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Electron–positive-ion scattering near reaction thresholds: Effect of long-range polarization forces

Leonard Rosenberg
Department of Physics, New York University, New York, New York 10003

~Received 4 February 1998!

A multichannel version of effective-range theory is developed, applicable to electron scattering by positive
ions. The formalism allows for the inclusion of the effect of long-range inverse-power-law interactions arising
from target distortion in the field of the projectile. A perturbation theory is described for the construction of
asymptotic states accounting for the combined effect of Coulomb and polarization forces. The explicit extrac-
tion of threshold branch-point singularities leaves modified reaction-matrix elements that vary slowly with
energy, thereby permitting the smooth extrapolation of scattering parameters through reaction thresholds. A
systematic procedure is made available to determine the effect of long-range forces on quantum defects and
resonance level shifts; it is applied here, as an illustration, in first order. The theory provides an extension, to
a wider class of scattering systems and long-range interactions, of an analysis of threshold behavior in electron-
ion reactions given some time ago@M. Gailitis, Sov. Phys. JETP17, 1328~1963!#. @S1050-2947~98!03010-8#

PACS number~s!: 34.80.Kw, 03.65.Nk, 34.10.1x
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I. INTRODUCTION

The theory of electron scattering by positive ions at en
gies near reaction thresholds has been a subject of inten
study over the years, primarily in the context of quantu
defect theory@1#. The effective potential acting on the ele
tron at great distances from the target includes, in additio
the Coulomb interaction, a superposition of inverse pow
law contributions. For spherically symmetric targets, and
the absence of target-state degeneracies~the present study is
restricted to such systems for simplicity! the dominant term
is the 1/r 4 polarization potential. Long-range power-law in
teractions can play an important role, particularly in states
high orbital quantum numbers. The effect of the 1/r 4 poten-
tial ~in the presence of the Coulomb field! on threshold scat-
tering parameters has been considered, in lowest-order
turbation theory, by Seaton@2#. Our aim here is to provide a
systematic treatment of the multichannel scattering probl
accounting for the presence of a superposition of long-ra
potentials. A perturbation expansion developed previou
for scattering by a neutral, polarizable target@3# is extended
here to the Coulomb problem, thus allowing for the tre
ment of the distortion of asymptotic states to an arbitr
order. A third-order calculation of the zero-energy polariz
tion phase shift over a range of interaction strengths is
ported below, in Sec. III, as an illustration of the significan
of higher-order perturbations in physically relevant situ
tions. This calculational procedure is algebraic and is the
fore much simpler to perform than that of standard pertur
tion theory. Of course, a long-range potential can
accounted for in all orders through the numerical solution
a one-body scattering problem; such an approach was de
oped years ago in the form of a modified effective-ran
theory @4#. The alternative analytic approach adopted h
has certain advantages, particularly in the treatment of re
nance theory by extrapolation of scattering parame
through reaction thresholds.

Coulomb wave functions, satisfying different bounda
conditions, play a prominent role in the theory. While th
properties have been well described in the literature@5,6#,
PRA 581050-2947/98/58~4!/2864~8!/$15.00
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those that are required in our presentation are briefly s
marized, for convenience and to establish notation, in Sec
with some details relegated to Appendix A. In Sec. III t
perturbation theory applicable to the construction of the d
torted asymptotic wave functions is described and the a
lytic properties of these solutions are determined; some
tails are given in Appendix B. With this accomplished, t
application to the study of threshold behavior follows alo
fairly standard lines, with earlier work@1,8# suitably modi-
fied to allow for the distortion of the asymptotic Coulom
wave functions. In Sec. IV the nature of the branch-po
singularities of the scattering matrix for energies near re
tion thresholds is considered. As in standard effective-ra
theory @7#, such an analysis leads to the identification o
modified reaction matrix that has a smooth dependence
energy near thresholds and may therefore be convenie
modeled with a few parameters. Moreover, it may be con
ued through thresholds, thus providing the basis for an
amination of the resonance structure of the cross section
low an excitation threshold. A study of this type was ma
by Gailitis @8# for electron scattering by hydrogenic ion
taking into account both the Coulomb field and the inver
square potential arising from the degeneracy of excited st
of the ion. Expressions were obtained for the ener
averaged cross section, widths, and shifts of the resonan
An extension of this procedure, applicable to a wider class
scattering systems and long-range interactions, is m
available by the approach developed here, and a simpl
lustration of this extension is given in Sec. V. Results a
summarized in Sec. VI.

II. PRELIMINARIES: COULOMB WAVE FUNCTIONS

Here we summarize those properties of Coulomb so
tions that will be required later on. The wave equation d
scribing an electron in an attractive Coulomb potential is~in
atomic units!

d2U

dr2 1Fk21
2Z

r
2

g~g11!

r 2 GU50, ~2.1!
2864 © 1998 The American Physical Society
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where the restriction to integral values of the orbital quant
numberg is relaxed here in anticipation of subsequent d
velopments. In terms of the parameters

z5~8Zr !1/2, n52 ih, h52Z/k, ~2.2!

we define a Coulomb solution

J~n,g;z!5
ng11

G~2g12!
Mn,g11/2S z2

4nD , ~2.3!

whereMn,g11/2 is the regular Whittaker function@9,10#. The
large-distance behavior is

J~n,g;z! ;
z→`

A~n,g!sin u, ~2.4a!

with the proportionality factor given by

A~n,g!5
2uhug11ehp/2

uG~g111n!u
, ~2.4b!

and phases defined as

u5kr2gp/22h ln 2kr1sg , ~2.5!

and

sg5arg G~g111 ih!. ~2.6!

We record for later reference the series expansion, in te
of regular Bessel functions,

J~n,g;z!5 (
p50

`

apzp11J2g111p~2z!, ~2.7!

with

a051, a150, a25~g11!/4n2,

ap5~4n2p!21@~p12g!ap222ap23#, p>3. ~2.8!

Convergence and analyticity properties of the expansion
derived in Ref.@5#. If 2g11 is not an integer an independe
solution is obtained from the above results by replacingg
with 2g21.

A second solution of Eq.~2.1! that is independent o
J(n,g;z) for all values of 2g11 may be defined as@11#

N~n,g;z!5@sin p~2g11!#21

3F G~g111n!

n2g11G~n2g!
J~n,g;z!cosp~2g11!

2J~n,2g21;z!G . ~2.9!

The Wronskian is determined to beJN82NJ852Z/p,
where the prime denotes differentiation with respect tor. It is
not possible to obtain a series expansion of the func
N(n,g;z) that is convergent for allg. To surmount this dif-
ficulty one defines@5# an irregular solution of Eq.~2.1! as

Q~n,g;z![N~n,g;z!2G~n,g!J~n,g;z!, ~2.10a!
-

s

re

n

with

G~n,g!5F G~g111n!

n2g11G~n2g!
2 (

p50

l
bp~g!

n2p G cosp~2g11!

sin p~2g11!
.

~2.10b!

Here thebp(g) are polynomials ing with b0(g)51; the
procedure for calculating these parameters is given by H
@5#. The integerl is the orbital quantum number of interest
the limit of vanishing polarization forces. The limiting form
G(n,l ) is well defined and is given in Appendix A. Th
function Q(n,g;z) is an entire analytic function; it may b
represented as an absolutely convergent series in powe
the scattering energy@12#.

One may also introduce outgoing- and incoming-wa
Coulomb solutions. Expressed in terms of Whittaker fun
tions we have

O~n,g;z!5ehp/2e2 igp/2eisgWn,g11/2~z2/4n!, ~2.11!

with asymptotic formO(n,g;z);eiu; the incoming-wave
solution, I (n,g;z)5O* (n,g;z), has the forme2 iu at great
distances.

III. DISTORTED ASYMPTOTIC WAVES

For definiteness and simplicity we assume that beyon
certain radiusr 0 the effective potential matrix is diagona
with the Coulomb potential modified only by the addition
the polarization interaction2b2/2r 4. It will be clear how to
include additional terms of longer range. For thel th partial
wave, and with the abbreviationsr5kr andD5(bk)2, the
radial equation of interest is

S d2

dr22
l ~ l 11!

r2 2
2h

r
111

D

r4Df~r!50 ~3.1!

in the regionr .r 0 . With C a normalization constant to b
determined, the substitutionf(r)5C(pr/2)1/2ml(r) leads
to the transformed equation

Llml~r![Fr2
d2

dr2 1r
d

dr
1r222hr2~ l 11/2!2G

3ml~r!52
D

r2 ml~r!. ~3.2!

Generalizing the procedure described~for the caseh50! in
Ref. @3#, we look for a solution in the form of a serie
ml(r)5( j 50

` D jml
( j )(r). Coulomb wave functions that ar

sinusoidal at great distances, with unit amplitude, satisf
useful recurrence relation@13#. It will be available to us if we
take the lowest-order solution of Eq.~3.1!, corresponding to
D50, to be the functionO(n,l ;z) ~in the notation of Sec. II!
behaving asymptotically as an outgoing wave. In the vers
of the recurrence relation given in Ref.@13# an integral value
for the orbital quantum number is assumed. However,
relation can be shown to hold for nonintegral values as w
in the form
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1

r
mg

~0!5e~g!mg11
~0! 1e~2g21!mg21

~0! 1e0~g!mg
~0! ,

~3.3a!

with

e~g!5
@~g11!21h2#1/2

~2g11!~g11!
, e0~g!52

h

g~g11!
.

~3.3b!

Here the notation for the orbital quantum number anticipa
a shift induced by the polarization potential@3#. The unit
amplitude condition is preserved in higher orders by s
able normalization off~r!. The normalized solution will
be denoted asŌ(n,g;z). It has the asymptotic form exp(iū),
whereū5u1t. Hereu is given by Eq.~2.5! and the phase
shift t is to be determined. An incoming wave solutio
of Eq. ~3.1! is defined in a similar way, withĪ (n,g;z)
;exp(2iū) for r→`. The overbar notation will be used t
distinguish distorted waves from their pure Coulomb cou
terparts introduced in Sec. II. Once the functionsŌ and Ī are
determined, in some approximation,J̄ is constructed as
A(n,g)@Ō2 Ī #/2i , the distorted-wave version of Eq.~A3!.
The expression that relatesN̄ to the functionsJ̄(n,g;z) and
J̄(n,2g21;z) is of the form~2.9! with the samelinear co-
efficients, and Wronskian relations are unchanged@14#.

If, in Eq. ~3.2!, one makes the replacement

~ l 11/2!25~g11/2!21(
j 50

`

D jG~ j !, ~3.4!

one arrives at a sequence of perturbation equations, the
three of which are

Lgmg
~0!~r!50, ~3.5a!

Lgmg
~1!~r!5~G~1!2r22!mg

~0!~r!, ~3.5b!

Lgmg
~2!~r!5G~2!mg

~0!~r!1~G~1!2r22!mg
~1!~r!.

~3.5c!

With the lowest-order solution chosen as indicated abo
the recurrence relation~3.3! may be applied to determine th
coefficients in the expansion

1

r2 mg
~0!~r!5 (

p522

2

dpmg1p
~0! ~r!. ~3.6!

The term on the right corresponding top50 must be elimi-
nated by suitable choice ofG (1) to avoid the appearance of
spurious singularity@3#; this yields

G~1!5d05e~g!e~2g22!1e~2g21!e~g21!1@e0~g!#2.
~3.7!

The remaining coefficientsdp are listed in Appendix B item
1. In terms of these coefficients, and withl5g11/2, the
solution of Eq.~3.5b! is obtained immediately as
s

-

-

rst

e,

mg
~1!~r!5 (

p522

2

~12dp0!@~l1p!22l2#21dpmg1p
~0! ~r!.

~3.8!

The lowest-order solution on the right is assumed to
known in terms of the Whittaker function in Eq.~2.11! or, to
the desired accuracy, from Eqs.~A4! and ~2.7! as an expan-
sion in powers of the energy. Examination of the asympto
form of the first-order solution provides us with an expre
sion, given in Appendix B item 3, of the first-order pha
shift t (1). One sees that this phase vanishes at threshold
is invariant under the replacementg→2g21; these prop-
erties hold to all orders.

From the first-order version of Eq.~3.4! the shifted orbital
quantum number is obtained from that solution of

l 21 l 5l22
1

4
1

D

l221 S 1

2
1

6h2

4l221D ~3.9!

which approachesl in the limit D→0. The result is expected
to be most useful forl @1; the polarization potential will
have a dominant effect in that domain. However, for pol
izabilities of physical interest the first-order approximation
essentially useless forl 50 andl 51. With the approximation
~3.9! adopted, and foru l 2gu!1 ~a relation that holds over a
wide range of interaction strengths! one finds, to first order in
l 2g,

l 2g5
2b2k2l ~ l 11!16b2Z2

l ~ l 11!~2l 13!~2l 11!~2l 21!
. ~3.10!

As seen here, the renormalization of the orbital quant
number introduces a dependence on energy; this has a
nificant influence on threshold behavior.

The argumentū5u1t of the distorted wave may be writ
ten in the formkr2 lp/22h ln 2kr1s l1 d̄, thereby defin-
ing a polarization phase as

d̄5~ l 2g!p/21sg2s l1t. ~3.11!

As shown in Appendix B item 4, the relationsg2s l5( l
2g)p/2 holds in the limitk50, and since the phaset van-
ishes in that limit the total polarization phase takes on
value d̄5( l 2g)p at threshold. This point is discussed fu
ther in Sec. V in connection with Seaton’s theorem@6# relat-
ing phase shifts and quantum defects at threshold. To g
some numerical orientation regarding the effect of high
order perturbations we have carried the calculation of
polarization phase up to third order, over a range of value
b2Z2, for the casek50 and several partial waves. The resu
for l 53 appears in Fig. 1 as the solid curve obtained
interpolation; the dashed line represents the first-order po
ization phase given in Eq.~3.10! and the individual points
represent values found in second order. Convergence
proves rapidly withl. For l 54 the lowest-order calculation
agrees with the third-order result to within 0.5% forb2Z2

530. A similar calculation forl 52 provides an indication
that to obtain an accuracy of better than 10% in third or
one is restricted to the rangeb2Z2,5. Greater reliability of
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this approximation procedure is expected for applications
potentials of longer range than the 1/r 4 potential discussed
above.

The perturbation calculations are simplified in practice
one takes advantage of the invariance ofG ( j ) under the re-
placementg→2g21. This property is verified explicitly in
first order by the result shown in Eq.~3.7!. A proof to all
orders is sketched in Appendix B item 2. Note that since
invariance property carries over to the determination og
according to Eq.~3.4!, the same value ofg is to be used in
the construction of the two distorted wavesJ̄(n,g;z) and
J̄(n,2g21;z), as has been anticipated by our choice
notation. The perturbation theory plays another useful form
role in establishing the analytic properties of the distor
waves in each order. One observes that if the correctio
analytic in the energy to a given order this property is p
served in the next higher order since the perturbing fac
Dr22 is energy independent, and possible singularities a
ing from the inversion of the operatorLg are avoided
through the choice ofG (n). This remark is developed in mor
detail in Appendix B item 5.

IV. SCATTERING MATRICES

Having introduced basis functions for electron-ion scatt
ing that account for Coulomb and longer-range interaction
is now possible to define a scattering matrix from whi
factors are removed that contain branch point singularitie
thresholds. This leaves a function that varies smoothly w
energy, thus providing the basis for a multichannel effecti
range theory that extends earlier formulations@7,8,15#. Our
treatment follows closely that of Ref.@15#, differing from it
by the inclusion of the combined effect of the Coulomb t
and polarization forces of longer range. Target states are
sumed to be spherically symmetric and nondegenerate.
suppose that the scattering problem has been reduced to
defined by a set ofN coupled radial equations, involving
real, symmetric effective potential matrix; allN channels are
assumed to be open. The wave function then appears
square matrix consisting ofN columns, each correspondin

FIG. 1. f-wave polarization phase for the potential2b2/2r 4

2Z/r ~atomic units! at zero energy as a function of (bZ)2, evalu-
ated in third order~solid curve!. The individual points represen
results obtained in second order and the dashed line gives the r
of the lowest-order approximation obtained by including a factor
p in Eq. ~3.10! of the text.
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to a different entrance channel. The rows represent the o
channels.

Following standard procedure@16# we represent the mul
tichannel scattering matrix asSc5eisS0eis. Heres is a di-
agonal matrix with the Coulomb phase appropriate to e
channel as diagonal elements.@The Coulomb phase is give
by Eq.~2.6! where in the present contextg is replaced by the
orbital quantum numberl i for the i th channel#. The scatter-
ing matrix S0 is defined in terms of the asymptotic form o
the wave function with pure Coulomb solutions represent
the incoming and outgoing waves. When reexpressed
terms of the distorted waves defined in Sec. II the asympt
form becomes

c j i ; Ī id j i 2ŌjSji . ~4.1!

By comparison of the asymptotic forms of the wave fun
tions defined with and without the inclusion of polarizatio

interactions one arrives at the relationS05ei d̄Sei d̄, whered̄
is the diagonal phase matrix@17# with elements defined for
each channel in Eq.~3.11!. As an alternative to Eq.~4.1! we
may write the asymptotic form, withS5112iT, as

2~2i !21c j i ;F̄ id j i 1ŌjTji , ~4.2!

where F̄ is a diagonal matrix the nonvanishing elemen
of which are distorted-wave versions of the regular Coulo
solution defined in Eq.~A2!. Additional transformations
are useful at this point. By extension of Eqs.~A5! we have
Ō5c3J̄1c4N̄. With this replacement made in Eq.~4.2!
along with the substitutionN̄5GJ̄1Q̄ @a distorted-wave ex-
tension of Eq.~2.10a!# we have, after a suitable renormaliz
tion, a wave function behaving at great distances as

uji ; J̄ jM ji 2Q̄id j i . ~4.3!

The relation connecting the matricesT andM is found~after
some algebra! to be

T5 f 1/2@M2~h1 i f !#21f 1/2. ~4.4!

Here we have set2(c3 /c41G)5h1 i f where f and h are
the real, diagonal matrices

f 5~2p!21e2hpuG~11g1 ih!u2uhu2~2g11! ~4.5!

and

h52Re G~n,g!1 f e2ph sin 2pg. ~4.6!

As will be discussed further below, the matrixM is a smooth
function of the energy in the neighborhood of reacti
thresholds. Hence Eq.~4.4! exhibits threshold singularities
explicitly, thereby providing the basis for an effective ran
theory. As a partial check on these developments we n
that in the absence of polarization forces,g is replaced by the
integerl and the limiting relation shown in Eq.~A1! for the
function G is employed. One then verifies that Eq.~4.4! re-
duces to Eq.~10! of Ref. @8#, the version appropriate to stan
dard multichannel Coulomb scattering. Further reduction
which the effect of the Coulomb tail is not included, leads
the effective-range formalism of Ross and Shaw@7#.

ult
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The unitarity of the scattering matrix implies the relatio
T2T†52iTT†. With the T matrix given by Eq.~4.4!, uni-
tarity will be satisfied ifM is Hermitian. In factM must be
real and symmetric to satisfy the symmetry property ofT.
For single-channel scattering in a given partial wave, uni
ity allows for the representationT5eid sind with the real
phase shiftd accounting for the short-range interaction. Fro
the single-channel version of Eq.~4.4! it follows that

M5 f cot d1h. ~4.7!

Writing T05eid0
sind0, we find that the phase shiftd0 rela-

tive to pure Coulomb scattering is given by the sumd1 d̄ of
the short-range and polarization contributions.

Returning to the general multichannel problem we rem
that the variational procedure provides an effective met
for constructing approximations toM that preserve not only
the reality and symmetry properties but the analyticity of
M matrix as well. With regard to this latter property, on
observes that threshold singularities can appear in the v
tional representation of theM matrix only through the behav
ior of the trial functions in the asymptotic region. These tr
functions, however, have the asymptotic form shown in E
~4.3!, expressed in terms of distorted wavesJ̄ andQ̄ that are
analytic in the energy variable. Such a trial function may
connected smoothly to an inside function that is wea
energy-dependent thereby providing a variational formu
tion of the effective-range approximation. In its simplest v
sion this approximation leads to a representation ofM as a
two-term expansion in powers of the excitation energy ne
reaction threshold with coefficients, variationally dete
mined, that are matrix generalizations of the scattering len
and effective range parameters. The formulation of the va
tional principle for the problem considered here is essenti
identical to that described previously for scattering by a n
tral target @15# and need not be repeated. One need o
account for an altered normalization factor arising from
Wronskian relationJ̄Q̄82 J̄8Q̄52Z/p between the basis
functions.

V. CONTINUATION BELOW THRESHOLD

Owing to the presence of a Rydberg series of resonan
just below an excitation threshold the scattering amplitu
Tb in this domain will vary rapidly with energy. A knowl-
edge of the amplitudeTa above threshold, obtained either b
calculation or deduced from experiment can, by analytic c
tinuation, give useful information on the resonance struct
of Tb. Effective-range theory, based on the smooth ene
dependence of theM matrix, provides the basis for the an
lytic continuation process. Such a procedure, described
Gailitis @8# for the problem of electron scattering by hydr
genic ions~accounting for both the Coulomb and long-ran
inverse-square potentials!, may now be extended to the wide
class of problems under consideration here. While gre
generality is possible, we shall limit the present discussion
energies sufficiently close to threshold so that the ene
variation of theM matrix may be ignored completely, that i
we set Ma5Mb. In addition, it is assumed that only on
channel opens at the threshold under consideration.

We first consider single-channel scattering at the c
r-
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tinuum threshold in order to determine the effect of lon
range polarization forces on the relation between scatte
parameters and bound-state energies. At an energy c
sponding to a bound state the scattering amplitude has a
so that

M2h2 i f 50. ~5.1!

For M we use the expression~4.7!, evaluated at an energ
just abovethreshold. In that limit the functionf, given by Eq.
~4.5!, goes to unity@18# and, as seen from Eq.~4.6! with
e2ph set equal to zero,h→2ReG(n,g). This latter function
vanishes in the limit considered, as may be seen by mak
use of the identity

G~n2g!G~g112n!5p cscp~n2g! ~5.2!

in the defining relation~2.10b!, and evaluating the result a
threshold. ThusM in Eq. ~5.1! is replaced by cotd, whered
now represents the threshold value of the short-range p
shift. The calculation below threshold ofh1 i f [2(c3 /c4
1G) is performed by settingk5 ik, with k real and positive,
and approaching zero from above. Referring to Eqs.~A5b!
we find, after a brief calculation, that

c3

c4
>cot pFZ

k
2~g2 l !G ~5.3!

and thatG vanishes. The parameterk, the threshold energy
Et , and the bound-state energyEb satisfy the relationk2

52(Et2Eb). With Et2Eb expressed in terms of the quan
tum defectm evaluated at threshold, Eq.~5.1! becomes

cot d5cot p~m1g2 l !. ~5.4!

If one interprets this result as an example of Seaton’s th
rem @6# relating the phase shift at threshold to the quant
defect one should identifym1g2 l as theshort-range con-
tribution to the quantum defect and hencel 2g should be
identified as the polarization contribution. We denote t
latter quantity asm̄ so that~recalling our earlier evaluation o
the polarization phase at threshold! we can write d̄5pm̄
relating the polarization contributions to the phase shift a
quantum defect at threshold. This relation agrees with t
obtained by Seaton@2# using ordinary first-order perturbatio
theory for the effect of the polarization interaction on pha
shifts and quantum defects. For high partial waves one m
expect the 1/r 4 potential to provide the dominant contribu
tion to the quantum defect. A very early first-order perturb
tive calculation based on this idea@19# gives a valuem̄5 l
2g with l 2g given by Eq.~3.10!. These results provide
consistency checks on the formalism developed here, wh
is not restricted to calculations done at threshold in lowe
order perturbation theory.@This is true, in particular, of the
parameterg appearing in Eq.~5.4!, as discussed in Sec. II
and illustrated in Fig. 1.#

The shift in the quantum defect arising from the polariz
tion potential may be expected to play an analogous role
the multichannel scattering problem, leading to a cor
sponding shift in the positions of the Rydberg resonan
lying just below an excitation threshold. This matter is mo
simply studied by suitable modification of the resonan
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analysis given by Gailitis@8#, who traced the source of rapi
oscillation of the cross section to the presence of a te
cotpZ/kt in a resonance denominator. Herek t5@2(Et
2E)#1/2, the energyE being measured from the threshold
the new channel. Without repeating the details of the ar
ment given in Ref.@8#, we remark that inclusion of the po
larization interaction has the effect of replacing the cotang
function by cot@pZ/kt1m̄#, wherem̄5 l 2g is just the polar-
ization contribution introduced above in the discussion
discrete states. The expression for the resonance width@20#
is unaltered by this modification but the resonance patter
shifted by an amount2Dm̄, where D is the distance be
tween resonances. This result follows from the fact that
reference level from which resonance positions are recko
has been shifted. The main conclusion reached in Ref.@8# is
unaltered, namely, that the total cross section, its value
low threshold taken to be an average over resonance
continuous across the threshold

VI. SUMMARY

The standard theory of scattering by a modified Coulo
interaction is formulated in terms of distorted asymptotic
lutions that account for the presence of the Coulomb t
This allows for the introduction of a reaction matrix that
free of threshold singularities and hence serves as the b
for simple parametrizations of the scattering data as wel
an analytic continuation below excitation thresholds. T
approach has been carried a step further here through
inclusion of long-range polarization interactions in the de
nition of the asymptotic states. In the absence of exact a
lytic solutions for potentials of this type, a previously deve
oped perturbation theory for inverse power-law potentials@3#
has been extended to include the Coulomb potential. It
pears, from numerical tests, that this version of the appr
mation procedure for determining the asymptotic solutio
while quite effective for the higher orbital quantum numbe
will have to be supplemented by some other technique~such
as direct numerical solution of a one-body radial Schro¨dinger
equation@4#! for the lowest few partial waves. While thu
limited to some extent, the perturbation theory serves a u
ful formal role, allowing for the examination of analyticit
and invariance properties of the asymptotic solutions. Ba
on this analysis, the analytic form of the threshold singula
ties of the scattering matrix is determined and this perm
the introduction of a modified reaction matrix that is free
such singularities. With this ‘‘M matrix’’ properly defined,
approximation techniques, such as the variational met
@15#, are available for its construction and the basis for
effective-range theory applicable to electron scattering
positive ions is thereby provided. A particular application
interest would be a study of the effect of long-range pol
ization interactions on resonance parameters. As an illus
tion, a preliminary treatment of this problem has be giv
here, leading to expressions for near-threshold modificat
of quantum defects and resonance level shifts.
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APPENDIX A: COULOMB FUNCTIONS

Some properties of Coulomb wave functions that are
ferred to in the text are listed here for the convenience of
reader.

~1! The limiting form of the functionG(n,g), given in
Eq. ~2.10b!, for g→ l , is

2pG~n,l !5
G~g111n!

n2g11G~n2g!

3@C~g111n!1C~n2g!22 ln n#

2(
p

l

n22p
dbp~g!

dg U
g5 l

, ~A1!

whereC is the logarithmic derivative of theG function @21#.
~2! The standard regular solution, satisfying

F~n,g;z!5~2i !21@O~n,g;z!2I ~n,g;z!#, ~A2!

behaves as sinu asymptotically, withu given by Eq.~2.5!.
From Eq.~2.4! we have

J~n,g;z!5A~n,g!F~n,g;z!. ~A3!

The outgoing wave solution may be expressed as the lin
combination

O~n,g;z!5c1J~n,g;z!1c2J~n,2g21;z!, ~A4a!

with linear coefficients given by

c152ehp/2e2 igp/2p csc@p~2g11!#

3n2~g11!~ uG~2g2nu!21,

c25ehp/2e2 igp/2p csc@p~2g11!#ng~ uG~g112nu!21.
~A4b!

Another useful relation is

O~n,g;z!5c3J~n,g;z!1c4N~n,g;z!, ~A5a!

where

c35ehp/2e2 igp/2uG~g111n!un2g21 cosp~2g211n!,

c45ehp/2e2 igp/2uG~2g1n!ung sin p~2g211n! .
~A5b!

APPENDIX B: PERTURBATION THEORY

~1! To complete the specification of the first-order corre
tion, shown in Eq.~3.8!, of the outgoing Coulomb wave
function we list the expansion coefficients as

d2~g!5e~g!e~g11!, d22~g!5d2~2g21!,

d1~g!5e~g!@e0~g11!1e0~g!#, d21~g!5d1~2g21!,
~B1!
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with e(g) ande0(g) defined in Eq.~3.3b!.
~2! The invariance property of the functionsG (1) under

the exchangeg→2g21 is evident in the first-order resu
shown in Eq.~3.7!. We examine this property more explic
itly, emphasizing those features that allow us to extend i
all orders. To begin we note that the coefficiente(g) of the
term that raises the index by unity and the coefficiene
(2g21) of the lowering term transform one into the oth
while the coefficiente0(g) of the term that leaves the inde
unchanged is invariant under the exchangeg→2g21. An
iteration of the operation is required in first order; the res
is shown in Eq.~3.7!. It is helpful to adopt a diagrammati
view of this iteration process, in which index shifts are r
lated to upward, downward, and horizontal steps that s
and end at a given reference level, corresponding to the
tial value of the indexg. The pattern of steps thus generat
has a reflection symmetry about that reference level; for
ample, along with a step up (g→g11) and then down (g
→g21) one includes a step down and then up.@This picture
is justified by the form of the first-order Eqs.~3.7! and~B1!,
and applies to higher orders as well.# The analysis may be
simplified at the outset by recognizing that horizontal ste
(g→g)—in first order these lead to the last term in E
~3.7!—preserve the invariance property of interest@since
e0(g) is invariant# and may therefore be safely be ignored
the proof. Each upward step may be paired with a downw
partner obtained by reflection through the reference le
The coefficientse(g) and e(2g21) associated with thes
steps are transformed into one another under the exch
g→2g21, as noted above. This observation is sufficient
verify the invariance property ofG (1). Extension of the
analysis to higher orders follows along very similar line
with the paired steps having associated with them the c
ficients e(g1p) and e(2g211p), with p an integer,
which are transformed into one another.

~3! The first-order contribution,t (1), to the phase shiftt
in Eq. ~3.11! is obtained by examining the asymptotic for
of the functionmg

(1)(r), appearing in Eq.~3.8!. With the aid
of Eqs.~B1! and the relation

sg115sg1tan21
h

g11
, ~B2!

we find that

t~1!5tan21
ac

11as
. ~B3!

To make the invariance oft (1) with respect to the inter-
changeg→2g21 manifest we express the coefficientsac
and as in terms of the variablel5g1 1

2 and obtain the re-
lations

ac5Dh@ac1~l!1ac1~2l!1ac2~l!#,

ac1~l!52l~l11!~2l11!~2l13!,

ac2~l!52@~l221/4!~l229/4!#21,
~B4!

as5Das1~l!1Dh2@as2~l!1as2~2l!12ac2~l!#,
o

lt

-
rt
i-

x-

s
.

rd
l.

ge
o

,
f-

as1~l!52@2~l221!#22,

as2~l!52@16~l11!2l~l11/2!~l13/2!#21.

~4! In determining the threshold value of the polarizati
phase, defined in Eq.~3.11!, the relation sg2s l5( l
2g)p/2, valid in the limitk50, was used. This relation ma
be verified by examining the expansionsg2s l5(l2 l )s8
11/2(l2 l )2s91¯, where

s8[
dsg

dg U
g5 l

52Im C~11 l 2 ih!. ~B5!

Using the relations@21#

C~11 l 2 ih!5~ l 2 ih!211~ l 212 ih!211¯1C~1

2 ih!, ~B6a!

and

Im C~12 ih!52
1

2uhu
1

p

2
coth puhu, ~B6b!

we find thats852p/2 in the limit uhu→`. It remains to
show that higher orders in the Taylor series expansion
sg2s l vanish. This follows from the threshold behavior
the coefficientss952Im C(1), s-52Im C(2), etc.; these
coefficients vanish since the polygamma functions@21#

C~n!~z![
dn

dzn C~z! ~B7!

vanish asz2n for z→` in uargzu,p and herez511 l
1 i uhu.

~5! The distorted waveF̄(n,g;z), behaving asymptoti-
cally as sinū, is not analytic in the energy, but each term
the perturbation expansion of the renormalized funct
J̄(n,g;z)5A(n,g)F̄(n,g;z) is analytic. As mentioned ear
lier, and proved in Ref.@5#, the unperturbed function is ana
lytic. @It is represented in Eq.~2.7! as a convergent expansio
of analytic functions.# We now show explicitly that this
property is preserved in first order; the procedure for exte
ing this demonstration to higher orders should then be cl

The perturbation theory was formulated in terms of t
functionm(r), satisfying Eq.~3.2!. For our present purpose
we identify F(n,g;z)5(pr/2)1/2mg

(0)(r); since the two
functions are related by the same factor (pr/2)1/2 in each
order andF̄(n,g;z) is ultimately normalized to unit ampli-
tude this factor plays no role in the discussion and will
ignored. The functionmg

(1)(r) given in Eq. ~3.8! is to be
multiplied by the strength parameterD5b2k2. We wish to
convert the resultant expression to one relating the first-o
correction toJ(n,g;z) to a combination of the unperturbe
functions J(n,g1p;z). For this purpose we multiply both
sides byA(n,g), and on the right-hand side we replac
mg1p

(0) (r) by A21(n,g1p)J(n,g1p;z). @A factor (pr/2)1/2

enters but is canceled#. We now collect and list all energy
dependent factors that appear in each of the four termsp
562,p561) in the expansion.
p52: Along with the factor
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DA~n,g!A21~n,g12!5b2k2ug122 ihuug112 ihuh22

we must include the energy-dependent contribution aris
from the coefficientd2 , which is seen from Eq.~B1! to be
@(g12)21h2#1/2@(g11)21h2#1/2. These factors combine
to give the analytic function @(g12)2k21(hk)2#@(g
11)2k21(hk)2#. p51: The factor DA(n,g)A21(n,g
11)5Dug112 ihuh21 combines with the factorh@(g
11)21h2#1/2 contributed by the coefficientd1 to give @(g
11)2k21(hk)2#. p521: The product ofDhug2 ihu21

and h(g21h2)1/2 is a constant. p522: The product of
Dh2ug2 ihu21ug212 ihu21 and (g21h2)1/2@(g21)2

1h2)] 1/2 is a constant.
6

he
g

Note that whenG (1), given in Eq.~3.7!, is multiplied byD
the result is a sum of three terms each of which being a
lytic. The analysis of the structure ofG ( j ) given in item 2 of
this appendix can be used to show thatD jG ( j ) is analytic.
Since the higher-order functionsmg

( j ) are expressed as linea
combinations of lowest-order functions we are led to ap
an analysis similar to that outlined above to functions of
form Dr22mg1p

(0) and arrive at the conclusion that each te
in the perturbation expansion ofJ̄(n,g;z) is analytic in en-
ergy. In a similar way one may show that the functio
Q̄(n,g;z) is analytic. The analyticity in lowest order of thi
function was established by Ham@5# and is preserved in
higher orders.
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