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Levinson’s theorem for the Schro¨dinger equation with a cylindrically symmetric potential in two dimensions
is reestablished by the Sturm-Liouville theorem. The critical case, where the Schro¨dinger equation has a finite
zero-energy solution, is analyzed in detail. It is shown that, in comparison to Levinson’s theorem in the
noncritical case, the half bound state for theP wave, in which the wave function for the zero-energy solution
does not decay fast enough at infinity to be square integrable, will cause the phase shift of theP wave at zero
energy to increase an additionalp. @S1050-2947~98!08908-2#

PACS number~s!: 03.65.Nk, 73.50.Bk
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I. INTRODUCTION

In 1949, an important theorem in quantum mechanics w
established by Levinson@1#, who set up a relation betwee
the total numbernl of bound states with angular momentu
l and the phase shiftd l (0) of the scattering state at zer
momentum for the Schro¨dinger equation with a sphericall
symmetric potentialV(r ) in three dimensions:

d l ~0!2d l ~`!5H ~nl 11/2!p when l 50

and a half bound state occurs

nl p the remaining cases,

~1!

here the potentialV(r ) satisfies the asymptotic conditions

r 2uV~r !udr→0 at r→0, ~2a!

r 3uV~r !udr→0 at r→`. ~2b!

The first condition is necessary for the nice behavior of
wave function at the origin and the second one is neces
for the analytic property of the Jost function, which was us
in his proof. The first line in Eq.~1! was shown by Newton
@2# for the case where a half bound state ofS wave occurs. A
zero-energy solution to the Schro¨dinger equation is called a
half bound state if its wave function is finite, but does n
decay fast enough at infinity to be square integrable. A
well known, there is degeneracy of states for the magn
quantum number due to the spherical symmetry. Usua
this degeneracy is not expressed explicitly in the statemen
Levinson’s theorem. Due to the wide interest in lowe
dimensional field theories recently, it may be worthwhile
study Levinson’s theorem in two dimensions. The purpose
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the present paper is to reestablish the Levinson theorem
the Schro¨dinger equation in two dimensions in terms of th
Sturm-Liouville theorem.

Many papers@2–10# have been devoted to the differe
proofs and generalizations of Levinson’s theorem, for e
ample, to noncentral potentials@2#, nonlocal interactions@4#,
relativistic equations@7,10#, and electron-atom scattering@9#.
Roughly speaking, there are three main methods for
proof of Levinson’s theorem. One@1# is based on an elabo
rate analysis of the Jost function. This method requires g
behavior of the potential. For example, as pointed out
Newton@11#, when the asymptotic condition~2b! is not sat-
isfied, Levinson’s theorem is violated. The second one is
Green’s-function method@5#, where the total number o
physical states, which is infinite, is proved to be independ
of the potential and the number of bound states is the dif
ence between the infinite numbers of the scattering st
without and with the potential. Since the number of states
a continuous spectrum is uncountable, a simple model is u
ally used to discretize the continuous part of the spectrum
requiring the wave functions to be vanishing at a sufficien
large radius. We recommend the third method to pro
Levinson’s theorem by the Sturm-Liouville theorem@6–8#.
For the Sturm-Liouville problem, the fundamental trick is th
definition of a phase angle that is monotonic with respec
the energy@12#. This method is very simple, intuitive, an
easy to generalize. In this proof it is demonstrated explic
that as the potential changes, the phase shift at zero mom
tum jumps byp while a scattering state becomes a bou
state, or vice versa. Newton’s counterexamples@11#, where
the condition~2b! is violated, can be proved to satisfy th
modified Levinson theorem@6#.

Recently, Lin@13# established a two-dimensional analo
of Levinson’s theorem for the Schro¨dinger equation with a
cylindrically symmetric potential by the Green’s-functio
2790 © 1998 The American Physical Society
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method and declared that, unlike the case in three dim
sions, the half bound state did not modify Levinson’s the
rem in two dimensions:

hm~0!2hm~`!5nmp, m50,1,2, . . . , ~3a!

wherehm(0) is the limit of the phase shifts at zero mome
tum for themth partial wave andnm is the total number of
bound states with the angular momentumm\. Both hm and
nm are independent of the sign of the angular moment
6m\ so that only non-negativem needs to be discussed
The experimental study@14# of Levinson’s theorem in two
dimensions has appeared in the literature.

This form of Levinson’s theorem for two dimensions@13#
conflicts with an early result by Bolle´, Gesztesy, Danneels
and Wilk ~BGDW! @15# in 1986, who overcame the diffi
culty with the logarithmic singularity of the two-dimension
free Green’s function at zero energy and proved ‘‘surp
ingly’’ ~see ‘‘A surprise’’ in the title of@15#! that the half
bound state ofP wave causes the phase shifth1(0) at zero
momentum to increase an additionalp, exactly like the zero-
energy bound states:

hm~0!2hm~`!5~nm11!p

when m51 and a half bound state occurs. ~3b!

The critical case where the Schro¨dinger equation has a
finite zero-energy solution is very sensitive and worthy
some careful analysis, especially when two conflicting v
sions of Levinson’s theorem in two dimensions were p
sented. The Sturm-Liouville theorem provides a power
tool for this analysis. In the present paper we reestablish
Levinson theorem for the Schro¨dinger equation in two di-
mensions by the Sturm-Liouville theorem, which coincid
with the version by BGDW@15#. It seems to us that the
problem in the proof by Lin@13# may be whether or not the
set of physical solutions to the Schro¨dinger equation in two
dimensions is complete when a half bound state ofP wave
occurs because the corresponding wave function for the
bound state tends to zero at infinity, although it does
decay fast enough at infinity to be square integrable. I
different for theS wave because the wave function of th
half bound state of theS wave is finite but does not tend t
zero at infinity.

This paper is organized as follows. We first assume t
the potential vanishes beyond a sufficiently large radiusr 0
for simplicity and leave the discussion of the general pot
tials for Sec. V. In Sec. II we choose the logarithmic deriv
tive of the radial wave function of the Schro¨dinger equation
as the ‘‘phase angle’’@12# and prove by the Sturm-Liouville
theorem that it is monotonic with respect to the energy.
terms of this monotonic property, in Sec. III the number
bound states is proved to be related to the logarithmic
rivative of zero energy atr 0 as the potential changes. In Se
IV we further prove that the logarithmic derivative of ze
energy atr 0 also determines the limit of the phase shifts
zero momentum, so that Levinson’s theorem is proved.
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critical case, where a zero-energy solution occurs, is a
lyzed carefully there. The problem that the potential ha
tail at infinity will be discussed in Sec. V.

II. NOTATION AND THE STURM-LIOUVILLE THEOREM

Consider the Schro¨dinger equation with a potentialV(r )
that depends only on the distancer from the origin

Hc52
\2

2mS 1

r

]

]r
r

]

]r
1

1

r 2

]2

]w2D c1V~r !c5Ec,

wherem denotes the mass of the particle. For simplicity, w
first discuss the case with a cutoff potential

V~r !50 when r>r 0 , ~4!

where r 0 is a sufficiently large radius. The general ca
where the potentialV(r ) has a tail at infinity will be dis-
cussed in Sec. V.

We introduce a parameterl for the potentialV(r ):

V~r ,l!5lV~r !. ~5!

As l increases from zero to one, the potentialV(r ,l)
changes from zero to the given potentialV(r ). Owing to the
symmetry of the potential, we have

c~r ,w,l!5r 21/2Rm~r ,l!e6 imw, m50,1,2, . . . , ~6!

where the radial wave functionRm(r ,l) satisfies the radia
equation

]2Rm~r ,l!

]r 2
1H 2m

\2
@E2V~r ,l!#2

m221/4

r 2 J Rm~r ,l!50.

~7!

Now we are going to solve Eq.~7! in two regions and
match two solutions atr 0. Since the Schro¨dinger equation is
linear, the wave functionc can be multiplied by a constan
factor. Removing the effect of the factor, we only need o
matching condition atr 0 for the logarithmic derivative of the
radial function:

Am~E,l![H 1

Rm~r ,l!

]Rm~r ,l!

]r J
r 5r 02

5H 1

Rm~r ,l!

]Rm~r ,l!

]r J
r 5r 01

. ~8!

Due to the condition~2a!, only one solution is convergen
at the origin. For example, for the free particle (l50), the
solution to Eq.~7! at the region 0<r<r 0 is proportional to
the Bessel functionJm(x):
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Rm~r ,0!55A
pkr

2
Jm~kr ! when E.0, k5~2mE!1/2/\

e2 imp/2Apkr

2
Jm~ ikr ! when E<0, k5~22mE!1/2/\.

~9!
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The solutionRm(r ,0) given in Eq.~9! is a real function. A
constant factor on the radial functionRm(r ,0) is not impor-
tant.

In the region r 0<r ,`, we haveV(r )50. For E.0,
there are two oscillatory solutions to Eq.~7!. Their combina-
tion can always satisfy the matching condition~8!, so that
there is a continuous spectrum forE.0:

Rm~r ,l!5Apkr

2
$coshm~k,l!Jm~kr !

2sinhm~k,l!Nm~kr !%

; cosS kr2
mp

2
2

p

4
1hm~k,l! D when r→`,

~10!

whereNm(kr) is the Neumann function. From the matchin
condition ~8! we have

tanhm~k,l!

5
Jm~kr0!

Nm~kr0!

Am~E,l!2kJm8 ~kr0!/Jm~kr0!21/~2r 0!

Am~E,l!2kNm8 ~kr0!/Nm~kr0!21/~2r 0!
.

~11!

hm~k![hm~k,1!, ~12!

where the prime denotes the derivative of the Bessel fu
tion, the Neumann function, and later the Hankel funct
with respect to their argument.

The phase shifthm(k,l) is determined from Eq.~11! up
to a multiple ofp due to the period of the tangent functio
Levinson determined the phase shifthm(k) with respect to
the phase shifthm(`) at infinite momentum. For any finite
potential, the phase shifthm(`) will not change and is al-
ways equal to the phase shift of zero potential. Therefo
Levinson’s definition for the phase shift is equivalent to t
convention that the phase shifthm(k) is determined with
respect to the phase shifthm(k,0) for the free particle, where
hm(k,0) is defined to be zero:

hm~k,0!50 where V~r ,0!50. ~13!

We prefer to use this convention where the phase s
hm(k,l) is determined completely asl increases from zero
to one. It is the reason why we introduce the parameterl.

Since there is only one convergent solution at infinity
E<0 the matching condition~8! is not always satisfied:
c-

e,

ift

r

Rm~r ,l!5ei ~m11!p/2Apkr

2
Hm

~1!~ ikr !

;e2kr when r→`, ~14!

whereHm
(1)(x) is the Hankel function of the first kind. Whe

the condition~8! is satisfied, a bound state appears at t
energy. It means that there is a discrete spectrum forE<0.

Now we turn to the Sturm-Liouville theorem. Denote b
R̄m(r ,l) the solution to Eq.~7! for the energyĒ,

]2

]r 2
R̄m~r ,l!1H 2m

\2
@Ē2V~r ,l!#2

m221/4

r 2 J R̄m~r ,l!50.

~15!

Multiplying Eqs. ~7! and ~15! by R̄m(r ,l) andRm(r ,l),
respectively, and calculating their difference, we have

]

]r H Rm~r ,l!
]R̄m~r ,l!

]r
2R̄m~r ,l!

]Rm~r ,l!

]r J
52

2m

\2
~Ē2E!R̄m~r ,l!Rm~r ,l!. ~16!

According to the boundary condition, both solution
Rm(r ,l) andR̄m(r ,l) should be vanishing at the origin. In
tegrating Eq.~16! in the region from 0 tor 0, we have

1

Ē2E
H Rm~r ,l!

]R̄m~r ,l!

]r
2R̄m~r !

]Rm~r ,l!

]r J
r 5r 02

52
2m

\2 E0

r 0
R̄m~r ,l!Rm~r ,l!dr.

Taking the limit, we obtain

]Am~E,l!

]E
5

]

]ES 1

Rm~r ,l!

]Rm~r ,l!

]r D
r 5r 02

52
2m

\2
Rm~r 0 ,l!22E

0

r 0
Rm~r ,l!2dr,0.

~17!

Similarly, from the boundary condition that whenE<0 the
radial functionRm(r ,l) tends to zero at infinity, we have
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]

]ES 1

Rm~r ,l!

]Rm~r ,l!

]r D
r 5r 01

5
2m

\2
Rm~r 0 ,l!22E

r 0

`

Rm~r ,l!2dr.0. ~18!

Therefore, whenE<0, both sides of Eq.~8! are monotonic
with respect to the energyE: As energy increases, the loga
rithmic derivative of the radial function atr 02 decreases
monotonically, but that atr 01 increases monotonically. Thi
is the essence of the Sturm-Liouville theorem.

III. THE NUMBER OF BOUND STATES

In this section we will relate the number of bound sta
with the logarithmic derivativeAm(0,l) of the radial func-
tion at r 02 for zero energy when the potential changes,
terms of the monotonic property of the logarithmic deriv
tive of the radial function with respect to the energyE. From
Eq. ~14! we have

S 1

Rm~r ,l!

]Rm~r ,l!

]r D
r 5r 01

5
ikHm

~1!~ ikr 0!8

Hm
~1!~ ikr 0!

2
1

2r 0

5H ~2m11/2!/r 0 when E;0

2k;2` when E→2`.
~19!

The logarithmic derivative given in Eq.~19! does not depend
on l. On the other hand, whenl50 we obtain from Eq.~10!

Am~E,0!5S 1

Rm~r ,0!

]Rm~r ,0!

]r D
r 5r 02

5
ikJm8 ~ ikr 0!

Jm~ ikr 0!
2

1

2r 0

5H ~m11/2!/r 0 when E;0

k;` when E→2`.
~20!

It is evident from Eqs.~19! and ~20! that as the energy in
creases from2` to 0, there is no overlap between two va
ant ranges of two logarithmic derivatives such that there
s

-

is

no bound state whenl50 except for theS wave where there
is a half bound state atE50. The half bound state for theS
wave will be discussed in Sec. IV.

If Am(0,l) decreases across the value (2m11/2)/r 0 asl
changes, an overlap between the variant ranges of two lo
rithmic derivatives of two sides ofr 0 appears. Since the
logarithmic derivative of the radial function atr 02 de-
creases monotonically as the energy increases and th
r 01 increases monotonically, the overlap means that th
must be one and only one energy where the matching c
dition ~8! is satisfied, namely, a bound state appears. Fr
the viewpoint of node theory, whenAm(0,l) decreases
across the value (2m11/2)/r 0, a node for the zero-energ
solution to the Schro¨dinger equation moves inward from in
finity, namely, a scattering state changes to a bound sta

As l changes,Am(0,l) decreases to2`, jumps to`, and
then decreases again across the value (2m11/2)/r 0, so that
another overlap occurs and another bound state app
Note that when the zero point in the zero-energy solut
Rm(r ,l) goes tor 0 , Am(0,l) goes to infinity. It is not a
singularity.

Each time Am(0,l) decreases across the value (2m
11/2)/r 0, a new overlap between the variant ranges of t
logarithmic derivatives appears such that a scattering s
changes to a bound state. At the same time, a new n
moves inward from infinity in the zero-energy solution to t
Schrödinger equation. Conversely, each timeAm(0,l) in-
creases across the value (2m11/2)/r 0, an overlap between
those two variant ranges disappears such that a bound
changes back to a scattering state and, simultaneous
node goes outward and disappears in the zero-energy s
tion. The number of bound statesnm is equal to the times
that Am(0,l) decreases across the value (2m11/2)/r 0 asl
increases from zero to one minus the times thatAm(0,l)
increases across the value (2m11/2)/r 0. It is also equal to
the number of nodes in the zero-energy solution. In the n
section we will show that this number is nothing but t
phase shifthm(0) at zero momentum divided byp.

IV. LEVINSON’S THEOREM

In order to determine the phase shifthm(k) completely,
we have introduced the convention for the phase s
hm(k,l), wherek.0, which changes continuously asl in-
creases from zero to one andhm(k,0) is defined to be van-
ishing. The phase shifthm(k,l) is calculated by Eq.~11!. It
is easy to see from Eq.~11! that the phase shifthm(k,l)
increases monotonically as the logarithmic derivat
Am(E,l) decreases:
ase
]hm~k,l!

]Am~E,l!
U

k

5
28r 0cos2hm~k,l!

p$2r 0Am~E,l!Nm~kr0!22kr0Nm8 ~kr0!2Nm~kr0!%2
<0, ~21!

wherek5(2mE)1/2/\.
The phase shifthm(0,l) is the limit of the phase shifthm(k,l) ask tends to zero. Therefore, we are interested in the ph

shift hm(k,l) at a sufficiently small momentumk, k!1/r 0. For the small momentum we obtain from Eq.~11!
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tanhm~k,l!5

¦

2p~kr0!2m

22mm! ~m21!!

Am~0,l!2~m11/2!/r 0

Am~0,l!2c2k22
2m11/2

r 0
S 12

~kr0!2

~m21!~2m21! D
when m>2

2p~kr0!2

4

Am~0,l!23/~2r 0!

Am~0,l!2c2k21
1

2r 0
@112~kr0!2ln~kr0!#

when m51

p

2ln~kr0!

Am~0,l!2c2k22
1

2r 0
@12~kr0!2#

Am~0,l!2c2k22
1

2r 0
S 11

2

ln~kr0! D
when m50.

~22!
s
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where the expansion forAm(E,l), calculated from Eq.~17!,
is used:

Am~E,l!5Am~0,l!2c2k21•••, c2.0, E5
\2k2

2m
.

~23!

In addition to the leading terms, we include in Eq.~22! some
next leading terms, which are useful only for the critical ca
where the leading terms cancel each other.

First of all, it can be seen from Eq.~22! that tanhm(k,l)
tends to zero ask goes to zero, namely,hm(0,l) is always
equal to a multiple ofp. In other words, if the phase shi
hm(k,l) for a sufficiently smallk is expressed as a positiv
or negative acute angle plusnp, its limit hm(0,l) is equal to
np, wheren is an integer. This means thathm(0,l) changes
discontinuously. In addition, in three dimensions, the tang
of the phase shift may go to infinity for the critical case ofS
wave.

Second, ifAm(E,l) decreases asl increases,hm(k,l)
increases monotonically. AsAm(E,l) decreases, each tim
tanhm(k,l) for a sufficiently smallk changes sign from
positive to negative~through a jump from positive infinity to
negative infinity!, hm(0,l) jumps byp. However, each time
tan hm(k,l) changes sign from negative to positiv
hm(0,l) remains invariant. Conversely, ifAm(E,l) in-
creases asl increases,hm(k,l) decreases monotonically. A
Am(E,l) increases, each time tanhm(k,l) changes sign
from negative to positive,hm(0,l) jumps by2p, and each
time tanhm(k,l) changes sign from positive to negativ
hm(0,l) remains invariant.

When V(r ,l) changes from zero to the given potent
V(r ) continuously, each time theAm(0,l) decreases from
near and larger than the value (2m11/2)/r 0 to smaller than
that value, the denominator in Eq.~22! changes sign from
positive to negative and the remaining factor remains p
tive such that the phase shift at zero momentumhm(0,l)
jumps byp. Conversely, each timeAm(0,l) increases acros
that value, the phase shift at zero momentumhm(0,l) jumps
by 2p. Note that whenAm(0,l) decreases from near an
larger than the value (m11/2)/r 0 to smaller than that value
the numerator in Eq.~22! changes sign from positive t
negative and the remaining factor remains negative such
the phase shift at zero momentumhm(0,l) does not jump.
e

nt

i-

at

Conversely, whenAm(0,l) increases across the value (m
11/2)/r 0, the phase shift at zero momentumhm(0,l) also
remains invariant. This is the reason why we did not inclu
the next leading terms in the numerator of Eq.~22! except
for m50.

Therefore, the phase shifthm(0)/p is just equal to the
timesAm(0,l) decreases across the value (2m11/2)/r 0 as
l increases from zero to one minus the timesAm(0,l) in-
creases across that value. In Sec. III we have proved tha
difference of the two times is nothing but the number
bound statesnm , namely, we proved the Levinson theore
for the Schro¨dinger equation in two dimensions for noncrit
cal cases:

hm~0!5nmp. ~24!

We should pay some attention to the case ofm50. When
Am(0) decreases across the value 1/2r 0, both the numerator
and denominator in Eq.~22! change signs, but not simulta
neously because the next leading terms in the numerator
denominator of Eq.~22! are different. It is easy to see tha
the numerator changes sign first and then the denomin
changes sign, namely, tanhm(k) at small k changes first
from negative to positive and then to negative again so
hm(0) jumps byp. Similarly, whenAm(0) increases acros
the value 1/2r 0 , hm(0) jumps by2p.

For l50@V(r ,0)50# and m50, the numerator in Eq
~22! is equal to zero, the denominator is positive, and
phase shifth0(0) is defined to be zero. IfA0(E) decreases as
l increases from zero, the numerator becomes negative
and then the denominator changes sign from positive
negative such that the phase shifth0(0,l) jumps byp and
simultaneously a bound state appears. IfA0(E) increases as
l increases from zero, the numerator becomes positive
the remaining factor remains negative such that the ph
shift h0(0,l) is zero and no bound state appears.

Now we turn to discuss the critical case where the lo
rithmic derivative Am(0,1)(l51) is equal to the value
(2m11/2)/r 0. In the critical case, the following solution
with zero energy in the regionr 0<r ,` will match this
Am(0,1) atr 0:

Rm~r !5r 2m11/2. ~25!
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It is a bound state whenm>2, but a half bound state whe
m51 and 0. A half bound state is not a bound state beca
its wave function is finite but not square integrable. We
going to discuss the critical case whereAm(0,l) decreases
~or increases! and reaches, but does not cross, the val
(2m11/2)/r 0 as V(r ,l) changes from zero to the give
potentialV(r ). For definiteness, we discuss the case wh
Am(0,l) decreases and reaches the value (2m11/2)/r 0. In
this case a new bound state with zero energy appears fom
>2, but not form51 and 0. We should check whether
not the phase shifthm(0) increases an additionalp.

It is easy to see from the next leading terms in the
nominator of Eq.~22! that the denominator form>2 has
changed sign from positive to negative asAm(0,l) decreases
and reaches the value (2m11/2)/r 0, namely, the phase shif
hm(0) jumps byp and simultaneously a new bound state
zero-energy appears.

For m50 the next leading term with ln(kr0) in the de-
nominator of Eq.~22! is positive and larger than the term
2c2k2, such that the denominator does not change s
namely, the phase shifthm(0) does not jump. This agree
with the fact that no new bound state appears.

For m51 the next leading term in the denominator of E
~22! is negative such that the denominator does change
asAm(0,l) decreases and reaches the value21/2r 0, namely,
the phase shifthm(0) jumps byp. However, in this case no
new bound state appears simultaneously.

The discussion for the cases whereAm(0,l) increases and
reaches the value (2m11/2)/r 0 is similar. Therefore,
Levinson’s theorem~248! holds for the critical cases excep
for m51. In the latter case, Levinson’s theorem for t
Schrödinger equation in two dimensions becomes

hm~0!5~nm11!p

when m51 and a half bound state occurs.~248!

Equations~24! and ~248! are the same as Eq.~3! because in
our conventionhm(`)50.

V. DISCUSSION

Now we discuss the general case where the potentialV(r )
has a tail atr>r 0. Let r 0 be so large that only the leadin
term in V(r ) is in the regionr>r 0:

V~r !;
\2

2m
br2n when r→`, ~26!

whereb is a nonvanishing constant andn is a positive con-
stant, not necessarily an integer. From the condition~2b!, n
should be larger than 3. Substituting Eq.~26! into Eq.~7! and
changing the variabler to j,

j5H kr5rA2mE/\ when E.0

kr 5rA22mE/\ when E<0,
~27!

we get the radial equation at the regionr 0<r ,`,
se
e

e

-

f

n,

.
gn

d2Rm~j,l!

dj2
1H 12

b

jn
kn222

m221/4

j2 J
3Rm~j,l!50 when E.0,

d2Rm~j,l!

dj2
1H 212

b

jn
kn222

m221/4

j2 J
3Rm~j,l!50 when E<0, ~28!

whereRm(j,l) depends onl through the matching condi
tion ~8!.

As far as Levinson’s theorem is concerned, we are in
ested only in the solutions with the sufficiently smallk and
k. If n>3, in comparison to the term of the centrifugal p
tential, the term with a factorkn22 ~or kn22) is too small to
affect the phase shift at a sufficiently smallk and the variant
range of the logarithmic derivative@dRm(r )/dr#/Rm(r ) at
r 01. Therefore, the proof given in the previous sections
effective for those potentials with a tail so that Levinson
theorem~24! and ~248! and holds.

Whenn52, we define

n25m21b. ~29!

The radial equation~7! becomes

]2Rm~r ,l!

]r 2
1H 2mE

\2
2

n221/4

r 2 J Rm~r ,l!50, r>r 0 .

~30!

If n2,0, there are an infinite number of bound states. W
will not discuss this case nor the case withn50 here. When
n2.0, we taken.0. Some formulas given in the previou
sections will be changed by replacing the angular quan
numberm with n. Equation~19! becomes

S 1

Rm~r ,l!

]Rm~r ,l!

]r D
r 5r 01

5
ikHn

~1!~ ikr 0!8

Hn
~1!~ ikr 0!

2
1

2r 0

5H ~2n11/2!/r 0 when E;0

2k;2` when E→2`.
~31!

The scattering solution~10! in the regionr 0<r ,` becomes

Rm~r ,l!5Apkr

2
$cosdn~k,l!Jn~kr !2sindn~k,l!Nn~kr !%

;cosS kr2
np

2
2

p

4
1dn~k,l! D , when r→`.

~32!

Thus the phase shifthm(k) can be calculated fromdn(k,1),

hm~k!5dn~k,1!1~m2n!p/2. ~33!
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dn(k,l) satisfies

tandn~k,l!5
Jn~kr0!

Nn~kr0!

Am~E,l!2kJn8~kr0!/Jn~kr0!21/~2r 0!

Am~E,l!2kNn8~kr0!/Nn~kr0!21/~2r 0!
~34!

and it increases monotonically as the logarithmic derivativeAm(E,l) decreases:

]dn~k,l!

]Am~E,l!
U

k

5
28r 0cos2dn~k,l!

p$2r 0Am~E,l!Nn~kr0!22kr0Nn8~kr0!2Nn~kr0!%2
<0. ~35!

For a sufficiently smallk we have

tandn~k,l!55
2p~kr0!2n

22nn! ~n21!!

Am~0,l!2~n11/2!/r 0

Am~0,l!2c2k22
2n11/2

r 0
S 12

~kr0!2

~n21!~2n21! D when n.1

2p

nG~n!2S kr0

2 D 2n Am~0,l!2~n11/2!/r 0

Am~0,l!2c2k22
2n11/2

r 0
1

2pcot~np!

r 0G~n!2 S kr0

2 D 2n when 0,n,1.

~36!

The asymptotic forms for the casen51 have already been given in Eq.~22!.
Now, repeating the proof for Levinson’s theorem~24! and ~248!, we obtain the modified Levinson theorem for th

noncritical cases:

hm~0!2~m2n!p/25dn~0,1!5nmp. ~37!

For the critical case whereAm(0,1)5(2n11/2)/r 0, the modified Levinson theorem~37! holds forn.1, where a new bound
state appears and simultaneouslyhm(k) jumps byp, but the modified Levinson theorem~37! is violated for 0,n<1, where
a half bound state appears and simultaneouslyhm(k) jumps bynp. In other words, the theorem needs to be modified furt
in these cases.

From the above discussion, we come to the conclusion that for the potential with a tail~26! at the infinity, whenn<2
Levinson’s theorem~24! is violated and whenn.2, even if it contains a logarithmic factor, Levinson’s theorem~24! holds
because in the latter case, for any arbitrarily given smalle, one can always find a sufficiently larger 0 such thatuV(r )u
,e/r 2 in the regionr 0,r ,`. Sincen25m21e;m2, Levinson’s theorem~24! and ~248! holds for this case.
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