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Error-free quantum communication through noisy channels

Anders So”rensen and Klaus Mo” lmer
Institute of Physics and Astronomy, University of Aarhus, DK-8000 A˚ rhus C, Denmark

~Received 15 April 1998!

We suggest a method to perform a quantum logic gate between distant quantum bits~qubits! by off-resonant
field-atom dispersive interactions. The scheme we present is shown to work ideally even in the presence of
errors in the photon channels used for communication. The stability against errors arises from the paradoxical
situation that the transmitted photons carry no information about the state of the qubits. In contrast to a
previous proposal for ideal communication@Phys. Rev. Lett.78, 4293 ~1997!# our proposal only involves
single atoms in the sending and receiving devices.@S1050-2947~98!11809-7#

PACS number~s!: 03.67.Hk, 42.50.2p, 03.65.2w
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I. INTRODUCTION

Quantum mechanics is known to produce a variety
phenomena in lack of classical interpretation. In recent ye
the fields of quantum computation and quantum commun
tion have tried to exploit these phenomena to propose c
puters and communication devices that are superior to t
classical counterparts. One particular example is quan
teleportation, which is based on the nonlocal features of
Einstein-Podolsky-Rosen~EPR! paradox. Quantum telepor
tation is the transmission of qubits without actually send
the physical system, e.g., the transfer of the state of an a
to another atom at a different location. Classically, telep
tation can be performed by measuring the state of an ob
and sending the information to the receiver who reconstru
the state in a similar object. In the quantum world it is n
that easy. Quantum mechanics forbids us to gain ex
knowledge of the state of an object. However, Bennettet al.
have suggested that it is still possible to perform telepo
tion @1#, provided that the transmitting system does not ret
any information about the state that is transmitted. Rece
quantum teleportation of a photonic state has been achie
experimentally@2,3#.

In practical realizations of teleportation the system m
be subject to noise in the transmission channels. Rece
van Enket al. have shown that the effect of the noise can
completely avoided, if we make suitable physical assum
tions about the noise in the channels@4#.

Eliminating noise on quantum information is considerab
more complicated than eliminating noise on classical inf
mation because quantum mechanics forbids copying of in
mationuc&→uc&uc&, whereuc& is the state of a quantum b
~qubit! (c0u0&1c1u1&) @5#. However, quantum mechanic
does allow what we shall call a backup copyuc&→uc&a
1uc&b , where a single quantum system is transferred t
state with projections on two different subspacesa and b,
which are both equivalent to the initial state.~We use unnor-
malized states except where otherwise stated.! We call it
backup copying because, if one-half is ‘‘lost’’~projected
out!, say theb part, we may still have the intact quantu
state in thea part. ~The exact meaning of this statement w
become clear below.!

In this paper we use the backup encoding to perfo
quantum communication in the presence of errors in
channel used for communication. Rather than conside
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teleportation as discussed by van Enket al., we perform a
perfect control-not operation, which is slightly more gene
than teleportation. To perform the operation we use o
resonant dispersive interactions between atoms and the t
mitted photons. We assume that all errors are due to im
fections in the transmission and imperfections in t
dispersive interaction, whereas measurements and un
evolutions on a single atom are assumed ideal. With
assumption we show that our scheme works ideally, eve
the presence of a quite general class of errors.

We emphasize that our scheme is not a conventio
quantum error correcting code@6#. We use a specific physica
model of the noise to remove errors to all orders with
limited number of qubits, whereas conventional error cod
introduce new qubits to correct errors up to a certain ord

II. GENERAL DESCRIPTION

The control-not gate works between two atoms or io
The control atom is calleda and the target is calledb. Here
a and b are two three-level atoms, where each level ha
twofold Zeeman degeneracy (J51/2). The states ofa are
denoted byuai&, ubi&, anduci& and the states ofb are called
udi&, uei&, and u f i&, where i 50 and 1 represents the az
muthal quantum numbersm521/2 andm51/2; see Fig. 1.
In practice, one may have recourse to systems with a dif

FIG. 1. Structure of the atomsa andb and the suggested setup
The two atoms have three levels~denoted by letters! with a twofold
Zeeman degeneracy~denoted by 0 and 1!. The sending section con
sists of two beam splitters and the atoma. The communication
channels are the two dotted linesu1& and u2& and the receiving
section is the atomb, the last beam splitter, and the two detecto
2745 © 1998 The American Physical Society
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2746 PRA 58ANDERS SO”RENSEN AND KLAUS MO” LMER
ent arrangement of states, but our procedures is most e
explained in the suggested realization.

If we consider the quantum information to be stored in
two Zeeman degenerate ground-state levels, the action o
control-not operation can be characterized by its action
suitable basis vectors for the atomic ground state

~1!

The control-not operation interchanges the statesud0& and
ud1& of b if and only if a is in the stateua1&. A comment on
notation: Rather than considering the evolution of a super
sition of the four basis vectors (c00ua0&ud0&1c01ua0&ud1&
1c10ua1&ud0&1c11ua1&ud1&), we consider the evolution o
each basis vector. This emphasizes that each vector in Eq~1!
could be entangled with other qubits, as in a computatio
task.

Our scheme consists of local encodings and two transm
sions of photons froma to b. We begin with a local backup
encoding ona. We then perform the first transmission fo
lowed by a symmetrization ona and protection of relevan
states ofb. Another transmission is performed and finally w
extract the desired quantum states.

The effect of the transmissions is to entangle the level
the two atoms. By performing local operations we can th
use this entanglement to implement the control-not ope
tion.

The stability of our scheme arises from the horizon
symmetry among the atomic states in Fig. 1. In the transm
sion we only use linearly~p! polarized pulses that coupl
states vertically. This means that the photons contain no
formation about whethera is in 0 or 1. The photons only
contain information about the levels ofa. If, for instance, we
start with a superposition (c0ua0&1c1ua1&)1(c0ub0&
1c1ub1&) and a photon is absorbed during a transmissi
the wave function will collapse to some energy level~for
instance,a!, but our quantum-mechanical superposition b
tween 0 and 1 will be intact (c0ua0&1c1ua1&). From this
‘‘backup’’ state we can start the transmission again and c
tinue until we are successful.

III. BACKUP CONTROL-NOT OPERATION UNDER
IDEAL CONDITIONS

To perform the evolution described by Eq.~1! we suggest
using an experimental setup as shown in Fig. 1. Our se
can be divided into a sending section, a receiving sect
and the channels connecting them. The sending section
sists of a beam splitter, the atoma, and another beam split
ter. The receiving part is the atomb, a beam splitter, and two
photon detectors. All beam splitters are 50-50 beam splitt
The channels are the two photon lines connecting the
sections. In a realistic implementation it might be prefera
to use a delay rather than two distinct channels, but for
sake of clarity we apply two lines in our analysis.
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Initially the qubits are stored in the ground statesuai& and
udj&. We first perform a local backup encoding ona: with a
linear p/2 pulse we takeuai& to uai&1ubi&.

We then perform the first photon transmission. A sing
linearly polarized photon is split into two orthogonal stat
u1& and u2& by a beam splitter. The field stateu1& interacts
nonresonantly with the atoma coupling the levelb with a
detuningD and a coupling constantg to a higher-lying state
in the atom. The energy shift of the levelb can be calculated
in second-order perturbation theory to be\g2/D. If we
choose an interaction timeT5Dp/g2 the phase of the stat
vector will change byp if a is in the levelb. A phase change
of p may not be realistic in an experiment, and we shall re
this assumption later.

We then recombine the two photon amplitudes yieldi
the two statesu1&5u1&1u2& andu2&5u1&2u2&. Due to the
dispersive interaction, the photon is entangled with atoma,
and the photon enters the channelu1& ~u2&! if a is in levelg
~G!. The receiving atomb is prepared with a linearly polar
izedp/2 pulse so thatudj& is taken toudj&1uej&. The photon
stateu2& now couplesuej& nonresonantly to a higher leve
yielding a conditional phase shift ofp, as described for atom
a, and we then apply a secondp/2 pulse so that if the field is
in the u1& stateb will be taken back toudj& by the last pulse,
but if the field is in theu2& stateb will be taken touej& due
to the phase change induced by the field. Since theu1& and
u2& states correspond toa being ina andb, respectively, this
will create the desired entanglement betweena andb, but at
this point the atoms are also entangled with the photon.

We get rid of the photon with a quantum eraser: The t
photon statesu1& andu2& interfere, yielding the two detecto
statesuD1& and uD2&. We assume here that the mirrors a
aligned so thatuD1& corresponds to the incoming stateu1&
@7#. We then perform a measurement revealing whether
photon is inuD1& or uD2&. If uD1& is measured we change th
sign of the levelb to compensate a sign induced by th
eraser.

A simple analysis shows that the transmission perfor
the operation

uai&udj&→uai&udj&,

ubi&udj&→ubi&uej&. ~2!

During transmission the Zeeman degeneracy plays no r
Subscriptsi and j denoting the Zeeman state have only be
written for later convenience.

Had we included the evolution of the levele, the trans-
mission would be a control-not operation between the lev
a, b, d, ande, but this control-not operation would be vu
nerable to errors. Our backup scheme makes it possibl
perform a perfect control-not operation between the sta
ua0&, ua1&, ud0&, and ud1&, also in the presence of error
Paradoxically this may be achieved by means of the tra
mission described by Eq.~2! and local operations, eve
though the transmitted photons carry no information on
azimuthal quantum numbers.

Including thep/2 preparation ofa the evolution so far is
given by
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F ua0&ud0&
ua0&ud1&
ua1&ud0&
ua1&ud1&

G→F ua0&ud0&1ub0&ue0&
ua0&ud1&1ub0&ue1&
ua1&ud0&1ub1&ue0&
ua1&ud1&1ub1&ue1&

G . ~3!

Now, the statesuei& are moved to storage statesu f i& and
the statesuai& andubi& are interchanged by linearly polarize
p pulses. A second photon is transmitted, causing again
evolution in Eq.~2!. Since thef states ofb are not coupled to
the incident photon, these states are not affected by the
ond transmission, and we end up with

F ub0&ue0&1ua0&u f 0&
ub0&ue1&1ua0&u f 1&
ub1&ue0&1ua1&u f 0&
ub1&ue1&1ua1&u f 1&

G . ~4!

The main result of this paper is that we are able to const
these states, even in the presence of errors. This wil
shown in Sec. V. Within the quantum states in Eq.~4! we
break the horizontal symmetry of azimuthal states 0 an
and extract the desired states on the right side of Eq.~1! by
local operations.

We measure ifa is in the subspace spanned byua0& and
ub1&. This can for instance be done by interchangingua1&
andub1& and making a quantum-nondemolition~QND! mea-
surement@8# of the energy ofa. If a is found in the subspac
spanned byua0& and ub1& we interchange the amplitudes o
ue0& and ue1&. If it is not we interchange the amplitudes o
u f 0& and u f 1&. We then measure ifb is in the subspace
spanned byue0&1u f 0& andue1&1u f 1&. This can be done with
a p/2 pulse followed by a QND measurement of the atom
energy. From the results of these measurements one can
struct a sequence of pulses that takes us to the desired s

As a specific example of the extraction procedure c
sider the situation wherea is found in the subspace spann
by ua0& and ub1&. The measurement collapses Eq.~4! to this
subspace and we apply a pulse that interchangesue0& and
ue1&

~5!

Now consider the situation where we measure thatb is in the
subspace spanned byue0&2u f 0& and ue1&2u f 1&. Since uei&
can be written (uei&1u f i&)1(uei&2u f i&) andu f i& can be writ-
ten (uei&1u f i&)2(uei&2u f i&) this is seen to introduce a m
nus in the first two lines in Eq.~5!. By subsequently trans
ferring ub1& to 2ua1& and uei&2u f i& to udi& we arrive in the
desired states.

This extraction procedure is illustrated in Fig. 2. We r
call that the qubits are represented as superpositions o
azimuthal quantum states 0 and 1. Entanglement betwee
atoms is visualized by shading: Part~a! of the figure illus-
trates the states in Eq.~4!, whereb is in the levele( f ) if a
is in b(a). Our first measurement chooses states ina diago-
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nally @part ~b! in the figure and Eq.~5!#. Now, we inter-
change azimuthal states 0 and 1 ofb if a is in 1. From the
shading in the figure this is seen to correspond to intercha
ing ue0& and ue1& (u f 0& and u f 1& if the other diagonal had
been measured!. Finally, all states are taken to the lowe
level as described in the example after Eq.~5!, and we end
up in the desired states.

IV. ERROR ANALYSIS

In this section we analyze the effect of errors and in S
V we show how our backup scheme eliminates these err
We will assume that measurements and unitary evolution
single atoms are perfect. All errors will be due to imperfe
tions in the dispersive interactions and in the channels u
for communication.

A. Errors due to loss of photons

A photon is considered lost if it is not detected at t
photon detectors in the end. Since the photons carry no
formation on the azimuthal quantum number the superp
tion between 0 and 1 states will not be disturbed. Usin
QND measurement it can be detected whethera is in a or b
and the qubit will still be present horizontally. Similarly w
can measure the energy ofb without disturbing the qubit and
the initial states can be restored. We can then start over a
and proceed with the transmission until it is successful.

B. Errors without loss of photons

Phase shift in the dispersive interaction witha. We no
longer assume that our dispersive interaction causes a p
shift that isp. With a general phase shift the two levelsa and
b no longer give two orthogonal photon states~u1& and u2&!
that can be separated by a beam splitter, but we can arr
our beam splitter so thata always produces a photon in th
u1& channel. The atom in levelb, however, will yield a su-
perposition ofu1& and u2&,

uai&→uai&u1&,

ubi&→ubi&~2u2&1k1u1&!. ~6!

FIG. 2. Illustration of the diagonal extraction step. Part~a! cor-
responds to Eq.~4!. The qubits are present horizontally in the Ze
man states and the levels are entangled vertically~represented by
the shading!. In part~b! we make a measurement that chooses sta
of a diagonally. With the measurement outcome in the figure,
control-not operation is achieved by interchangingue0& and ue1&
and transfering the atoms to the lower levelsa andd as described in
the text.
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We show in Sec. V that our scheme still works because
erroneousk1u1& component can be projected out with
measurement.

Errors in the channels. With the assumption that the pho
tons cannot jump from one channel to the other and can
be created in the channels, the most general evolution wi
described by

u1&→hu1 &̃,

u2&→zu2 &̃, ~7!

where the notation means that the wave packet is change
some way~change of shape and duration of the wave pac

etc.!. The statesu1 &̃ and u2 &̃ are assumed normalized. Th
evolution can be described by the non-Hermitian Ham
tonian of Monte Carlo wave functions@9# in the no jump
stages of evolution.

We assume that the photon in two subsequent trans
sions couples to independent and identical environme
With this assumption the evolution in Eq.~7! will be the
same in the two transmissions, provided that the photo
not lost. This assumption is further justified in@4#.

Errors in the interaction withb. The photon stateu1 &̃
does not interact with the atomb and we assume that loca
laser pulses onb are error free. This photon state will ther
fore not cause any transition inb. The interaction betweenb

and u2 &̃ is modified due to the imperfect dispersive intera
tion and the modified photon state. This means thatb may
not be transfered to the levele as desired. The effect of th
interaction may be summarized as follows:

u1 &̃udi&→u1 &̃udi&,

u2 &̃udi&→u2 &̃~kdudi&1uei&!. ~8!

Errors in the photon detection.The two orthogonal state

u2 &̃ and u1 &̃ are measured in an orthogonal ba
$uD1&,uD2&%. The beam splitter is a 50-50 beam splitter a
any overall phase factors may be absorbed in the defini
of uD1& and uD2&. We can therefore write

uD1&5u1 &̃1eidu2 &̃,

uD2&5u1 &̃2eidu2 &̃. ~9!

The phase factord in the two equations must be identic
becauseuD1& and uD2& have to be orthogonal.

Collecting the effects of Eqs.~6!–~9! we see that~before
photon detection! the transmission performs the evolution

uai&udj&→huai&udj&~ uD1&1uD2&!,

ubi&udj&→ze2 idubi&uej&~ uD2&2uD1&!1ubi&udj&

3@zkde2 id~ uD2&2uD1&!1hk1~ uD1&1uD2&!#.

~10!

This expression displays unwanted disturbances of the
plitudes of our quantum-mechanical superposition. As
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shall see below, these disturbances can be interchange
the second photon transmission, thereby symmetrizing
hence eliminating their effect on the relevant amplitudes.

V. NOISY BACKUP CONTROL-NOT OPERATION

We now describe the effect of errors on the overall ev
lution. If a photon is lost we restore the initial situation an
start the transmission again as described above. In this
tion we shall therefore only consider the situation where
do not lose photons.

After the first transmission we end up in states like E
~10!. We recall that we change the sign of the levelb if D1
clicks, and after photon detection the atomic state will the
fore be given by

F ub0&@ze2 id~ ue0&1kdud0&!6hk1ud0&#
ub0&@ze2 id~ ue1&1kdud1&!6hk1ud1&#
ub1&@ze2 id~ ue0&1kdud0&!6hk1ud0&#
ub1&@ze2 id~ ue1&1kdud1&!6hk1ud1&#

G1hF ua0&ud0&
ua0&ud1&
ua1&ud0&
ua1&ud1&

G ,

~11!

where the sign on thek1udi& component is1 ~2! if D2 (D1)
clicks. We now interchangeuai& and ubi& and uei& and u f i&
before we perform the second transmission and subseq
photon detection. The atomic states will now read

F ua0&@zhe2 id~ u f 0&1kdud0&!6h2k1ud0&#
ua0&@zhe2 id~ u f 1&1kdud1&!6h2k1ud1&#
ua1&@zhe2 id~ u f 0&1kdud0&!6h2k1ud0&#
ua1&@zhe2 id~ u f 1&1kdud1&!6h2k1ud1&#

G
1F ub0&@hze2 id~ ue0&1kdud0&!6h2k1ud0&#

ub0&@hze2 id~ ue1&1kdud1&!6h2k1ud1&#
ub1&@hze2 id~ ue0&1kdud0&!6h2k1ud0&#
ub1&@hze2 id~ ue1&1kdud1&!6h2k1ud1&#

G ,

~12!

where the6 in the first~second! set of square brackets refe
to the outcome of the photon detection in the first~second!
transmission. Equation~12! shows that we have achieved th
desired symmetrization of amplitude errors. Collecti
terms, we get states of the formhze2 id(uai&u f j&1ubi&uej&)
1uRi&udj&, whereuRi&udj& are all the remaining component
The first term is the ideal states in Eq.~4!, but we also have
the uRi&udj& component.

We now measure ifb is in the leveld. If b is found ind,
the qubits are restored to their initial states and the transm
sion is attempted again. Ifb is not ind, the uRi&udj& compo-
nents are projected out by the measurement and we are
with the states of Eq.~4!. From here the ‘‘diagonal’’ extrac-
tion proceeds as before.

VI. DISCUSSION

Above we have shown how to achieve a perfect quant
control-not operation through noisy channels. It has be
shown @10# that any unitary operation on any number
qubits can be performed using single qubit operations
control-not operations. With a perfect control-not operati
we are therefore able to perform any communication tas
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As mentioned in the Introduction, van Enket al. have
used similar ideas to achieve perfect teleportation@4#. How-
ever, we believe that we suggest a simpler physical real
tion. The coherent control of several atoms required in
scheme of van Enket al. is a very difficult experimental task
and it is a major advantage of our scheme that it only
quires single atoms at each end.

In @11# van Enket al. also discuss the possibility of mak
ing an error-free quantum logic gate using only single ato
The main idea in@11# is to monitor the performance of th
gate and discard unsuccessful operations. Quantum info
tion is stored in two states of each atom, and failures
monitored by a third state of the atoms, which, howev
does not enable the recovery of the quantum information
in this work and in@4#.

To perform our one-atom scheme we have chosen to
nonresonant dispersive interactions. It is also possible to
other kinds of physical interactions, such as the Ram
pulses in the suggestions of van Enket al. Our only require-
ment is that the statesudi& and uei& in b be coupled only
whena is in level b.

We wish to emphasize another important feature of
proposal, well illustrated in Fig. 2. The use of atoms w
two-plus-two relevant states, rather than pairs of atoms w
two-times-two states, offers a simple geometric picture of
transfer protocol; cf. in particular the diagonal extraction
Fig. 2~b!. We believe that such pictures may be useful in
development of further ideas, not only for fault-tolera
transmission.
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As an example, consider computation distributed on s
eral quantum computers@12#, with signaling atoms respon
sible for communication. Following our proposal these
oms may be entangled vertically, prior to the calculation, a
when ready for transmission, horizontal qubits may be co
municated by the diagonal extraction procedure and o
local operations.

Also multiparticle entanglement may be accommoda
following these lines. Recently it has been shown that
quantum communication over long distances the efficie
of a channel can be enhanced if it consists of series of no
that share EPR pairs with each of their neighboring no
@13#. To share EPR pairs with two neighbors would norma
require two atoms per node. However, with our schem
single atom may suffice. If we start with a superpositi
ua0&2ua1& and perform a horizontal control-not operatio
with one neighbor, these two nodes will share a horizon
EPR pair. By performing the steps that lead to Eq.~4! with
another neighbor, a vertical EPR correlation with this neig
bor is created without destroying the horizontal correlat
with the first neighbor. In this way each node only require
single atom.
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