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Final-state &, wave function in ion-helium collisions
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In this work we study the double-differential cross secti@B®CS9 of ejected electrons in single-ionization
collisions of protons with helium atoms. The final state of the emitted electron is modeled by the correlated
wave functiond,, a confluent hypergeometric function of two variables. We introduce a series representation
of the ®, wave function in terms of two-body Coulomb-like states, corresponding to the electron-projectile
and electron-target relative motions. We consider undistorted and eikonal initial states that give rise to the Born
®, and eikonal initial-stat&, approximations, respectively. In both cases we obtain analytic series represen-
tations of the transition matrices, which exhibit a strong numerical convergence. We obtain DDCSs in ion-
helium collisions in the intermediate- to high-energy regime with the Bpsrapproximation and show that it
gualitatively agrees with the available experimental dg$d.050-29478)06610-4

PACS numbg(s): 34.50.Fa, 03.65.Nk, 02.70.Rw

I. INTRODUCTION [eikonal initial-stateEIS) approximation[6,7]]. The com-
bination of both initial and final states and the related pertur-
In this work we focus our attention on the ion-atom ion- bations §/; and V; respectively give rise to a set of theo-
ization problem, where a fully stripped ion collides with an ries that have been thoroughly used and have been very well
atom and extracts one of its electrons to the continuum. Thdescribed in the literatuf8—10]. Calculations of differential
simplest ionizing collisions is the three-particle process H and total cross sections with those theories that take into
+H(1s)—H"+H"+e™ since any other target will include account all the interactions agree qualitatively with the ex-
at least one more particle in the system. Even in this collisiorperiments, although there are some quantitative discrepan-
the experimental as well as theoretical difficulties are farcies that remain unexplained. When the energy of the pro-
from being solved. From the theoretical point of view, thesejectile decreases, the agreement becomes poor and other
collisions generally involve three or more charged particlesapproaches to the collision process are required.
interacting through long-range Coulomb potentials. The cal- Recently, we have proposed an approximate wave func-
culation of the transition matrixW; |V;|yi)=(W;|V;|4")  tion for the final channel of an ion-atom ionizing collision.
involves the exact solutions of the ScHieger equation for The motion of the electron in the field of the projectile and
the initial (xpi*) or final (¥';') channels. The exact quantum- the residual ionic target is described through the confluent
mechanical description of the wave function is not knownhypergeometric functio®, in two variableg11]. This wave
and physically based approximations should be considered feinction correlates both relative motions and goes beyond
describe these states. One of the most successful approxini&€ simple product of two-body wave functions through the
tions to a three body continuum final state is the well-knownintroduction of multivariable hypergeometric functions. It
C3 wave function[1]. This function can be written as a has been shown that this function correctly behaves asymp-
product of three two-body Coulombic wave functions, eachtotically, while it resembles the molecularlike states when
of them representing the relative motion of each pair of parlhe two ions come close to each other. This last feature evi-
ticles. For the initial state, where the electron is bound in thelences the correlation in the motion of the electron with
atomic target, there are many approximated wave functiongespect to the ions that is not included in 1@8-like theo-
ranging from the simple Born approximati¢a product of a ries. These correlated wave functions also have been pro-
plane wave representing the incoming projectile and thgposed for the two-electron and one-ion sys{drg].
atomic wave function[2] to the impulse approximatiof8], We have presented recently some preliminary calculations
where the initial state is described as a convolution of theof double-differential cross sections in a Born-like approxi-
atomic wave and the Coulombic wave of the projectile-mation using theb, wave function as a final state for'=HH
electron pair. The condition for a correct asymptotic behav-<ollisions[13]. We have shown that the calculation of the
ior [4] in the initial channel gave rise to the successfultransition matrix involves the evaluation of the two-variable
distorted-wave theories where the projectile-electron interacwave function F5, a nonconfluent hypergeometric wave
tion is taken as a pure Coulombic ofeontinuum distorted- function of Appell and Kampele Feriet with poorly known
wave approximations; sg¢&]) or asymptotically Coulombic mathematical propertigg4].
In this work we present the analytic derivation of the
double-differential cross section in the Bobrp and EIS®,
*Electronic address: flavioc@cab.cnea.edu.ar approximations. This approach allows the application of the
TPermanent address: Departamento @ich Universidad Nacio- approximation to multielectronic atoms. We compare the re-
nal del Sur, Avenida Alem 1253, 8000 BahBlanca, Argentina. sults of the Bornd, theory with experimental data for He
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targets in the intermediate- to high-energy regime. The plan f1(&)=N,;F(ia;,1,—ik&), (4)

of the paper is as follows. In Sec. Il we make use of a series

representation of thé, wave function to obtain analytical whereN,=exp(—ma/2)['(1—ia,) are the normalization fac-
representations of the transition matrices. In Sec. Il we shovors anda,=—2,/k; (I=T,P) andayp=2Z1Zp/kpt repre-

that this series is strongly convergent and that it is not necsent the Sommerfeld parameter for each interaction. As
essary to compute any hypergeometric function within theusual, ;F4(a,b,z) is the Kummer confluent hypegeometric
Born @, approach. Furthermore, the analysis of the se-  function. One step beyond these approximation has been re-
ries give rise to a family of wave functions that are asymp-cently proposed by Gasanet al. [11,17]. There the cou-
totically well behaved. We discuss the comparison with thepling between the motion of the electron relative to the pro-
experiments on He targets in Sec. IV. Finally, we summarizeectile and the residual ion is approximately introduced by
the conclusions of our work. The Appendix shows somethe confluent hypergeometric function of two variabibs
hints for the evaluation of the series presented and otheand the interaction between the heavy particles is represented
topics related to the multivariable hypergeometric functionsby a two-body Coulomb wave function. The wave function
Atomic units are used in this work unless otherwise stated.reads

Il. ®, APPROXIMATION W1=NrpNe (Rr) @i (1)
A. Series representation of thed®, wave function XDy(iar,iap,1,—iktér, —ikpép)
We consider a charged projectile with mass and X 1Fi(iarp,1,—iktpérp), (5)

chargeZ, colliding with an atom (n,Z+). In the process

one of the electronsnf,) of the atom is ionized. The final with

state can be viewed as a three-body Coulomb system with

the Schidinger equation N=gel™2@T* 2 (1—jar—iap). (6)

vz V& The function®, has the double series representation
]

L D V¥, R)=E¥(r;,R),
2u; 2v; j=fppr ' b v Dobb’ E(b)m(b’)nxmy”
X = _—

1) 2B DX ) L

)

\év%ereiri,ri?inls}(?n.pfksf ‘;?1%0? iorﬁ_r(dr:]_i[?:k;é/-(rr}]_ E rﬂr where ), denotes the Pochhammer symbol. Even when this
’ ] | [ ] | i i

j ; ; .
+m,) are reduced masses, awd represents the Coulomb SEres mathematically converges for a!l finite _value_x ahc_i :
y, it is not useful from a numerical point of view since it is

otential between interacting particles . :
P gp necessary to calculate tenths of terms to achieve a relative

precision of 1% in the calculation of the wave function near

Zr Zp ZpZy , . C

Vi=——, Vp=——, Vpi= . some particular values of the variables. This situation be-
fr e et come worse when calculating the transition matrix and dif-

ferential cross section.

Instead of Eq.(7) we make use of a one index series
representation that has been found by Burchnall and
Chaundy[18,19:

Exact solutions of Eg(1) are not known and an approximate

ansatz can be used instead. We can transforn{IEdrom a

Jacobi pair{r;,R;} to the set of parabolic coordinates
§j=rj+kj~rj, ﬂ]:r]_kjrj (j:T,P,PT), (2)

®,(b,b",c,x,y)=>, anx™y"F;(b+m,c+2m,x)

where I2j represents the unit vector in the direction of the m

relative moment; for each pair of particles. In previous X 1F1(b"+m,c+2m,y), (8)

works we have shown different approximate solutions to the

transformed equation. The full separable solution arises frorwhere

neglecting all the coupling terms of the ScHirmger equation

[15,16. With this procedure we retrieve one of the most (= 1)"(b)y(b" ) 9

successful approximate solutions known as @& wave A= (e M= 1) (C) gyl ©

function, a product of three two-body Coulomb functions

representing the independent interaction of each pair of pat/e note that the lowest order of this series is @& wave

ticles function apart from a normalization factor.

3
B. Calculation of the transition matrices
Wea=ex, (RDer (ro ]l fi(&). (3) _ , ,
=1 We can now use the serié®) to obtain analytical expres-

sions for the transition matrices in different approximations.
The functions ¢k (R7) and ¢ (rr) are the plane-wave \ve consider that the energy of the incident particle is high
eigenstates of the noninteracting Hamiltoniahk) = ¢ (r) enough so that the heavy projectile follows a straight trajec-
=(2m) ¥%exp(ik-r). The solutionsf,(¢) are Coulomb tory. In this case, using the impact parameter treatment, the
waves internuclear potential and the wave function of the heavy
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particles do not contribute to double-differential cross sec- om _
tions [20]. The transition matrix in the prior form in &, (rilxi"= —mgoqj(rj)e*'fjkifi}‘m(gj)
approximation is 7] 7=0
@
TP2=(W 2|Vi|T), A
:&—m<fj|xj ) (15
whereV; is the perturbation potential acting over the initial ! 7=0

stateW;. Taking into account the relation betwe&y and . ~m kg _
the pair (p,ry) we can writt ¢k (Rr)ey (1) where we definedr;|x[")=¢q (r))e”" % Fn(§)). In this

= @q,(I') @q (rp), with gr=kr+K; and gp=—K;. The way, the statd}}“) resembles the familiar expression that

final-state wave function can be written as appears in the calculation of transition matrices in ionization
theory[20]. Then we can write
[WPBH =N an|xB)xT), (10 Jm am -
f mo o RaAT Tn=— — (XBXTIVI| ) (16)
d71 JdTp rr=75=0
with .
and we need to obtain
Jy™= N —ik: &M . ~ o~
<rj|X]> Qqu(r])( |kJ§J) fm(fj)u (11) Tm=<XI|;nXTm|Vi|‘Iri>- (17)
where F,(§) =1F1(iaj+ m,1+2m, —ik;&;) (j=T,P). In the case of the Borf®, approximation, the functio®? is

The statesX}“ are, apart from a plane-wave factor, the the undistorted initial state of the electron in s.gtate of an
general solutions of a Schitimger equation for a system of hydrogenic atom:
two particles interacting through Coulomb potentials. Fur-

thermore, if we solve this problem within the oscillator rep- [Py =|Ki. ),
resentation we find that the two-charged-particle system can 5

be described by two two-dimensional harmonic oscillators (Rer 1| W7) = ek (Ry) i(r7)

[21,22. The wave function for each of these oscillators is .

represented by states similar to Ef1), where the angular = ek (e (re)¢i(ro),

momentum is related to the quantum numtrerin the two- .
; . X .. .where we have considered, ,m:>m,, the electron mass.
body case there exists further symmetries associated with t ;
e ground state is

conservation of the Runge-Lenz vector and hence these
guantum numberm cannot be set independently. However, N3
in the three-body case this symmetry does not exist. In that Yi(rp) = \ﬁeXR—MfT)
sense, thé\If?’2> state can be interpreted as a linear combi- m
nation of all the eigenstates of the two-dimensional oscilla-and \; represents an effective charge useful for the calcula-
tors representing the electron-target and electron-projectilgon of ion-helium collisions. The perturbative potential is
mteract;?nn?. We yvould like to note that gach prgt_juct pf thesimply VB(rp)=—Zp/rp. Then the transition matris
statesyp x7 satisfies the correct asymptotic conditions in the,g54s
region where all particles are far from each other and can be
considered as a final wave function for an ionization process. TM= X FIVE(re) K ).
Then a natural generalization of the functi@ér‘lfq’2 can be ~ 5
constructed upon a sum over all of these product states witli is easy to see thak™ can be factored a§gTT, where
different coefficients to Eq(9). ~ -

The transition matrix will read TE=(xpIVE(rp)| = Ky),

TT=(TIKi ).
These are Nordsieck-like integrals where the second param-
eter of the hypergeometric functiong,(§;) is no longer
Tm=(PxTIVi|¥;). (13)  one, but an integer numbert2m. We should use then the

results of Ref[23]. We note that to obtaiﬁg‘ we introduce
To be able to obtain analytical expressions for the matricean integrating factor exp{erp) with £>0. The decorated

T®2=N>, a,Tp, (12
m

T, we observe that variables will indicate a dependence on the parametgrs
while the undecorated ones correspond to the conditjon
gm =0. Upon defining
xmz—meTX (14 _ _ _ _
T 7=0 Np=e—itpkp, Ny=Ay—iriky,

and then Qp=—P+ 7oKp, QT:P+(TT_1)kT
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and withP=K;—K; as the momentum transfer, we have

7 47TZF’FA?P?ml:(Z iap+ m,1+2mzp)
=— - m,—iap+m, m,zp),
2m° Bn 2F1 P P
(18
~iat—m
,:,I_m_ 4 )\TATT
T sV 7 2
~ 2m(—iag+m).
X LT02F1+W moF |, (19

where
JF1=,F(2m,—iar+m,1+2m,z;)
oF 1 =oF1(2m+1,—iar+m+1,2+2m,zy)

are Gauss hypergeometric functions. We define

- 25 ~
Uj:,lj_, SJ:SJ:QJk]_I)\]k],
j
R=0+1 3-20, B-Re4Q?
i=Ujtl z==, Dj=Aj+Q
|
and
~ —iar+m)B
LTOIZ)\T_( -I:.- ) T,
T
~ Br - e
LT]_:..,_Z, BT:2(|kT+)\TUT)
AT

The first order (n=0) in the series representati¢t?), apart
from a normalization factor, is the commonly known Born

C2 approximation, where the final state of the electron is
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where & (r) represents the asymptotic Coulomb interaction
between the electron and the projectile
E(r)=expia;ln k7n),
ai: _Zp/Ui

and the perturbation potential reads

2
'p

2

1
+—V, -V,
me '» T

EIS
Vie=—
P

where we again understand that the internuclear potential has
been dropped based on an impact parameter approximation
and is considered as an eikonal phase that do not affect the
results for double-differential cross sectiofBDCS9. The
transition matrix is expressed in the same way as E3.

and (16), but since now the perturbation potential is itself a
sum of two terms we have

To= OEXTIVE W) (20
=T+ I, (22)
where
To=1011 3,=30-3F
and
TP:<3;m el g € >
m Pl " 2up PGy, [
Th=OTIK ),
=p_[=m Vio
Jm=<xp ™ —Ki15vi>,

3;1:<}$|VrT|Ki v%bi)'

represented by the product of two outgoing Coulomb wave

functions
TB-C2=N;NpTRTY,

whereN, are the normalization factors afid are

ia

PIATT
P

™ D=

Furthermore, by settinggp=0 and m=0 we recover the
well-known first Born approximatiofFBA) [2]:

4AnZp AT
(2m)% Dp’

o_ 4
T (2m)?

0__
T9=

TO-

TFBA=N;TR(ap=0)TY.

We would like to note that even when the transition matrix is
represented by a series, this representation does not consti-
tute a sum over a perturbative series in the long-range poten-

tial of the electron-projectile interaction.
In the case of an eikonal initial state

(rerplWF'S) = ok (Rp) di(rp &y (),

The situation is not as simple as in the Babg approxima-
tion because now the partial transition matrices are given in
terms of the two variablé&; hypergeometric functions and
their derivatives. For brevity, we quote the results in terms of
different integrals given in the Appendix:

~p vivia; o~ = . .
lm=- [1(Np,Qp .,V kp,1—ia;,m—iap,1+2m),
p
(22)
7T _ )\T ’ ’ :
Im—(27T)3 ?LO()\T,QT,kT,m—laT,l+2m), (23
3P 1 ey ! P P
Jm=WJ9()\P,Qp,vi,kp,—lai,m—lap,1+2m),
e
(24)
3T

)\T 21t N A ;
?}\TK,l()\T ,QT ,kT ,m_ |aT,1+ Zm)
(25

m

T (2m)®
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We note that wherm=0 these expressions reduce to the -20 -20
usual continuum distorted wave—eikonal initial sta@D-
WEIS) approximation in prior form24]. The integralsl 21 k
and Jg are functions of the hypergeometfic,. Numerical \
evaluation of this function is precluded for the moment due?
to the complexities of the poorly known analytical properties% RN
of the nonconfluent two-variable hypergeometric functions> L “:3'ee,
and hence we will restrict our attention to the Born-like theo-u%j 23 3 >
ries. We note that the hypergeometric functions in Ef8) S
and (19) are rational functions of the variables and can besg 4
easily evaluatedsee the Appendix In addition, itis easyto g
see that all decorated function have simple expressions fc*
the respective derivatives aofith order. Then the evaluation
of Eq. (16) is carried out by a recursive routine that imple- y
ments the properties of products of derivativggibniz's 26 fF————7 — 71 -26
formula) and the chain rul§25]. This procedure enables us 0 100 200 300 O 100 E2°° 300 400
to obtain DDCSs with error less than 1%. Furthermore, the E @) V)
series that represents the transition matrix inheritates the r g 1. (5 Different contributions of the coherent sufq.
strong numerical convergence of E@). Then, to achieve (29)] in the double-differential cross section for an ionizing-H
the mentioned relative error, it is necessary to sum only &qjjision in Born approximations. Solid line, Boxh, approxima-
few terms of the serieommonly no more than fiyethat is tion, i.e., oy _..(E,Q); long-dashed line, Bont2 approximation
to say, [~0ooE,Q)]; short-dashed line, oq4(E,); dotted line,
M o25(E,Q); dash-dotted lineg;5(E,Q). (b) DDCS at 0° obtained
TtDZ%T‘hI;Iz: N 2 amTm- (26)  With different orders of the Borb, approximation for a 114-keV
m=0 H*-H collision. Solid line, Born®, approximatiorf oy _..(E,Q)];
long-dashed line, BornC2 approximation; dash-dotted line,
SO'M:O(E,Q); short-dashed linegy, - 1(E,(Q), dotted line, FBA.

100 keV (H",H) 0° | 114 keV (H" H) 0° | 2

22 [a/% -22
23

24

(s perw) (op ap /o) ol

-25 -25

The DDCS in the electron energy and deflection angle i
defined as

d? . KT ) widely observed experimentally for different collisions sys-
o(E,Q)= =5 =(2m) Vi—f | T[*dQp, tems and energies. To study this effect we have also plotted
dEJQ K; . . ) .
in Fig. 1(a) the contribution of the different orders
where the integration is carried out over the angular degrees,,(E,(2) in the transition matrix for a collision of 100-keV

of freedom()p of the projectile. To represent the different protons with hydrogen. We observe that the first order

contributions of the terms of the suf@6) we define a11(E,Q) is responsible for the enhancement of the struc-
K tures in the ridge region, while higher terms are orders of
on(E,Q)=(2m)*, %f |T$2|2dﬂpy (27)  magnitude smaller than the first one. We note that the con-

[

tribution of o,, (M#n) gives a destructive interference.
These facts clearly show that the series convergence is
mainly driven by the parametex,, that include several fac-
torials in the denominator.

mn . Kt Different DDCSsoy(E,Q}) calculated withM=0,...,2
1- 7) (27) Vifi are shown in Fig. (b). We observe that the main correction
is provided by the first order of the serieMl&1) and the
higher orders introduce only small changes in the shape of
the DDCSs. This is a general feature of this calculation re-
28) producible for different angles and impact energies. Even in

the case of a complex target this characteristic remains and

which enables us to distinguish the different effects of eacfihe first partial sum gives a rough idea of the full DDCSs.
of the terms in the coherent suf®6). It is clear that

which represents the DDCS calculated in the Bdrp ap-
proximation considering up to orddi, and

Omn(E, Q)=

x f (Tt T +a%Tha, T, d0p,

M lll. IONIZATION OF HELIUM
‘TM(E'Q):m;:0 omn(E, Q) (29) Three main characteristics arise in the ejected electron
’ spectra: the soft electro(SE) peak[26], a structure in the
ando(E,Q)=0oy_.(E,Q). region where the electrons are ejected with small velocities;

In Fig. 1(a) we can see the contribution of the different the electrons captured to the continu(BCC) of the projec-
orders to the DDCS at 0° of the ejected electron in a colli-tile Coulomb potential described by a sharp peak centered in
sion of protons with atomic hydrogen at 100-keV impactthe projectile velocity27]; and the binary sphere, a smooth
energy. The final distribution agrees with the values previstructure where the electrons would lie after a head-on col-
ously obtained 13]. A feature that this theory exhibits is an lision with the projectile[29]. The expression of the transi-
enhancement of the emission of ridge electrons. These eletion matrices of the preceding section enables us to calculate
trons are emitted in the collision with velocities between 0double-differential cross sections considering a target of he-
and the projectile velocity ». This enhancement has been lium. We represent the ground state of helium by a one-
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24 n -20

} 15MeV (H" He) 0°
-& = Leeetal [29]

-224"

(9
N
1

¥
[=2]
1

log,, (&’ / dE dQ) (m*feV sr)
log,, (¢’ / dE d@) (m*/eV sr)

1100 keV (H'He) “~. 3
m  Rudd et al. [30]

I S Bernardietal. [31] Mmoo
0 500 1000 1500 2000 2500 3000 3500 4000 o 30 60 9 120 150 180
E (eV) © (deg)
FIG. 2. DDCS at 0° for a 1.5-MeV H-He collision. Solid line, FIG. 3. Angular distribution of ejected electrons for a 100-keV

Born ®, approximation; dashed line, Born C2 approximation; dot- H"-He collision. Energies correspond to soft electrgt5 eV),

ted line, FBA; dash-dotted line, CDW EIS approximation. Experi- ECC electrong50 eV), and binary electron&50 e\). Experimen-

mental data are from Leet al. [29]. tal data were obtained by Rudd al.[30] (H) and Bernardkit al.
[31] (O). The theories are similar to those in Fig. 2.

electron model with a five-term Roothan-Hartree-Fock or-

bital defined as tion gives a symmetric peak aroung. This general feature
of the Born®, approximation can be related to the shape of

2\)32 the high-order termsni= 1) that contribute to the final state.
ei(ry)= 2 ‘ " —— —ajexp(—\ry), (30) As we pointed out before, the enhancement in the ridge re-

gion is clearly related to the first order of the series repre-
sentation of the transition matrix and hence to the first order

wherea; and \; are given by Ref[28]. The state of the of the &, series(Fig. 1). Furthermore, the asymmetries
electron in the final channel is modeled byba continuum  shown by this theory can be traced in the interference terms
wave function with an effective charge @h=1.6875. We in |T|?, whenT is represented as a coherent sum. We note
should point out that this is a very approximate way to in-that both the CDW EIS and Bor@2 approximations agree
clude the effect of the passive electron of helium in the finalell with the data, but do not predict the right asymmetry in
state; however, &,-correlated final state with passive elec- the peak. Of course, the FBA does not have this cusp struc-
trons is not available yet. ture since the interaction between the projectile and the elec-

In Fig. 2 we compare the theoretical DDCS in the forwardtron is only accounted for perturbatively in the evaluation of
direction for the collision H+He—H" +He" +e~ withthe  the transition matrix. Meanwhile, for energies greater than
experimental data of Leet al. [29]. The impact energy of the projectile one and up to the binary peak, all theories
the collision is 1.5 MeV/amu. We plot the results of undis-agree well with the experimental data.
torted calculationgthe FBA and the BorrC2 and Bornd, Now we can turn our attention to the angular structure of
approximations and the CDW EIS calculations. The Born the DDCS. In Fig. 3 we plot the DDCS as a function of the
@, theory qualitatively agrees with experimental data, givingemission angle for 100-keV protons colliding with helium.
all the main features of the forward ejected electrons. HowThe energies considered for the emitted electrons correspond
ever, it overestimates the asymmetry of the SE cusp antb velocities near the SE peak{0), near the ECC peak
enhances the ridge electrons yield. On the contrary, the Bor(uv~v), and above the binary electrons>2v,). Experi-
C2 and CDW EIS approximation give similar results in the mental data correspond to works of Rudtal. [30] and
soft region, even when they differ in the representation of theBernardiet al. [31]. General agreement with the data can be
initial channel. Therefore, we could think that the correlationseen. In the low-energy region, the Bohy theory overes-
in the @, final state is responsible for this high asymmetry.timates the data for small angles giving rise to a higher an-
We have to recall that th&, wave function exhibits a high gular asymmetry in the SE peak than expected. The dynami-
probability of finding the electrons in the spatial region be-cal correlation introduced by thé, wave function in the
tween the two heavy centesl1,17). Furthermore, we should final state seems to give the electron-projectile interaction
note that in the present approximation, the initial and finaleffects required to produce asymmetric SE and ECC cusps.
states are not orthogonal. Since the final wave function is A similar picture can be seen for a collision of 1-MeV
correlated, an equivalent correlated initial channel should berotons with helium(Fig. 4). The data correspond to the
considered instead the simple Born initial one. Howeverworks of Ruddet al. [30] and Pedersert al. [32]. Here
such an initial state is not known yet. again the angular asymmetry in the SE region is overesti-

In the region of the ECC, the theory reproduces the shapmated, while the agreement with the data for other energies
of the peak and gives the right asymmetry, i.e., an enhancés good. Furthermore, we can trace the right asymptotic limit
ment of the electronic emission for velocities lower than thefor high impact energies by a simple comparison between the
projectile one. On the other hand, the B&Z& approxima- Born ®, and FBA theories in both Figs. 3 and 4.
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-22 the hypergeometric functions can be reduced to rational ex-
pressions. We note that we should obtain the functions
24l oF1(n,b,n+12) wherenis an integer. It is easy to see that
s 10eV
> | _ _»n1-b
® n! 1-(1—2)"""py(2)
el 7 Fi(n,b,n+12)= )
é 26 e i n 2 l( ) (1_b)n—1 (—z)”
g --------- \
W-28r N e with
C 20 - 4
S | 1MeV (HHe) “Sno Pn(2)= ZO (1_b)n—1j_|-
- B Rudd et al. [30] \\;:‘A"—':L::;:'_:'.'.:.'_',:.'_-:_':_' """"" a .
-32[ Ao Pedersenetal.[32] i . .
L 321 In this way, the function can be evaluated for any value of

0 30 60 90 120 150 180 the parameters and the variable.
© (deg) On the other hand, the decorated functidys U;, z;,

FIG. 4. Same as Fig. 3, for a 1-MeV'HHe collision. Energies  €tC., as a function of the parameterscan be cast in the
correspond to soft electrorfd0 eV), ECC electrong500 e\j and form
binary electrong2000 e\}. Data @) from Ruddet al. [30] and

(A) from Pedersert al. [32]. ~ a
fN) = /=,
IV. CONCLUSIONS AND OUTLOOK b+ch

In this work we have calculated double-differential crossyyhere \ represents the parametey anda, b, andc are
sections for ionizing collisions of helium for different pro- f,nctions of the dynamic variables. Then the derivatives of
jectiles and energies. We used as the final three-body staleih order can be obtained:
the correlatedd, wave function recently introducedL1]. ’

We obtained analytical expressions of the transition matrices e m

for the Born®, and EIS®, approximations through a series ﬂ —mil - ¢ [0 (A1)
representation of thé, wave function, where each termis a ™\ a

product of two confluent hypergeometric functions, each rep-
resenting the interaction of the electron with the projectile
and target, respectively. We have shown that the lowest o2
der of this series gives the common Ba&2 and CDW EIS _
approximations when we use an undistorted or distorted ini- d™f
tial state and perturbations, respectively. The main contribu- m
tion to the DDCS comes from this order, but significant dif-

ferences arise from the first-order term, while higher orders

only incorporate small modifications into the shape of theFor example, it is easy to see that
structures. The calculation in the EIB, approximation is

precluded for the moment due to the complexities of the ~ U;
analytical properties of the two-variable hypergeometric Z,:m-
function. 1

The calculation of the DDCS in the Borh, approxima- .
tion with a series representation is strongly convergent for alf\PPIying Eq. (A1) we have
energies and angles of the ejected electron. The overall B
agreement with experimental data is qualitatively good. The d"z ~mi1
theory overestimates the DDCS in the region of the SE peak, gm =-mlz/"".
but predicts the asymmetries of the SE and ECC peaks in the 7 7,=0
right way. Furthermore, the angular structure for backward
angles is very well described by the Boby approximation,  This procedure enable us to recursively obtain the deriva-
even better than the CDW EIS theory. tives of all decorated functions evaluated fge=0. Combin-
ing the chain rule and the Leibniz rule, all the derivatives in

nd sincef (\=0)=f we have

=m!
A=0

c\m .
—5) [£]m+L,

ACKNOWLEDGMENTS Eqg. (16) can be obtained analytically.
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Macri for fruitful discussions. 2. Integrals in the EIS @, approximation
APPENDIX The integral in the EISP, approximation is similar to the

table of Nordsieck integrals compiled by Gravielle and Mi-
raglia. In our case the second parameter in the confluent
hypergeometric functions is no longer one, but any integer
The calculation of expressiond8) and (19) and their number. Then we can use the results of Colavecchia, Gasa-
corresponding derivatives can be carried out by noting thabheo, and Garibot(i23]. We quote here the final results:

1. Computation of the transition matrix
in the Born ®, approximation
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! H H H 1 ! ! ia2p1 +
11(z,9,p1,P2,1a1,182,b) = | dr eXF(_Z"‘HCI"')F]:zgl J92:_b—2F1 '
=71 lim Ji(b;=1) , iap; As)
P1=e ‘ | ng:_plFl__bzAz U,
U laipiaz
=dgy,——2 5 2 _F,, Finally,

A [ K’ (z,q,p;,ia;,b
Lo(z,q,pq,iaq,by) 1(z,9,p;1,iay,by)

r
_ J =f dr exp(—zr+iq-r)=F;
=fdr-e*2r+'q‘r]-‘1=——Jl(aZZO) ot

Jz
, =—4miVy’,
47A; "% (b,—1)ia _
1 1 1 _
:T[L012F1+b—l|-ézz|:1+, (A2) g ALY Tiay val 1o +ial .
=oml D2 Alpl q 12, IMIGE
with
iay(b;—1) .
ia;B A,B + ————>(Uq—p1)F; ¢,
Loj=22— 151 g b blAfD 19—P1)2F,

Al 3 02 Al 1
, L where the hypergeometric functions are defined as
Jo(2,9,p1,P2,ia,ia@2,b)) yperg
Fi=4Fi(iaj,by,ip;-r+ipjr),
=f dr exp(—zr+iq-r)F,V,&
Fi=Fi(iaz,b,—1ja;,by,25,%1),
pp— p1— FI:F1(|a2+ 1,b2_1,ia1+ 1,b2+ 1,22,X1),

g L A Fy=oF y(by—Liay,by,2,)
:871'Iaile[Jélpl+Jé2p2+\]é3q], 2F1=2F(b— 14a4,09,27),

oF1 =5Fa(by,ia;+1by+172))

with
. A andF, andF, represent Appell's two-variables hypergeo-
3 izFyt ia, D+ iz—s) Fi, metric functiond 14]. The other variables are defined[&8]
byA; U and[33].
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