2.57531025 21.40331011 7.44631023 25.79031024

0.3111 1.999 1.47731024 1.66931024 21.22931021 3.85131022 2.81631023

0.3422 1.997 4.59931024 5.35731024 1.36731011 1.12031021 1.55831022

0.3533 1.997 6.14231024 7.15031024 1.85831011 1.47431021 2.19131022

0.3667 1.996 8.18031024 9.47631024 2.44631011 1.93731021 2.99231022

0.4889 1.985 2.86731023 3.17931023 7.83031011 6.55131021 1.01431021

0.4978 1.984 3.01731023 3.34131023 8.22131011 6.88831021 1.06531021

Time ^g t
(0)(p1)& ^g̃ t

(2)(p1)& ^D̃pg t
(0)(p1)& ^g t

(0)(p2)& ^g̃ t
(2)(p2)& ^D̃pg t

(0)(p2)&
(10210 s) ~amu m/s!

0.0000 0 0 0 90.058 0 0
0.2800 22.32231022 3.47431023 3.79531023 89.740 0.948 0.022
0.3111 27.73331022 1.35131022 1.59231022 89.092 3.292 0.497
0.3422 21.38231021 2.61431022 3.06331022 88.452 6.025 1.086
0.3533 21.52431021 2.92631022 3.37631022 88.317 6.677 1.180
0.3667 21.63131021 3.16831022 3.57931022 88.220 7.176 1.214
0.4889 21.72131021 3.37831022 3.65431022 88.144 7.602 1.157
0.4978 21.72131021 3.37831022 3.65431022 88.144 7.602 1.157
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modification of the potential within the core region will hav
no noticeable effect on observable quantities. We h
checked this assumption by changing the He matching ra
from j51.8 Å to j51.7 Å. This reduction ofj increases
the energy ofv(j) from 1710.8 cm21 to 3531.6 cm21. To
the level of accuracy displayed in Tables II–V none of t
reported values change.

The atomic systems studied here are identical pairs
helium, neon, and argon atoms. These systems vary b
factor of 10 in mass, and as Fig. 1 shows have attrac
potential well depths that also vary by approximately a fac
of 10.

The preevolution state of the system will always be
displaced Gaussian Wigner distributionwc(z). This function
~4.2b! is determined by four parameters,b̄, ȳ, D, and p̄2 .
The first three of these will have a fixed set of values cho
to represent an initial state consistent with scattering bou
ary conditions. These fixed values areb̄52 Å, ȳ5
2140 Å, andD520 Å. These values ensure at timet50

FIG. 1. Lennard-Jones potentials for He, Ne, and Ar.
e
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that the potential energy of the system is negligible~1 part in
1010! relative to the kinetic energy. The large value of t
half width D causes the asymptotic momentum expans

factor D̃pg t
(0) to be comparable to theg̃ t

(2) term. The initial

closing velocityc5 p̄2 /m will take on a range of values.
In order to obtain accurate values for the two dimensio

integral in Eq.~4.7!, which determines quantum averages
large number of integration points is required. A typical e
pectation value reported in the tables uses about 32
phase space points. Each point is an initial value of a tra
tory. Along each trajectory we solve the ODE system d
scribed in Sec. III for the 92 time dependent functio
needed for the calculation ofg t

(2) .

A. General features of the numerical solutions

Let us first examine the He atom system with initial v
locity v5450 m/s. The pair of plots in Fig. 2 contrasts th
G t

(0)z5q(tuz) ~classical! and G t
(2)z ~quantum! trajectories

projected onto theq1-q2 ~or b-y! plane. For large impac
parameterb.4 Å there is little difference in the spray o
these two sets of trajectories, but for smallb ~where the
potential is large! they are often strikingly different. Both
sets of trajectories stay outside the smooth core regior
,j, which is indicated by the closed curve aboutr 50. At
b53.06 Å the classical trajectory has the same initial a
final impact parameter. This defines classical glory scat
ing. Whenb53.62 Å the classical trajectory undergoes ra
bow scattering and has its maximum angular displacem
with respect to they axis. It is interesting to note that, onc
the impact parameter is outside the region between g
scattering and rainbow scattering, the large time behavio
the classical and quantum trajectories is very similar.
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A useful quantity in describing the system evolution is t
mean closest approach time,tc . At this time the wave packe
is centered above the origin and potential dependent eff
are strongest. Technically, we define the timetc to be the
time for which ^G t

(0)q2&c has its minimum.
Table II records the expectation values of all the nonz

linear canonical operators (q1 ,q2 ,p1 ,p2) for eight different
times. In the second, third, and fourth columns, the displa
averages correspond to theg t

(0) , g̃ t
(2) , andD̃pg t

(0) contribu-
tions to^G(t)q1&c , respectively. The mean closest approa
occurs attc50.3111. At the final time 0.4978, the system
in a postscattering configuration where the potential-ene
effects are negligible. For linear observables,g t

(2) is deter-
mined solely by the quantum trajectories; thewab andwabg

portions ofg t
(2) vanish in this case. The units for momentu

are amu m/s. The operatorsq̂3 and p̂3 are not listed in Table
II. The planar motion invariance causes these expecta
values to be zero.

As the collision process takes place the wave funct
will lose its initial coherent state~Gaussian! character. Cor-
respondingly, the product of uncertaintiesDpjDqj appearing
in the Heisenberg uncertainty relationDpjDqj>

1
2\ will

grow in time. Table III displays this changing uncertain
computed to orderO(\2) for the canonical pairs (qj ,pj ), j
51,2. The effect of the collision processes produces a s
stantial deviation from the initial coherent state. Cylindric
symmetry about they axis implies that the uncertaint
Dq3Dp3 is the same asDq1Dp1 .

In Table IV the same system and initial state are e
ployed as in Tables II and III. These results display the
pectation values for the potentialv and all the scalar qua
dratic observables (q2,p2,q•p). The apparent trend tha
holds for the eight observables shown in Tables II and IV
that the leading semiclassical termg t

(0) significantly domi-

nates the second orderg̃ t
(2) corrections, typically by a facto

of 10 or more. The potential is a particularly sensitive t
observable since it depends on all parts of theg t

(2) operator.
The quadratic observables have no contribution from
wabg terms. At closest approach time 0.3111 theO(\2) cor-
rection for the potential is 8.5% of the leadingg t

(0)(v) term.
Of the eight observables examined here the largest rela
corrections occur forp1 . However, this observable is non
typical in that its initial mean value is zero and its later tim
ts

o

d

h

y

n

n

b-
l

-
-

s

t

e

ve

g t
(0) values remain close to zero. Throughout, correctio

arising from the asymptotic momentum expansionD̃pg t
(0)

are of the same order of magnitude as those forg̃ t
(2) .

B. Convergence and stability of classical flow

The next set of calculations, shown in Table V, explor
the role of the initial wave-packet energy and how it effe
the convergence of the semiclassical expansion. The sys
remains He and asc varies~and hence the incident energy!

the parametersb̄,ȳ,D are kept fixed to the values use
above. The times in the list shown correspond to the clos
approach time. The general outcome is that the relative

FIG. 2. ~a! Classical and~b! quantum trajectories for He atc
5450 m/s.
0
0
0
9
4
2
8
5

TABLE III. Heisenberg uncertainty.

Time Dq1 Dp1 2

\
Dq1Dp1

a
Dq2 Dp2 2

\
Dq2Dp2

a

(10210 s) ~Å! ~amu m/s! ~Å! ~amu m/s!

0.0000 14.1421 22.453 1.0000 14.1421 22.453 1.000
0.2800 14.4893 36.219 1.6527 14.4658 60.518 2.757
0.3111 14.5801 47.999 2.2039 14.5521 92.936 4.259
0.3422 14.6997 53.105 2.4584 14.7831 112.59 5.241
0.3533 14.7514 53.595 2.4898 14.9192 115.94 5.447
0.3667 14.8205 53.803 2.5112 15.1219 118.21 5.629
0.4889 15.8169 53.888 2.6842 18.5840 119.91 7.017
0.4978 15.9135 53.888 2.7006 18.9222 119.91 7.145

a\51.054 572 7310234 J•s5635.078 07 Å amu m/s.
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TABLE IV. Potential and quadratic observables for He.

Time ^g t
(0)(v)& ^g̃ t

(2)(v)& ^D̃pg t
(0)(v)& ^g t

(0)(q•p)& ^g̃ t
(2)(q•p)& ^D̃pg t

(0)(q•p)&
(10210 s) (cm21) (amu Å2/10210 s)

0.0000 21.25131029 0 0 21.26131015 0 0
0.2800 21.86231022 1.17731023 9.61831024 21.26131014 20.223 211.50
0.3111 22.95531022 2.51731023 2.62831023 1.38431011 0.396 234.35
0.3422 21.81331022 1.98331023 1.30131023 1.26331014 2.079 257.32
0.3533 21.21031022 1.43331023 5.17031024 1.71331014 2.628 265.69
0.3667 26.34931023 8.21931024 24.88831025 2.25431014 3.103 275.74
0.4889 26.30731028 3.28131029 23.62131028 7.20631014 3.582 368.21
0.4978 24.05831028 9.261310211 25.07731029 7.56631014 3.582 374.91

Time
(10210 s)

^g t
(0)(q2)& ^g̃ t

(2)(q2)&
(Å 2)

^D̃pg t
(0)(q2)& ^g t

(0)(p2)& ^g̃ t
(2)(p2)&

@(amu m/s)2#
^D̃pg t

(0)(p2)&

0.0000 2.02031014 0 0 8.11131015 0 1512.5
0.2800 8.00131012 26.55331023 2.96131011 8.11931015 256.370 1466.4
0.3111 6.04431012 27.21131023 3.65431011 8.12531015 2120.52 1386.6
0.3422 8.00931012 3.01631022 4.41831011 8.11931015 294.962 1450.2
0.3533 9.66131012 5.64131022 4.70931011 8.11631015 268.615 1487.7
0.3667 1.23031013 9.48331022 5.06931011 8.11431015 239.343 1514.8
0.4889 7.00831013 5.25431021 9.00231011 8.11131015 0.014 1512.5
0.4978 7.66431013 5.57231021 9.33231011 8.11131015 0.014 1512.5
-
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of the g̃ t
(2) vis-à-vis theg t

(0) contributions systematically de
crease with increasing energy. At velocities below 290 m
g̃ t

(2) numerically diverges at finite time displacement and
approximation fails.

It is important to isolate which features of the dynam
are responsible for this convergence behavior. Simply
the stability of the classical motion controls whether or n
one obtains accurate approximation valid for times exce
ing the duration of the scattering process.

To begin we identify the unstable classical trajector
present in this problem. All these motions are associa
with an unstable equilibrium point. In spherical coordina
the radial pair of Hamilton’s equations are

ṙ 5pr /m, ṗr52ve8~r !, ~5.2!
s
e

t,
t
d-

s
d

s

whereve(r ) is the effective potentialv(r )1L2/(2mr2). A
fixed point occurs if the right-hand sides of Eq.~5.2! vanish.
This point is stable ifve9(r ).0 and unstable ifve9(r ),0. For
given L denote byr 0 the radial value of the unstable fixe
point.

Consider the family of circular orbits. Whenever initia
data satisfiesve8(r )50 and pr50 circular motion results.
For ve9(r ).0 the orbit is the stable minimum energy sta
consistent withL. On the other hand, whenve9(r 0),0 then
an unstable orbit arises. As one increases the energy the
of the stable and unstable orbits approach each other
coalesce whenve9(r )50. This happens at the critical energ
Ec5 4

5e, cf. ~5.1!. The unstable fixed points have a fini
range of energies, 0,E, 4

5e.
A related class of unstable motions are those that c
TABLE V. Velocity dependence and semiclassical convergence for He.

Velocity Time ^g t
(0)(q1)& ^g̃t

~2!~q1!&

^gt
~0!~q1!&

^g t
(0)(q•p)& ^g̃t

~2!~q•p!&

^gt
~0!~q•p!&

^g t
(0)(q2

2)& ^g̃t
~2!~q2

2!&

^gt
~0!~q2

2!&

~m/s! (10210 s) ~Å! (amu Å2/10210 s) (Å2)

280 0.5000 1.998 22.11731023 3.0603 1.031012 197.523 1.03107

290 0.4828 1.998 22.89631023 3.6331 22.378 197.575 25.51231023

300 0.4667 1.998 22.45331023 4.2491 21.415 197.609 23.25631022

350 0.4000 1.998 26.17731024 7.5245 20.1781 197.858 25.76631023

400 0.3500 1.999 21.58831024 10.770 20.009 70 198.201 5.21831023

450 0.3111 1.999 7.38831025 13.840 0.028 61 198.475 5.70331023

500 0.2800 1.999 1.12831024 16.724 0.037 57 198.666 4.43731023

550 0.2545 2.000 1.15231024 19.427 0.038 08 198.796 3.21331023

600 0.2333 2.000 1.06231024 21.963 0.035 94 198.885 2.29531023

650 0.2154 2.000 9.44231025 24.356 0.033 07 198.948 1.64631023
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verge to the fixed point ast→`. Among these are the
trapped scattering states. These states have an initial r
position r .r 0 and an energy equal to theve(r 0). As t→`
then r (t)→r 0 andpr(t)→0.

The stability aspect of a periodic flow is determined by
Lyapunov @40# exponents. For any pointzc on a circular
orbit, a simple calculation in spherical coordinates sho
J¹¹H„g(tuzc)… to be a time independent matrix. Thus th
Jacobi field has the exponential representation

¹g~ tuzc!5etJ¹¹H~zc!. ~5.3!

It is readily found thatJ¹¹H(zc) has the eigenvalue,l
5A2ve9„r (zc)…/m. This is positive ifr (zc)5r 0 and verifies
that the associated state is an unstable periodic orbit. A s
lar analysis applies to the trapped scattering trajectory. At
→` the matrix J¹¹H„g(tuz)… converges toJ¹¹H(zc).
Again one has exponential growth of the Jacobi field.

Away from the family of unstable motions, complete i
tegrability of the system guarantees that there is stable c
sical flow. The three constants of motion areH(z), L2(z),
and L3(z). These functions are all in involution, and ind
pendent inRq

33Rp
3 except on a set of measure zero that

cludes all unstable orbits. For bounded motion withve8(r )
Þ0 one may show that the Jacobi field written in actio
angle variables is a linear function of time. For scatter
trajectories withve8(r )Þ0 a similar result holds. The numer
cal values of the Jacobi fields reflect exactly this predic
behavior.

With these considerations in mind let us return to t
interpretation of the numerical results in Table V. The velo
ity cc corresponding to the critical energyEc is 260 m/s. For
incident velocities that are 20% greater thanvc we have
uniformly good convergence of the two-term semiclassi
expansion at post collision times. However, for velocit
sufficiently nearcc some of the trajectories used in the e
pectation value formula~4.7! closely approach the unstab
trapped scattering trajectory. In these circumstances the
jectory will loop around the origin a finite number of time
before moving away from the potential region. When th
happens~cf. c5280 case in Table V! the Jacobi fields grow
rapidly; at a finite time displacementg̃ t

(2) has unbounded
numerical values.

C. Long-time behavior

An aspect of semiclassical approximation that h
received much attention in the literature is its long tim
behavior. For dynamical systems that have regions of in
bility ~positive Lyapunov exponentl! it is expected@41–
44,34# that the approximation̂G tA&c'^G t

(N)A&c can be ac-
curate only for a finite time interval@0,T# of the order
T'const•l21 ln(\21). For this reason it is of interest t
study the long time regime for our expansion~4.7!.

In order to profile numerically the typicalt→` structure
we examine the expectation value^G tq

2&c . This quantity
has quadratic growth for larget and is sensitive to both wav
packet transport and spreading. For mean velocitiesc greater
than the unstable casecc it is found that the fractional cor
rection ^g̃ t

(2)(q2)&/^g t
(0)(q2)& becomes constant ast→`.

Figure 3 shows this result forc5450 m/s.
ial
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-
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-
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Two qualifying remarks need to be made about the imp
cations of the long time accuracy displayed in Fig. 3. T
first is that the set of scattering trajectories that enter thc
5450 m/s expectation value calculation are not close to
unstable motions, so one would not expect the ln(\21) time
restriction to apply. Second, it should be emphasized that
calculations only report the values of^g t

(n)A&c , n50,2 and
not the differencêG tA&c2^G t

(N)A&c . Although our calcula-
tions do not directly show the ln(\21) time restriction, its
underlying cause—unstable classical flow—does play a c
trolling role in determining the range of initial energies f
which there is an accurate two term semiclassical appr
mation.

D. Mass and system dependence

As the mass of the atom increases, the system dynam
will become more classical. We measure this effect by c
culating the ratio of̂ g̃ t

(2)(A)&/^g t
(0)(A)& for the observable

A5q•p, while artificially increasing the mass from 0.5mHe
to 10mHe . Figure 4 shows that this ratio varies basically
m22 for largem.

Our last calculation compares the semiclassical conv
gence as one varies the atomic system among He, Ne,
Ar. These calculations have common initial veloci
c5450 m/s and display thêg t

(0)(A)& and the^g̃ t
(2)(A)&/

^g t
(0)(A)& ratio at timetc of closest approach as well as att f

the postcollision time. The observablesA are p2 , q•p, and
q1

2. Increased mass makes theg̃ t
(2) effects smaller while in-

creased potential makes it larger. Table VI clearly shows t

FIG. 3. Time dependence of relative size of correction.

FIG. 4. Mass dependence of^g̃ t
(2)(q•p)&/^g t

(0)(q•p)&.
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TABLE VI. Atomic system comparison.

^g t
(0)(p2)& ^g̃t

~2!~p2!&

^gt
~0!~p2!&

^g t
(0)(q•p)& ^g̃t

~2!~q•p!&

^gt
~0!~q•p!&

^g t
(0)(q1

2)& ^g̃t
~2!~q1

2!&

^gt
~0!~q1

2!&

~amu m/s! (amu Å2/10210 s) (Å2)

tc50.3111310210 s
Helium 89.092 3.69531022 1.38431011 2.86131022 204.958 22.78031023

Neon 448.96 1.05631024 1.05431012 1.58931023 204.991 29.18531025

Argon 880.21 3.91331025 3.49231012 22.27031024 205.865 22.15931025

t f50.4978310210 s
Helium 88.144 8.62531023 7.56631014 4.73431025 275.503 21.64631021

Neon 444.29 2.38431024 3.81631015 2.06731026 272.374 25.62931023

Argon 861.31 1.02731024 7.55431015 5.94031027 346.050 29.70631024
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the mass effect dominates this balance.

VI. DISCUSSION AND CONCLUSIONS

The MQM semiclassical expansion approximates
Heisenberg-Weyl evolution operatorG t by G t

(N) . The semi-
classical evolutionG t

(N) is given by a power series in\ with
operator valued coefficientsg t

(n) that map the Weyl symbo
of an observable onto its related dynamical value. The le
ing g t

(0) term is determined by classical flow in phase spa
The connected graph approach of Osborn and Molzahn@30#
shows that the higher-order coefficient operatorsg t

(n) , n
>1, are given by a universal function of the Poisson brac
operatorsBi j and finite-order phase-space gradients. Qu
tum expectation values are phase-space integrals. The
proximate evolutionG t

(N) preserves wave-function norm. Fo
Weyl quantized systems,g t

(2) is the first nonzero correction
beyond the leading termg t

(0) . The operatorsg t
(n) are ob-

tained computationally from finite systems of ODE’s.
These features show that this semiclassical approxima

is structurally very different from the better known WK
@45,46,35# approximation. In the MQMG t

(N) expansion there
are no caustics, no multiple two-point boundary conditi
trajectories, and no essential singularities as\↓0. For these
reasons the MQM semiclassical expansion is more rea
applied to physical problems than is the WKB expansion

A remaining question that is important to resolve
‘‘What is the small parameter responsible for maki
1
2 \2g t

(2) a small correction tog t
(0)?’’ The mathematical pro-

cedures used in the derivation of expansion~1.5! and what
one does in the practical applications~as reported in Sec. V!
are near opposites. In obtaining Eq.~1.5! analytically, it is
assumed that\ is small and one can scale this parameter
zero. In this fashion, the formulas forg t

(n) are derived and
the error bound estimate~2.3b! acquires significance. How
ever, in a numerical modeling of a realistic system, the va
\ is set to its physical value and cannot vary. So, what is
scaling structure that makes the semiclassical expan
valid? The following argument gives a simple guide th
shows when the higher-orderO(\2) corrections cease to b
significant. Observe that the derivative structure ofg t

(2) @cf.
Eq. ~2.11!# is similar to the terms appearing in a Taylor s
ries expansion of a symbolA about the pointg(tuz). Let dz
e

d-
.

t
-

ap-

n

ly

:

o

e
e
on
t

be the least phase space displacement such that

udzau>
\2

2
zza

~2!~ tuz!z, udzadzbu>
\2

8
zwab~ tuz!z,

udzadzbdzgu>
\2

4
zwabg~ tuz!z.

A Taylor series expansion ofA(g(tuz)1dz) in the variable
dz hasg t

(0)A(z) as its first term. The next three derivativ
terms are all individually larger than the corresponding d
rivatives in formula~2.11! for 1

2 \2g t
(2)A(z). The conclusion

is that wheneverA(g(tuz)1dz) is accurately approximated
by its two term Taylor series expansion indz ~roughly, when
A is slowly varying with respect to the phase-space dista
udzu!, then theO(\0) semiclassical approximation is valid.

The simplicity of the MQM semiclassical expansion h
meant that we have been able to calculate both of the se
classical evolution operatorsG t

(0) and G t
(2) ; and further, to

make a detailed comparison of their predictions for expec
tion values. Specifically, the Lennard-Jones potential~5.1!
provides a consistent description of the helium-helium at
system for collision energies that range from the inelas
threshold down to zero. For helium the first excited st
occurs atE5159 850 cm21 and the corresponding inciden
velocity for the threshold isc543 700 m/s. Assuming
Gaussian Wigner distributions for the initial state, the Moy
semiclassical expansion~4.7! is valid from 350 m/s to 43 700
m/s. Similar remarks apply to the neon and argon syste
Collectively, our numerical results establish the compu
tional feasibility and accuracy of the MQM semiclassical e
pansion for a wide range of initial states in the helium, ne
and argon systems.
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APPENDIX A: ASPECTS OF WEYL SYMBOL CALCULUS

The Moyal formalism requires several basic features
the Weyl symbol calculus. These identities and expansi
are collected together in this appendix.

The linear operators on Hilbert space form a Lie alge
the bracket of which is the commutator. The Wigner tra
form from operators to symbols is a homomorphism t
preserves the bracket~commutator! operation. In order tha
the product of Hilbert space operators correspond to
‘‘product’’ of symbols, a noncommutative extension of sc
lar multiplication is required. This is the* product. LetX̂,Ŷ
be two operators with symbolsX,Y. The* operation on this
symbol pair is defined as

X* Y[s~X̂Ŷ!. ~A1!

A well-known integral formula@6# for this product is

X* Y~z!

5~p\!26E E dzdz8X~z1z!Y~z1z8!expF2i

\
z•Jz8G .

~A2!

HereJ is the Poisson matrix

J5F 0 d

2d 0G . ~A3!

The * operation is a noncommutative associative produc
symbols.

The Moyal bracket is thes image of the quantum com
mutator,

$X,Y%M[sS 1

i\
@X,Y# D5

1

i\
~X* Y2Y* X!. ~A4!

Like the commutator, the Moyal bracket is bilinear, ske
and obeys the Jacobi identity.

Frequently the symbols of operators are smooth differ
tiable functions on phase space. In this case the* product
and the Moyal bracket admit derivative based represe
tions. LetB12 denote an extended Poisson bracket oper
B125¹1•J¹2 . Acting on the tupleaX,Ys, the action of
B12

n is ~after diagonal evaluationz85z!

B12
n aX,Ys~z!5X;m1¯mn

~z!Jm1n1
¯Jmnnn

Y;n1¯nn
~z!.

~A5!

If n51 then Eq.~A5! reproduces the Poisson bracket

B12aX,Ys~z!5$X,Y%~z![¹X~z!•J¹Y~z!. ~A6!
of

f
e
-

f
s

a
-
t

a
-

f

,

-

a-
or

In terms ofB12 the * product has the Groenewold represe
tation @2#

X* Y~z!5expF i\

2
B12GaX,Ys~z!. ~A7!

This formal expression forX* Y follows easily @30# from
~A2!.

It is important to have small\ asymptotic expansions o
the Moyal bracket. Such an expansion is obtained on co
bining ~A7! and ~A4!, specifically,

$X,Y%M~z!5
2

\
sinS \

2
B12DaX,Ys~z! ~A8a!

5$X,Y%~z!2S \

2D 2 1

3!
B12

3 aX,Ys~z!1¯ .

~A8b!

The asymptotic expansion~A8b! shows how the Moyal
bracket modifies the classical Poisson bracket via the a
tion of an ascending series of higher-order\ correction
terms.

In the density matrix formalism, quantum expectation v
ues are determined in terms of traces of Hilbert space op
tors. Fortunately the link between the trace evaluation a
the symbol is straightforward. We require two identities:

Tr X̂5E dq^quX̂uq&5h23E dzX~z!, ~A9a!

Tr X̂Ŷ5h23E dzX~z!Y~z!. ~A9b!

Utilizing Eq. ~A9a! to obtain Eq.~A9b! initially leads to an
integrandX* Y(z). However, using the representation~A7!
coupled with an integration by parts argument shows that
the higher-orderB12

n terms vanish leaving the result dis
played in Eq.~A9b!.

The operator valued semiclassical expansion~1.5! with
the accompanying representation forg t

(2) is the basis of all
the subsequent numerical calculations. It is useful to tie th
results into the mathematical literature on Weyl symbol c
culus and to obtain an independent check on formula~2.11!.
An \ expansion having similar content to Eq.~1.5! is found
in the works@28,47# of Karasev and Maslov.

Denote byX̂m a set of noncommuting selfadjoint oper
tors with smooth Weyl symbolsXm(z). Construct operator
valued functions ofX̂m in the following fashion. Letf :R6

→R be a smooth function having Fourier transformf̃ . Then

f ~X̂!5 f ~X̂1 ,...,X̂6![E
R6

du f̃~u!eiu•X̂ ~A10a!

defines a Weyl symmetrized function ofX̂m . In the special
case whereX̂m5 ẑm , the functionf (z) is the symbol off ( ẑ).
In Ref. @28# ~cf. Appendix 1, Sec. 1.4! the following
asymptotic expansion was established:
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s f ~X̂!~z!5 f~X~z!!1\2@2 1
16 B12

2 aXa ,Xbs~z! f ;ab„X~z!…

2 1
24 B12B23aXa ,Xb ,Xgs~z! f ;abg„X~z!…#

1O~\4!. ~A10b!

Now consider quantum flow. Write the observable
Weyl symmetrized form,Â5A( ẑ), i.e., A5sÂ5 f . The
Heisenberg-Weyl evolution is

G tsÂ5sG~ t !Â5s f „G~ t !ẑ…. ~A11!

Apply Eq. ~A10b! to s f „G(t) ẑ… by settingX̂m5G(t) ẑm and
Xm(z)5Zm(t,\;z). Employ expansion~2.8! for Zm(t,\;z)
and then Taylor expand thef functional arguments abou
g(tuz). One immediately recovers expansion~1.5! to order
O(\2) and reproduces Eq.~2.11!.

APPENDIX B: PHASE SPACE ROTATIONS
AND TENSOR REPRESENTATIONS

The Wigner transform maps operator valued tensors oH
to Weyl symbol valued tensors onT* (R3). This appendix
reviews the definition of these symbol valued tensors
obtains their transformation properties under rotations.

Each linear invertible coordinate transformationQ:Rq
3

→Rq
3 defines a point canonical transformation onT* (R3) in

the following fashion:

q85Qq, detQÞ0. ~B1!

The induced transformation of the momentum variable
p85(Q21)Tp. The combined coordinate and momentu
mapz5(q,p)°z85(q8,p8) is canonical for allQ.

Write, for arbitrary unit vectore, the e,f rotation inRq
3

asR5Re(f). SettingQ5R, we note thatp85Rp results as
a consequence of the real orthogonal property ofR. The
resultant transformationz85Rz is a rotation in phase space
A convenient notation forR is the block matrix decomposi
tion,

S q8
p8 D5RS q

pD , R5Re~f!5FRe~f! 0

0 Re~f!
G . ~B2!

The transformationR is both a real orthogonal and a sym
plectic six-dimensional matrix.

FIG. 5. y dependence of theg t
(0)(p2) term.
d

s

The suitable definition of tensor operators which incorp
rate the phase space rotationR is revealed by examining the
canonical operatorsq̂ and p̂. Both of these areR3 rank one
tensor operators. Under the quantum rotation generated
L̂5q̂3 p̂ this pair of operators transforms as

U†~R!ẑmU~R!5Rmnẑn , ~B3!

whereU(R)5exp(2ife•L̂/\).
A family $X̂m1¯mn

% of operators onH5L2(R3) is defined

to be a rankn phase-space tensor operatorif under conju-
gation withU(R) it transforms as

X̂m1¯mn
8 [U†~R!X̂m1¯mn

U~R!5Rm1n1
¯Rmnnn

X̂n1¯nn
.

~B4!

Taking the Wigner transform of identity~B4! just replaces
the operatorsX̂m1¯mn

8 ,X̂n1¯nn
by their corresponding sym

bols Xm1¯mn
8 ,Xn1¯nn

.

The most useful form of the symbol image of Eq.~B4!
incorporates the affine covariance property@30# of the
Wigner transform. In the form required here, this prope
states: SupposeS is a symplectic matrix and thatM (S) is a
unitary operator obeyingM (S)†ẑM (S)5Sẑ. Namely,M (S)
is a metaplectic operator. Then thes transform of an arbi-
trary Â conjugated withM (S) satisfies

s„M ~S!†ÂM ~S!…~z!5A~Sz!. ~B5!

FIG. 6. y dependence of the~a! g̃ t
(2)(p2) and ~b! D̃pg t

(0)(p2)
terms.



l

n
ra
lin
s

lu

,
r
ion
he
on

te
p

the
lar
.

.

PRA 58 2959SEMICLASSICAL MOYAL QUANTUM MECHANICS . . .
Note that if we setS5R then Eq.~B3! confirms thatU(R) is
a metaplectic operator. Thus the covariance identity~B5! im-
plies

Xm1¯mn
8 ~z![s„U†~R!X̂m1¯mn

U~R!…~z!5Xm1¯mn
~Rz!.

~B6!

Combining Eqs.~B6! and~B4! establishes the Weyl symbo
tensor transformation rule,

Xm1¯mn
~Rz!5Rm1n1

¯Rmnnn
Xn1¯nn

~z!. ~B7!

APPENDIX C: SOLUTION STRUCTURE
AND CONSISTENCY CHECKS

The action of the semiclassical evolution operatorsg t
(0)

andg t
(2) on the Weyl symbol of a typical observableTm1¯mn

is often elaborate, exhibiting both a short range and lo
range structure in phase space. In this appendix we illust
several examples of this behavior. Furthermore, we out
some of the consistency checks we have developed to en
that the computed values ofg t

(0) and g t
(2) are correct. The

reported results are all for the helium atom system.
First consider the integrand of the expectation va

^G(t)T̂m1¯mn
&c as a function of the variabley for fixed im-

pact parameterb. We choose the observable to beTm5zm
with m55, namely, the momentum coordinate functionp2 .
For the trajectory with initial impact parameterb51.33 Å
and velocity 450 m/s, the three components (g t

(0) ,g̃ t
(2) ,

D̃pg t
(0)) of the integrand in Eq.~4.7! are seen in the follow-

ing two figures.

FIG. 7. ~a! g t
(0)(p2) b functional dependence.~b! detail of ~a!.
g
te
e
ure

e

The curves in Fig. 5 show theg t
(0)(p2) portion of the

integrand of Eq.~4.7! for five different times: 0, 0.2800
0.3111, 0.3422, and 0.4978 (10210 s). The smooth uppe
and lower curves denote the integrand at the precollis
time 0 and the postcollision time 0.4978, respectively. T
upper curve is determined solely by the Wigner functi
vc(z). Its slow variation is the result of the large value ofD.
The g t

(0)(p2) plot is read as follows. For the intermedia
time 0.3111 they function begins at the left on the to
branch. In the region aroundy52142 Å the trajectories are
undergoing active interaction with the potential and there
curve abruptly shifts to the smooth lower branch. Simi
interpretations apply for the other two intermediate times

The two curves in Fig. 6 display they behavior of the
g̃ t

(2)(p2) and D̃pg t
(0)(p2) contributions for the time 0.3111

FIG. 8. ~a! g̃ t
(2)(p2) and ~b! D̃pg t

(0)(p2) b functional depen-
dence.

FIG. 9. Component cancellation ing̃ t
(2)(H).
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TABLE VII. Consistency checks.

Time ^g t
(0)(H)& ^g̃ t

(2)(H)& ^g t
(0)(H* L2)& ^g̃ t

(2)(H* L2)&
(10210 s) (cm21) (cm21) (10220 s2 cm23) (10220 s2 cm23)

0.0000 16.938 679 5 10244 38.784 211 10232

0.1556 16.938 679 4 6.868310214 38.784 210 3.21331029

0.1889 16.938 679 4 1.305310211 38.784 210 9.03531028

0.2800 16.938 676 5 1.66931028 38.784 204 7.77431025

0.3111 16.938 676 6 7.40731028 38.784 204 1.35731024

0.3422 16.938 676 6 1.77731027 38.784 204 9.30731025

0.4889 16.938 676 5 2.94931027 38.784 204 2.95831027

0.4978 16.938 676 5 2.94931027 38.784 204 2.95631027
th
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There are similar rapid variations of these quantities for
times 0.2800 and 0.3422.

Our computation of the expectation value~4.7! first com-
pletes they integration and then carries out the integral ov
the impact parameter. For the same observablep2 , the
b-dependent components of Eq.~4.7! are displayed in Figs. 7
and 8.

The pair of curves in Fig. 7 describes theg t
(0) contribution

on two differentb scales. The near coincidence of the fi
curves occurs at the forward glory scattering valueb
53.06 Å. The subsequent maximum set of deflections
curs for the rainbow scattering atb53.62 Å. The associated
maximum angle of deflection is20.93 radians measure
relative to they axis. The next pair of curves in Fig. 8 are th
g̃ t

(2)(p2) and D̃pg t
(0)(p2) contributions, respectively. Again

their maximum values are concentrated in the impact par
eter region near the glory and rainbow values of the imp
parameter. As time increases the values ofg̃ t

(2)(p2) and

D̃pg t
(0)(p2) grow.

In order to integrate accurately over the fine structure
bothb andy variables it is necessary to have a large num
of integration points in both these dimensions. Here and
the tables of results listed in Sec. V we have used 250 po
in the y variable and 130 points in theb variable. These
static mesh points cover the region in phase space that
ports the Wigner functionvc(z).

In view of the fact that the operatorg t
(2) is the final result
J.

ie
e

r

-

-
ct

n
r

in
ts

p-

of a four stage hierarchical calculation it is worthwhile
establish its correctness via a series of consistency che
One of the most effective of these involves observables
are simultaneously classical and quantum constants of
tion. In this case exact results are known. Obvious choi
are Ĥ,L̂2,L̂3 . Furthermore, one can form additional co
stants of motion from the products of these operators. C
sider the productĤL̂2 whose symbol isH* L2. Since
G t(H* L2)5const one has

g̃ t
~2!~H* L2!5g0

~2!~H* L2!50. ~C1!

The symbolH* L2 is a phase space function with an elab
rate structure. Numerically verifying Eq.~C1! is a demand-
ing check on accuracy and consistency ofg t

(2) . Figure 9 and
Table VII show this consistency.

The three time dependent curves here are thez(2), wab,
and wabg components ofg̃ t

(2)(H) @labeled 1,2,3 in Fig. 9#
evaluated along a trajectory with initial datab52.27 Å, y
5270 Å, and velocity 450 m/s. The cancellation of the
sum to zero is accurate to at least seven digits. Table
displays the quantum average ofĤ andĤL̂2 at eight differ-
ent times. The deviation of the average values ofg̃ t

(2)(H)

and g̃ t
(2)(H* L2) from zero is a measure of the accumulat

error in our numerical calculations. It is always extreme
small relative to the scale set by theg t

(0) terms. More con-
sistency checks are described by McQuarrie@48#.
@1# J. E. Moyal, Proc. Cambridge Philos. Soc.45, 99 ~1949!.
@2# H. J. Groenewold, Physica~Amsterdam! 12, 405 ~1946!.
@3# T. Takabayasi, Prog. Theor. Phys.11, 341 ~1954!.
@4# G. A. Baker, Jr., Phys. Rev.109, 2198~1958!.
@5# D. B. Fairlie, Proc. Cambridge Philos. Soc.60, 581 ~1964!.
@6# J. C. T. Pool, J. Math. Phys.7, 66 ~1966!.
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