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Properties of the ground state of the hydrogen molecular ion
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Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771

~Received 21 May 1998!

The ground-state energies of the ions H2
1 and D2

1 have been calculated without making use of the Born-
Oppenheimer approximation. Instead, the ions are treated as three-body systems whose ground states are
spherically symmetric. The wave function of the ground state is taken to be a generalized Hylleraas form, but
it is necessary to use high powers of the internuclear coordinate to simulate the localized motion of the nuclei.
We obtain good values of the ground-state energies and compare them with those obtained from earlier
calculations. Expectation values are calculated for various operators, the Fermi contact parameter, and the
permanent quadrupole moment. The cusp condition is also calculated. The results are compared with the results
of other calculations, where available.@S1050-2947~98!05410-9#

PACS number~s!: 31.15.Ar
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I. INTRODUCTION

Recent experiments@1# on high Rydberg states of H2 have
prompted us to calculate the H2

1 ground-state energy usin
Hylleraas-type wave functions, which have been used s
cessfully for the two-electron systems. These functio
when used in a conventional manner, do not give an accu
value of the ground-state energy or expectation values
various operators even when a large number of terms
used in the wave function. The reason is that these funct
do not localize motion of the nuclei, which can be done ve
easily in the Born-Oppenheimer approximation by using
product of electronic and nuclear wave functions. This
proximation further assumes that there is no coupling
tween the electronic and nuclear motions. Since the rela
motion of nuclei is fairly localized near an equilibrium poi
and looks like a Gaussian, we modified recently@2# the Hyl-
leraas wave function so that the nuclear motion is localiz
i.e., is Gaussian. This has helped the convergence of
energy value considerably in H2

1, but not to the same exten
in D2

1. Using the wave functions obtained in minimizing th
energy using the Rayleigh-Ritz variational principle, we c
culate expectation values for various operators, the Fe
contact parameter, the permanent quadrupole moment,
the cusp condition. The results are compared with other
culations, where available.

II. FORMULATION AND RESULTS

The unperturbed Hamiltonian of the H2
1 system in the

center-of-mass system is@2#

H52¹ r 1

2 2¹ r 2

2 22m¹W r 1
•¹W r 2

1
2

r 12
2

2

r 1
2

2

r 2
, ~1!

where the reduced massm5M /(M11), M is the nuclear
mass, energies are in reduced rydbergs,Rm5m Ry, andrW1
and rW2 are the relative distances of the electron from
nuclei in units of reduced Bohr radius. The proton and d
teron masses are 1836.152 70 and 3670.483 02, respect
when the electron mass is 1.0. The ground state is descr
by S-wave Hylleraas trial functions
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mr 12
n 1@1↔2#,

~2!

where rW125rW12rW2 . The eigenvalues are calculated by t
Rayleigh-Ritz variational principle

E5
^C0uHuC0&

^C0C0&
, ~3!

which requires minimizingE with respect to variation of the
nonlinear parameters. For 615 terms in the expansion,
~2!, we obtainE521.192 92 Ry for H2

1, which is far from
the accurate value,21.194 278 131 Ry of Ref.@3#. This is
unlike the two-electron systems where accurate results
be obtained by using fairly short expansions in Eq.~2!. As
explained in Ref.@2#, the exponentials and powers appeari
in Eq. ~2! are capable of describing the correlations betwe
the nuclei and the electrons but not the internuclear mot
which we know from the Born-Oppenheimer approximati
is described by a Gaussian-like function centered around
equilibrium positions of the nuclei. This Gaussian-like fun
tion can be well approximated by the formr 12

N e2br12 pro-
vided N is large andb'N/2 ~cf. Fig. 1 in Ref. @2#!. This
leads to a simple modification of multiplying Eq.~2! by r 12

N .
For the ground state the nonlinear parameters are chose
minimize the energy, keepingV01N constant as we in-
creaseV0 . The convergence of the ground-state energy
H2

1 with respect toV0 is shown in Table I. ForV0513, i.e.,
308 terms in the expansion, takingN510, we obtainE5
21.194 277 909 Ry, differing by only about 2.231027 Ry

TABLE I. Convergence of the ground-state energyE for H2
1

with respect toV0 Units are Ry.

V0 N E ~Ry!

10 13 21.194 275 130
11 12 21.194 277 094
12 11 21.194 277 168
13 10 21.194 277 909
2787 © 1998 The American Physical Society
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TABLE II. Ground-state energyE and expectation values of various parameters for H2
1 and D2

1. Units are
Ry anda0.

Quantity H2
1 a H2

1 b D2
1 a D2

1 f

E 21.194 277 909 21.194 278 126 21.197 572 175 21.197 577 413g

cusp(r 1) 20.999 46 20.999 451 778 20.999 74
^d(r 1)& 0.206 74 0.206 736 364 0.207 73
^R4& 19.542 88 19.542 349 39 18.419 80
^R3& 9.125 80 9.125 657 555 8.774 09
^R2& 4.310 97 4.313 285 944 4.216 29 4.2156
^R& 2.063 92 2.063 913 868 2.044 16 2.0441
^1/R& 0.490 71 0.490 707 799 0.493 66 0.493 65
^1/R2& 0.244 19 0.243 923 499 0.245 95 0.245 92

^r 1
4& 24.035 14 24.034 835 140 23.236 48

^r 1
3& 8.709 95 8.709 881 574 8.505 20

^r 1
2& 3.558 81 3.558 797 930 3.507 84 3.5075

^r 1& 1.692 97 1.692 966 208 1.682 40 1.6823
^1/r 1& 0.842 49 0.842 494 2962 0.845 62 0.845 62
^r 1r 2& 2.808 59 2.804 309 915c 2.777 41
^cosu12& 0.251 99 0.251 989 493 0.254 33
^r 2& 2.481 07 2.480 48d 2.453 76 2.4536

^r 1
2r 2

2/R2& 3.158 65 3.156 26

^r 1
4/R2& 5.502 14 5.462 16

^z2& 1.171 74 1.171 74d 1.152 95 1.1528
Q 1.638 40 1.639 27d 1.605 61

^¹1
2& 25.228 501 25.226 740 693e 27.205 68

aPresent work.
bReference@5#.
cThe value given in Ref.@5# appears to be off by a factor of 2.
dReference@6#.
eThe value given in Ref.@5# should be negative.
fReference@8#.
gReference@4#.
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from the accurate value@3#. A similar calculation was carried
out for D2

1. We obtainE521.197 572 175 Ry,V0513,
and N510 for the ground-state energy, differing b
5.231026 Ry from the accurate value@4#. To get a much
better value of the ground-state energy nuclei must be lo
ized by usingN much higher than 10, which is not feasib
numerically. An improvement could be made by using
combination of functions such asr 12

N e2br12.
Using the wave function obtained variationally, expec

tion values of various quantities are calculated. They
given for H2

1 and D2
1 in Table II. In the table,rW represents

the distance of the electron from the center of mass of
nuclei andz is the projection ofrW onto rW12 and they are given
by the expressions

r 25
r 1

21r 2
2

2
2

r 12
2

4
, ~4!

z5
rW•rW12

r 12
5

r 1
22r 2

2

2r 12
, ~5!

and Q5^r 12
2 1r 223z2&/2 is the permanent quadrupole m

ment. In the tableR[r 12, energies are in the units of Ry
and distances are in units ofa0 . The cusp value with respec
l-

-
e

e

to r 12 is equal to zero because of nonzero powers ofr 12,
while the cusp value with respect tor 1 is very close to2m
~0.999 455 679 for H2

1 and 0.999 727 630 for D2
1). The

Dirac d function d(rW1) required in the calculation of the
Fermi contact term is also given in the table. We comp
our results for H2

1 with the recent results of Frolov@5#,
where 500 linear parameters and 1200 nonlinear pareme
were used, and also~when Ref.@5# does not have a particula
one! with those of Babb and Shertzer@6# obtained by using
the finite-element method. The agreement is very good c
sidering only two nonlinear parameters were employed in
wave function. In spite of the fact that the individual expe
tation values ofR2, r 2, andz2 agree very well with those o
Ref. @5#, the value ofQ does not agree well with the accura
value 1.639 272 80 calculated by Moss@7#. Babb and
Shertzer@6# compare their results with results of other ca
culations and we have not repeated those here~see Ref.@6#!.

The expectation values of various operators for D2
1 are

compared, where available, with those given by Bishop a
Cheung@8#. They carried out a nonadiabatic calculation
addition to the Born-Oppenheimer and adiabatic calcu
tions, using a deuteron mass equal to 3670.479 07. This
fers by 0.003 95 compared to the mass used in the pre
calculation. We give their nonadiabatic results in Table
The agreement with their calculation is quite good.
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III. CONCLUSION

In summary, we have shown that with a suitable mod
cation of the Hylleraas wave function accurate ground-s
energy and expectation values of various operators can
obtained that compare favorably with the results obtain
using more elaborate wave function.
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