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[. INTRODUCTION and L, as the corresponding wave functions. Each of the
trajectories that belongs to the ensemble contributes to the
Almost all of what we currently know about microscopic total particle distribution with a characteristic density. We
phenomena is due to the revolutionary results of quantungonstruct the classical Rydberg distributions summing up all
mechanics, early in this century. At the present time, nearly &hese individual densities.
hundred years later, experiments are being made on the very It is known that in the Coulomb potential there is a coor-
border of microscopic and macroscopic systems. It is nov@inate transformation which maps Kepler ellipses into uni-
possible to accommodate atomic electrons in highly excitedorm circular motion. Clearly, uniform motion gives the sim-
Rydberg states, with fine control of their orientation and alig-plest possible particle distribution, namely, a uniform
ment[1-5]. As stated in Ref[6], in these systems the size of distribution on each orbit. We shall exploit this simplicity
an atom is a good measure of the validity of classical mewhen constructing our classical Rydberg states. In Sec. Il we
chanics. Currently, experimentalists can excite atoms ang@haracterize the motion in the new coordinates, called sym-
make them as big as bacteria. The evolution of such systenigetric variables. In Sec. Il we use these coordinates to con-
could be described, in principle, by quantum mechanicsstruct the classical Rydberg momentum distributions, which
However, the huge calculations involved make the problenre the main result of this paper. After that, in Sec. IV we
untreatable. In consequence, for practical reasons research@¢sent an example in coordinate space. We end in Sec. V

have begun to turn back to classical physics. with some concluding remarks.
For most macroscopic systems classical methods give a
good description of the experimental results. This is why Il. THE KEPLER TRAJECTORIES

classical trajectory Monte Carlo calculations have been so . . . . .
widely used(for examples in Rydberg states, see RETs: In this section we review the classical desc_r|pt|on of the
11]). However, on the very border of the validity of classical COUlomb potential, both in real and symmetric space. We
physics, some of the statistical properties of matter have tf!loW the approach presented by Ggwi in Ref. [12].
be retained. In classical descriptions, this is usually done by W€ consider a particle of mass in the potential
averaging over many realizations with a weight function
given by the initial state, which is taken to be a quantum- V(r)=— 9_
mechanical distribution. This approach, although successful r
in many cases, is not entirely consistent with the whole R
theory, since it is known that the square modulus of a staThe position of the particle is given by the vectosrr
tionary wave function is not necessarily stationary under the= r1§/+ r2§<+ rgi, where the symbcﬁ represents a unit vec-
ooty oo o b asal v s 11 GHecton of. Usng ==y bbb

: . ) or the momentum, the Hamiltonian of the system reads
sponding to quantum-mechanical stationary states.

Finally, classical physics has some very elegant aspects, p2 g
such as its simple scaling laws, and its transparent causality. H(r,p)= >m T
These features provide, in addition to their own beauty, an
interesting insight into
mechanical processes.
Following thisrenaissanceof the old approach to atomic

physics, in this paper we calculate the classical distribution 2 2

) . . Pe g g'm
of particles corresponding to the quantum-mechanical Ryd- H=E=-———-=—- > —_ 2 _
berg states. We use the expresdtyuberg statéo designate 2m 2rg ZLE '
the stationary wave functions of the Coulomb potential, char-
acterized by definite values of the energy, the square modwhereE, pg, rg, andLg are constants which parametrize
lus of the angular momentum, and one of its componentshe energy, with units of energy, momentum, position, and
We proceed in the following way. We construct an ensemblengular momentum, respectively.
of classical trajectories which correspond to Rydberg states. The evolution of the particle is governed by Hamilton
We select the orbits which have the same valuek,of.?, equations, namely,

the ~ corresponding quantuM-gince the Hamiltonian is a conserved guantity, we can write
its numerical value as
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dri oH dpl oH (a)
Iyl . - T T (1) 2r
dt Ip; dt ar; E

where the subindek runs from 1 to 3.
Instead of trying to solve these equations explicitly, we
introduce the vectors

L=rXxp, angular momentum,

r
A= rEpEF - DBE XL, Runge-Lenz vector.

%ows % g

With this definition, both vectors have the same units. Each
of their components is a constant of motion, as may be see!
by explicitly calculating their Poisson brackets with the
Hamiltonian. We therefore have seven conserved quantities
H, L1, Ly, Lz, Ay, Ay, andA;. They are functions of
the coordinates andp. The trajectory of the particle has to
be contained in the surfaces defined by the values of thes
guantities.

Phase space has dimension six. As each conserved qua
tity defines a surface of dimension five, and a trajectory has
dimension one, it is not possible to have more than five in-
dependent constants of motion. In fact, the seven conserve
guantities obey the relations

0=L-A, 2

LE=A%+L2, 3

as may be checked from their very definition. Equatign
restricts the angle betwedénandA, imposing orthogonality.
Equation(3) is a relation between their moduli.

We define the angle FIG. 1. (a) Trajectory of the particle in coordinate space for

ay=60°. The major axis of the ellipse is oriented in the direction of
ap=arctarfL/A). A an_d has_a length ofrz. The m_in_or _axis points towards><A,_
and is 2 ¢sin o long. The eccentricity i€= cosay. The geometri-
Once the energy is given, fixing, determinesL and A, cal center of the ellipse is displaced from the force center in the
namely, direction of — A, a distance gcosay. (b) Trajectory of the particle
in momentum space forag=60°. The circle has a radius
L=Lg sinag, A=Lg cosay, pe/sin «g, and its center is displaced from the origin in the direc-
tion Lx A, a distancepecot ap.
with aq in [0,7/2].
We aim at obtaining the stationary particle distribution for ;5 tnig plane, defines an ellipse, shown in Figa)l The
a specific ensemble of Kepler orbits. Therefore we are nofarameter . constitutes a scale factor for the orbit.
interested in the time evolution of individual particles. In- " 11 equations for the trajectory) and (5) are a set of
stead of attempting to solve Hamilton equatiofi, we  ¢5,r nonhomogeneous nonlinear relations for the compo-
searqh for the geometrical locus of the t.rgjectorles. This We o nts of the position vectar SinceL andA are orthogonal,
do with the help of the conserved quantities. only two of them, Eqs(4) and (5), are independent. These
. two scalar equations define a curve in coordinate space.
A. Coordinate and momentum spaces We now analyze the trajectories in momentum space.

Let us begin with coordinate space. By Simp'e Ca'cu'ationpnce more, the fO”OWing relations can be eXp|ICIt|y verified:
the following relations can be verified:

0=L- ’ (6)
A p
O=L-{r—rg—|, 4)
Le p2—p?
0=AXp— L. (7)
) A P 2pg
O=AX|r—rg—|—\/rg—|r—reg— L. (5)
Le Le

Equation(6) confines the trajectory to the plane perpendicu-
Equation(4) confines the trajectory to the plane perpendicu-lar to the angular momentum. Equati6r), when restricted
lar to the angular momentum. Equati@), when restricted to this plane, defines a circle. We depict it in Figb)l The
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scale factor of the orbit is nowe . Once more, we have that dp; @ dm pe |2 .
only two of the four scalar equatior(§) and (7) are inde- arm dr —m(m pi, i=123.
pendent. E

Thus, with these new spatial, momentum, and time variables,
B. The symmetric representation Kepler orbits appear as uniform circular motion along great
circles[14] on a four-dimensional sphere. The angular veloc-
ity is @=pg/mrg.
Let us select a single orbit by fixing the valueslofand
A. With them,L andE may be computefEq. (3)]. Writing
r in terms ofp;, Eqgs.(4) and(5) for the trajectory in coor-

We now want to make explicit use of the hidden symme-
try of the Coulomb problem, in order to map Kepler orbits to
uniform circular motion. Following Fockl3], we introduce
the variables

A 2p2 dinate space transform into a set of four linear homogeneous
p1=l’1—l’E—l, == E P, equations. In the same way as with relatigfisand(5), only
Le pg+p? two of them are independent. They can be written as
A, 2p2 0=p1vi+pav5+psv3+pavs,
p2=Tlo—Tey—, T2~ P2,
Le pE+p° ® 0=p10 3+ pov 5+ pavs+pavl, (1)
where
oy Az 2pg
=la—lp—, MTa=——DPa,
Pa=Tls™le 3 p%-i—pzps v2 L, vt L XAl
vi| 1] L, v 1 | LxA
2_ 2 =7 l =T .
pa= \/ré_ r_rEi , 7T4:p§ psz, 03| Lits vy| Lle| LxAls
Le PE+P v 0 v —L2

which we call symmetric coordinates. The spatial coordinatero system(11) defines a plane imj space, whose orienta-
r along withrg are transformed into the four-dimensional .. ~oA .

> ) tion depends o, A, andag. The transformation8) treats
vectorp=(p1,p1,p3,p4). The momentunp, together with  the energyparametrized bye andLg) as a variable. There-
Pe, are mapped inter=(7y,,,73,7,). It can be verified  fore all the possible ellipsd€qgs.(4) and(5)] in r space that

that may be obtained by varying the energy are mapped into the
plane defined by Eq.l1). To define a single trajectory, we
|p|2=p2+p2+p2+p2=r2, have to fix the energy by including the constraint
2 2 2 2 2
- ro=pitpstpstps. 12
|w|2=w§+w§+w§+w§=pé. (9) 0~ P1T P2 P3T Py (12

) ) So, the trajectory irﬁ space is defined by the intersection of
Equations(9) show that the transformatiot8) maps the jane(11) with the hyperspherél?2), giving a hypercircle of
whole of three-dimensional coordinaeomentum space, radiusr.

onto the surface of a four-dimensional spheré (rfr) space, In the same way, Eqg6) and (7) of the trajectory in
whose size depends on the energy. If the energy varies fromomentum space transform into

E=0 to E— —, the entirep and 7 spaces are covered.

It should be noticed that in the transformationﬁttspace,
the Runge-Lenz vector appears as a parameter. This does not

happen when transforming to space. In consequence, it
will be much simpler to shift from real to symmetrical space 1¢ this set of equations, the restriction
when dealing with momenta.

Transforming the equations of motiofl) to the sym- p3= w2+ w5+ wa+ 74 (14)
metrical representation, we get

a a a a
0= mvi+ w5+ v+ mavy,

0=7Tlv?+772v2+7rgvg+ﬂ'4v2. (13

re dt

has to be added. Relatioi$3) and (14) define inar space
r dp, i r d’7Ti P
re dt m’

_0) 2p‘ i=123. the same hodograph as relatiofid) and (12) in p space,
mrg) 7" w except for the scale factor which is now given jy. When
performing circular motion, a particle describes a circle with

These equations correspond to nonuniform circular motionthe same orientation in both coordinate and momentum
If we introduce the invariant time parameter space. There is, however, a phase shifirfi in the temporal
variation of the particle on the two circles.

We see that Kepler trajectories turn out to be very simple
in the symmetric representation. Both the ellipses in coordi-
nate space and the circles in momentum space transform into

Hamilton equations read geodesics of spheres Eqand% space, as shown in Fig. 2. In

Ne
dr= Tdt, (10
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@ P4 Ill. THE DENSITY IN MOMENTUM SPACE

We have seen that it is possible to map Kepler orbits onto
uniform circular motion by means of a transformation which
involves the coordinates of phase space, the energy, and a
reparametrization of the temporal variable.

We now want to calculate a density in momentum space
corresponding to an ensemble of classical orbits that simu-
lates the quantum-mechanical Rydberg states. Such an en-
semble has to be constructed with all the orbits in which

: E, L, andL; are fixed to certain values. There are many
rspace .o ! s orbits which fulfill these conditions, and all of them should
" ’ contribute to the density with equal probability. In symmetri-
cal space all orbits have the same size, shape, and period.
Furthermore, for a fixed energy, all trajectories correspond to
the same uniform angular velocity. Therefore, when working
with the symmetrical coordinates, the calculation of the den-
sity turns out to be straightforward. To obtain the particle
distribution in momentum space we only need to make a
coordinate transformation from the corresponding density in
symmetrical space. Explicitly

(b)

dap (9(7717727737747)‘ dP
dpdpedt | d(p1pzpspet) |dmdr’

(15
P space
wheredP is the probability of finding a particle about the
position (wq, m,, 3, m4) at time 7, with a tolerance
(dmq,dw,,dms,dw,) and dr [or, similarly, about
(P1.P2,P3.Pg) at timet, in a volume @p;,dp,,dps,dpg)
and dt]. The proportionality factor between the two distri-

FIG. 2. (a) Parallel andb) stereographic projections of an orbit butions in Eq.(15) is the modulus of the Jacobian of the
(thick lines in (a) coordinate andb) momentum space to the cor- transformation between the variables,(m,, 73, m,,7) and
responding spheres i@ p and(b) = space. Real space has been (P1,P2,P3,Pe ).

drawn as a two-dimensional plane, in order to be able to include the Using the coordinate transformati¢8) and the time pa-
fourth component of the new coordinates and 7,. In the sym-  rametrization(10) the explicit calculation of the Jacobian can

metrical representation, Kepler orbits are geodesics which form aRe carried out. The result is
angleao=arctan(/A) with respect to the fourth axis, or ;.

2p2 \*

P+ p?

(T T T3WYT)
symmetrical space, a given trajectory is tilted with respect to d(p1P2PsPet)
the axisp, (,) in the angleay=arctan{/A). Therefore, if
A=0 and the orbits in real coordinate and momentum spaces
are circular, the geodesics in the symmetric spaces are con- ) ) o ) )
tained in the subspaces=0 andm,=0 and look the same We begin calculating the distribution of particles in sym-
as the real orbits. On the other handLi# 0 and the trajec- metrical space for a single orbit, when the initial position is
tories in the real spaces degenerate into straight lines, in tHghiformly distributed on the trajectory. To select an orhit,
symmetric representation they become upright circles, ofNdA have to be given specific values. Care has to be taken
directed towards the “north pole’ by Eq.(3). We define the parameters

In what follows, it will be convenient to use polar coor-

dinates inw space. We define

4
I as

1+ SinzOZp

A. Patrticle distribution for a single orbit

___mg
Po= At 12

Since the motion along the circle defined by E&3) and

ag=arctarfL/A).

\/77214— 71'22

|7;| = \/7T§+ 7T§+ 7T§+ Wﬁ. szarctar<

m3 (14) is uniform, the density reads

dP 1 -

et YTEETE TS|l | =5 (po- |7
ap=arcta = ,  @p=arctal ) TaT| 0 Po

. X 8(mvi+ moui+ mavi+ maud)
The angles9p and ¢p are the usual polar angles in momen-
i i X 8( 0P+ S+ mu+ mh), A7)
tum space, andp is a function ofp andpg. W1 T WU T T3U3T Tyly),
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Graiing i p s pe and equating the resut 1o unty. This | el /
gorﬁnaglizat?on cdritpeErion?NillqbetergptIZyed thrlz)Lthhouftyt'htha- :i /‘%:‘%////%

per. The distribution(17) is zero all overr space, except on 7 ’.“‘ A
the hypercircle defined by the selected valued. adnd A. ' .‘
There, the threeS functions have vanishing arguments and
the density diverges.

Using Egs.(16) and(15) to transform back to momentum
space, and after some algebraic manipulation, we obtain

’

/"\
/7
A

A\

dp 1 2p2 | *dfA %\
_ o ZPE /
dpdpEdt AL_Zﬂ_poa(pE pO)(pé-i-pZ) dp (p)i /
(18) / ", y
where //////7///////// Z
d AL FIG. 3. Ensemble of trajectories in momentum space which con-
d_(p)zg(p. [)5[ \/[p-(AXI:)—pocot ap]?+(p-A)? tribute to the density for fixed. and E. The caustics are also
p shown.
- .po ] where® stands for the Heaviside step functifib.
Sin ag Transforming this distribution to momentum space

through Eqgs(15) and(16), we get
The distribution(18) is zero over allp space, except on the gh Eas(19) (16) g

cir/il_e defined byL and A in Egs. (6) and (7). The factor dp 1 i 3
df”~/dp represents a uniform density per unit length on the = . — -
Cbit p rep y p g dpdpet n 2772pg o(p-L)d(pe—Po) l+p2/pé)

Let us analyze the origin of the factor §2/p2+ p?)2. In o
momentum space, particles move along their orbits with a % Ol(p—p )P —P)]
velocity dp/dt=—(g/r?)r. Using energy conservation, we VeoLay—(p2/p2—1)%(p?/pz+1)?’
write roc1/(p2+ pé). The probability per unit length of find- (21)

ing a particle in a specific position on its orbit is proportional

to the inverse of its velocity in momentum space. In terms ofwhere

p, this reads as (2:/p?+ p2)>.

1*cosag

B. Particle distribution for fixed L and E P~=Pe sin «

We now calculate the distribution for an ensemble of tra-|, Fig. 4 we show the factor accompanying #éunction in
jectories, all corresponding to the sameand E, but with Eq. (21). There are divergencies @t=p=. These are the
any A. Since the constraint®) and (3) must hold,A must

be chosen perpendicular 1o and with modulus equal to 1

\/LZE— L2. We construct our ensemble by selecting all those 90°
orbits which lie in the plane normal o, have an eccentric- 60° 45°
ity e=+1—L?%/Lg, and whose perihelion is oriented in any . 0, =30
direction(see Fig. 3. Each of these trajectories gives a con- 10°F
tribution to the density, of the typd8). We sum them all up, 2
with equal probability, Z
o
dp fzwd dp 19 5 10
T < T AL 8
dmdr o Jo PAdmdr A =
Ay
where ¢, is defined on the plane perpendicularlto and 107
gives the orientation of vectagk. The (normalized result of
the integral in Eq(19) is 0°
-3 L L L
dp L e al 107 1 2 3 4 5
= + + +
dmdr . szpé (it Tov5+ TGt TV y) p/pe
@(cos?ao— Coszap) FIG. 4. Particle distribution in momentum space for fixednd

(20) E, on the plane perpendicular to We show the factor accompa-

X 5( | 7T| - pO) \/ﬁ y -
COS ap—COS ap nying 8(p-L) for several values of,=arctan(/A).
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maximum and minimum values reached by the orbits in the L,
ensemble. As shown in Fig. 3, at these two momenta trajec

tories accumulate to form caustics. fpr<p<p* the par-
ticle distributions shows a smooth behavior. Outside this in-
terval the density is strictly zero, since there are no particles
reaching thus far. We see thatlagncreases, the range of the
distribution becomes narrower. In fact, fdr=Lg (g
=90°), we only find particles witlp=pg. This corresponds
to circular motion.

C. Particle distribution for L =0
The case of. =0 has to be treated separately. Clearly, it
is not enough to take the limitkg—0 in Eq. (21), since the

term 8(p- L) restricts the orbits to a single plane. This plane
has no meaning wheh vanishes. Therefore, after making

ag— 0, we must integrate over all the possible directins
The result is

dpP _ 1 S6(Pe—Po)
dpdpedt|y, _, w2p2 (p2/p2)(1+p?p2)?’

(22

FIG. 5. The dotted line shows the angular momentum vectors

This distribution is spherically symmetrical. In fact, the tra-\ 1.ch contribute to the density for fixed, L2, andLs.

jectories which contribute to an ensemble wlitk-0 are el-

lipses that have degenerated into line segments in Coordi”aﬁeransforming this distribution tp space, we get
space, and into infinite straight lines in momentum space.

The orbits that make up the ensemble are all the lines which  gp 1 1 2 8

pass through the origin. The distributi¢??) diverges at the — =———=8(Pe—Po)

origin, and shows a smooth decrease for greptefhe di- dpdped7 ELL, 2m°pg p/pE[ 1+(p/pe)?
vergency is related with the accumulation of trajectories at .

the origin. The decay gs © for large momenta comes from « O[(p—p )P —p)]

the particles that are at the féinfinite) end of the straight VI2ppe/(p2+p2) 12— L2

lines, where their momentum diverges.
><(9[(0— 07)(60"—0)]

D. Particle distribution for fixed E, L, and L4 /Sin26 — LZ/LZ !
P 3

We now give a further step, allowing,; andL, to vary,
while keepingL andL, fixed. In Fig. 5 we show the values Where
of L that we have to consider. For each of thesehere is a
distribution of the form(21). In the same way as before, we
construct the density by integrating our previous result.

Since fixing the value oL ; implies the selection of a
specific direction in space, we need to decompose

(23

Op=ml2+ 0., Op=ml2—6, if 6. <ml2,
0p=3m2— 0., Op=0,—ml2 if 6 >ml2.

The distribution(23) is one of the main results of this paper,
and is shown in Fig. 6 for particular values af and 6, .
We can see that, in addition to the divergencyatof Eq.
(21), there are two other caustics &t 6=.

The greater the value &f; /L, the more sharply defined is
the angular momentum. Therefore as we increasgjctise
distribution(23) tends to be confined to the plane spanned by

L =LgSin ao(cos 6, z+sin 6,.cos ¢, X+sin 6,sin ¢Ly),

A=LE£COS arp(COS BaZ+ SiN BACOS X+ SiN GSIN ©pY).

Using this notation in Eq(20), we integrate

dP fzwd dp P, andp,.
OC —
dmd7 ELL 0 PLGmdEL
E. Conserved quantities with continuous variation

obtaining Up to now we have considered the conserved quantities as
having fixed definite values. This is analogous to what hap-
dP 1 5(|7?| —Po) pens in the quantum-mechanical Rydberg states. A wave

dmdr - = 2773p8 sin ap function with qguantum numbers, /, andm has unit prob-

ability of bearing an energg = —mg?/242n?, a squared an-
232 ( p P
0 (cofay—codap) O(sifp—coLd,) gular momentuniL<=# //(/'f.' 1), and itsz component_
_ ) =#hm. To cover all the possible angular momenta, we have
VecoSag—coSap  siffp—cosf, to consider the discrete set of pairs’,m), with /
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1 - - dpP . VL o do dpP
oL f.7SInoL 40 ——=—FL Lcos, s
dmwdr ELLAl o] o dmwdr L
w (25
0.5
<0 — where
0.1
0.05 p 2m+1 o 2m—1 26
L=arccosy———|, @ =arccos-———|. (26)
-1 . . )
2 -1 0 1 2 In Eq. (25) the subindex 6| , 6{ ] in the left hand side means
P, that L3 belongs to the intervdlL cosafL,L cosé].

. o . The following step consists in allowing the variationlof
FIG. 6. Contour plot of the particle distribution for fixéfl L, in [Li Lf] Thus

andLj, for L=Lgsin 60° andL;=L cos 30°. The density is de-
picted in the plane spanned lpy andps, and it has rotation sym-
) . . L dpP
metry about the axip;. There are divergencies at=p~ and at _—
=6~ (see text dmdr

JLde dP 2
» o | EL[gi vaf], /)
E[L.LAL6, of) L dmd 7=

=01,...n-1 andm=—/,—/+1,.../. This is in Where the subindekL',L"] indicates that. e[L',L"] with
contrast to what happens in the classical description, Wher@niform distribution. In relation to the state with quantum
all the possible angular momenta are obtained by a contindumbers €./, m),

ous variation ofL andLg. As a matter of fact, the distribu-
tions calculated in the previous sections may be evaluated for
any real value of the parametetse[OLg], and L;e
[—L,L]. This discrepancy between the two approache
raises the question of whether assigning a fixed value.for
and L; is a good classical description of the quantum-
mechanical situation. Instead, the classical description of a
Rydberg state can be constructed with an ensemble of trajec- d7d7
tories which haveL and L; not with definite values, but

belonging to a small interval. The possible intervalslicare 2|_§ 8(| 7| —po)
the result of partitioning the segmer@,L:] in n equal por- (L)2—(L)? sinap
tions. Correspondingly, the intervals far come from the

L'=4/, L'=ha(/+1). (28)

S'I'he normalized result of the integration of E¢&7) and(25)

dpP 1 1

. ! 3 f i
EL L0 0] 273pg cos B —cos g

division of [—L,L] in 2/+1 ribs. In this description we X [arcsing'—arcsin ']

will no longer have classical distributions with fixed values :

of L? andL. But, in compensation, we will construct dis- X[\cos'y' —cosay,

tributions that cover a nonvanishing portion of the allowed — Jeo2(YN—co2(ap)], (29

parameter space, just as it happens in quantum mechanics. In
the present section we follow this approach.

We want to describe a state with quantum numiners”, where
andm. Since in the classical approatlﬁz —g°m/2E, and cos gi+f
quantum mechanics states that — mg?/242n?, we associ- if_gl b
ate sin6p |’
Le=7n. (249  and
-1 if x<-1

The classical available interval faris [O,Lg]. If we divide
it in n portions, each subinterval # wide. The one corre-
sponding to the staten(/,m) begins at%/ and ends at 1 if x>1

fi(/+1). Correspondingly, in the classical descriptidn,

can have any value belonging fte-L,L]. Dividing this in-  and

terval in 2741 pieces, each rib has a width oLQ2/ . ,

+1). Consequently, our state gelse[L(2m—1)/(2/ cogy '=maxfcofap,1—(L"/Lg)?].
+1),L(2m+1)/(27+1)].

As a first step, then, we allol; to vary in its rib with ~ The transformation of Eq29) to p space is straightforward,
uniform probability. Once more, we construct our distribu- using Eqs(8), (15), and(16). The distribution thus obtained
tion by integrating our previous result. Writind-; may be separated in two factors, one dependingy cand
=Lcosé_, we have pe, and the other oy and ¢p . Explicitly
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12

fplpg)

%.0 0.5 1.0 1.5 2.0
plp;

plpg

FIG. 8. Comparison between the classital(dotted ling and
e quantum-mechanicdR (full line) radial Rydberg momentum
stributions, corresponding to= 3. (a) 1‘[0L /3] andfQ 3/=0: (D)

f[LE,SZLE,gl andfn 3/-1, (0 f[2L /3L andfn 3,-2- The values

dP . c of pmin @nd piax @re indicated by arrows, itb) and(c). At these
- = : , ta, the derivati d(b) show di tinuities.
dpdpedt fE,[L',Lf](p*pE)g[o'L,ofL](aP’QDP)* momenta, the derivatives ¢&) and (b) show discontinuities

FIG. 7. Microcanonical distribution found both in the classical ¢
and the quantum-mechanical description, when all states with fixeé1
energy are considered with equal probability.

E[LLLM[6] 6]
(30 [16], Omidvar[17], Mapleton[18], and Abrines and Percival
[19]. It happens to be exactly equal to the corresponding
with guantum-mechanical density, derived by Fddk]. This
identity between the classical and quantum-mechanical de-

g scriptions of the microcanonical distribution constitutes one

c - __E _
fE,[Li,Lf](p'pE)_ng (Lf)Z_(Li)25(pE Po) of the complete correspondence identities of the Coulomb
potential. It has been extensively studied by Norcliffe and
pE+p 2p2 4 Percival[20].

A factorization of the typd30) can also be done with the

prE p*+pg quantum distributions, namely,
X [Vcogy —cog[ (p5—p?)/(p5+p?)] dp
f 2 2.2 dodoedt =13 ,(p,Pe)92 m(0p , @p),
—Jcos'y' —cosT(p5—p?)/(p5+p?)]], pdpedt|,
g. f1(Op,@p)= —
(6,671 27 2cos¢9L cos 6] € (p) ‘ Z(n_/’_l)!22/+2/| ,  (nplp*)’
=\ ————— /1n
X [arcsing' —arcsing']. (32) nAP m(n+ 1! [(np/p*)2+1]7 "2
2

Equationg30) and(31) are the other important result of this i1 (np/p*)?—
paper. What remains of this section is dedicated to studying X 1 m
some of their properties, and to the comparison with their
guantum-mechanical analog. In this comparison, the param-
eters of Eqs(31) have to be taken from Eq&24), (26), and
(28).

In the first place, when we make the width of the ribd.in
andL ; tend to zero, the distributiof80) goes to Eq(23). On
the other hand, if we take the ribs as wide as possible (
=0Lf=Lg,6,=0,6{=7), we obtain the microcanonical

92 (0, 0p) = V005, 0p)|2. (33

Here,p* =mg/# is the mean value of the momentum in the
ground state. The symbdl represents a Gegenbauer func-
tion, and) stands for a spherical harmorji2l]. The depen-
dence of) upon the azimuthal anglep is only through a
phase, and it disappears when taking the square modulus.

density The quantization ofi brings about a quantization of the
o\ 4 energy, and hence, @z. Sincen=p*/pg, we may write
dp _ 1 S(Pe—Po) 2Pg (32) fQ as a function ofp/pg alone, just as it happens in the
dpdpedt £ 27.,2p% E PO\ g2, pé ' classical description, Eq31).

In Fig. 8 we comparé® andf®, for n=3. There are three
shown in Fig. 7. This distribution was derived by Pitaevskii quantum-mechanical distributions, corresponding #£0
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=0, 1, and 2. The classical analogs hdveniformly dis- tional specifications are made, in general it is not possible to

tributed in three intervals|O,Lg/3], [Lg/3,2Lg/3], and calculate the Jacobian of the transformation analytically, as

[2Lg/3Lg]. If we sum up the three gquantum mechanicalin Eq. (16).

distributions and normalize, we get the microcanonical den- Here, we show briefly an example which comes out ana-

sity of Eq.(32). We have proved that this also happens whenrlytically, namely, the case of fixed energy ahe-0. In co-

the three classical densities are added together. ordinate space, this situation corresponds to ellipses which
Except for the case of =0, classical trajectories are have degenerated into lines. In the symmetrical representa-

bounded. In consequence, the corresponding densities bedinn the orbits appear as meridians, whgris taken to point

and end abruptly. The first and last momenta for wHiths  towards the north pole. Such ensemble of orbits gives rise to

different from zero are a distribution
Pmin= Pe tan 2a‘iov Pmax= Pg cOt 2aiol dp > |P|2
dod7 :)\5(|p|_r0) 2 > >
PUT e 0 p1tpatp3

where a‘ozarcsin(_‘/LE). In contrast, the distribution that
containsL =0 (L'=0) ranges fronp=0 to p==, as hap- whereE=—g/2r,. The Runge-Lenz vector is, in this case,
pens with the microcanonical densit$2). In fact, for small

and large momenta, these two distributions coincide exactly. r A

fC|E[ovag] differs from dP/dp|g in a finite interval A=—Pperey = —Ler

(petan 2o, pecot 2af), where the other two distributions

are different from zero. In terms of the participating trajec-

tories, the smaller the angular momentum, the larger th

spectrum of values gf. If L =0, the orbit contains momenta 1 1)

which range fromp=0 to p=%. On the other hand, foc d(mymamsmat)| _1 (e D)

=L¢ there is a single value fqu, namely,pe . a(rararsret) | r2 (rirg)¥2y2—rirg.
In Fig. 8 we see that the quantum-mechanical distribution

also exhibits a sharper spectrum for larg¢han for/=0.In ~ Thus our(normalized distribution reads

this case, however, distributions do not end up abruptly, nor

With this relation we calculate the Jacobian of the transfor-
énation(8). We get

do they have discontinuous derivatives. dP _O(re—ro)  O(2—r/rg)
We now turn to the angular behavior of the classical and  drdredt| . 4723 (r/rg)¥2—rirg.

the quantum-mechanical densities. In Fig. 9, we compére
andg®. We see that whehj is large, the particle is confined This density diverges at the two turning points of the trajec-
to Op~ /2. As m becomes smaller, the former maximum is tories, that is, at =0 andr=2rg. The situation is spheri-
split in two new ones, one of them shifted to lower anglescally symmetrical, so the distribution depends onlyron
and the other to larger angles. In the classical picture, for all
L3;<L there are no trajectories entirely contained in the V. CONCLUSIONS
plane normal t@, . Therefore if we diminish_; a minimum
begins to show nea#/2. As L;~0, the angular momentum
vector lies in the p,,p,) plane. The corresponding orbits are
aligned with f)z, confining the probability distribution to
angles 0 andr.

We have proved that the relations

We have presented a method for calculating the particle
distribution in momentum space for Rydberg states. The re-
sults allowed us to interpret some of the characteristics of the
quantal distribution, in terms of the corresponding classical
trajectories.

The main idea involved the selection of the classical tra-
jectories which fulfill certain conditions imposed upon their

9/, -m(0p.¢p) =0/ m(Op . 0p), constants of motion, in order to represent Rydberg states. We

y , calculated the total density by summing up the individual
2 9, m(0 )= 2/ + — const densities of the participating trajectories. The method bears
m<t IO P.@p A an important discrepancy with the quantum-mechanical ap-

proach, where only amplitudes can be added together. In the
hold, both for the classical and the guantum-mechanical arsemiclassical limit of quantum mechanics, stationary states
gular distributiongto get the classical parameters, E(@)), are calculated as a sum of individual amplitudes correspond-
(26), and(28) should be used ing to classical trajectorid®2]. The square modulus of each
We have depicted the distributiofisfor n=3 andg for ~ amplitude is equal to the probability of having such an orbit.
/=2. When these numbers increase, the classical and tH@owever, each term has also a phase factor, which gives rise

guantum-mechanical densities approach each other. to path interference, and the corresponding oscillatory distri-
butions(see Figs. 8 and)9The classical result is obtained
IV. THE DENSITY IN COORDINATE SPACE when the wavelength of the oscillations tends to zero.

Oscillations are not the only difference between the clas-
As we have mentioned earlier, the transformati@®  sical and the quantum-mechanical approaches. Classical dis-
from coordinate space to symmetric variables bears a paraributions often show shadow zones, due to the fact that con-
metric dependence oh. This means that the transformation servation laws forbid the presence of particles in certain
itself depends on the orbit we are working on. Unless additregions(see Fig. 3. In the corresponding quantal descrip-
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0.3 @ In consequence, its orbits may also be labeled by the values

of the constants of motion. In other words, picking up spe-
cific values for all the conserved quantities is equivalent to
selecting a single orbit. We may then establish a one-to-one
correspondence between the set of all the possible values of
the constants of motion and all the possible trajectories.
Therefore, in order to define a probability distribution on a
set of orbits, it is sufficient to give the corresponding distri-
bution for its constants of motion. We borrow such distribu-
tion from quantum mechanics. When the conserved quanti-
ties of a problem are known, there is a basis of stationary
states that are also eigenstates of a set of selected commuting
operators. Rydberg states, for example, are eigenfunctions of
the Hamiltonian, the square of the angular momentum, and
one of its components. The magnitudes corresponding to the
commuting operators have definite values, while all the other
independent conserved quantities are completely blurred.
This defines the distribution of the constants of motion. Clas-
sically, this distribution can be expressed in terms of a dis-
6, tribution of trajectories, and hence, a distribution in coordi-
nate and momentum spaces. In conclusion, the approach is
mechanicalg® angular Rydberg momentum distributions, corre- Va"d. Whenever there is an integrabl_e_ problem and_ th_ere _is a
sponding to /=2, (a gt and o2 ’(b) distribution for the conserved quantities. Such a distribution
R g losr=2 q Ilarceos1) arceoga/s] 97-2m-=2 4 appears naturally from the geometry of the system under
g[5f°°°‘3’5)’af°°°$1’5>1 and g7-zm-1: (©) Gfarccogus) arcoos— v AN study. For example, a collision process favors the description
9/~2m=0- in terms of parabolic coordinates and imposes a homoge-
neous distribution foL., since all impact parameters should
appear with equal probability.

FIG. 9. Comparison between the classig&land the quantum-

tion, the probability of finding a particle in such regions is
small, but not zero. We then talk about diffraction into the
geometrical shadow, making an analogy with optics. In the

semiclassical description, these zones are reached by some ACKNOWLEDGMENTS
ghost trajectorie§22] whose probability tends to zero in the
classical limit. This work has been supported by Consejo Nacional de

Could we use our method for calculating classical distri-Investigaciones Cieificas y Tenicas. Enlightening discus-
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