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Electron—positive-ion scattering near reaction thresholds: Effect of long-range polarization forces
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A multichannel version of effective-range theory is developed, applicable to electron scattering by positive
ions. The formalism allows for the inclusion of the effect of long-range inverse-power-law interactions arising
from target distortion in the field of the projectile. A perturbation theory is described for the construction of
asymptotic states accounting for the combined effect of Coulomb and polarization forces. The explicit extrac-
tion of threshold branch-point singularities leaves modified reaction-matrix elements that vary slowly with
energy, thereby permitting the smooth extrapolation of scattering parameters through reaction thresholds. A
systematic procedure is made available to determine the effect of long-range forces on quantum defects and
resonance level shifts; it is applied here, as an illustration, in first order. The theory provides an extension, to
a wider class of scattering systems and long-range interactions, of an analysis of threshold behavior in electron-
ion reactions given some time afid. Galilitis, Sov. Phys. JETR7, 1328(1963]. [S1050-294{©8)03010-9

PACS numbd(s): 34.80.Kw, 03.65.Nk, 34.16-x

[. INTRODUCTION those that are required in our presentation are briefly sum-
marized, for convenience and to establish notation, in Sec. Il,
The theory of electron scattering by positive ions at enerwith some details relegated to Appendix A. In Sec. Ill the
gies near reaction thresholds has been a subject of intensiygrturbation theory applicable to the construction of the dis-
Study over the years, primar“y in the context of quantum-torted asymptotic wave functions is described and the ana-
defect theon[1]. The effective potential acting on the elec- Iytic properties of these solutions are determined; some de-
tron at great distances from the target includes, in addition téils are given in Appendix B. With this accomplished, the
the Coulomb interaction, a superposition of inverse powerapplication to the study of threshold behavior follows along
law contributions. For spherically symmetric targets, and infairly standard lines, with earlier worki,8] suitably modi-
the absence of target-state degenerd(ﬂ'ﬁ present study is fied to allow for the distortion of the asymptotic Coulomb
restricted to such systems for S|mp||(_)my]e dominant term Wwave functions. In Sec. IV the nature of the branch-point
is the 1f* polarization potential. Long-range power-law in- singularities of the scattering matrix for energies near reac-
teractions can play an important role, particularly in states ofion thresholds is considered. As in standard effective-range
high orbital quantum numbers. The effect of the*Jpoten- theory[7], such an analysis leads to the identification of a
tial (in the presence of the Coulomb figlon threshold scat- modified reaction matrix that has a smooth dependence on
tering parameters has been considered, in lowest-order peghergy near thresholds and may therefore be conveniently
turbation theory, by Seatdi2]. Our aim here is to provide a modeled with a few parameters. Moreover, it may be contin-
systematic treatment of the multichannel scattering problentied through thresholds, thus providing the basis for an ex-
accounting for the presence of a Superposition of |0ng_rangéminaﬂ0n of the resonance structure of the cross section be-
potentials. A perturbation expansion developed previouslyoW an excitation threshold. A study of this type was made
for scattering by a neutral, polarizable tar§@} is extended by Galilitis [8] for electron scattering by hydrogenic ions,
here to the Coulomb pr0b|em, thus a||owing for the treat_taking into account both the Coulomb field and the inverse-
ment of the distortion of asymptotic states to an arbitrarysquare potential arising from the degeneracy of excited states
order. A third-order calculation of the zero-energy polariza-0f the ion. Expressions were obtained for the energy-
tion phase shift over a range of interaction strengths is redveraged cross section, widths, and shifts of the resonances.
ported below, in Sec. Ill, as an illustration of the significanceAn extension of this procedure, applicable to a wider class of
of higher-order perturbations in physically relevant situa-scattering systems and long-range interactions, is made
tions. This calculational procedure is algebraic and is thereavailable by the approach developed here, and a simple il-
fore much Simp|er to perform than that of standard perturbalustration of this extension is given in Sec. V. Results are
tion theory. Of course, a long-range potential can besummarized in Sec. VI.
accounted for in all orders through the numerical solution of
a one-body scattering problem; such an approach was devel- ||. PRELIMINARIES: COULOMB WAVE FUNCTIONS
oped years ago in the form of a modified effective-range i i
theory [4]. The alternative analytic approach adopted here Here we summarize those properties of Coulomb solu-
has certain advantages, particularly in the treatment of resdlons that will be required later on. The wave equation de-
nance theory by extrapolation of scattering parameter§c”b'”9 an electron in an attractive Coulomb potentidins

through reaction thresholds. atomic unitg

Coulomb wave functions, satisfying different boundary )
conditions, play a prominent role in the theory. While their d_U+ K2+ g_ y(y+1) U=0 2.1)
properties have been well described in the litera{&é], r? r re ' '
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where the restriction to integral values of the orbital quantumwith
numbery is relaxed here in anticipation of subsequent de-

velopments. In terms of the parameters

z=(8Zn*? n=-ip, n=-2Ik, (2.2
we define a Coulomb solution
ny+l 22
J(n,y;2)= T(2y+2) Mn,y+1l2(ﬁ)! 2.3

whereM,, .. 1/, is the regular Whittaker functiof®,10]. The
large-distance behavior is

J(n,y;z) ~ A(n,vy)sin 6, (2.49
7000
with the proportionality factor given by
2| 7]|'y+le7777/2
A(n,y)= Ty it (2.4b
and phases defined as
O=kr—ym/l2—nIn2kr+o,, (2.5
and
o,=argl'(y+1+in). (2.6

B '(y+1+n) by(y)| cosm(2y+1)
G(n,y)= N2 1 (n—v) pzo n° | sinmw(2y+1)"
(2.108

Here theb,(y) are polynomials iny with by(y)=1; the
procedure for calculating these parameters is given by Ham
[5]. The integet is the orbital quantum number of interest in
the limit of vanishing polarization forces. The limiting form
G(n,l) is well defined and is given in Appendix A. The
function Q(n,v;z) is an entire analytic function; it may be
represented as an absolutely convergent series in powers of
the scattering energyl 2].

One may also introduce outgoing- and incoming-wave
Coulomb solutions. Expressed in terms of Whittaker func-
tions we have

O(n,y;2)=e""%e "2l W, | 1(Z%/4n), (2.11)
with asymptotic formO(n,y;z)~e'?; the incoming-wave

solution, I (n,y;z)=0*(n,y;2z), has the forme™'? at great
distances.

Ill. DISTORTED ASYMPTOTIC WAVES

For definiteness and simplicity we assume that beyond a

We record for later reference the series expansion, in termsertain radius the effective potential matrix is diagonal,

of regular Bessel functions,

J(n,y;z)=p§O ap2’ 15,114 p(22), 2.7
with
ap=1, a;=0, a,=(y+1)/4n?
a,=(4n’p) '[(p+2y)ap 2—a,-3], P=3. (2.9

with the Coulomb potential modified only by the addition of
the polarization interactior- 82/2r*. It will be clear how to
include additional terms of longer range. For e partial
wave, and with the abbreviatiops=kr and A= (k)?, the
radial equation of interest is

2 1(1+1) 29
(d—pz— (3.1

f14 2
>  p p*

d(p)=0

in the regionr>r,. With C a normalization constant to be

Convergence and analyticity properties of the expansion ardetermined, the substitution(p) = C(mp/2)"’m(p) leads
derived in Ref[5]. If 2 y+ 1 is not an integer an independent t0 the transformed equation
solution is obtained from the above results by replacing

with —y—1.

A second solution of Eq(2.1) that is independent of

J(n,v;z) for all values of 2y+1 may be defined asl1]
N(n,y;z)=[sin w(2y+1)]*

I'(y+1+n) 3 _ ot l
I (=) (n,y;z)cosm(2y+1)

=J(n,—y—1;2)|. (2.9

The Wronskian is determined to b@N’'—NJ' =22/,
where the prime denotes differentiation with respeact tbis

2 d2 d 2 2
Limi(p)=|p d—pz+p @er —2np—(1+1/2)

A
><m|(p)=—’7 mi(p). (3.2

Generalizing the procedure describ@or the casep=0) in

Ref. [3], we look for a solution in the form of a series
my(p) =3{_oAIm{(p). Coulomb wave functions that are
sinusoidal at great distances, with unit amplitude, satisfy a
useful recurrence relatidd 3]. It will be available to us if we
take the lowest-order solution of E(.1), corresponding to

A =0, to be the functior®(n,l;z) (in the notation of Sec. ]I

not possible to obtain a series expansion of the functiodP€having asymptotically as an outgoing wave. In the version

N(n,y;z) that is convergent for aly. To surmount this dif-
ficulty one define¢5] an irregular solution of Eq2.1) as

Q(n,y;2)=N(n,y;2)—G(n,y)J(n,y;z), (2.109

of the recurrence relation given in REL3] an integral value
for the orbital quantum number is assumed. However, the
relation can be shown to hold for nonintegral values as well,
in the form



2866 LEONARD ROSENBERG PRA 58

1 2
5 My =e(nmil+e(—y=1)mY, +e(y)m, m(yl)(p)=p:2_2 (1 8,0 [(N+p)2— A2~ d,m® (p).
(3.33 (3.9
with The lowest-order solution on the right is assumed to be
1)24 2712 known in terms of the Whittaker function in E¢.11) or, to
(y)= —[(7+ )"+ ] , eoly)=— U . the d_esired accuracy, from Eq#a4) a_md(_2.7) as an expan-
(2y+1)(y+1) y(y+1) sion in powers of the energy. Examination of the asymptotic
(3.3b  form of the first-order solution provides us with an expres-
sion, given in Appendix B item 3, of the first-order phase
Here the notation for the orbital quantum number anticipateghift ~(1). One sees that this phase vanishes at threshold and
a shift induced by the polarization potenti@]. The unit s jnvariant under the replacemept-—y—1: these prop-
amplitude condition is preserved in higher orders by suit-grties hold to all orders.
able normalization of¢(p). The normalized solution_will From the first-order version of E¢3.4) the shifted orbital
be denoted a®(n, y;2). It has the asymptotic form ex@),  quantum number is obtained from that solution of
where = 6+ 7. Here 6 is given by Eq.(2.5 and the phase
shift 7 is to be determined. An incoming wave solution 5 , 1 A (1 672
of Eq. (3.1 is defined in a similar way, with (n,y;z) 1%+1=x _Z+ N2—1 §+4)\2_1
~exp(—if) for r—o. The overbar notation will be used to
distinguish distorted waves from their pure Coulomb coun-which approachekin the limit A— 0. The result is expected
terparts introduced in Sec. Il. Once the functiéhsndl are  to be most useful foi>1; the polarization potential will
determined, in some approximatiod, is constructed as have a dominant effect in that domain. However, for polar-
A(n,y)[O—17/2i, the distorted-wave version of E¢A3).  izabilities of physical interest the first-order approximation is
The expression that relatééto the functionsJ(n,v;z) and essentially useless for=0 andl =1. W|t_h the approximation
J(n,— y—1;2) is of the form(2.9) with the samelinear co- (3.'9) adopted, _and foh_ —yl<l(@ relatl_on that hOIdS overa
efficients, and Wronskian relations are unchanes. wide range of interaction strengdhsne finds, to first order in

(3.9

If, in Eq. (3.2, one makes the replacement =
* 282K (1+1)+6B°Z°
2_ 2 ) | —y= . (3.10
(1+1/22=(y+ 122+ S AT, 3.4 1T 1)2113) 2+ D)2 -1)
=0

seen here, the renormalization of the orbital quantum
mber introduces a dependence on energy; this has a sig-
nificant influence on threshold behavior.
The argument= 6+ 7 of the distorted wave may be writ-
ten in the formkr—I#/2— 7 In 2kr+ o+ &, thereby defin-
ing a polarization phase as

. . . _As
one arrives at a sequence of perturbation equations, the fll’ﬁh
three of which are

L,m(p)=0, (3.53

L,miP(p)=(TV=p 2 mP(p), (35D

@ 2 (0) D 2y o=(l-y)ml2+o,— o+ 7. (3.11
L,my (p)=I""m"(p)+(I""=p~)m"(p).
(359 As shown in Appendix B item 4, the relatiom,— o =(l
— ) /2 holds in the limitk=0, and since the phasevan-
elshesjl that limit the total polarization phase takes on the
value 6= (I — y) 7 at threshold. This point is discussed fur-
ther in Sec. V in connection with Seaton’s theorfghrelat-
2 ing phase shifts and quantum defects at threshold. To gain
), \_ (0) some numerical orientation regarding the effect of higher-
My (p)_p;2 Aoy p(p)- 36 order perturbations we have carried the calculation of the
polarization phase up to third order, over a range of values of
The term on the right corresponding ppe=0 must be elimi- 5222, for the casé&=0 and several partial waves. The result
nated by suitable choice &% to avoid the appearance of a for =3 appears in Fig. 1 as the solid curve obtained by
spurious singularity3]; this yields interpolation; the dashed line represents the first-order polar-
ization phase given in Eq3.10 and the individual points
Ir'Y=dy=e(y)e(—y—2)+e(—y—1)e(y—1)+[ey(y)]% represent values found in second order. Convergence im-
(3.7 proves rapidly withl. For | =4 the lowest-order calculation
agrees with the third-order result to within 0.5% f6fZ2
The remaining coefficientd,, are listed in Appendix B item =30. A similar calculation foll =2 provides an indication
1. In terms of these coefficients, and with=y+1/2, the that to obtain an accuracy of better than 10% in third order
solution of Eq.(3.5b) is obtained immediately as one is restricted to the rang#Z?<5. Greater reliability of

With the lowest-order solution chosen as indicated abov
the recurrence relatiof8.3) may be applied to determine the
coefficients in the expansion

1
Py
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to a different entrance channel. The rows represent the open
channels.

Following standard procedufé6] we represent the mul-
tichannel scattering matrix & =¢'°Se'?. Hereo is a di-
agonal matrix with the Coulomb phase appropriate to each
channel as diagonal elemenfhe Coulomb phase is given
by Eq.(2.6) where in the present contextis replaced by the
orbital quantum numbelr; for theith channe] The scatter-
ing matrix S is defined in terms of the asymptotic form of
the wave function with pure Coulomb solutions representing
the incoming and outgoing waves. When reexpressed in
= 75 =5 =5 25 terms of the distorted waves defined in Sec. Il the asymptotic

(BZ)2(a. u.) form becomes

polarization phase

FIG. 1. f-wave polarization phase for the potentialg?/2r* yi~1,6:—0;S; . (4.1
—Z/r (atomic unit3 at zero energy as a function oBZ)?, evalu- S o
ated in third order(solid curvg. The individual points represent By comparison of the asymptotic forms of the wave func-
results obtained in second order and the dashed line gives the reskgns defined with and without the inclusion of polarization

of the lowest-order approximation obtained by including a factor of, . . AT )
7in Eq. (3.10 of the text. interactions one arrives at the relatish=e'°Sd?, wheres

is the diagonal phase matrjt7] with elements defined for

. L . — each channel in Eq3.11). As an alternative to Eq4.1) we

this approximation procedure is expected for applications t(?nay write the asymptotic form, wits=1+2iT, as

potentials of longer range than ther4fpotential discussed ' ’

above. _ _ ) - o _(Zi)_1¢ji~Fi5ji+ojTji , 4.2
The perturbation calculations are simplified in practice if

one takes advantage of the invariancel® under the re- \yhere F is a diagonal matrix the nonvanishing elements

placementy— —y—1. This property is verified explicitly in  of which are distorted-wave versions of the regular Coulomb

first order by the result shown in E3.7). A proof to all  so|ution defined in Eq(A2). Additional transformations

orders is sketched in Appendix B item 2. Note that since thgyre yseful at this point. By extension of EG85) we have

invariance property carries over to the Qeterminationyof O= CsJ_+ c4ﬁ. With this replacement made in Ed4.2)

according to !Eq(3.4), the samg value of is to be. used in along with the substitutiolN=GJ+ Q [a distorted-wave ex-

the construction of the two d|stc?rt_ed wavagn, v;2) a|_1d tension of Eq(2.103] we have, after a suitable renormaliza-

J(n,—y—1;2), as has been anticipated by our choice oftjon a wave function behaving at great distances as

notation. The perturbation theory plays another useful formal

role in establishing the analytic properties of the distorted u.iNIM.i_ag.i_ (4.3

waves in each order. One observes that if the correction is SR .

analytic in the energy to a given order this property is pre-The relation connecting the matric€sandM is found (after

served in the next higher order since the perturbing factosome algebrato be

Ap~ 2 is energy independent, and possible singularities aris-

ing from the inversion of the operatdr, are avoided T=fYIM—(h+if )] 12 (4.9

through the choice df (™. This remark is developed in more

detail in Appendix B item 5. Here we have set-(c3/cy+G)=h+if wheref andh are

the real, diagonal matrices

IV. SCATTERING MATRICES f=2m) e "I (1+ y+ip)|qy ?*Y (4.5

Having introduced basis functions for electron-ion scattergng
ing that account for Coulomb and longer-range interactions it
is now possible to define a scattering matrix from which h=—-ReG(n,y)+f €27 sin 27y. (4.9
factors are removed that contain branch point singularities at
thresholds. This leaves a function that varies smoothly withAs will be discussed further below, the mathkis a smooth
energy, thus providing the basis for a multichannel effectivefunction of the energy in the neighborhood of reaction
range theory that extends earlier formulatig@s,15. Our  thresholds. Hence Ed4.4) exhibits threshold singularities
treatment follows closely that of Rdf15], differing from it explicitly, thereby providing the basis for an effective range
by the inclusion of the combined effect of the Coulomb tail theory. As a partial check on these developments we note
and polarization forces of longer range. Target states are athat in the absence of polarization forceds replaced by the
sumed to be spherically symmetric and nondegenerate. Wategerl and the limiting relation shown in E¢A1) for the
suppose that the scattering problem has been reduced to ofumction G is employed. One then verifies that E¢.4) re-
defined by a set oN coupled radial equations, involving a duces to Eq(10) of Ref.[8], the version appropriate to stan-
real, symmetric effective potential matrix; &8llchannels are dard multichannel Coulomb scattering. Further reduction, in
assumed to be open. The wave function then appears aswaich the effect of the Coulomb tail is not included, leads to
sguare matrix consisting dff columns, each corresponding the effective-range formalism of Ross and SHaiy



2868 LEONARD ROSENBERG PRA 58

The unitarity of the scattering matrix implies the relation tinuum threshold in order to determine the effect of long-
T—T'=2iTT". With the T matrix given by Eq.4.4), uni-  range polarization forces on the relation between scattering
tarity will be satisfied ifM is Hermitian. In factM must be  parameters and bound-state energies. At an energy corre-
real and symmetric to satisfy the symmetry propertyTof sponding to a bound state the scattering amplitude has a pole
For single-channel scattering in a given partial wave, unitarso that
ity allows for the representatioi=e'° sin § with the real
phase shiftf accounting for the short-range interaction. From M—h—if=0. (5.9

the single-channel version of E@t.4) it follows that )
For M we use the expressio@.?), evaluated at an energy

M=f cot §+h. (4.77  Justabovethreshold. In that limit the functiofy given by Eq.
(4.5, goes to unity[18] and, as seen from Ed4.6) with

Writing T0=¢' & sin &, we find that the phase shié® rela- ez’”f set e_qual tq zgrd;—>'—ReG(n,y). This latter function _
tive to pure Coulomb scattering is given by the sdm a of vanishes in the limit considered, as may be seen by making

the short-range and polarization contributions. use of the identity
Returning to the general multichannel problem we remark
that the variational procedure provides an effective method

for constructing approximations fd that preserve not only i, the defining relatior(2.100, and evaluating the result at
the reality and symmetry properties but the analyticity of theyreshold. Thus in Eq. (5.1) is replaced by cos, wheres

M matrix as well. With regard to this latter property, one now represents the threshold value of the short-range phase
qbserves that thre_zshold smgular_mes can appear in the varianift. The calculation below threshold &f+if = —(cslc,
tional representation of the matrix only through the behav- +G) is performed by setting=i x, with « real and positive,

ior of the trial functions in the asymptotic region. These trial g approaching zero from above. Referring to Hasb)
functions, however, have the asymptotic form shown in Eqye find, after a brief calculation, that

(4.3), expressed in terms of distorted wavkandQ that are

analytic in the energy variable. Such a trial function may be C3
connected smoothly to an inside function that is weakly 0_4500'[77
energy-dependent thereby providing a variational formula-

tion of the effective-range approximation. In its simplest ver-and thatG vanishes. The parameter the threshold energy
sion this approximation leads to a representatioMo&s a E,, and the bound-state enerdy, satisfy the relationx?
two-term expansion in powers of the excitation energy near & 2 (E,— E,). With E,—E,, expressed in terms of the quan-

reaction threshold with coefficients, variationally deter-tym defectu evaluated at threshold, E¢5.1) becomes
mined, that are matrix generalizations of the scattering length

and effective range parameters. The formulation of the varia- cot d=cot w(u+y—1). (5.9
tional principle for the problem considered here is essentially

identical to that described previously for scattering by a neulf one interprets this result as an example of Seaton’s theo-
tral target[15] and need not be repeated. One need onlyem [6] relating the phase shift at threshold to the quantum
account for an altered normalization factor arising from thedefect one should identify.+ y—1 as theshortrange con-
Wronskian relationJQ’ —J'Q=2Z/7 between the basis tribution to the quantum defect and herice y should be

I'n—y)I'(y+1—n)=m csca(n—1y) (5.2

z
(D 5.3

functions. identified as the polarization contribution. We denote this
latter quantity ag so that(recalling our earlier evaluation of
V. CONTINUATION BELOW THRESHOLD the polarization phase at threshple can write 6= mu

relating the polarization contributions to the phase shift and

Owing to the presence of a Rydberg series of resonanceguantum defect at threshold. This relation agrees with that
just below an excitation threshold the scattering amplitudeobtained by Seatof2] using ordinary first-order perturbation
TP in this domain will vary rapidly with energy. A knowl- theory for the effect of the polarization interaction on phase
edge of the amplitud&? above threshold, obtained either by shifts and quantum defects. For high partial waves one may
calculation or deduced from experiment can, by analytic conexpect the ¥/ potential to provide the dominant contribu-
tinuation, give useful information on the resonance structurdion to the quantum defect. A very early first-order perturba-
of TP. Effective-range theory, based on the smooth energyive calculation based on this id¢49] gives a valueu =1
dependence of th®l matrix, provides the basis for the ana- —y with | —y given by Eq.(3.10. These results provide
lytic continuation process. Such a procedure, described bgonsistency checks on the formalism developed here, which
Gailitis [8] for the problem of electron scattering by hydro- is not restricted to calculations done at threshold in lowest-
genic ions(accounting for both the Coulomb and long-rangeorder perturbation theoryThis is true, in particular, of the
inverse-square potentialsnay now be extended to the wider parametery appearing in Eq(5.4), as discussed in Sec. llI
class of problems under consideration here. While greateand illustrated in Fig. 1.
generality is possible, we shall limit the present discussion to The shift in the quantum defect arising from the polariza-
energies sufficiently close to threshold so that the energtion potential may be expected to play an analogous role in
variation of theM matrix may be ignored completely, that is, the multichannel scattering problem, leading to a corre-
we setM?=MP. In addition, it is assumed that only one sponding shift in the positions of the Rydberg resonances
channel opens at the threshold under consideration. lying just below an excitation threshold. This matter is most

We first consider single-channel scattering at the consimply studied by suitable modification of the resonance
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analysis given by Gailiti§8], who traced the source of rapid me by Dr. M. J. Cavagnero on the applicability of secular
oscillation of the cross section to the presence of a ternperturbation theory to scattering in the presence of the Cou-

cotmZ/k; in a resonance denominator. Hemg=[2(E; lomb interaction is acknowledged.
—E)]*?, the energ)E being measured from the threshold of
the new channel. Without repeating the details of the argu- APPENDIX A: COULOMB FUNCTIONS

ment given in Ref[8], we remark that inclusion of the po- ] ]
larization interaction has the effect of replacing the cotangent Some properties of Coulomb wave functions that are re-

function by cofmZ/w,+ ], wherez=1— v is just the polar- ferred to in the text are listed here for the convenience of the
ization contribution introduced above in the discussion of€ader. _ , _
discrete states. The expression for the resonance 2 (1) The limiting form of the functionG(n, ), given in

is unaltered by this modification but the resonance pattern i§9- (2.108, for y—1, is
shifted by an amount-Du, whereD is the distance be- T(y+14n)
tween resonances. This result follows from the fact that the  27G(n,l)= 77—~
reference level from which resonance positions are reckoned =" T(n—y)

has been shifted. The main conclusion reac_hed in [Béis X[W(y+1+n)+W(n—y)—2Inn]
unaltered, namely, that the total cross section, its value be-

low threshold taken to be an average over resonances, is : dby(y)
continuous across the threshold - Tdy | (A1)
p y=1
VI. SUMMARY whereW is the logarithmic derivative of thE function[21].

) N (2) The standard regular solution, satisfying
The standard theory of scattering by a modified Coulomb

interaction is formulated in terms of distorted asymptotic so- F(n,y;2)=(21)"YO(n,y;2)—1(n,y;2)], (A2)
lutions that account for the presence of the Coulomb tail.

This allows for the introduction of a reaction matrix that is behaves as sif asymptotically, withé given by Eq.(2.5).

free of threshold singularities and hence serves as the badisom Eq.(2.4) we have

for simple parametrizations of the scattering data as well as

an analytic continuation below excitation thresholds. This J(n,7,2)=A(n,y)F(n,y;2). (A3)
approach has been carried a step further here through thﬁ1e outaoing wav lution mav be expr d the linear
inclusion of long-range polarization interactions in the defi- utgoing wave solution may be expressed as the finea
nition of the asymptotic states. In the absence of exact ané:_omblnatlon
lytic solutions f_or potentials c_)f this type, a previously devel- o(n,y:2)=c,d(n, ¥:2) +cd(n,— y—1:2), (Ada)
oped perturbation theory for inverse power-law potenfia]s

has been extended to include the Coulomb potential. It apwith linear coefficients given by

pears, from numerical tests, that this version of the approxi- .

mation procedure for determining the asymptotic solutions, Cy=— "™ 1V Ry csd m(2y+1)]

while quite effective for the higher orbital quantum numbers, ~ (T (= y—nl) -1

will have to be supplemented by some other technigueh xn (IT(=y=nD~%
as direct numerical solution of a one-body radial Sdimiger
equation[4]) for the lowest few partial waves. While thus
limited to some extent, the perturbation theory serves a use-
ful formal role, allowing for the examination of analyticity aAnother useful relation is

and invariance properties of the asymptotic solutions. Based

on this analysis, the analytic form of the threshold singulari- O(n,y;z)=c3d(Nn,y;2) +c4N(n,y;2), (A5a)
ties of the scattering matrix is determined and this permits

the introduction of a modified reaction matrix that is free of where

such singularities. With this M matrix” properly defined, 2 iyl2 R
approximation techniques, such as the variational method®s=€"" "€ [T(y+1+n)n cosm(—y—1+n),
[15], are available for its construction and the basis for an
effective-range theory applicable to electron scattering by
positive ions is thereby provided. A particular application of
interest would be a study of the effect of long-range polar-
ization interactions on resonance parameters. As an illustra- APPENDIX B: PERTURBATION THEORY
tion, a preliminary treatment of this problem has be given
here, leading to expressions for near-threshold modificationﬁo
of quantum defects and resonance level shifts.

c,=e"%e” "2 cs¢ m(2y+ 1) ([T (y+1-n|) "%
(Adb)

c,=e’™2e V™21 (= y+n)|n? sin w(—y—1+n).
(A5b)

(1) To complete the specification of the first-order correc-
n, shown in Eq.(3.8), of the outgoing Coulomb wave
function we list the expansion coefficients as
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with e(y) andey(y) defined in Eq(3.3b. ag(N)=—-[2(\2—1)]?,
(2) The invariance property of the functiod¥®) under
the exchangey— — y—1 is evident in the first-order result ap(N)=—[16(A+1)2A(N+1/2) (A +3/2)] L.

shown in Eq.(3.7). We examine this property more explic-

itly, emphasizing those features that allow us to extend it to (4) In determining the threshold value of the polarization
all orders. To begin we note that the coefficieqty) of the  phase, defined in Eq(3.11, the relation o,—o=(l
term that raises the index by unity and the coefficient — 7)/2, valid in the limitk=0, was used. This relation may
(—y—1) of the lowering term transform one into the other be verified by examining the expansion,—o;=(\—1)o’
while the coefficieni,(y) of the term that leaves the index +1/2(\—1)?c"+-, where

unchanged is invariant under the exchange —y—1. An

@teration o_f the operatiop is required in first orQer; the re_sult 0’5% =—ImW(1+I—iy). (B5)

is shown in Eq/3.7). It is helpful to adopt a diagrammatic Y
view of this iteration process, in which index shifts are re-

lated to upward, downward, and horizontal steps that stat/sing the relation$21]

and end at a given reference level, corresponding to the ini- ) o o

tial value of the indexy. The pattern of steps thus generated Y(1+l—in)=(—in) "+ (-1-in) "+--+W¥(1
has a reflection symmetry about that reference level; for ex- —in) (B6a)
ample, along with a step upy y+1) and then down ¥ ’

—y—1) one includes a step down and then [Ufhis picture  gp(g

is justified by the form of the first-order Eg&.7) and (B1),

y=I

and applies to higher orders as wglThe analysis may be . 1 T

simplified at the outset by recognizing that horizontal steps Im ¥ (1—in)=— m*‘ 5 cothm|y|,  (B6b)
(y— y)—in first order these lead to the last term in Eq.

(3.7—preserve the invariance property of inter¢since  we find thato’' = — /2 in the limit | 7|—o. It remains to

eo(y) is invarian] and may therefore be safely be ignored inshow that higher orders in the Taylor series expansion of
the proof. Each upward step may be paired with a downwarg;_ — o vanish. This follows from the threshold behavior of
partner obtained by reflection through the reference levekne coefficientse” = —Im ¥, ¢”=—Im ¥®, etc.: these
The coefficientse(y) ande(—y—1) associated with these coefficients vanish since the polygamma functif2s]

steps are transformed into one another under the exchange

y— —vy—1, as noted above. This observation is sufficient to d"

verify the invariance property of' ). Extension of the ‘P(n)(Z)E@\P(Z) (B7)
analysis to higher orders follows along very similar lines,

with the paired steps having associated with them the coefyanish asz™" for z—« in |argZl<#7 and herez=1+1
ficients e(y+p) and e(—y—1+p), with p an integer, +i|y|. o

which are transformed into one arglo)ther. _ (5) The distorted waveF(n,v;z), behaving asymptoti-

_ (3 The first-order contributionr'™, to the phase shift 4y a5 sing, is not analytic in the energy, but each term in
n Eq. (3'1]). 'S o(?}amed by examining the asy_mptotlc form the perturbation expansion of the renormalized function
of the functionm,’(p), appearing in Eq(3.8). With the aid J(n,y:2)=A(n,y)E(n,v:2) is analytic. As mentioned ear-

of Egs.(B1) and the relation lier, and proved in Ref[5], the unperturbed function is ana-
Iytic. [It is represented in Eq2.7) as a convergent expansion
o, 1= 0, Han ! o (82)  of analytic functiong We now show explicitly that this
y+1 property is preserved in first order; the procedure for extend-
ing this demonstration to higher orders should then be clear.
we find that The perturbation theory was formulated in terms of the
functionm(p), satisfying Eq(3.2). For our present purposes
1 & (B3 Wwe identify F(n,7,2)=(mp/2)""mP(p); since the two
1+ag functions are related by the same facterp(2)*? in each
order andF(n,vy;z) is ultimately normalized to unit ampli-
To make the invariance of(") with respect to the inter- tude this factor plays no role in the discussion and will be
changey— —y—1 manifest we express the coefficiemls  ignored. The functiorm{’(p) given in Eq.(3.9) is to be
anda; in terms of the variable. = y+ 3 and obtain the re- myltiplied by the strength parametar=82k%. We wish to
lations convert the resultant expression to one relating the first-order
correction toJ(n,y;z) to a combination of the unperturbed
ac=Anfaci (M) +ac(—N)+ac(M)], functions J(n, y+ p;z). For this purpose we multiply both
sides byA(n,y), and on the right-hand side we replace
a1 (M) =2 (A +1)(2A+1) (2N +3), m® (p) by A"X(n, y+p)I(n,y+p;2). [A factor (mp/2)*?
enters but is cancelédWe now collect and list all energy-
ao(N)=—[(\N*=1H(\*-9/4]7 1, (B4) dependent factors that appear in each of the four tegms (
=+2p==1) in the expansion.
ag=Aag (M) + AT agn(N)+agu(—N)+2a,(N)], p=2: Along with the factor

D=tan
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AA(N, YA YN, y+2)= 22| y+2—ig||y+1—in|n 2 Note that wher" ™), given in Eq.(3.7), is multiplied byA
the result is a sum of three terms each of which being ana-

we must include the energy-dependent contribution arisingytic. The analysis of the structure &) given in item 2 of
from the coefficientd,, which is seen from EqB1) to be  this appendix can be used to show tidi" @ is analytic.
[(y+2)%+ 721 (y+1)%+ *]¥2 These factors combine Since the higher-order functiomsg) are expressed as linear
to give the analytic function[(y+2)%k?+(7k)?][(y  combinations of lowest-order functions we are led to apply
+1)%k%+(7k)?]. p=1: The factor AA(n,y)A '(n,y  an analysis similar to that outlined above to functions of the
+1)=A|y+1—in|p ! combines with the factorp[(y form Ap‘zm(yojp and arrive at the conclusion that each term
+1)%+ °]"2 contributed by the coefficierd; to give[(y in the perturbation expansion d{n,y;z) is analytic in en-
+1)%k?+(7k)?]. p=—1: The product ofAn|y—in|~*  ergy. In a similar way one may show that the function
and 7(y?+ 7°)2is a constant. p=—2: The product of Q(n,y;z) is analytic. The analyticity in lowest order of this
An?ly—in| Yy—1-ig|"' and (*+7)Y{(y—1)*> function was established by Hafis] and is preserved in

+ 7%)]*?is a constant. higher orders.
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