PHYSICAL REVIEW A VOLUME 58, NUMBER 4 OCTOBER 1998
Levinson’s theorem for the Schralinger equation in two dimensions
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Levinson’s theorem for the Schiimger equation with a cylindrically symmetric potential in two dimensions
is reestablished by the Sturm-Liouville theorem. The critical case, where thedBueo equation has a finite
zero-energy solution, is analyzed in detail. It is shown that, in comparison to Levinson’s theorem in the
noncritical case, the half bound state for fa@evave, in which the wave function for the zero-energy solution
does not decay fast enough at infinity to be square integrable, will cause the phase shif? afdle at zero
energy to increase an additional [S1050-2947®8)08908-7

PACS numbdss): 03.65.Nk, 73.50.Bk

I. INTRODUCTION the present paper is to reestablish the Levinson theorem for

) ) ] the Schradinger equation in two dimensions in terms of the
In 1949, an important theorem in quantum mechanics Wagi ,rm-Liouville theorem.

established by Levinsofil], who set up a relation between Many paperg2—10] have been devoted to the different

the total numben, of_bound states with angular momentum proofs and generalizations of Levinson’s theorem, for ex-

goamngnttz?npfgﬁ?\esgfﬁg)n)gg: ter:qiz:t?grtlt?/vni?r? aSt:l;?]:rticler; ample, to noncentral potentidl&], nonlocal interactionf4],
relativistic equation§7,10], and electron-atom scatterifg].

symmetric potential/(r) in three dimensions: Roughly speaking, there are three main methods for the

(n,+1/27 when /=0 proof of Levinson’s theorem. Orld] is based on an elabo-
' rate analysis of the Jost function. This method requires good
8,(0)-6,()=| andahalfbound state occurs (1)  penavior of the potential. For example, as pointed out by
n, 7 the remaining cases, Newton[11], when the asymptotic conditiofb) is not sat-

isfied, Levinson’s theorem is violated. The second one is the
here the potentiaV/(r) satisfies the asymptotic conditions  Green’s-function method5], where the total number of

) physical states, which is infinite, is proved to be independent

rAV(nldr—0 at r—o, (2a) of the potential and the number of bound states is the differ-
ence between the infinite numbers of the scattering states
without and with the potential. Since the number of states in
The first condition is necessary for the nice behavior of theft continuous _spectrum IS uncquntable, a simple model is usu-
?Iy used to discretize the continuous part of the spectrum by
e

r3V(r)ldr—0 at r—o, (2b)

wave function at the origin and the second one is necessal - ) o -
for the analytic property of the Jost function, which was used©duiring the wave functions to be vanishing at a sufficiently

in his proof. The first line in Eq(1) was shown by Newton large radius. We recommend the third method to prove
[2] for the case where a half bound stateSofiave occurs. A Levinson’s theorem by the Sturm-Liouville theorgiG8].
zero-energy solution to the Scliinger equation is called a For the Sturm-Liouville problem, the fundamental trick is the
half bound state if its wave function is finite, but does notdefinition of a phase angle that is monotonic with respect to
decay fast enough at infinity to be square integrable. As ighe energy{12]. This method is very simple, intuitive, and
well known, there is degeneracy of states for the magneti€asy to generalize. In this proof it is demonstrated explicitly
guantum number due to the spherical symmetry. Usuallythat as the potential changes, the phase shift at zero momen-
this degeneracy is not expressed explicitly in the statement diim jumps bys while a scattering state becomes a bound
Levinson's theorem. Due to the wide interest in lower-state, or vice versa. Newton’'s counterexamplel, where
dimensional field theories recently, it may be worthwhile tothe condition(2b) is violated, can be proved to satisfy the
study Levinson’s theorem in two dimensions. The purpose ofmodified Levinson theorerf6].
Recently, Lin[13] established a two-dimensional analog
of Levinson’s theorem for the Schiimger equation with a
*Electronic address: DONGSH@BEPC4.IHEP.AC.CN cylindrically symmetric potential by the Green’s-function
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method and declared that, unlike the case in three dimereritical case, where a zero-energy solution occurs, is ana-
sions, the half bound state did not modify Levinson's theo-lyzed carefully there. The problem that the potential has a
rem in two dimensions: tail at infinity will be discussed in Sec. V.

7m(0) = 7m(®)=npm, mM=0,12..., (39 Il. NOTATION AND THE STURM-LIOUVILLE THEOREM

where 77,,(0) is the limit of the phase shifts at zero momen- ~ Consider the Schdinger equation with a potentiad(r)
tum for themth partial wave andh,, is the total number of that depends only on the distancérom the origin

bound states with the angular momentami. Both 7, and

n, are independent of the sign of the angular momentum 52
+m#A so that only non-negativen needs to be discussed. Hy=—-—
The experimental studj14] of Levinson’s theorem in two 2
dimensions has appeared in the literature.

This form of Levinson’s theorem for two dimensiofis3] . L
conflicts with an early result by BolleGesztesy, Danneels, Wheréu denotes the mass of the particle. For simplicity, we
and Wilk (BGDW) [15] in 1986, who overcame the diffi- first discuss the case with a cutoff potential
culty with the logarithmic singularity of the two-dimensional
free Green’s function at zero energy and proved ‘“surpris- V(r)=0 when r=rg, 4
ingly” (see “A surprise” in the title of{15]) that the half
bound state oP wave causes the phase shift(0) at zero

momentum to increase an additional exactly like the zero- Wherer, is a sufficiently large radius. The general case
energy bound states: where the potentiaV/(r) has a tail at infinity will be dis-

cussed in Sec. V.
We introduce a parametar for the potentialV(r):

19 9 1 &
——r—+

i r—za—@z Y+ V(r)y=Ey,

m(0) — pm(@)=(N+ 1) 7
V(r,N)=\V(r). (5)

when m=1 and a half bound state occurs. (3b)
As \ increases from zero to one, the potenti&(r,\)

. . ) changes from zero to the given potendélr). Owing to the
The critical case where the Schlinger equation has a symmetry of the potential, we have

finite zero-energy solution is very sensitive and worthy of

some careful analysis, especially when two conflicting ver- 1 S im B

sions of Levinson's theorem in two dimensions were pre- %1 @.M)=r""Ry(r,\)e=™, m=0,12..., (6
sented. The Sturm-Liouville theorem provides a powerful

tool for this analysis. In the present paper we reestablish th\%here the radial wave functioR
Levinson theorem for the Schdimger equation in two di-
mensions by the Sturm-Liouville theorem, which coincides
with the version by BGDW15]. It seems to us that the

m(r,\) satisfies the radial
equation

problem in the proof by Lif13] may be whether or not the ~ d?R(r,\) | 2u m2—1/4
set of physical solutions to the Schiinger equation in two ar2 + ﬁ[E_V(r-)‘)]_ 2 R(r,A)=0.
dimensions is complete when a half bound staté® offave @

occurs because the corresponding wave function for the half

bound state tends to zero at infinity, although it does not Now we are going to solve Ed7) in two regions and

decay fast enough at infinity to be square integrable. It ignatch two solutions at,. Since the Schidinger equation is

different for theS wave because the wave function of the linear, the wave functiony can be multiplied by a constant

half bound state of th& wave is finite but does not tend to factor. Removing the effect of the factor, we only need one

zero at infinity. matching condition at, for the logarithmic derivative of the
This paper is organized as follows. We first assume thatadial function:

the potential vanishes beyond a sufficiently large radis

for simplicity and leave the discussion of the general poten- 1 IR(FN)
tials for Sec. V. In Sec. Il we choose the logarithmic deriva- Am(E,)\)E[ = m(Ts ]
tive of the radial wave function of the Sclimger equation m(FM) o r=ro—

as the “phase angle[12] and prove by the Sturm-Liouville
theorem that it is monotonic with respect to the energy. In :[ 1 aRm(”\)] )
r=rg+

terms of this monotonic property, in Sec. Ill the number of Rm(r,\) ar

bound states is proved to be related to the logarithmic de-

rivative of zero energy at, as the potential changes. In Sec.  Due to the conditior{2a), only one solution is convergent
IV we further prove that the logarithmic derivative of zero at the origin. For example, for the free particle=0), the
energy atry also determines the limit of the phase shifts atsolution to Eq.(7) at the region 6r=<r is proportional to
zero momentum, so that Levinson’s theorem is proved. Théhe Bessel functiod,(x):
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wkr
\/T\Jm(kr) when E>0, k=(2uE)Y%#
R(r,00= — 9
g immi2 /ij(ikr) when E<O0, x=(—2uE)Y%#.
|
The solutionR,(r,0) given in EqQ.(9) is a real function. A _ il
constant factor on the radial functid®y,(r,0) is not impor- Rpn(r,\) =g (Mt 12 THET})(i KT)
tant.
In the regionry<r<o, we haveV(r)=0. For E>O0, ~e " when r—oo, (14)

there are two oscillatory solutions to EF). Their combina-
tion can always satisfy the matching conditi®), so that ~whereH{}(x) is the Hankel function of the first kind. When

there is a continuous spectrum fae>0: the condition(8) is satisfied, a bound state appears at this
energy. It means that there is a discrete spectrunkEfeD.
Kr _ Now we turn to the Sturm-Liouville theorgm. Denote by
R(r,N) = T{Cosnm(k-)\)‘]m(kr) Rm(r,\) the solution to Eq(7) for the energyE,
= SiN7m(K,N)N(kr)}
mm P e 2 Eve - TR a0
~ Co<kr_7_z+7]m(k,)\) When r—o0, &rz m(rv ) ﬁz[ (rv )] r2 m(r1 )_ .

(15

Multiplying Egs. (7) and (15) by Ri,(r,\) and Ry(r,\),
whereN,(kr) is the Neumann function. From the matching respectively, and calculating their difference, we have
condition (8) we have

(10

(k) (;ir[ Rm(r,)\)aRm;:')\) R aRm&(rr,k)}
 JIn(krg) Am(E,N) —kJIn(Kro)/ Im(kro) —1A(2r )
Nin(KT0) A(E,N) = KNy (kro)/Nin(kro) = 1/(2r ) =- ;—’2‘@— E)Run(F, M) Riy(1,\). (16)
(19

According to the boundary condition, both solutions
7m(K)=7m(k,1), (12 Rm(r,A) andR,,(r,\) should be vanishing at the origin. In-
tegrating Eq.(16) in the region from 0 ta(, we have

where the prime denotes the derivative of the Bessel func-

tion, the Neumann function, and later the Hankel function —

with respect to their argument. [R r x)ﬂRm(m\) ® (r)ﬂRm(rJ\)
The phase shifty(k,\) is determined from Eq(11) up E-El ™ ar m ar

to a multiple of# due to the period of the tangent function.

Levinson determined the phase shift,(k) with respect to 2 (To—

the phase shifty,() at infinite momentum. For any finite == — | Rm(r,MRy(r,\)dr.

potential, the phase shifp,() will not change and is al- A= Jo

ways equal to the phase shift of zero potential. Therefor . - .

Levinson’s definition for the phase shift is equivalent to thgTakmg the limit, we obtain

convention that the phase shiff,,(k) is determined with

respect to the phase shift,(k,0) for the free particle, where IALEN)  a ( 1 aRm(r,)\))

r=rn—

7m(K,0) is defined to be zero:

JE JE\R(r,\)  ar
-0
7m(k,00=0 where V(r,0)=0. (13
2u _, ("o 5
=——R;(rg,\) f Ry (r,\)“dr<Q0.
72 0

We prefer to use this convention where the phase shift
7m(K,\) is determined completely as increases from zero (17
to one. It is the reason why we introduce the paramketer

Since there is only one convergent solution at infinity for Similarly, from the boundary condition that whén<0 the
E=<0 the matching conditio8) is not always satisfied: radial functionR,(r,\) tends to zero at infinity, we have
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9 1 9Ry(r,\) no bound state whex= 0 except for theS wave where there
JE\R ) ar is a half bound state &=0. The half bound state for tH&
me r=ro+ wave will be discussed in Sec. IV.

If A,(O\) decreases across the valuer(+ 1/2)/ry as\
_ Z—MRm(ro,A)*ZJ’me(r,)\)deO. (18) c_han_ges, an oyerlap betwee_n the variant ranges pf two loga-
%2 ro rithmic derivatives of two sides of, appears. Since the
logarithmic derivative of the radial function aty— de-
creases monotonically as the energy increases and that at
Therefore, wherE<0, both sides of Eq(8) are monotonic  ry+ increases monotonically, the overlap means that there
with respect to the enerdy: As energy increases, the loga- must be one and only one energy where the matching con-
rithmic derivative of the radial function at,— decreases dition (8) is satisfied, namely, a bound state appears. From
monotonically, but that aty+ increases monotonically. This the viewpoint of node theory, whei,(O\) decreases
is the essence of the Sturm-Liouville theorem. across the value{m+1/2)/r,, a node for the zero-energy
solution to the Schidinger equation moves inward from in-
finity, namely, a scattering state changes to a bound state.
Ill. THE NUMBER OF BOUND STATES As \ changesA,,(0O\) decreases te o, jumps tox, and

In thi . il rel h ber of bound then decreases again across the valuen(t 1/2)/r 5, so that
. n this sectl_on we wit re.atet € number of boun statesynother overlap occurs and another bound state appears.
with the logarithmic derivatived,(O\) of the radial func-

) . . Note that when the zero point in the zero-energy solution
tion atry— for zero energy when the potential changes, in

Rn(r,\) goes tory, AR(ON) goes to infinity. It is not a
terms of the monotonic property of the logarithmic deriva- m("M) 0 m(ON) g y

singularity.
tive of the radial function with respect to the enefgyFrom Igach ilimeA (0\) decreases across the value rf
Eq. (14) we have m e

+1/2)Iry, a new overlap between the variant ranges of two
logarithmic derivatives appears such that a scattering state
1 IRA(TN) changes to a boun_d _s'gate_. At the same time, a new node
( ! ) moves inward from infinity in the zero-energy solution to the
r=rg+ Schradinger equation. Conversely, each tindg,(0O\) in-
creases across the value ifh+ 1/2)/r, an overlap between

Ry (r,\) ar

ikH (inrg) 1 those two variant ranges disappears such that a bound state
:W_Z_ro changes back to a scattering state and, simultaneously, a
m 0 node goes outward and disappears in the zero-energy solu-
(=m+1/2)/ry when E~O tion. The number of bound states, is equal to the times
=[ (190 thatA,(O\) decreases across the valueri+1/2)/ry as\
—K~—® when E— —oo,

increases from zero to one minus the times tAg{O\)
increases across the value i+ 1/2)/r. It is also equal to

The logarithmic derivative given in E¢L9) does not depend the number of nodes in the zero-energy solution. In the next

on\. On the other hand, wher=0 we obtain from Eq(10)  Section we will show that this number is nothing but the
phase shiftp,(0) at zero momentum divided by.

1 IR,(r,0) B ikd(ikrg) 1

An(E,0)= ( R(T,0) or o = m - 2_ro IV. LEVINSON’'S THEOREM
~To

In order to determine the phase shift,(k) completely,
| (m+1/2)frq when E~O we have introduced the convention for the phase shift
|k~ when E— —o. (20 7m(K,\), wherek>0, which changes continuously asin-
creases from zero to one angl,(k,0) is defined to be van-
ishing. The phase shify,(k,\) is calculated by Eq(12). It
It is evident from Eqs(19) and (20) that as the energy in- is easy to see from Ed11l) that the phase shifiy,(k,\)
creases from-« to 0, there is no overlap between two vari- increases monotonically as the logarithmic derivative
ant ranges of two logarithmic derivatives such that there iA,(E,\) decreases:

ﬁﬂm(k,)\)‘ _ _8r0005277m(k1)\) <0
IAMEN)] {21 oAm(EN)Np(Kro) — 2KroN! (krg) = Npn(krg)}2

(21)

wherek=(2uE)Y1.
The phase shify,,(O,\) is the limit of the phase shifiy,,(k,\) ask tends to zero. Therefore, we are interested in the phase
shift 7,(k,\) at a sufficiently small momentuy, k<1/r,. For the small momentum we obtain from H4l)
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— ar(krg)2™ An(ON)—(m+1/2)/r, ] .,
22"ml(m—1)! A (ON)— c2K2 —m+1/2 (kro)? when m=
m(OA)—c ro (m—1)(2m—1)
- 71-(kr0)2 Amn(ON)—3/(2r()
when m=1

tany,(k,\)=

1
An(ON)—c?k?+ T 2(kro)2In(krg)]
0

1
22 11—
An(OM) =%k = 51

(22

(kro)?]
when m=0.

2In(kr
(kro) A (ON)—c2k2

1
2rg

where the expansion fd&,,(E,\), calculated from Eq(17),
is used:

2
M'
(23)

21,2 2 hzk
An(EN)=An(0N) =%+, ¢?>0, E=-

In addition to the leading terms, we include in E&2) some

1+

k)
In(krg)

Conversely, whem,,(0O,\) increases across the valum (
+1/2)Irqy, the phase shift at zero momentum,(0O\) also
remains invariant. This is the reason why we did not include
the next leading terms in the numerator of E&2) except
for m=0.

Therefore, the phase shif§,,(0)/7 is just equal to the
timesA,(O,\) decreases across the valuer+1/2)/ry as
\ increases from zero to one minus the tinfeg(O\) in-

next leading terms, which are useful only for the critical casecT€ases across that value. In Sec. lll we have proved that the

where the leading terms cancel each other.

First of all, it can be seen from Eq2) that tanyq,(k,\)
tends to zero ak goes to zero, namelyy,(O\) is always
equal to a multiple ofr. In other words, if the phase shift
7m(K,\) for a sufficiently smalk is expressed as a positive
or negative acute angle pluasr, its limit »,,(0,\) is equal to
n, wheren is an integer. This means that,(O,\) changes

discontinuously. In addition, in three dimensions, the tangent

of the phase shift may go to infinity for the critical caseSof
wave.

Second, ifA,(E,\) decreases as increases,nm(k,\)
increases monotonically. A&, (E,\) decreases, each time
tany(k,\) for a sufficiently smallk changes sign from
positive to negativéthrough a jump from positive infinity to
negative infinity, »,(0\) jumps bys. However, each time
tan »n(k,A) changes sign from negative to positive,
7m(0ON) remains invariant. Conversely, i, (E,\) in-
creases as increasesy,(k,\) decreases monotonically. As
An(E,\) increases, each time tap,(k,\) changes sign
from negative to positivey,,(O\) jumps by — 7, and each
time tann,(k,\) changes sign from positive to negative,
7m(O\) remains invariant.

When V(r,\) changes from zero to the given potential

V(r) continuously, each time th&.,(0\) decreases from
near and larger than the value (h+ 1/2)/r, to smaller than
that value, the denominator in E(R2) changes sign from

positive to negative and the remaining factor remains pos

tive such that the phase shift at zero momentyg(0\)
jumps bys. Conversely, each tim&,,(O,\) increases across
that value, the phase shift at zero momentgn{O,\) jumps
by — 7. Note that wherA,,(O\) decreases from near and
larger than the valuenf+ 1/2)/r o to smaller than that value,
the numerator in Eq(22) changes sign from positive to

difference of the two times is nothing but the number of
bound states,,, namely, we proved the Levinson theorem
for the Schrdinger equation in two dimensions for noncriti-
cal cases:

7m(0) =Ny (24

We should pay some attention to the casensf0. When
A(0) decreases across the valuer3/doth the numerator
and denominator in Eq22) change signs, but not simulta-
neously because the next leading terms in the numerator and
denominator of Eq(22) are different. It is easy to see that
the numerator changes sign first and then the denominator
changes sign, namely, tap,(k) at small k changes first
from negative to positive and then to negative again so that
7m(0) jumps by, Similarly, whenA,(0) increases across
the value 1/2,, 7,,(0) jumps by— .

For A=0[V(r,0)=0] and m=0, the numerator in Eq.
(22) is equal to zero, the denominator is positive, and the
phase shiftpy(0) is defined to be zero. Ay(E) decreases as
\ increases from zero, the numerator becomes negative first
and then the denominator changes sign from positive to
negative such that the phase shjf(0\) jumps by and
simultaneously a bound state appearsAJtE) increases as
\ increases from zero, the numerator becomes positive and

i'ghe remaining factor remains negative such that the phase

shift 7,(0,\) is zero and no bound state appears.

Now we turn to discuss the critical case where the loga-
rithmic derivative A,(0,1)(\=1) is equal to the value
(=m+1/2)Iry. In the critical case, the following solution
with zero energy in the regiony=<r <o will match this
An(0,1) atrg:

negative and the remaining factor remains negative such that

the phase shift at zero momentumy,(O,\) does not jump.

—m+1/2

Rn(r)=r (25
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It is a bound state whem=2, but a half bound state when d2R (EN) b m2—1/4
m=1 and 0. A half bound state is not a bound state because m—2'+ - kn—2— 5
its wave function is finite but not square integrable. We are dé 3 &

going to discuss the critical case whekg(0\) decreases
(or increasesand reaches, but does not cross, the value
(—m+1/2)/ry as V(r,\) changes from zero to the given

XRn(&€,\)=0 when E>O0,

potential V(r). For definiteness, we discuss the case where d®Rmn(&.N) b ., m’-1/4

A, (0)\) decreases and reaches the valaen(+1/2)/r. In dé2 -1 E" N £2

this case a new bound state with zero energy appeans for

=2, but not form=1 and 0. We should check whether or XRn(é€,0)=0 when E<O, (29

not the phase shify,,(0) increases an additiona.

It is easy to see from the next leading terms in the dewhereR,(£,\) depends o through the matching condi-
nominator of Eq.(22) that the denominator fom=2 has tion (8).
changed sign from positive to negativeAag(O,\) decreases As far as Levinson’s theorem is concerned, we are inter-
and reaches the value-(m+ 1/2)/r 3, namely, the phase shift ested only in the solutions with the sufficiently smialand
7m(0) jumps bysr and simultaneously a new bound state of «. If n=3, in comparison to the term of the centrifugal po-
zero-energy appears. tential, the term with a factck" 2 (or " ~?) is too small to

For m=0 the next leading term with lf¢,) in the de-  affect the phase shift at a sufficiently smialand the variant
nominator of Eq.(22) is positive and larger than the term range of the logarithmic derivativedR(r)/dr]/Ry(r) at
—c?k?, such that the denominator does not change sigm,,+. Therefore, the proof given in the previous sections is
namely, the phase shiff,(0) does not jump. This agrees effective for those potentials with a tail so that Levinson’s
with the fact that no new bound state appears. theorem(24) and(24’) and holds.

Form=1 the next leading term in the denominator of EQ. Whenn=2, we define
(22) is negative such that the denominator does change sign
asA,(O\) decreases and reaches the valu2r ;, namely, v2=m?+b. (29
the phase shify,(0) jumps byw. However, in this case no
new bound state appears simultaneously. The radial equatiort7) becomes

The discussion for the cases whérg(0,\) increases and
reaches the value {m+1/2)/r, is similar. Therefore, PRy(r,N)  |[2uE  v2— 1/4}

+ — Rn(r,A\)=0, r=rg.

Levinson's theoreni24’) holds for the critical cases except 2 2 2

. , or h r
for m=1. In the latter case, Levinson's theorem for the (30)
Schralinger equation in two dimensions becomes

If ¥2<0, there are an infinite number of bound states. We
Im(0)=(Np+1)7 will not discuss this case nor the case with 0 here. When
>0, we taker>0. Some formulas given in the previous

when m=1 and a half bound state occurs(24’)  Sections will be changed by replacing the angular quantum
numberm with ». Equation(19) becomes

Equations(24) and (24') are the same as E(B) because in 1
our conventionzy,(«)=0. (

aRm(r,)\))
Rin(r,\) ar .

V. DISCUSSION iKH(Vl)(i KkTo)’ 1

Now we discuss the general case where the potevi(ial - HD (i xro) 21,
has a tail atr=r. Let ry be so large that only the leading
term inV(r) is in the regionr=rg: (—v+1/2)/ry when E~O
, |k~ when E——. 3D
—~ —-n
v(r) 2u br when 1o, (26) The scattering solutiofiL0) in the regionr ,<r <« becomes

whereb is a nonvanishing constant andis a positive con- (F\) = /Wkr{cosa (k,\)J,(kr)—sind, (k,\)N,(kr)}
stant, not necessarily an integer. From the condit®in, n me 2 mem e

should be larger than 3. Substituting Eg6) into Eq.(7) and

changing the variable to &, ~cos( kr— g_%+ 5,(k,N)|, when r—oe,
kr=rv2uE/h when E>0 o (32
= 2
kI =r\—2uElfh when E<O, Thus the phase shiff,,(k) can be calculated from,(k,1),

we get the radial equation at the regiopsr <o, 7m(K)=6,(k,1)+(m—v)7/2. (33
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5,(k,\) satisfies

J,(Kro) Am(E,N)—kJ,(kro)/J,(Kro) —1/2r)

tand,(k,\) = (34
(kA) N,(Kro) Ap(E,N)—KN.(Kkro)/N,(kro)—1/(2r )
and it increases monotonically as the logarithmic derivafiy¢E,\) decreases:
368,(k,\ —8rycoss,(k,\
(k\) | _ 0 (k,\) 0. (35
IAREMN)], {21 An(E, NN, (Krg) — 2kroN/ (Kro) — N ,(krg) 12
For a sufficiently smalk we have
[ — m(krg)? AL (ON)— (v+1/2)1ry
20 1(— 1)1 —y+1/2 kro)? when »>1
2 V.(V 1) Am(O,)\)_Czkz_ v _ ( O)
ro (v—=1)(2v—1)
tanéy(k,)\)={ - (kro)z” An(ON)—(v+1/2)Irg (36)
I'(v)?\ 2 —v+1/2 2mco krg\2” when O<wv<l1.
) A (ON)—cA?— =2, o7 KV?(—O)
\ ro rol'(v) 2

The asymptotic forms for the case=1 have already been given in EQ.2).
Now, repeating the proof for Levinson’s theoref®4) and (24'), we obtain the modified Levinson theorem for the
noncritical cases:

7m(0) — (Mm—v) /2= 6,(0,1) =ny,. (37

For the critical case wher®,,(0,1)=(— v+ 1/2)/r 5, the modified Levinson theore@7) holds forv>1, where a new bound
state appears and simultaneously(k) jumps by, but the modified Levinson theore(87) is violated for 0<v<1, where

a half bound state appears and simultaneoyslfk) jumps byvr. In other words, the theorem needs to be modified further
in these cases.

From the above discussion, we come to the conclusion that for the potential with(26adt the infinity, whenn=2
Levinson's theorent24) is violated and whem>2, even if it contains a logarithmic factor, Levinson's theoré¥) holds
because in the latter case, for any arbitrarily given snsalbne can always find a sufficiently largg such that|V(r)|
<€lr? in the regionr,<r<w. Sincev’=m?+ e~m?, Levinson’s theorent24) and(24’) holds for this case.
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