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Excitation and charge transfer in proton-hydrogen collisions
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Excitation and charge transfer cross sections for collisions of protons with hydrogen are calculated by direct
solution of the time-dependent Schro¨dinger equation on a three-dimensional Cartesian lattice. The 2s, 2p, 3s,
3p, and 3d excitation cross sections and the 1s, 2s, 2p, 3s, 3p, and 3d charge transfer cross sections from
the 1s ground state at 10-, 40-, and 100-keV incident proton energy are found by projecting a time-evolved
wave function onto the lattice target states of hydrogen. Excitation processes are calculated in the rest frame of
the hydrogen atom, while capture processes are calculated in the rest frame of the proton. The computed
excitation and charge transfer cross sections are in good agreement with recent experiments and other theo-
retical results based on coupled-channels methods.@S1050-2947~98!03210-7#

PACS number~s!: 34.70.1e
fo
a

n
on
on
e
a

ol

tio
.
th

hi
t i

i
ci
gi

th
n

gy

ns

c
no
ss
s.
m

nic

en

d
ral
r a
no
sis
ics
is

e

cal
ar-

two

rst
en-

ond
y be
arse
all
les
g
ita-
gen
rest

ce
nd

is-
IV.
.

-

I. INTRODUCTION

The proton-hydrogen collision remains a benchmark
the development of new atomic scattering theories. There
three basic inelastic processes that take place: excitatio
the target, electron capture by the projectile, and direct i
ization. Despite the basic nature of this three-body collisi
there are still discrepancies between theory and experim
and differences among the results of various theoretical
proaches. On the experimental side, proton-hydrogen c
sions have been studied extensively, and at present there
large number of experimental cross sections for excita
@1–4# and charge transfer@5–15# over a wide energy range
On the computational side, there is no general approach
gives accurate inelastic cross sections at all energies. At
collision energies the Born approximation does well, bu
does not predict the correct energy dependence for the
elastic cross sections at lower energies. For electron ex
tion and capture processes at intermediate impact ener
close-coupling@16–19# and distorted wave@20–22# methods
have been widely applied. Although quite successful,
close-coupling methods may run into basis state converge
difficulties @17,18# when extended over too great an ener
range.

An additional theoretical approach for ion-atom collisio
is the direct solution of the time-dependent Schro¨dinger ~or
Hartree-Fock! equation on a numerical lattice@23–27#. Due
to the long-range nature of the Coulomb electrostatic for
however, only the substantial advances in computer tech
ogy realized over the last few years have allowed the po
bility of carrying out full three-dimensional lattice solution
Recently, a 3D lattice solution has been successfully e
ployed to study the excitation and ionization of hydroge
atoms by collisions with antiprotons@28–30#. In this paper
we attempt a 3D lattice solution of the time-depend
PRA 581050-2947/98/58~4!/2872~9!/$15.00
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Schrödinger equation for proton-impact excitation of an
charge transfer with the neutral hydrogen atom. A gene
advantage of the lattice method lies in its application ove
wide energy range. A numerical lattice method makes
assumption regarding the suitability of any particular ba
set expansion. A further advantage is that collision dynam
may be easily visualized since the total wave function
calculated explicitly as a function of time. Our 3D lattic
solution of the time-dependent Schro¨dinger equation is car-
ried out in Cartesian coordinates. A straight-line classi
trajectory for the proton across the lattice may then be ch
acterized with a single impact parameter. We consider
alternative numerical methods:~1! low-order finite differ-
ences using a staggered leapfrog propagator and~2! Fourier
collocation using a split-operator propagator. The fi
method was chosen because of its straightforward implem
tation on distributed-memory parallel computers. The sec
method was chosen because the total wave function ma
represented to the same accuracy on a relatively more sp
grid. Lattice size is generally the main determinant of over
computational time. In both numerical methods, observab
are obtained by projecting the total wave function followin
the collision onto the stationary states of the system. Exc
tion processes are studied in the rest frame of the hydro
atom target, while capture processes are studied in the
frame of the proton projectile. The computational latti
methods are outlined in Sec. II, the results for excitation a
charge transfer to then51,2,3 shells are presented and d
cussed in Sec. III, and a brief summary is found in Sec.
Atomic units are used throughout unless otherwise noted

II. THEORY

The time-dependent Schro¨dinger equation for a bare ion
(Zp) projectile colliding on a classical trajectory with a hy
2872 © 1998 The American Physical Society
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drogenic atom (Zt) target is given by

i
]C~rW,t !

]t
5S 2

1

2
¹22

Zt

r
2

Zp

R~ t ! DC~rW,t !, ~1!

where rW is the electron position vector with respect to t
target andR(t) is the time-dependent distance between
projectile and target. The above equation may also be use
describe a hydrogenic atom projectile colliding with a ba
ion target. We solve Eq.~1! with the boundary conditions
described below using two different lattice techniques to
tain a discrete representation of the wave function and
operators on a three-dimensional Cartesian coordinate g

A. Finite-difference method

For easy implementation on distributed-memory para
computers, second-order finite-difference methods are
ployed with uniform mesh spacing. For example, the kine
energy has a lattice representation in terms of a tridiago
matrix, while the electron-ion interaction operator is a dia
onal matrix. For straight-line motion in they direction,

R~ t !5A~x2b!21@y2~y01vt !#21z2, ~2!

wherey0 and the impact parameterb locate the initial posi-
tion of the projectile andv is the projectile velocity. The
choice of anxy scattering plane guarantees that the collis
Hamiltonian has reflection symmetry with respect to thez
50 plane. We divide the lattice intoxy planar layers and
propagate the wave function for each layer on a sepa
processor. Solution of the Schro¨dinger equation only in-
volves nearest surface layer message passing. Due toz
50 plane reflection symmetry, the layers only extend fro
z50 to z5zmax with the additional condition ofC(x,y,0,t)
50 for C(rW,0) equal to an initial function that is odd inz,
and]C(x,y,0,t)/]z50 for C(rW,0) equal to an initial func-
tion that is even inz.

The eigenfunctions,cn(rW), and eigenenergies,En , for the
ground and low-lying excited states of the hydrogenic at
may be found by propagating the Schro¨dinger equation in
imaginary time (t5 i t ) @31#:

cn~rW,t1Dt!5e2H0Dtcn~rW,t!, ~3!

where

H052
1

2
¹22

Zt

r
. ~4!

SinceDt is inversely related to the maximum energy,Emax,
on the lattice, we may also use an iterative relaxation
energy:

cn
i 11~rW !5)

k51

N S k

N
Emax2H0Dcn

i ~rW !. ~5!

In practice we have found thatN54 works quite well, start-
ing from the analytic wave functions for a hydrogenic ato
Schmidt orthogonalization in every iteration prevents c
lapse of excited states to lower-energy states of the s
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symmetry. The termination criterion is based on the ene
differences obtained in two consecutive iterations. In prac
the method rapidly converges in just a few iterations.

With the initial conditionC(rW,t50)5c1s(rW), the time-
dependent Schro¨dinger equation was propagated in real tim
using an explicit ‘‘staggered leapfrog’’ algorithm@32#. The
method is ideal for distributed-memory parallel compute
since it involves only simple matrix-vector multiplication a
each time step. Spurious wave reflection at the lattice bou
ary is eliminated through the use of exponential masking
one coordinate the masking function has the form

Fmask~x!512e2j~xmax2x!2e1j~xmin2x!, ~6!

wherej is a suitable positive constant that depends on
lattice extent. At each step in the time propagation the w
function is multiplied by a mask function for each coord
nate. We note that the mask function in thez coordinate does
not contain the exponential term withzmin50.

To calculate excitation cross sections we center the hyd
genic wave function,c1s(rW), at the origin of the coordinate
system and let the bare ion move across the lattice.
probability of excitation to acnl m(rW) state for a given pro-
jectile velocity and impact parameter is given by

Pnl m~v,b!5U E d3rcnl m* ~rW !C~rW,t5T!U2

, ~7!

whereT is the time when the projectile reaches the latt
boundary. The 1s→nl m excitation cross section for a give
projectile velocity is given by

snl m~v !52pE
0

`

dbbPnl m~v,b!. ~8!

Due to the reflection symmetry through thez50 plane, we
need only consider final states with the same (21)l 1m re-
flection number as the initial state~i.e., evenr number for
the 1s state!. To calculate charge transfer cross sections
center the translated hydrogenic wave function,c1s(rW)eivy,
at rW5(b,y0,0) and let the hydrogenic atom move across
lattice. The capture probabilities and cross sections are
culated as before using Eqs.~7! and ~8!.

B. Fourier collocation method

The Fourier-collocation method for the time-depende
Schrödinger equation describing ion-atom collisions with
single active electron has been previously discussed in d
@29#. The reader is referred to this paper for a description
the strengths and weaknesses of our implementation of
numerical approach. An advantage of such high-order m
ods is an improved numerical representation of the hi
energy part of the energy-momentum dispersion relations
@33#. This characteristic often results in fewer lattice poin
being required for a solution with specified accuracy as co
pared to low-order methods, assuming the solutions are
ficiently smooth. The lattice parameters used in perform
the calculations presented in this work are identical to th
used before@29# ~i.e., 1353 lattice points in a cubic numerica
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TABLE I. Hydrogen atom solutions on a finite-difference lattice. For eachnlm state, the first row
contains results obtained on the grid that includes zero, while the second row list results obtained w
zero on the grid.

State ^H0& ^r & K1r L 2^T&1^V& A^H0&
22^H0

2&

1s0 20.49999 1.49 0.97 17.331023 3.231024

20.49515 1.51 0.98 28.931023 2.331024

2s0 20.12525 5.99 0.25 19.131024 3.631024

20.12457 6.00 0.25 22.131024 3.731024

2p11 20.12505 4.99 0.25 21.931024 9.331024

20.12514 4.99 0.25 22.831024 2.031023

2p21 20.12505 4.99 0.25 21.931024 9.331024

20.12514 4.99 0.25 22.831024 2.031023

3s0 20.05562 13.47 0.11 16.031024 4.131024

20.05541 13.48 0.11 21.031024 4.131024

3p11 20.05557 12.48 0.11 11.231024 2.831024

20.05559 12.48 0.11 11.831024 3.131024

3p21 20.05557 12.48 0.11 11.231024 2.831024

20.05559 12.48 0.11 11.831024 3.131024

3d0 20.05556 10.49 0.11 13.831025 2.331024

20.05557 10.49 0.11 13.831025 2.331024

3d12 20.05556 10.49 0.11 19.331026 2.631024

20.05557 10.49 0.11 11.031025 2.731024

3d22 20.05556 10.49 0.11 19.331026 2.631024

20.05557 10.49 0.11 11.031025 2.731024
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box of length 52 a.u. with a complex potential absorbi
outgoing flux near the edges of the box!. Use of an efficient
split-operator method of time propagation in the pres
work has also resulted in a significant decrease in comp
tional effort over our previous work using a Taylor seri
expansion of the time propagator. We note that the Four
collocation method is implemented via fast Fourier tra
forms. As a result of this choice, we do not take advantag
the symmetry with respect to the collision plane as is d
cussed regarding the present finite-differences meth
Implementation of this approach on shared-memory para
computers is straightforward, since good parallel fast-Fou
transform software routines are available.

III. RESULTS AND DISCUSSION

Excitation and charge transfer cross sections from thes
ground state of hydrogen at 10-, 40-, and 100-keV incid
proton energy are calculated by the direct solution of
time-dependent Schro¨dinger equation on a three-dimension
Cartesian lattice. The finite difference calculations use a
tice of 30033003150 points with a uniform grid spacing o
Dx5Dy5Dz50.2. Thus the lattice extends from230 to
130 in thex andy directions, and from 0 to130 in thez
direction. The Fourier collocation calculations use a lattice
13531353135 points with a uniform grid spacing of 0.38
Thus the lattice extends from226 to126 in thex, y, andz
directions. Both the finite difference and Fourier collocati
lattices are sufficiently large to support nearly spectrosco
n51,2,3 orbitals. To cover then54 shell will require even
larger lattice sizes.

Energies and other observables for then51,2,3 hydrogen
t
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atom solutions on the finite difference lattice are presente
Table I, while similar quantities for the Fourier collocatio
lattice are found in Tables I and II of the paper by We
et al. @29# on antiproton collisions with hydrogen. Due to th
adoptedz reflection symmetry in the finite difference lattic
only the evenr -number functions~1s0 , 2s0 , 2p61 , 3s0 ,
3p61 , 3d0 , 3d62! need to be calculated for later use in th
cross-section projections. The energy expectation^H0&, the
radial expectation valueŝr & and ^1/r &, the virial theorem,
and the energy fluctuation can be compared with their ex
values ~^H0&52Zt/2n2, ^r &5@3n22 l ( l 11)#/2Zt , and
^1/r &5Zt /n2! to provide a test of each lattice representatio

Table I presents a comparison between the results
tained on a finite-difference lattice that includes zero and
that does not include zero. In the first case, the Coulo
potential is modified by the introduction of a soft-core p
tential,2Zt /r→2Zt /Ac1r 2, to avoid the singularity at the
origin. The adjustable parameterc is set to 4.503531023 to
yield a ground-state energy close to20.5 for a lattice spac-
ing of 0.2. In the second case, the singularity is avoided
placing the origin half-way between the lattice spacing for
three coordinates. In each case the iteration process is te
nated when two consecutive energies differ by less t
1027, which usually happens in less than 30 iterations.
general, three or four decimal places in the listed energ
can be obtained with less than six iterations. We note t
relatively small values of 2̂T&1^V&, particularly for 3d
states, do not necessarily mean that the excited part of
spectrum is approximated better than, say, the ground s
While the result of the virial theorem test for the 1s state
certainly reflects the difficulty of the lattice representation
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FIG. 1. Excitation: time evolution of the elec
tron density in thez50 scattering plane for an
incident proton energy of 40 keV and an impa
parameterb51.0.
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the Coulomb potential atr 50, then53 numerical orbitals
are difficult to determine accurately due to the finite size
the lattice. It is safe to say that while the virial theorem is n
exactly valid on the lattice it can still serve as a tool in t
evaluation of the computational method; however, c
should be taken when it is used to probe the quality of s
tionary solutions obtained on the lattice. A similar observ
tion is also valid for other expectation values. A comparis
of the numerical observables for both cases with the co
f
t

e
-
-
n
e-

sponding analytical results shows reasonable agreemen
the finite difference calculations presented in the followi
paragraphs of this section, we chose the lattice that does
include zero since deviations from exact energy values
less than 1%, and the differences from exact radial expe
tion values fall below 3%.

We illustrate the visualization power of the lattice meth
by presenting probability density plots in thez50 scattering
plane as a function of time in Figs. 1 and 2 for a proto
e

nd
FIG. 2. Charge transfer: time evolution of th
electron density in thez50 scattering plane for
an incident hydrogen atom energy of 40 keV a
an impact parameterb51.0.



he
si-

a

he
th
a

ct
sf
t

h
th
th
er

al

uld
ical

s-
th-

the
he
llo-
po-
e is

2
e-

f

e
ri
la

e
rier
la-

2876 PRA 58A. KOŁAKOWSKA et al.
hydrogen collision at 40 keV. The time propagation of t
Schrödinger equation is started for an initial projectile po
tion of rW05(1.0,215.0,0.0)~an impact parameterb51.0!, as
depicted in Fig. 1~a! and Fig. 2~a!. The time propagation is
terminated when the projectile reaches the lattice bound
at rW05(1.0,130.0,0.0), which isT520.0 for an incident en-
ergy of 40 keV. In Fig. 1 the projectile is the proton and t
target is the hydrogen atom located at the origin. In Fig. 2
roles are reversed, the projectile is the hydrogen atom
the target is the proton located at the origin. As mentioned
Sec. II, excitation cross sections can be most easily extra
in the rest frame of the hydrogen atom, while charge tran
cross sections are easily extracted in the rest frame of
proton. An oscillation of the electron density between t
projectile and target can be observed in both figures. Ano
interesting aspect of the two-center collision dynamics is
rotation of electron density about an individual cent

FIG. 3. Probability of excitation to the 2s state as a function o
impact parameter for selected impact energies:~a! E510 keV, ~b!
E540 keV, ~c! E5100 keV. Diamonds are the results from th
finite-difference method, asterisks are the results from the Fou
collocation method, and the solid curve is a cubic spline interpo
tion through the finite-difference results.
ry

e
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ed
er
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clearly visible in the contour plots. Looking at the fin
frames in each sequence, i.e., Fig. 1~d! and Fig. 2~d!, it can
be seen that one is the mirror image of the other, as sho
be expected, giving a good check on the overall numer
methods.

Excitation in proton-hydrogen collisions is examined u
ing both the finite-difference and Fourier collocation me
ods. The excitation probabilities@see Eq.~7!# as a function of
impact parameter are presented in Fig. 3 for the 1s→2s
transition and in Fig. 4 for the 1s→2p transition at 10-, 40-,
and 100-keV incident proton energy. The diamonds are
calculational results from the finite-difference method, t
asterisks are the calculational results from the Fourier co
cation method, and the solid curve is a cubic spline inter
lation of the finite-difference results. As can be seen, ther
good agreement between the two lattice methods for thes
and 2p excitation probabilities. The overall agreement b

er
-

FIG. 4. Probability of excitation to the 2p state as a function of
impact parameter for selected impact energies:~a! E510 keV, ~b!
E540 keV, ~c! E5100 keV. Diamonds are the results from th
finite-difference method, asterisks are the results from the Fou
collocation method, and the solid curve is a cubic spline interpo
tion through the finite-difference results.
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TABLE II. Excitation cross sections~in units of 10218 cm2! for proton-hydrogen collisions. Finite
difference method results are labeled~FD!, while Fourier collocation method results are labeled~FC!.

Final state Energy~keV!

10 40 100

n52 27.2 ~FD! 92.3 ~FD! 96.1 ~FD!

25.0 ~FC! 99.0 ~FC! 88.2 ~FC!

26.0 @18# 90.0 @18# 86.0 @18#

96.4068.3 @1#a 91.00c65.5 @1#a

88.8668.3 @1#b 83.88c65.5 @1#b

2s 5.62 ~FD! 16.1 ~FD! 9.64 ~FD!

5.54 ~FC! 18.2 ~FC! 10.1 ~FC!

5.0 @18# 17.0 @18# 10.0 @18#

5.061.5 @8# 17.73c @17# 10.2 @17#

6.162.83 @4# 13.964.97 @4# 8.763.31 @4#

3.060.9 @10#

2p 21.6 ~FD! 76.2 ~FD! 86.5 ~FD!

19.5 ~FC! 80.8 ~FC! 78.1 ~FC!

21.2 @18# 71.2 @18# 76.2 @18#

24.061.4 @9# 68.66c @17# 76.20 @17#

25.065.0 @8# 62.967.548 @3# 82.169.852 @3#

36.067.5 @5# 80.069.6 @2#

n53 7.25 ~FD! 21.0 ~FD! 18.2 ~FD!

5.59 ~FC! 18.3 ~FC! 15.7 ~FC!

7.0 @18# 19.0 @18# 17.0 @18#

18.14c @17# 17.02 @17#

23.5062.0 @1#a 21.75c63.0 @1#a

21.6662.0 @1#b 20.05c63.0 @1#b

3s 1.04 ~FD! 3.51 ~FD! 1.96 ~FD!

0.701 ~FC! 3.47 ~FC! 1.74 ~FC!

0.9 @18# 3.4 @18# 2.1 @18#

3.94c @17# 2.24 @17#

3p 3.50 ~FD! 12.6 ~FD! 14.2 ~FD!

3.22 ~FC! 10.6 ~FC! 12.3 ~FC!

3.0 @18# 12.0 @18# 13.0 @18#

10.93c @17# 12.92 @17#

9.561.235 @3# 13.761.781 @3#

3d 2.70 ~FD! 4.93 ~FD! 2.09 ~FD!

1.67 ~FC! 4.25 ~FC! 1.62 ~FC!

1.5 @18# 2.75 @18# 1.75 @18#

3.27c @17# 1.86 @17#

aNormalized to Born approximation.
bNormalized to Glauber approximation.
cValue interpolated from published data.
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tween the two lattice methods for the 3s, 3p, and 3d exci-
tation probabilities is also fairly good, with the small di
crepancies attributed to the different overall box sizes.

The total excitation cross sections@see Eq. ~8!# for
intermediate-energy proton-hydrogen collisions calcula
with both the finite-difference and Fourier collocation me
d
-

ods are compared with each other, selected alternative t
retical approaches, and available experimental measurem
in Table II. The two lattice methods are in reasonable agr
ment for all transitions at all energies. Comparison is ma
with the recent single-center expansion coupled states ca
lation of Fordet al. @17# and the two-center atomic orbita
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close-coupling method of Kuang and Lin@18#. For excitation
at 40 keV, the single-center expansion method results
linearly interpolated from the reported cross sections at
and 45 keV. The lattice calculations are found to be in go
agreement with the theoretical predictions of the sing
center expansion and two-center atomic orbital metho
Comparison is made with experimental measurements
Park et al. @1# of the total excitation cross section to then
52 andn53 shells. For excitation at 100 keV, the expe
mental cross sections were linearly interpolated from
ported measurements at 95 and 105 keV. The experime
cross sections@1# are normalized at 200 keV to theoretic
values obtained with either the Born or the Glauber appro
mations. Both ‘‘normalized’’ measurements are included
Table II. The lattice cross sections forn52 andn53 exci-
tation fall within the error bars of the experiment at all e
ergies. Comparison is made with a number of experime
measurements@2–5,8–10# of the total excitation cross sec
tion to the 2s, 2p, and 3s subshells. The lattice results a
close to or fall within the error bars for all the measuremen
except for the 2s cross section at 10 keV reported by Cho
and Fite@10# and the 2p cross section at 10 keV reported b
Stebbingset al. @5#.

Charge transfer in proton-hydrogen collisions is examin
using only the finite-difference method. The capture pro
abilities as a function of impact parameter are presente
Fig. 5 for the 1s→1s transition and in Fig. 6 for both the
1s→2s and 1s→2p transitions at 10-, 40-, and 100-ke
incident proton energy. The diamonds and the triangles
the calculational results from the finite-difference meth
and the solid, dashed, and dotted curves are cubic sp
interpolations of the finite-difference results. Since thes
capture probabilities drop rapidly as a function of the imp
parameter, they are displayed on a logarithmic scale.
overall functional dependance on the impact parameter
mains the same for then52 andn53 probabilities, with the
absolute values being generally one or two orders of ma
tude smaller.

The total integrated charge transfer cross sections
intermediate-energy proton-hydrogen collisions calcula
with the finite-difference method is compared to other th
retical approaches and experimental measurements in T
III. Comparison is made with the two-center atomic orbi
close-coupling method of Kuang and Lin@18#, the con-

FIG. 5. Probability of charge transfer to the 1s state for impact
energies 10 keV~solid curve!, 40 keV ~dashed curve! and 100 keV
~dotted curve! as a function of impact parameter.
re
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tinuum distorted-wave calculations of Belkic´ et al. @20#, and
the symmetrized variational coupled distorted-wave meth
of Brown and Crothers@22#. The two-center atomic orbita
and symmetrized variational coupled distorted-wave met
results are digitized from plots in the original publication
The lattice calculations are found generally to be in go
agreement with the other theoretical approaches. The lar
discrepancy, by a factor of 3, is with the continuu
distorted-wave method for charge transfer to the 3d state at
40 keV. Comparison is made with a number of experimen
measurements@5–12,14# of the total charge-transfer cros
section to the 2s, 2p, and 3s subshells. The lattice result
are close to or fall within the error bars for all the report
measurements.

IV. SUMMARY

By direct solution of the time-dependent Schro¨dinger
equation on a three-dimensional Cartesian lattice, we h

FIG. 6. Probability of charge transfer to the 2s ~solid curves!
and the 2p ~dashed curves! states as a function of impact paramet
for selected impact energies:~a! E510 keV, ~b! E540 keV, ~c!
E5100 keV.
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TABLE III. Charge-transfer cross sections~in units of 10218 cm2! for proton-hydrogen collisions. Only
finite-difference method results are presented for comparison.

Final state Energy~keV!

10 40 100

1s 789.0 113.0 6.54
137.0 @20# 6.39 @20#

120.0 @18# 8.50 @18#

n52 53.3 28.2 1.54
39.40 @20# 1.66 @20#

2s 20.3 21.3 1.26
24.0 @22# 11.8 @22# 1.00 @22#

17.861.0 @10# 28.1 @20# 1.24 @20#

26.068.0 @8# 25.0 @18# 1.80 @18#

21.066.3 @11# 18.061.44 @12# 1.8060.144 @12#

24.063.0 @7# 20.063.0 @7# 1.1060.3 @6#

2p 33.0 6.94 0.280
40.0 @22# 5.0 @22# 0.118 @22#

26.461.3 @9# 11.2 @20# 0.291 @20#

31.065.0 @8# 7.0 @18# 0.4 @18#

38.0619.0 @5#

n53 9.71 9.11 0.500
13.8 @20# 0.577 @20#

3s 2.60 6.47 0.386
8.96 @20# 0.402 @20#

7.0 @18# 0.6 @18#

4.1261.06 @14# 6.2760.40 @14# 0.2860.09 @14#

3p 3.96 2.24 0.103
3.85 @20# 0.154 @20#

1.90 @18# 0.090 @18#

3d 3.14 0.304 0.0107
1.02 @20# 0.0213 @20#

0.20 @18#
T

po-
e to
ce

of

by
ity.
fice
rgy
dge
tin
car-
uter
calculated excitation and charge-transfer cross sections
proton-hydrogen collisions at intermediate energies. T
different lattice methods have been shown to yield subs
cross sections in good agreement with selected alterna
theoretical methods and the available experimental meas
ments. This study of proton scattering from the hydrog
atom, combined with earlier work on antiproton scatteri
from hydrogenic atoms@28–30#, has demonstrated that th
lattice method can be successfully employed to calculate
elastic cross sections for one-electron ion-atom collisio
This success can be attributed in large measure to the
stantial advances in computer technology realized over
the last few years. We are currently extending the Fou
collocation method to also handle capture processes and
forming further studies on the contribution to excitation a
capture fromn.3 states. This will allow us to make a rea
sonable estimate of the total ionization cross section.
challenge in the future is to extend the lattice approach
for
wo
hell
tive
ure-
en
ng
e
in-

ns.
sub-
just
rier
per-
nd
-
he
to

multiple electron targets through the use of core pseudo
tentials and/or time-dependent Hartree-Fock theory. Du
the low symmetry nature of the formulation, the latti
method may also be quite easily adapted to the study
ion-atom collisions in external fields.
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