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Final-state F2 wave function in ion-helium collisions

F. D. Colavecchia,* G. Gasaneo,† and C. R. Garibotti
Centro Atómico Bariloche and Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas,

8400 San Carlos de Bariloche, Rı´o Negro, Argentina
~Received 2 April 1998!

In this work we study the double-differential cross sections~DDCSs! of ejected electrons in single-ionization
collisions of protons with helium atoms. The final state of the emitted electron is modeled by the correlated
wave functionF2 , a confluent hypergeometric function of two variables. We introduce a series representation
of the F2 wave function in terms of two-body Coulomb-like states, corresponding to the electron-projectile
and electron-target relative motions. We consider undistorted and eikonal initial states that give rise to the Born
F2 and eikonal initial-stateF2 approximations, respectively. In both cases we obtain analytic series represen-
tations of the transition matrices, which exhibit a strong numerical convergence. We obtain DDCSs in ion-
helium collisions in the intermediate- to high-energy regime with the BornF2 approximation and show that it
qualitatively agrees with the available experimental data.@S1050-2947~98!06610-4#

PACS number~s!: 34.50.Fa, 03.65.Nk, 02.70.Rw
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I. INTRODUCTION

In this work we focus our attention on the ion-atom io
ization problem, where a fully stripped ion collides with a
atom and extracts one of its electrons to the continuum.
simplest ionizing collisions is the three-particle process1

1H(1s)→H11H11e2 since any other target will include
at least one more particle in the system. Even in this collis
the experimental as well as theoretical difficulties are
from being solved. From the theoretical point of view, the
collisions generally involve three or more charged partic
interacting through long-range Coulomb potentials. The c
culation of the transition matrix̂C f

2uVi uc i&5^C f uVf uc i
1&

involves the exact solutions of the Schro¨dinger equation for
the initial (C i

1) or final (C f
2) channels. The exact quantum

mechanical description of the wave function is not kno
and physically based approximations should be considere
describe these states. One of the most successful approx
tions to a three body continuum final state is the well-kno
C3 wave function@1#. This function can be written as
product of three two-body Coulombic wave functions, ea
of them representing the relative motion of each pair of p
ticles. For the initial state, where the electron is bound in
atomic target, there are many approximated wave functio
ranging from the simple Born approximation~a product of a
plane wave representing the incoming projectile and
atomic wave function! @2# to the impulse approximation@3#,
where the initial state is described as a convolution of
atomic wave and the Coulombic wave of the projecti
electron pair. The condition for a correct asymptotic beh
ior @4# in the initial channel gave rise to the success
distorted-wave theories where the projectile-electron inte
tion is taken as a pure Coulombic one~continuum distorted-
wave approximations; see@5#! or asymptotically Coulombic
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†eikonal initial-states~EIS! approximation@6,7#‡. The com-
bination of both initial and final states and the related pert
bations (Vi and Vf respectively! give rise to a set of theo
ries that have been thoroughly used and have been very
described in the literature@8–10#. Calculations of differential
and total cross sections with those theories that take
account all the interactions agree qualitatively with the e
periments, although there are some quantitative discrep
cies that remain unexplained. When the energy of the p
jectile decreases, the agreement becomes poor and
approaches to the collision process are required.

Recently, we have proposed an approximate wave fu
tion for the final channel of an ion-atom ionizing collision
The motion of the electron in the field of the projectile a
the residual ionic target is described through the conflu
hypergeometric functionF2 in two variables@11#. This wave
function correlates both relative motions and goes bey
the simple product of two-body wave functions through t
introduction of multivariable hypergeometric functions.
has been shown that this function correctly behaves asy
totically, while it resembles the molecularlike states wh
the two ions come close to each other. This last feature
dences the correlation in the motion of the electron w
respect to the ions that is not included in theC3-like theo-
ries. These correlated wave functions also have been
posed for the two-electron and one-ion system@12#.

We have presented recently some preliminary calculati
of double-differential cross sections in a Born-like appro
mation using theF2 wave function as a final state for H1-H
collisions @13#. We have shown that the calculation of th
transition matrix involves the evaluation of the two-variab
wave function F3 , a nonconfluent hypergeometric wav
function of Appell and Kampe´ de Feriet with poorly known
mathematical properties@14#.

In this work we present the analytic derivation of th
double-differential cross section in the BornF2 and EISF2
approximations. This approach allows the application of
approximation to multielectronic atoms. We compare the
sults of the BornF2 theory with experimental data for H
2926 © 1998 The American Physical Society
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targets in the intermediate- to high-energy regime. The p
of the paper is as follows. In Sec. II we make use of a se
representation of theF2 wave function to obtain analytica
representations of the transition matrices. In Sec. III we sh
that this series is strongly convergent and that it is not n
essary to compute any hypergeometric function within
Born F2 approach. Furthermore, the analysis of theF2 se-
ries give rise to a family of wave functions that are asym
totically well behaved. We discuss the comparison with
experiments on He targets in Sec. IV. Finally, we summar
the conclusions of our work. The Appendix shows so
hints for the evaluation of the series presented and o
topics related to the multivariable hypergeometric functio
Atomic units are used in this work unless otherwise state

II. F2 APPROXIMATION

A. Series representation of theF2 wave function

We consider a charged projectile with massmP and
chargeZP colliding with an atom (mT ,ZT). In the process
one of the electrons (me) of the atom is ionized. The fina
state can be viewed as a three-body Coulomb system
the Schro¨dinger equation

F2
¹ r j

2

2m j
2

¹Rj

2

2n j
1 (

j 5T,P,PT
Vj GC̄~r i ,Ri !5EC̄~r i ,Ri !,

~1!

where $r j ,Rj% is a pair of Jacobi coordinates (j 5T, P or
PT!, m j5mimk /(mi1mk) and n j5mj (mi1mk)/(mi1mj
1mk) are reduced masses, andVj represents the Coulom
potential between interacting particles

VT52
ZT

r T
, VP52

ZP

r P
, VPT5

ZPZT

r PT
.

Exact solutions of Eq.~1! are not known and an approxima
ansatz can be used instead. We can transform Eq.~1! from a
Jacobi pair$r j ,Rj% to the set of parabolic coordinates

j j5r j1 k̂ j•r j , h j5r j2 k̂ j•r j ~ j 5T,P,PT!, ~2!

where k̂ j represents the unit vector in the direction of t
relative momentak j for each pair of particles. In previou
works we have shown different approximate solutions to
transformed equation. The full separable solution arises f
neglecting all the coupling terms of the Schro¨dinger equation
@15,16#. With this procedure we retrieve one of the mo
successful approximate solutions known as theC3 wave
function, a product of three two-body Coulomb functio
representing the independent interaction of each pair of
ticles

CC35wK f
~RT!wkT

~rT!)
l 51

3

f l~j l !. ~3!

The functions wK f
(RT) and wkT

(rT) are the plane-wave

eigenstates of the noninteracting Hamiltonian^r uk&5wk(r )
5(2p)23/2exp(ik–r ). The solutions f l(j l) are Coulomb
waves
n
s

w
c-
e

-
e
e
e
er
.
.

ith

e
m

t

r-

f l~j l !5Nl1F1~ ial ,1,2 ik lj l !, ~4!

whereNl5exp(2pal/2)G(12 ial) are the normalization fac
tors andal52Zl /kl ( l 5T,P) and aTP5ZTZP /kPT repre-
sent the Sommerfeld parameter for each interaction.
usual, 1F1(a,b,z) is the Kummer confluent hypegeometr
function. One step beyond these approximation has been
cently proposed by Gasaneoet al. @11,17#. There the cou-
pling between the motion of the electron relative to the p
jectile and the residual ion is approximately introduced
the confluent hypergeometric function of two variablesF2
and the interaction between the heavy particles is represe
by a two-body Coulomb wave function. The wave functio
reads

C15NTPNwK f
~RT!wkT

~rT!

3F2~ iaT ,iaP,1,2 ikTjT ,2 ikPjP!

31F1~ iaTP,1,2 ikTPjTP!, ~5!

with

N5e~p/2!~aT1aP!G~12 iaT2 iaP!. ~6!

The functionF2 has the double series representation

F2~b,b8,c,x,y!5(
m,n

~b!m~b8!n

~c!m1n

xm

m!

yn

n!
, ~7!

where (z)n denotes the Pochhammer symbol. Even when
series mathematically converges for all finite values ofx and
y, it is not useful from a numerical point of view since it
necessary to calculate tenths of terms to achieve a rela
precision of 1% in the calculation of the wave function ne
some particular values of the variables. This situation
come worse when calculating the transition matrix and d
ferential cross section.

Instead of Eq.~7! we make use of a one index serie
representation that has been found by Burchnall a
Chaundy@18,19#:

F2~b,b8,c,x,y!5(
m

amxmy1
mF1~b1m,c12m,x!

31F1~b81m,c12m,y!, ~8!

where

am5
~21!m~b!m~b8!m

~c1m21!m~c!2mm!
. ~9!

We note that the lowest order of this series is theC3 wave
function apart from a normalization factor.

B. Calculation of the transition matrices

We can now use the series~8! to obtain analytical expres
sions for the transition matrices in different approximation
We consider that the energy of the incident particle is h
enough so that the heavy projectile follows a straight traj
tory. In this case, using the impact parameter treatment,
internuclear potential and the wave function of the hea
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particles do not contribute to double-differential cross s
tions @20#. The transition matrix in the prior form in aF2
approximation is

TF25^C f
F2uVi uC i&,

whereVi is the perturbation potential acting over the initi
stateC i . Taking into account the relation betweenRT and
the pair (r P ,rT) we can write wK f

(RT)wkT
(rT)

5wqT
(rT)wqP

(r P), with qT5kT1K f and qP52K f . The
final-state wave function can be written as

uC f
F2&5N(

m
amuxP

m&uxT
m&, ~10!

with

^r j ux j
m&5wqj

~r j !~2 ik jj j !
mFm~j j !, ~11!

whereFm(j j )51F1( ia j1m,112m,2 ik jj j ) ( j 5T,P).
The statesx j

m are, apart from a plane-wave factor, th
general solutions of a Schro¨dinger equation for a system o
two particles interacting through Coulomb potentials. F
thermore, if we solve this problem within the oscillator re
resentation we find that the two-charged-particle system
be described by two two-dimensional harmonic oscillat
@21,22#. The wave function for each of these oscillators
represented by states similar to Eq.~11!, where the angular
momentum is related to the quantum numberm. In the two-
body case there exists further symmetries associated with
conservation of the Runge-Lenz vector and hence th
quantum numbersm cannot be set independently. Howeve
in the three-body case this symmetry does not exist. In
sense, theuC f

F2& state can be interpreted as a linear com
nation of all the eigenstates of the two-dimensional osci
tors representing the electron-target and electron-proje
interactions. We would like to note that each product of
statesxP

mxT
m satisfies the correct asymptotic conditions in t

region where all particles are far from each other and can
considered as a final wave function for an ionization proce
Then a natural generalization of the functionC f

F2 can be
constructed upon a sum over all of these product states
different coefficients to Eq.~9!.

The transition matrix will read

TF25N(
m

amTm , ~12!

Tm5^xP
mxT

muVi uC i&. ~13!

To be able to obtain analytical expressions for the matri
Tm we observe that

xm5
]m

]tm
etxU

t50

~14!

and then
-

-

n
s

he
se
,
at
-
-
ile
e

e
s.

ith

s

^r j ux j
m&5

]m

]t j
m

wqj
~r j !e

2 i t j kjj jFm~j j !U
t j 50

5
]m

]t j
m ^r j ux̃ j

m&U
t j 50

, ~15!

where we defined̂ r j ux̃ j
m&5wqj

(r j )e
2 i t j kjj jFm(j j ). In this

way, the stateux̃ j
m& resembles the familiar expression th

appears in the calculation of transition matrices in ionizat
theory @20#. Then we can write

Tm5
]m

]tT
m

]m

]tP
m ^x̃P

mx̃T
muVi uC i&U

tT5tP50

~16!

and we need to obtain

T̃m5^x̃P
mx̃T

muVi uC i&. ~17!

In the case of the BornF2 approximation, the functionC i
B is

the undistorted initial state of the electron in a 1s state of an
hydrogenic atom:

uC i
B&5uK i ,c i&,

^RTrTuC i
B&5wK i

~RT!c i~rT!

5wK i
~rT!w2K i

~r P!c i~rT!,

where we have consideredmP ,mT@me , the electron mass
The ground state is

c i~rT!5AlT
3

p
exp~2lTr T!

andlT represents an effective charge useful for the calcu
tion of ion-helium collisions. The perturbative potential
simply Vi

B(r P)52ZP /r P . Then the transition matrixT̃m

reads

T̃m5^x̃P
mx̃T

muVi
B~r P!uK i ,c i&.

It is easy to see thatT̃m can be factored asT̃P
mT̃T

m, where

T̃P
m5^x̃P

muVi
B~r P!u2K i&,

T̃T
m5^x̃T

muK i ,c i&.

These are Nordsieck-like integrals where the second par
eter of the hypergeometric functionsFm(j j ) is no longer
one, but an integer number 112m. We should use then the
results of Ref.@23#. We note that to obtainT̃P

m we introduce
an integrating factor exp(2«rP) with «.0. The decorated
variables will indicate a dependence on the parameterst i ,
while the undecorated ones correspond to the conditiont i
50. Upon defining

l̃P5«2 i tPkP , l̃T5lT2 i tTkT ,

Q̃P52P1tPkP , Q̃T5P1~tT21!kT
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and withP5K i2K f as the momentum transfer, we have

T̃P
m52

4pZP

~2p!3

ÃP
iaP2m

D̃P
2F1~2m,2 iaP1m,112m,z̃P!,

~18!

T̃T
m5

4p

~2p!3
AlT

3

p

ÃT
iaT2m

D̃T
2

3S L̃T0 2F11
2m~2 iaT1m!

112m
L̃T1 2F1

1D , ~19!

where

2F152F1~2m,2 iaT1m,112m,z̃T!

2F1
152F1~2m11,2 iaT1m11,212m,z̃T!

are Gauss hypergeometric functions. We define

Ũ j5
2S̃j

D̃ j

, S̃j5Sj5Q̃jk j2 i l̃ j kj ,

Ãj5Ũ j11, z̃j5
Ũ j

Ãj

, D̃ j5l̃ j
21Q̃j

2

and

L̃T052l̃T2
~2 iaT1m!B̃T

ÃT

,

L̃T15
B̃T

ÃT
2

, B̃T52~ ikT1l̃TŨT!.

The first order (m50) in the series representation~12!, apart
from a normalization factor, is the commonly known Bo
C2 approximation, where the final state of the electron
represented by the product of two outgoing Coulomb wa
functions

TB2C25NTNPTP
0TT

0 ,

whereNl are the normalization factors andTl
0 are

TP
0 52

4pZP

~2p!3

AP
iaP

DP
, TT

05
4p

~2p!3
AlT

3

p

AT
iaT

DT
2

LT0 .

Furthermore, by settingaP50 and m50 we recover the
well-known first Born approximation~FBA! @2#:

TFBA5NTTP
0 ~aP50!TT

0 .

We would like to note that even when the transition matrix
represented by a series, this representation does not co
tute a sum over a perturbative series in the long-range po
tial of the electron-projectile interaction.

In the case of an eikonal initial state

^rTr PuC i
EIS&5wK i

~RT!c i~rT!Evi
~r P!,
s
e

sti-
n-

whereEk(r ) represents the asymptotic Coulomb interacti
between the electron and the projectile

Ek~r !5exp~ iai ln kh!,

ai52ZP /v i

and the perturbation potential reads

Vi
EIS52

¹ r P

2

2mP
1

1

me
¹r P

•¹rT
,

where we again understand that the internuclear potential
been dropped based on an impact parameter approxima
and is considered as an eikonal phase that do not affec
results for double-differential cross sections~DDCSs!. The
transition matrix is expressed in the same way as Eqs.~12!
and ~16!, but since now the perturbation potential is itself
sum of two terms we have

T̃m5^x̃P
mx̃T

muVi
EISuC i

EIS& ~20!

5 Ĩ m1 J̃m , ~21!

where

Ĩ m5 Ĩ m
P Ĩ m

T , J̃m5 J̃m
P
• J̃m

T

and

Ĩ m
P5K x̃P

mU2
¹ r P

2

2mP
U2K i ,Evi

L ,

Ĩ m
T 5^x̃T

muK i ,c i&,

J̃m
P5K x̃P

mU¹r P

me
U2K i ,Evi

L ,

J̃m
T 5^x̃T

mu¹rT
uK i ,c i&.

The situation is not as simple as in the BornF2 approxima-
tion because now the partial transition matrices are given
terms of the two variableF1 hypergeometric functions an
their derivatives. For brevity, we quote the results in terms
different integrals given in the Appendix:

Ĩ m
P52

n iv iai
2

mp
I 18~ l̃P ,Q̃P ,vi ,kP,12 iai ,m2 iaP,112m!,

~22!

Ĩ m
T 5

1

~2p!3
AlT

3

p
L08~lT8 ,QT ,kT ,m2 iaT,112m!, ~23!

J̃m
P5

1

me
J98~lP8 ,QP ,vi ,kP ,2 iai ,m2 iaP,112m!,

~24!

J̃m
T 5

1

~2p!3
AlT

p
lT

2K218 ~ l̃T ,Q̃T ,kT ,m2 iaT,112m!.

~25!
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We note that whenm50 these expressions reduce to t
usual continuum distorted wave–eikonal initial state~CD-
WEIS! approximation in prior form@24#. The integralsI 18
and J98 are functions of the hypergeometricF1 . Numerical
evaluation of this function is precluded for the moment d
to the complexities of the poorly known analytical propert
of the nonconfluent two-variable hypergeometric functio
and hence we will restrict our attention to the Born-like the
ries. We note that the hypergeometric functions in Eqs.~18!
and ~19! are rational functions of the variables and can
easily evaluated~see the Appendix!. In addition, it is easy to
see that all decorated function have simple expressions
the respective derivatives ofmth order. Then the evaluatio
of Eq. ~16! is carried out by a recursive routine that impl
ments the properties of products of derivatives~Leibniz’s
formula! and the chain rule@25#. This procedure enables u
to obtain DDCSs with error less than 1%. Furthermore,
series that represents the transition matrix inheritates
strong numerical convergence of Eq.~8!. Then, to achieve
the mentioned relative error, it is necessary to sum onl
few terms of the series~commonly no more than five!, that is
to say,

TF2'TM
F25N (

m50

M

amTm . ~26!

The DDCS in the electron energy and deflection angle
defined as

s~E,V!5
d2s

dEdV
5~2p!4n i

kT

Ki
E uTu2dVP ,

where the integration is carried out over the angular deg
of freedomVP of the projectile. To represent the differe
contributions of the terms of the sum~26! we define

sM~E,V!5~2p!4n i

kT

Ki
E uTM

F2u2dVP , ~27!

which represents the DDCS calculated in the BornF2 ap-
proximation considering up to orderM , and

smn~E,V!5S 12
dmn

2 D ~2p!4n i

kT

Ki

3E ~amTman* Tn* 1am* Tm* anTn!dVP ,

~28!

which enables us to distinguish the different effects of e
of the terms in the coherent sum~26!. It is clear that

sM~E,V!5 (
m,n50

M

smn~E,V! ~29!

ands(E,V)5sM→`(E,V).
In Fig. 1~a! we can see the contribution of the differe

orders to the DDCS at 0° of the ejected electron in a co
sion of protons with atomic hydrogen at 100-keV impa
energy. The final distribution agrees with the values pre
ously obtained@13#. A feature that this theory exhibits is a
enhancement of the emission of ridge electrons. These e
trons are emitted in the collision with velocities between
and the projectile velocityvP . This enhancement has bee
e

s
-

e

or

e
e

a

is

es

h

-
t
i-

c-

widely observed experimentally for different collisions sy
tems and energies. To study this effect we have also plo
in Fig. 1~a! the contribution of the different order
smm(E,V) in the transition matrix for a collision of 100-keV
protons with hydrogen. We observe that the first ord
s11(E,V) is responsible for the enhancement of the str
tures in the ridge region, while higher terms are orders
magnitude smaller than the first one. We note that the c
tribution of smn (mÞn) gives a destructive interference
These facts clearly show that the series convergenc
mainly driven by the parameteram that include several fac
torials in the denominator.

Different DDCSssM(E,V) calculated withM50, . . . ,2
are shown in Fig. 1~b!. We observe that the main correctio
is provided by the first order of the series (M51) and the
higher orders introduce only small changes in the shape
the DDCSs. This is a general feature of this calculation
producible for different angles and impact energies. Even
the case of a complex target this characteristic remains
the first partial sum gives a rough idea of the full DDCSs

III. IONIZATION OF HELIUM

Three main characteristics arise in the ejected elec
spectra: the soft electron~SE! peak @26#, a structure in the
region where the electrons are ejected with small velocit
the electrons captured to the continuum~ECC! of the projec-
tile Coulomb potential described by a sharp peak centere
the projectile velocity@27#; and the binary sphere, a smoo
structure where the electrons would lie after a head-on
lision with the projectile@29#. The expression of the trans
tion matrices of the preceding section enables us to calcu
double-differential cross sections considering a target of
lium. We represent the ground state of helium by a o

FIG. 1. ~a! Different contributions of the coherent sum@Eq.
~29!# in the double-differential cross section for an ionizing H1-H
collision in Born approximations. Solid line, BornF2 approxima-
tion, i.e., sM→`(E,V); long-dashed line, BornC2 approximation
@;s00(E,V)#; short-dashed line, s11(E,V); dotted line,
s22(E,V); dash-dotted line,s33(E,V). ~b! DDCS at 0° obtained
with different orders of the BornF2 approximation for a 114-keV
H1-H collision. Solid line, BornF2 approximation@sM→`(E,V)#;
long-dashed line, BornC2 approximation; dash-dotted line
sM50(E,V); short-dashed line,sM51(E,V), dotted line, FBA.
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electron model with a five-term Roothan-Hartree-Fock
bital defined as

w i~r T!5(
j 51

5
~2l j !

3/2

~8p!1/2
ajexp~2l j r T!, ~30!

where aj and l j are given by Ref.@28#. The state of the
electron in the final channel is modeled by aF2 continuum
wave function with an effective charge ofZT51.6875. We
should point out that this is a very approximate way to
clude the effect of the passive electron of helium in the fi
state; however, aF2-correlated final state with passive ele
trons is not available yet.

In Fig. 2 we compare the theoretical DDCS in the forwa
direction for the collision H11He→H11He11e2 with the
experimental data of Leeet al. @29#. The impact energy of
the collision is 1.5 MeV/amu. We plot the results of und
torted calculations~the FBA and the BornC2 and BornF2
approximations! and the CDW EIS calculations. The Bor
F2 theory qualitatively agrees with experimental data, givi
all the main features of the forward ejected electrons. Ho
ever, it overestimates the asymmetry of the SE cusp
enhances the ridge electrons yield. On the contrary, the B
C2 and CDW EIS approximation give similar results in t
soft region, even when they differ in the representation of
initial channel. Therefore, we could think that the correlati
in the F2 final state is responsible for this high asymmet
We have to recall that theF2 wave function exhibits a high
probability of finding the electrons in the spatial region b
tween the two heavy centers@11,17#. Furthermore, we should
note that in the present approximation, the initial and fi
states are not orthogonal. Since theF2 final wave function is
correlated, an equivalent correlated initial channel should
considered instead the simple Born initial one. Howev
such an initial state is not known yet.

In the region of the ECC, the theory reproduces the sh
of the peak and gives the right asymmetry, i.e., an enha
ment of the electronic emission for velocities lower than
projectile one. On the other hand, the BornC2 approxima-

FIG. 2. DDCS at 0° for a 1.5-MeV H1-He collision. Solid line,
Born F2 approximation; dashed line, Born C2 approximation; d
ted line, FBA; dash-dotted line, CDW EIS approximation. Expe
mental data are from Leeet al. @29#.
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tion gives a symmetric peak aroundv i . This general feature
of the BornF2 approximation can be related to the shape
the high-order terms (m>1) that contribute to the final state
As we pointed out before, the enhancement in the ridge
gion is clearly related to the first order of the series rep
sentation of the transition matrix and hence to the first or
of the F2 series ~Fig. 1!. Furthermore, the asymmetrie
shown by this theory can be traced in the interference te
in uTu2, whenT is represented as a coherent sum. We n
that both the CDW EIS and BornC2 approximations agree
well with the data, but do not predict the right asymmetry
the peak. Of course, the FBA does not have this cusp st
ture since the interaction between the projectile and the e
tron is only accounted for perturbatively in the evaluation
the transition matrix. Meanwhile, for energies greater th
the projectile one and up to the binary peak, all theor
agree well with the experimental data.

Now we can turn our attention to the angular structure
the DDCS. In Fig. 3 we plot the DDCS as a function of t
emission angle for 100-keV protons colliding with helium
The energies considered for the emitted electrons corresp
to velocities near the SE peak (v;0), near the ECC peak
(v;vP), and above the binary electrons (v.2vP). Experi-
mental data correspond to works of Ruddet al. @30# and
Bernardiet al. @31#. General agreement with the data can
seen. In the low-energy region, the BornF2 theory overes-
timates the data for small angles giving rise to a higher
gular asymmetry in the SE peak than expected. The dyna
cal correlation introduced by theF2 wave function in the
final state seems to give the electron-projectile interact
effects required to produce asymmetric SE and ECC cus

A similar picture can be seen for a collision of 1-Me
protons with helium~Fig. 4!. The data correspond to th
works of Ruddet al. @30# and Pedersenet al. @32#. Here
again the angular asymmetry in the SE region is overe
mated, while the agreement with the data for other energ
is good. Furthermore, we can trace the right asymptotic li
for high impact energies by a simple comparison between
Born F2 and FBA theories in both Figs. 3 and 4.

-
FIG. 3. Angular distribution of ejected electrons for a 100-ke

H1-He collision. Energies correspond to soft electrons~15 eV!,
ECC electrons~50 eV!, and binary electrons~250 eV!. Experimen-
tal data were obtained by Ruddet al. @30# (j) and Bernardiet al.
@31# (s). The theories are similar to those in Fig. 2.
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IV. CONCLUSIONS AND OUTLOOK

In this work we have calculated double-differential cro
sections for ionizing collisions of helium for different pro
jectiles and energies. We used as the final three-body s
the correlatedF2 wave function recently introduced@11#.
We obtained analytical expressions of the transition matr
for the BornF2 and EISF2 approximations through a serie
representation of theF2 wave function, where each term is
product of two confluent hypergeometric functions, each r
resenting the interaction of the electron with the projec
and target, respectively. We have shown that the lowest
der of this series gives the common BornC2 and CDW EIS
approximations when we use an undistorted or distorted
tial state and perturbations, respectively. The main contr
tion to the DDCS comes from this order, but significant d
ferences arise from the first-order term, while higher ord
only incorporate small modifications into the shape of
structures. The calculation in the EISF2 approximation is
precluded for the moment due to the complexities of
analytical properties of the two-variable hypergeome
function.

The calculation of the DDCS in the BornF2 approxima-
tion with a series representation is strongly convergent for
energies and angles of the ejected electron. The ove
agreement with experimental data is qualitatively good. T
theory overestimates the DDCS in the region of the SE pe
but predicts the asymmetries of the SE and ECC peaks in
right way. Furthermore, the angular structure for backw
angles is very well described by the BornF2 approximation,
even better than the CDW EIS theory.
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APPENDIX

1. Computation of the transition matrix
in the Born F2 approximation

The calculation of expressions~18! and ~19! and their
corresponding derivatives can be carried out by noting

FIG. 4. Same as Fig. 3, for a 1-MeV H1-He collision. Energies
correspond to soft electrons~10 eV!, ECC electrons~500 eV! and
binary electrons~2000 eV!. Data (j) from Ruddet al. @30# and
(n) from Pedersenet al. @32#.
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the hypergeometric functions can be reduced to rational
pressions. We note that we should obtain the functio
2F1(n,b,n11,z) wheren is an integer. It is easy to see th

2F1~n,b,n11,z!5
n!

~12b!n21

12~12z!12bpn~z!

~2z!n
,

with

pn~z!5 (
j 50

n21

~12b!n21

zj

j !
.

In this way, the function can be evaluated for any value
the parameters and the variable.

On the other hand, the decorated functionsÃj , Ũ j , z̃j ,
etc., as a function of the parameterst j can be cast in the
form

f̃ ~l!5
a

b1cl
,

where l represents the parametert j and a, b, and c are
functions of the dynamic variables. Then the derivatives
mth order can be obtained:

dmf̃

dlm
5m! S 2

c

aD m

@ f̃ ~l!#m11 ~A1!

and sincef̃ (l50)5 f we have

dmf̃

dlmU
l50

5m! S 2
c

aD m

@ f #m11.

For example, it is easy to see that

z̃j5
U j

Aj1t jU j
.

Applying Eq. ~A1! we have

dmz̃j

dmt j
U

t j 50

52m! z̃j
m11 .

This procedure enable us to recursively obtain the der
tives of all decorated functions evaluated fort j50. Combin-
ing the chain rule and the Leibniz rule, all the derivatives
Eq. ~16! can be obtained analytically.

2. Integrals in the EIS F2 approximation

The integral in the EISF2 approximation is similar to the
table of Nordsieck integrals compiled by Gravielle and M
raglia. In our case the second parameter in the conflu
hypergeometric functions is no longer one, but any inte
number. Then we can use the results of Colavecchia, G
neo, and Garibotti@23#. We quote here the final results:
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I 18~z,q,p1 ,p2 ,ia1 ,ia2 ,b2!5E dr exp~2zr1 iq–r !
1

r
F 28E1

5g1 lim
p1→`

J18~b151!

54pg1

U1
2 ia1A2

2 ia2

D
F1 ,

L08~z,q,p1 ,ia1 ,b1!

5E dr•e2zr1 iq–rF 1852
]

]z
J1

8~a250!

5
4pA1

2 ia1

D2 FL012F11
~b121!ia1

b1
L02

1
2F1

1G , ~A2!

with

L0152z2
ia1B1

A1
, L02

1 52
A2B1

A1
,

J98~z,q,p1 ,p2 ,ia1 ,ia2 ,b2!

5E dr exp~2zr1 iq–r !F 28¹rE1

5g18 lim
p1→`

J385g1 lim
p1→`

J38~b151!

58p iaig1

U1
2 ia121A2

2 ia2

D2
@J918 p11J928 p21J938 q#,

with

J918 5 izF11
ia2

b2A2
S p21 iz

A3

U1
DF1

1 ,
n
er

. B

ds
J928 52
ia2p1

b2
F1

1 ,

J918 52p1F12
ia2p1

b2A2
S A3

U1
DF1

1 .

Finally,

K218 ~z,q,p1 ,ia1 ,b1!

5E dr exp~2zr1 iq–r !
r

r
F 18

524p i¹qL218

58p i
A1

2 ia1

D2 H F ia1

A1
p11qS 12 iai1

ia1

A1
D G 2F1

1
ia1~b121!

b1A1
2D

~U1q2p1!2F1
1J ,

where the hypergeometric functions are defined as

F i851F1~ iai ,b1 ,ipj•r1 ip j r !,

F15F1~ ia2 ,b221,ia1 ,b2 ,z2 ,x1!,

F1
15F1~ ia211,b221,ia111,b211,z2 ,x1!,

2F152F1~b121,ia1 ,b1 ,z1!,

2F1
152F1~b1 ,ia111,b111,z1!

and F1 and F1
1 represent Appell’s two-variables hyperge

metric functions@14#. The other variables are defined in@23#
and @33#.
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