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Classical momentum distributions of Rydberg states
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We give exact analytical expressions for the classical distributions corresponding to the momentum repre-
sentation of Rydberg states.@S1050-2947~98!00610-6#
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I. INTRODUCTION

Almost all of what we currently know about microscop
phenomena is due to the revolutionary results of quan
mechanics, early in this century. At the present time, near
hundred years later, experiments are being made on the
border of microscopic and macroscopic systems. It is n
possible to accommodate atomic electrons in highly exc
Rydberg states, with fine control of their orientation and al
ment@1–5#. As stated in Ref.@6#, in these systems the size o
an atom is a good measure of the validity of classical m
chanics. Currently, experimentalists can excite atoms
make them as big as bacteria. The evolution of such syst
could be described, in principle, by quantum mechan
However, the huge calculations involved make the probl
untreatable. In consequence, for practical reasons resear
have begun to turn back to classical physics.

For most macroscopic systems classical methods giv
good description of the experimental results. This is w
classical trajectory Monte Carlo calculations have been
widely used~for examples in Rydberg states, see Refs.@7–
11#!. However, on the very border of the validity of classic
physics, some of the statistical properties of matter hav
be retained. In classical descriptions, this is usually done
averaging over many realizations with a weight functi
given by the initial state, which is taken to be a quantu
mechanical distribution. This approach, although succes
in many cases, is not entirely consistent with the wh
theory, since it is known that the square modulus of a s
tionary wave function is not necessarily stationary under
action of the classical evolution operator. There is therefo
consistency reason for studying classical distributions co
sponding to quantum-mechanical stationary states.

Finally, classical physics has some very elegant aspe
such as its simple scaling laws, and its transparent causa
These features provide, in addition to their own beauty,
interesting insight into the corresponding quantu
mechanical processes.

Following thisrenaissanceof the old approach to atomi
physics, in this paper we calculate the classical distribut
of particles corresponding to the quantum-mechanical R
berg states. We use the expressionRydberg stateto designate
the stationary wave functions of the Coulomb potential, ch
acterized by definite values of the energy, the square mo
lus of the angular momentum, and one of its compone
We proceed in the following way. We construct an ensem
of classical trajectories which correspond to Rydberg sta
We select the orbits which have the same values ofE, L2,
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and Lz as the corresponding wave functions. Each of
trajectories that belongs to the ensemble contributes to
total particle distribution with a characteristic density. W
construct the classical Rydberg distributions summing up
these individual densities.

It is known that in the Coulomb potential there is a coo
dinate transformation which maps Kepler ellipses into u
form circular motion. Clearly, uniform motion gives the sim
plest possible particle distribution, namely, a unifor
distribution on each orbit. We shall exploit this simplicit
when constructing our classical Rydberg states. In Sec. II
characterize the motion in the new coordinates, called s
metric variables. In Sec. III we use these coordinates to c
struct the classical Rydberg momentum distributions, wh
are the main result of this paper. After that, in Sec. IV w
present an example in coordinate space. We end in Se
with some concluding remarks.

II. THE KEPLER TRAJECTORIES

In this section we review the classical description of t
Coulomb potential, both in real and symmetric space.
follow the approach presented by Gyo¨rgyi in Ref. @12#.

We consider a particle of massm in the potential

V~r !52
g

r
.

The position of the particle is given by the vectorr5r r̂

5r 1ŷ1r 2x̂1r 3ẑ, where the symbolr̂ represents a unit vec
tor in the direction ofr . Using p5pp̂5p1p̂y1p2p̂x1p3p̂z
for the momentum, the Hamiltonian of the system reads

H~r ,p!5
p2

2m
2

g

r
.

Since the Hamiltonian is a conserved quantity, we can w
its numerical value as

H5E52
pE

2

2m
52

g

2r E
52

g2m

2LE
2

,

whereE, pE , r E , andLE are constants which parametriz
the energy, with units of energy, momentum, position, a
angular momentum, respectively.

The evolution of the particle is governed by Hamilto
equations, namely,
2767 © 1998 The American Physical Society



e

ac
e
e

tie

o
e

u
ha
in
rv

or
n
n-

w

on

u

po-

e

ce.
d:

u-

or
of

the

c-

2768 PRA 58INÉS SAMENGO
dri

dt
5

]H
]pi

,
dpi

dt
52

]H
]r i

, ~1!

where the subindexi runs from 1 to 3.
Instead of trying to solve these equations explicitly, w

introduce the vectors

L5r3p, angular momentum,

A5r EpE

r

r
2

p

pE
3L , Runge-Lenz vector.

With this definition, both vectors have the same units. E
of their components is a constant of motion, as may be s
by explicitly calculating their Poisson brackets with th
Hamiltonian. We therefore have seven conserved quanti
H, L1 , L2 , L3 , A1 , A2 , andA3 . They are functions of
the coordinatesr andp. The trajectory of the particle has t
be contained in the surfaces defined by the values of th
quantities.

Phase space has dimension six. As each conserved q
tity defines a surface of dimension five, and a trajectory
dimension one, it is not possible to have more than five
dependent constants of motion. In fact, the seven conse
quantities obey the relations

05L•A, ~2!

LE
25A21L2, ~3!

as may be checked from their very definition. Equation~2!
restricts the angle betweenL andA, imposing orthogonality.
Equation~3! is a relation between their moduli.

We define the angle

a05arctan~L/A!.

Once the energy is given, fixinga0 determinesL and A,
namely,

L5LE sina0 , A5LE cosa0 ,

with a0 in @0,p/2#.
We aim at obtaining the stationary particle distribution f

a specific ensemble of Kepler orbits. Therefore we are
interested in the time evolution of individual particles. I
stead of attempting to solve Hamilton equations~1!, we
search for the geometrical locus of the trajectories. This
do with the help of the conserved quantities.

A. Coordinate and momentum spaces

Let us begin with coordinate space. By simple calculati
the following relations can be verified:

05L•S r2r E

A

LE
D , ~4!

05A3S r2r E

A

LE
D2Ar E

22Ur2r E

A

LE
U2

L . ~5!

Equation~4! confines the trajectory to the plane perpendic
lar to the angular momentum. Equation~5!, when restricted
h
en

s:

se

an-
s
-
ed

ot

e

,

-

to this plane, defines an ellipse, shown in Fig. 1~a!. The
parameterr E constitutes a scale factor for the orbit.

The equations for the trajectory~4! and ~5! are a set of
four nonhomogeneous nonlinear relations for the com
nents of the position vectorr . SinceL andA are orthogonal,
only two of them, Eqs.~4! and ~5!, are independent. Thes
two scalar equations define a curve in coordinate space.

We now analyze the trajectories in momentum spa
Once more, the following relations can be explicitly verifie

05L•p, ~6!

05A3p2
pE

22p2

2pE
L . ~7!

Equation~6! confines the trajectory to the plane perpendic
lar to the angular momentum. Equation~7!, when restricted
to this plane, defines a circle. We depict it in Fig. 1~b!. The

FIG. 1. ~a! Trajectory of the particle in coordinate space f
a0560°. The major axis of the ellipse is oriented in the direction
A and has a length of 2r E . The minor axis points towardsL3A,
and is 2r Esina0 long. The eccentricity ise5cosa0. The geometri-
cal center of the ellipse is displaced from the force center in
direction of2A, a distancer Ecosa0. ~b! Trajectory of the particle
in momentum space fora0560°. The circle has a radius
pE /sina0, and its center is displaced from the origin in the dire

tion L̂3Â, a distancepEcota0.
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scale factor of the orbit is nowpE . Once more, we have tha
only two of the four scalar equations~6! and ~7! are inde-
pendent.

B. The symmetric representation

We now want to make explicit use of the hidden symm
try of the Coulomb problem, in order to map Kepler orbits
uniform circular motion. Following Fock@13#, we introduce
the variables

r15r 12r E

A1

LE
, p15

2pE
2

pE
21p2

p1 ,

r25r 22r E

A2

LE
, p25

2pE
2

pE
21p2

p2 ,

~8!

r35r 32r E

A3

LE
, p35

2pE
2

pE
21p2

p3 ,

r45Ar E
22Ur2r E

A

LE
U2

, p45
pE

22p2

pE
21p2

pE ,

which we call symmetric coordinates. The spatial coordin
r along with r E are transformed into the four-dimension
vectorrW 5(r1 ,r1 ,r3 ,r4). The momentump, together with
pE , are mapped intopW 5(p1 ,p2 ,p3 ,p4). It can be verified
that

urW u25r1
21r2

21r3
21r4

25r E
2 ,

upW u25p1
21p2

21p3
21p4

25pE
2 . ~9!

Equations~9! show that the transformation~8! maps the
whole of three-dimensional coordinate~momentum! space,
onto the surface of a four-dimensional sphere inrW (pW ) space,
whose size depends on the energy. If the energy varies f
E50 to E→2`, the entirerW andpW spaces are covered.

It should be noticed that in the transformation torW space,
the Runge-Lenz vector appears as a parameter. This doe
happen when transforming topW space. In consequence,
will be much simpler to shift from real to symmetrical spa
when dealing with momenta.

Transforming the equations of motion~1! to the sym-
metrical representation, we get

r

r E

dr i

dt
5

p i

m
,

r

r E

dp i

dt
52mS p0

mr0
D 2

r i , i 51,2,3.

These equations correspond to nonuniform circular mot
If we introduce the invariant time parameter

dt5
r E

r
dt, ~10!

Hamilton equations read
-

e

m

not

n.

dr i

dt
5

p i

m
,

dp i

dt
52mS pE

mrE
D 2

r i , i 51,2,3.

Thus, with these new spatial, momentum, and time variab
Kepler orbits appear as uniform circular motion along gr
circles@14# on a four-dimensional sphere. The angular velo
ity is v5pE /mrE .

Let us select a single orbit by fixing the values ofL and
A. With them,LE andE may be computed@Eq. ~3!#. Writing
r in terms ofr i , Eqs.~4! and ~5! for the trajectory in coor-
dinate space transform into a set of four linear homogene
equations. In the same way as with relations~4! and~5!, only
two of them are independent. They can be written as

05r1v1
a1r2v2

a1r3v3
a1r4v4

a ,

05r1v1
b1r2v2

b1r3v3
b1r4v4

b , ~11!

where

S v1
a

v2
a

v3
a

v4
a

D 5
1

LS L1

L2

L3

0

D , S v1
b

v2
b

v3
b

v4
b

D 5
1

LLES L3Au1
L3Au2

L3Au3

2L2

D .

The system~11! defines a plane inrW space, whose orienta
tion depends onL̂, Â, anda0 . The transformation~8! treats
the energy~parametrized byr E andLE) as a variable. There
fore all the possible ellipses@Eqs.~4! and~5!# in r space that
may be obtained by varying the energy are mapped into
plane defined by Eq.~11!. To define a single trajectory, w
have to fix the energy by including the constraint

r 0
25r1

21r2
21r3

21r4
2 . ~12!

So, the trajectory inrW space is defined by the intersection
plane~11! with the hypersphere~12!, giving a hypercircle of
radiusr 0 .

In the same way, Eqs.~6! and ~7! of the trajectory in
momentum space transform into

05p1v1
a1p2v2

a1p3v3
a1p4v4

a ,

05p1v1
b1p2v2

b1p3v3
b1p4v4

b . ~13!

To this set of equations, the restriction

p0
25p1

21p2
21p3

21p4
2 ~14!

has to be added. Relations~13! and ~14! define inpW space
the same hodograph as relations~11! and ~12! in rW space,
except for the scale factor which is now given byp0 . When
performing circular motion, a particle describes a circle w
the same orientation in both coordinate and moment
space. There is, however, a phase shift ofp/2 in the temporal
variation of the particle on the two circles.

We see that Kepler trajectories turn out to be very sim
in the symmetric representation. Both the ellipses in coo
nate space and the circles in momentum space transform
geodesics of spheres inrW andpW space, as shown in Fig. 2. I
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2770 PRA 58INÉS SAMENGO
symmetrical space, a given trajectory is tilted with respec
the axisr̂4 (p̂4) in the anglea05arctan(L/A). Therefore, if
A50 and the orbits in real coordinate and momentum spa
are circular, the geodesics in the symmetric spaces are
tained in the subspacesr450 andp450 and look the same
as the real orbits. On the other hand, ifL50 and the trajec-
tories in the real spaces degenerate into straight lines, in
symmetric representation they become upright circles,
meridians of the corresponding hyperspheres (r̂4 andp̂4 are
directed towards the ‘‘north pole’’!.

In what follows, it will be convenient to use polar coo
dinates inpW space. We define

upW u5Ap1
21p2

21p3
21p4

2, uP5arctanSAp1
21p2

2

p3
D ,

aP5arctanSAp1
21p2

21p3
2

p4
D , wP5arctanS p2

p1
D .

The anglesuP andwP are the usual polar angles in mome
tum space, andaP is a function ofp andpE .

FIG. 2. ~a! Parallel and~b! stereographic projections of an orb
~thick lines! in ~a! coordinate and~b! momentum space to the co

responding spheres in~a! rW and ~b! pW space. Real space has be
drawn as a two-dimensional plane, in order to be able to include
fourth component of the new coordinatesr4 and p4 . In the sym-
metrical representation, Kepler orbits are geodesics which form

anglea05arctan(L/A) with respect to the fourth axisr̂4 or p̂4 .
o

es
n-

he
r

III. THE DENSITY IN MOMENTUM SPACE

We have seen that it is possible to map Kepler orbits o
uniform circular motion by means of a transformation whi
involves the coordinates of phase space, the energy, a
reparametrization of the temporal variable.

We now want to calculate a density in momentum spa
corresponding to an ensemble of classical orbits that si
lates the quantum-mechanical Rydberg states. Such an
semble has to be constructed with all the orbits in wh
E, L, and L3 are fixed to certain values. There are ma
orbits which fulfill these conditions, and all of them shou
contribute to the density with equal probability. In symmet
cal space all orbits have the same size, shape, and pe
Furthermore, for a fixed energy, all trajectories correspond
the same uniform angular velocity. Therefore, when work
with the symmetrical coordinates, the calculation of the d
sity turns out to be straightforward. To obtain the partic
distribution in momentum space we only need to make
coordinate transformation from the corresponding density
symmetrical space. Explicitly

dP

dpdpEdt
5U]~p1p2p3p4t!

]~p1p2p3pEt ! U dP

dpdt
, ~15!

wheredP is the probability of finding a particle about th
position (p1 , p2 , p3 , p4) at time t, with a tolerance
(dp1 ,dp2 ,dp3 ,dp4) and dt @or, similarly, about
(p1 ,p2 ,p3 ,pE) at time t, in a volume (dp1 ,dp2 ,dp3 ,dpE)
and dt]. The proportionality factor between the two distr
butions in Eq.~15! is the modulus of the Jacobian of th
transformation between the variables (p1 ,p2 ,p3 ,p4 ,t) and
(p1 ,p2 ,p3 ,pE ,t).

Using the coordinate transformation~8! and the time pa-
rametrization~10! the explicit calculation of the Jacobian ca
be carried out. The result is

]~p1p2p3p4t!

]~p1p2p3pEt !
5S 2pE

2

pE
21p2D 4

5S 2

11sin2aP
D 4

. ~16!

A. Particle distribution for a single orbit

We begin calculating the distribution of particles in sym
metrical space for a single orbit, when the initial position
uniformly distributed on the trajectory. To select an orbit,L
andA have to be given specific values. Care has to be ta
to fulfill Eq. ~2!. With these vectors, the energy is determin
by Eq. ~3!. We define the parameters

p05
mg

A~A21L2!
, a05arctan~L/A!.

Since the motion along the circle defined by Eqs.~13! and
~14! is uniform, the density reads

dP

dpdt U
AL

5
1

2pp0
d~p02upW u!

3d~p1v1
a1p2v2

a1p3v3
a1p4v4

a!

3d~p1v1
b1p2v2

b1p3v3
b1p4v4

b!, ~17!

e

n
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where the proportionality factor has been calculated by in
grating in p and pE and equating the result to unity. Th
normalization criterion will be employed throughout the p
per. The distribution~17! is zero all overpW space, except on
the hypercircle defined by the selected values ofL and A.
There, the threed functions have vanishing arguments a
the density diverges.

Using Eqs.~16! and~15! to transform back to momentum
space, and after some algebraic manipulation, we obtain

dP

dpdpEdt U
AL

5
1

2pp0
d~pE2p0!S 2pE

2

pE
21p2D 2

d fAL

dp
~p!,

~18!

where

d fAL

dp
~p!5d~p•L̂ !dHA@p•~Â3L̂ !2p0cot a0#21~p•Â!2

2
p0

sin a0
J .

The distribution~18! is zero over allp space, except on th
circle defined byL and A in Eqs. ~6! and ~7!. The factor
d fAL /dp represents a uniform density per unit length on
orbit.

Let us analyze the origin of the factor (2pE
2/pE

21p2)2. In
momentum space, particles move along their orbits wit
velocity dp/dt52(g/r 2) r̂ . Using energy conservation, w
write r}1/(p21pE

2). The probability per unit length of find
ing a particle in a specific position on its orbit is proportion
to the inverse of its velocity in momentum space. In terms
p, this reads as (2pE /p21pE

2)2.

B. Particle distribution for fixed L and E

We now calculate the distribution for an ensemble of t
jectories, all corresponding to the sameL and E, but with
any A. Since the constraints~2! and ~3! must hold,A must
be chosen perpendicular toL and with modulus equal to
ALE

22L2. We construct our ensemble by selecting all tho
orbits which lie in the plane normal toL , have an eccentric
ity e5A12L2/LE, and whose perihelion is oriented in an
direction~see Fig. 3!. Each of these trajectories gives a co
tribution to the density, of the type~18!. We sum them all up,
with equal probability,

dP

dpdtU
EL

}E
0

2p

dwA

dP

dpdt AL , ~19!

where wA is defined on the plane perpendicular toL , and
gives the orientation of vectorA. The ~normalized! result of
the integral in Eq.~19! is

dP

dpdt U
EL

5
1

2p2p0
2
d~p1v1

a1p2v2
a1p3v3

a1p4v4
a!

3d~ upu2p0!
Q~cos2a02cos2aP!

Acos2a02cos2aP

, ~20!
-

-

e

a

l
f

-

e

-

whereQ stands for the Heaviside step function@15#.
Transforming this distribution to momentum spa

through Eqs.~15! and ~16!, we get

dP

dpdpEt U
EL

5
1

2p2p0
2
d~p•L̂ !d~pE2p0!S 2

11p2/pE
2 D 3

3
Q@~p2p2!~p12p!#

Acos2a02~p2/pE
221!2/~p2/pE

211!2
,

~21!

where

p65pE

16cosa0

sin a0
.

In Fig. 4 we show the factor accompanying thed function in
Eq. ~21!. There are divergencies atp5p6. These are the

FIG. 3. Ensemble of trajectories in momentum space which c
tribute to the density for fixedL and E. The caustics are also
shown.

FIG. 4. Particle distribution in momentum space for fixedL and
E, on the plane perpendicular toL. We show the factor accompa

nying d(p•L̂) for several values ofa05arctan(L/A).
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2772 PRA 58INÉS SAMENGO
maximum and minimum values reached by the orbits in
ensemble. As shown in Fig. 3, at these two momenta tra
tories accumulate to form caustics. Forp2,p,p1 the par-
ticle distributions shows a smooth behavior. Outside this
terval the density is strictly zero, since there are no partic
reaching thus far. We see that asL increases, the range of th
distribution becomes narrower. In fact, forL5LE (a0
590°), we only find particles withp5pE . This corresponds
to circular motion.

C. Particle distribution for L 50

The case ofL50 has to be treated separately. Clearly
is not enough to take the limita0→0 in Eq. ~21!, since the
termd(p•L̂) restricts the orbits to a single plane. This pla
has no meaning whenL vanishes. Therefore, after makin
a0→0, we must integrate over all the possible directionsL̂.
The result is

dP

dpdpEdt U
EL50

5
1

p2pE
2

d~pE2p0!

~p2/pE
2 !~11p2/pE

2 !2
. ~22!

This distribution is spherically symmetrical. In fact, the tr
jectories which contribute to an ensemble withL50 are el-
lipses that have degenerated into line segments in coord
space, and into infinite straight lines in momentum spa
The orbits that make up the ensemble are all the lines wh
pass through the origin. The distribution~22! diverges at the
origin, and shows a smooth decrease for greaterp. The di-
vergency is related with the accumulation of trajectories
the origin. The decay asp26 for large momenta comes from
the particles that are at the far~infinite! end of the straight
lines, where their momentum diverges.

D. Particle distribution for fixed E, L , and L 3

We now give a further step, allowingL1 andL2 to vary,
while keepingL andL3 fixed. In Fig. 5 we show the value
of L that we have to consider. For each of theseL , there is a
distribution of the form~21!. In the same way as before, w
construct the density by integrating our previous result.

Since fixing the value ofL3 implies the selection of a
specific direction in space, we need to decompose

L5LEsin a0~cosuLẑ1sin uLcoswLx̂1sin uLsin wLŷ!,

A5LEcosa0~cosuAẑ1sin uAcoswAx̂1sin uAsin wAŷ!.

Using this notation in Eq.~20!, we integrate

dP

dpdtU
ELL3

}E
0

2p

dwL

dP

dpdtEL ,

obtaining

dP

dpdt U
ELL3

5S 1

2p3p0
3D d~ upW u2p0!

sin aP

3
Q~cos2a02cos2aP!

Acos2a02cos2aP

Q~sin2uP2cos2uL!

Asin2uP2cos2uL

.

e
c-

-
s

t

te
e.
h

t

Transforming this distribution top space, we get

dP

dpdpEdt U
ELL3

5
1

2p3p0
3
d~pE2p0!

1

p/pE
F 2

11~p/pE!2G 3

3
Q@~p2p2!~p12p!#

A@2ppE /~p21pE
2 !#22L2/LE

2

3
Q@~u2u2!~u12u!#

Asin2uP2L3
2/L2

, ~23!

where

uP
15p/21uL , uP

25p/22uL if uL,p/2,

uP
153p/22uL , uP

25uL2p/2 if uL.p/2.

The distribution~23! is one of the main results of this pape
and is shown in Fig. 6 for particular values ofa0 and uL .
We can see that, in addition to the divergency atp6 of Eq.
~21!, there are two other caustics atu5u6.

The greater the value ofL3 /L, the more sharply defined i
the angular momentum. Therefore as we increase cosuL the
distribution~23! tends to be confined to the plane spanned
p1 andp2 .

E. Conserved quantities with continuous variation

Up to now we have considered the conserved quantitie
having fixed definite values. This is analogous to what h
pens in the quantum-mechanical Rydberg states. A w
function with quantum numbersn, l , andm has unit prob-
ability of bearing an energyE52mg2/2\2n2, a squared an-
gular momentumL25\2l (l 11), and itsẑ componentL3
5\m. To cover all the possible angular momenta, we ha
to consider the discrete set of pairs (l ,m), with l

FIG. 5. The dotted line shows the angular momentum vec
which contribute to the density for fixedE, L2, andL3 .
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50,1, . . . ,n21 and m52l ,2l 11, . . . ,l . This is in
contrast to what happens in the classical description, wh
all the possible angular momenta are obtained by a cont
ous variation ofL andL3 . As a matter of fact, the distribu
tions calculated in the previous sections may be evaluated
any real value of the parametersLP@0,LE#, and L3P
@2L,L#. This discrepancy between the two approach
raises the question of whether assigning a fixed value foL
and L3 is a good classical description of the quantu
mechanical situation. Instead, the classical description o
Rydberg state can be constructed with an ensemble of tra
tories which haveL and L3 not with definite values, bu
belonging to a small interval. The possible intervals forL are
the result of partitioning the segment@0,LE# in n equal por-
tions. Correspondingly, the intervals forL3 come from the
division of @2L,L# in 2l 11 ribs. In this description we
will no longer have classical distributions with fixed valu
of L2 and L3 . But, in compensation, we will construct dis
tributions that cover a nonvanishing portion of the allow
parameter space, just as it happens in quantum mechanic
the present section we follow this approach.

We want to describe a state with quantum numbersn, l ,
andm. Since in the classical approachLE

252g2m/2E, and
quantum mechanics states thatE52mg2/2\2n2, we associ-
ate

LE5\n. ~24!

The classical available interval forL is @0,LE#. If we divide
it in n portions, each subinterval is\ wide. The one corre-
sponding to the state (n,l ,m) begins at\l and ends at
\(l 11). Correspondingly, in the classical description,L3
can have any value belonging to@2L,L#. Dividing this in-
terval in 2l 11 pieces, each rib has a width of 2L/(2l
11). Consequently, our state getsL3P@L(2m21)/(2l
11),L(2m11)/(2l 11)#.

As a first step, then, we allowL3 to vary in its rib with
uniform probability. Once more, we construct our distrib
tion by integrating our previous result. WritingL3
5LcosuL , we have

FIG. 6. Contour plot of the particle distribution for fixedE, L,
and L3 , for L5LEsin 60° andL35L cos 30°. The density is de
picted in the plane spanned byp2 andp3 , and it has rotation sym-
metry about the axisp3 . There are divergencies atp5p6 and at
u5u6 ~see text!.
re
u-

or

s

-
a
c-

. In

dP

dpdtU
EL[u

L
i ,u

L
f ]

}LE
uL

i

uL
f

sin uL duL

dP

dpdt EL LcosuL
,

~25!

where

uL
i 5arccosF2m11

2l 11G , uL
f 5arccosF2m21

2l 11G . ~26!

In Eq. ~25! the subindex@uL
i ,uL

f # in the left hand side mean
that L3 belongs to the interval@L cosu L

f ,L cosu L
i #.

The following step consists in allowing the variation ofL
in @Li ,L f #. Thus

dP

dpdtU
E[Li ,L f ][ u

L
i ,u

L
f ]

}E
Li

L f

dL
dP

dpdtEL[u
L
i ,u

L
f ] , ~27!

where the subindex@Li ,L f # indicates thatLP@Li ,L f # with
uniform distribution. In relation to the state with quantu
numbers (n,l ,m),

Li5\l , L f5\~ l 11!. ~28!

The normalized result of the integration of Eqs.~27! and~25!
is

dP

dpdt U
E[Li ,L f ][ u

L
i ,u

L
f ]

5
1

2p3p0
3

1

cosb f2cosb i

3
2LE

2

~L f !22~Li !2

d~ upu2p0!

sin aP

3@arcsinb i2arcsinb f #

3@Acos2g i2cos2ap

2Acos2~g f !2cos2~aP!#, ~29!

where

b i , f5SS cosuL
i , f

sin uP
D ,

and

S~x!5H 21 if x,21

x if uxu,1

1 if x.1

and

cos2g i , f5max@cos2aP ,12~Li , f /LE!2#.

The transformation of Eq.~29! to p space is straightforward
using Eqs.~8!, ~15!, and~16!. The distribution thus obtained
may be separated in two factors, one depending onp and
pE , and the other onuP andwP . Explicitly
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dP

dpdpEdt U
E[Li ,L f ][ u

L
i ,u

L
f ]

5 f E,[Li ,L f ]
C

~p,pE!g[u
L
i ,u

L
f ]

C
~uP ,wP!,

~30!

with

f E,@Li ,L f #

C
~p,pE!5

2

pp0
3

LE
2

~L f !22~Li !2
d~pE2p0!

3
pE

21p2

2ppE
S 2pE

2

p21pE
2 D 4

3†Acos2g i2cos2@~p0
22p2!/~p0

21p2!#

2Acos2g f2cos2@~p0
22p2!/~p0

21p2!#‡,

g[u
L
i ,u

L
f ]

C
~uP ,wP!5

1

2p2

1

cosuL
f 2cosuL

i

3@arcsinb i2arcsinb f #. ~31!

Equations~30! and~31! are the other important result of th
paper. What remains of this section is dedicated to study
some of their properties, and to the comparison with th
quantum-mechanical analog. In this comparison, the par
eters of Eqs.~31! have to be taken from Eqs.~24!, ~26!, and
~28!.

In the first place, when we make the width of the ribs inL
andL3 tend to zero, the distribution~30! goes to Eq.~23!. On
the other hand, if we take the ribs as wide as possibleLi

50,L f5LE ,uL
i 50,uL

f 5p), we obtain the microcanonica
density

dP

dpdpEdt U
E

5
1

2p2pE
3

d~pE2p0!S 2pE
2

p21pE
2 D 4

, ~32!

shown in Fig. 7. This distribution was derived by Pitaevs

FIG. 7. Microcanonical distribution found both in the classic
and the quantum-mechanical description, when all states with fi
energy are considered with equal probability.
g
ir

-

i

@16#, Omidvar@17#, Mapleton@18#, and Abrines and Perciva
@19#. It happens to be exactly equal to the correspond
quantum-mechanical density, derived by Fock@13#. This
identity between the classical and quantum-mechanical
scriptions of the microcanonical distribution constitutes o
of the complete correspondence identities of the Coulo
potential. It has been extensively studied by Norcliffe a
Percival@20#.

A factorization of the type~30! can also be done with the
quantum distributions, namely,

dP

dpdpEdt U
n,l ,m

5 f n,l
Q ~p,pE!gl ,m

Q ~uP ,wP!,

with

f n,l
Q ~p!5UA2~n2l 21!!

p~n11!!
22l 12l !n2

~np/p* ! l

@~np/p* !211# l 12

3Cn2l 21
l 11 F ~np/p* !221

~np/p* !211
GU2

,

gl ,m
Q ~uP ,wP!5uY l

m~uP ,wP!u2. ~33!

Here,p* 5mg/\ is the mean value of the momentum in th
ground state. The symbolC represents a Gegenbauer fun
tion, andY stands for a spherical harmonic@21#. The depen-
dence ofY upon the azimuthal anglewP is only through a
phase, and it disappears when taking the square modulu

The quantization ofn brings about a quantization of th
energy, and hence, ofpE . Sincen5p* /pE , we may write
f Q as a function ofp/pE alone, just as it happens in th
classical description, Eq.~31!.

In Fig. 8 we comparef C and f Q, for n53. There are three
quantum-mechanical distributions, corresponding tol

l
d

FIG. 8. Comparison between the classicalf C ~dotted line! and
the quantum-mechanicalf Q ~full line! radial Rydberg momentum
distributions, corresponding ton53. ~a! f [0,LE/3]

C and f n53,l 50
Q , ~b!

f [LE/3,2LE/3]
C and f n53,l 51

Q , ~c! f [2LE/3,LE]
C and f n53,l 52

Q . The values
of pmin and pmax are indicated by arrows, in~b! and ~c!. At these
momenta, the derivatives of~a! and ~b! show discontinuities.
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50, 1, and 2. The classical analogs haveL uniformly dis-
tributed in three intervals@0,LE/3#, @LE/3,2LE/3#, and
@2LE /3,LE#. If we sum up the three quantum mechanic
distributions and normalize, we get the microcanonical d
sity of Eq.~32!. We have proved that this also happens wh
the three classical densities are added together.

Except for the case ofL50, classical trajectories ar
bounded. In consequence, the corresponding densities b
and end abruptly. The first and last momenta for whichf C is
different from zero are

pmin5pE tan 2a0
i , pmax5pE cot 2a0

i ,

where a0
i 5arcsin(Li/LE). In contrast, the distribution tha

containsL50 (Li50) ranges fromp50 to p5`, as hap-
pens with the microcanonical density~32!. In fact, for small
and large momenta, these two distributions coincide exac
f CuE[0,a

0
f ] differs from dP/dpuE in a finite interval

(pEtan 2a0
f ,pEcot 2a0

f ), where the other two distribution
are different from zero. In terms of the participating traje
tories, the smaller the angular momentum, the larger
spectrum of values ofp. If L50, the orbit contains moment
which range fromp50 to p5`. On the other hand, forL
5LE there is a single value forp, namely,pE .

In Fig. 8 we see that the quantum-mechanical distribut
also exhibits a sharper spectrum for largel than forl 50. In
this case, however, distributions do not end up abruptly,
do they have discontinuous derivatives.

We now turn to the angular behavior of the classical a
the quantum-mechanical densities. In Fig. 9, we comparegC

andgQ. We see that whenL3 is large, the particle is confine
to uP'p/2. As m becomes smaller, the former maximum
split in two new ones, one of them shifted to lower ang
and the other to larger angles. In the classical picture, fo
L3,L there are no trajectories entirely contained in t
plane normal top̂z . Therefore if we diminishL3 a minimum
begins to show nearp/2. As L3'0, the angular momentum
vector lies in the (px ,py) plane. The corresponding orbits a
aligned with p̂z , confining the probability distribution to
angles 0 andp.

We have proved that the relations

gl ,2m~uP ,wP!5gl ,m~uP ,wP!,

(
m52l

l

gl ,m~uP ,wP!5
2l 11

4p
5const

hold, both for the classical and the quantum-mechanical
gular distributions@to get the classical parameters, Eqs.~24!,
~26!, and~28! should be used#.

We have depicted the distributionsf for n53 andg for
l 52. When these numbers increase, the classical and
quantum-mechanical densities approach each other.

IV. THE DENSITY IN COORDINATE SPACE

As we have mentioned earlier, the transformation~8!
from coordinate space to symmetric variables bears a p
metric dependence onA. This means that the transformatio
itself depends on the orbit we are working on. Unless ad
l
-

n

gin

y.

-
e

n

r

d

s
ll

n-

he

a-

i-

tional specifications are made, in general it is not possible
calculate the Jacobian of the transformation analytically,
in Eq. ~16!.

Here, we show briefly an example which comes out a
lytically, namely, the case of fixed energy andL50. In co-
ordinate space, this situation corresponds to ellipses wh
have degenerated into lines. In the symmetrical represe
tion the orbits appear as meridians, whenr̂4 is taken to point
towards the north pole. Such ensemble of orbits gives ris
a distribution

dP

drdt U
EL50

5ld~ urW u2r 0!
urW u2

r1
21r2

21r3
2

,

whereE52g/2r 0 . The Runge-Lenz vector is, in this case

A52pEr E

r

r
52LEr̂ .

With this relation we calculate the Jacobian of the transf
mation ~8!. We get

U]~p1p2p3p4t!

]~r 1r 2r 3r Et ! U5 1

r E
3

~r /r E21!2

~r /r E!3/2A22r /r E

.

Thus our~normalized! distribution reads

dP

drdrEdt U
EL50

5
d~r E2r 0!

4p2r E
3

Q~22r /r E!

~r /r E!3/2A22r /r E

.

This density diverges at the two turning points of the traje
tories, that is, atr 50 andr 52r E . The situation is spheri-
cally symmetrical, so the distribution depends only onr .

V. CONCLUSIONS

We have presented a method for calculating the part
distribution in momentum space for Rydberg states. The
sults allowed us to interpret some of the characteristics of
quantal distribution, in terms of the corresponding classi
trajectories.

The main idea involved the selection of the classical t
jectories which fulfill certain conditions imposed upon the
constants of motion, in order to represent Rydberg states.
calculated the total density by summing up the individu
densities of the participating trajectories. The method be
an important discrepancy with the quantum-mechanical
proach, where only amplitudes can be added together. In
semiclassical limit of quantum mechanics, stationary sta
are calculated as a sum of individual amplitudes correspo
ing to classical trajectories@22#. The square modulus of eac
amplitude is equal to the probability of having such an orb
However, each term has also a phase factor, which gives
to path interference, and the corresponding oscillatory dis
butions~see Figs. 8 and 9!. The classical result is obtaine
when the wavelength of the oscillations tends to zero.

Oscillations are not the only difference between the cl
sical and the quantum-mechanical approaches. Classica
tributions often show shadow zones, due to the fact that c
servation laws forbid the presence of particles in cert
regions~see Fig. 3!. In the corresponding quantal descri
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tion, the probability of finding a particle in such regions
small, but not zero. We then talk about diffraction into t
geometrical shadow, making an analogy with optics. In
semiclassical description, these zones are reached by s
ghost trajectories@22# whose probability tends to zero in th
classical limit.

Could we use our method for calculating classical dis
butions in some other system? In a general situation, a c
sical trajectory is identified by the value of its initial positio
and momentum. The Coulomb problem is an integrable o

FIG. 9. Comparison between the classicalgC and the quantum-
mechanicalgQ angular Rydberg momentum distributions, corr
sponding to l 52. ~a! g[arccos(1),arccos(3/5)]

C and gl 52,m52
Q , ~b!

g[arccos(3/5),arccos(1/5)]
C and gl 52,m51

Q , ~c! g[arccos(1/5),arccos(21/5)]
C and

gl 52,m50
Q .
a

se

se

al
e
me

-
s-

e.

In consequence, its orbits may also be labeled by the va
of the constants of motion. In other words, picking up sp
cific values for all the conserved quantities is equivalent
selecting a single orbit. We may then establish a one-to-
correspondence between the set of all the possible value
the constants of motion and all the possible trajector
Therefore, in order to define a probability distribution on
set of orbits, it is sufficient to give the corresponding dist
bution for its constants of motion. We borrow such distrib
tion from quantum mechanics. When the conserved qua
ties of a problem are known, there is a basis of station
states that are also eigenstates of a set of selected comm
operators. Rydberg states, for example, are eigenfunction
the Hamiltonian, the square of the angular momentum,
one of its components. The magnitudes corresponding to
commuting operators have definite values, while all the ot
independent conserved quantities are completely blur
This defines the distribution of the constants of motion. Cl
sically, this distribution can be expressed in terms of a d
tribution of trajectories, and hence, a distribution in coor
nate and momentum spaces. In conclusion, the approac
valid whenever there is an integrable problem and there
distribution for the conserved quantities. Such a distribut
appears naturally from the geometry of the system un
study. For example, a collision process favors the descrip
in terms of parabolic coordinates and imposes a homo
neous distribution forL, since all impact parameters shou
appear with equal probability.
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