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Dynamical suppression of decoherence in two-state quantum systems
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The dynamics of a decohering two-level system driven by a suitable control Hamiltonian is studied. The
control procedure is implemented as a sequence of radio-frequency pulses that repetitively flip the state of the
system, a technique that can be termed quantum “bang-bang” control after its classical analog. Decoherence
introduced by the system’s interaction with a quantum environment is shown to be washed out completely in
the limit of continuous flipping and greatly suppressed provided the interval between the pulses is made
comparable to the correlation time of the environment. The model suggests a strategy to fight against deco-
herence that complements existing quantum error-correction technj@i€60-294{©8)07109-1

PACS numbg(s): 03.67.Hk, 03.65-w, 03.67—a, 05.30--d

I. INTRODUCTION cally reminiscent of the quantum Zeno eff¢20], the essen-
tial physical idea comes from refocusing techniques in
The design of strategies able to protect the evolution of &uclear magnetic resonance spectrosadfyR) [21]. Since
quantum system against irreversible corruption due to envithe discovery of spin echoes in 192P], clever pulse meth-
ronmental noise represents a challenging conceptual issue. S have been developed in NMR to eliminate much of the

particular, since maintaining quantum coherence is a cruci ephasing arising from variations in the local magnetic field

requirement for exploiting the novel possibilities opened upacting on each spin. Because the latter effect can be thought

by quantum parallelism, practical implementations of quan-Of In terms of an Interaction with some cl_assmal environ-
it is not obviousa priori whether similar techniques

tum computation and communication proposals requiré“erl‘;'_ h f hanical .
methods to effectively resist the action of quantum decoher/Ork In the presence of a quantum mechanical environment
ence and dissipatioii—3]. Roughly speaking, two classes of and purely nonclassical effects like entanglement. Our result
procedures are available to overcome the decoherence proBlSWers this question in the affirmative, and points out the

lem: either passive stabilization or active manipulation of the[)Ole of 'ghe resgr_vm;] correlatllonftlme asa f_urther parameterz to
quantum state. The first kind of solutions, recently formal-2€ €ngineered in the struggle for preserving quantum coher-

ized aserror-avoiding code$4], relies on the existence of a ence

subspace of states that, owing to special symmetry proper- The plan of the paper is th? foIIow!ng. Ir_1 Sec. lla genera_l
ties, are dynamically decoupled from the environment. Th odel of a two-state system interacting with a thermal envi-

second approach, pioneered [i§] and closer in spirit to ronment is reviewed and its decoherence proper.ties in the
quantum control theory6,7], embraces today a variety of absenc_e of control recalled. In Sec. II_I the_evol_unon under

sophisticated schemes known ersor-correcting code$8— the action of a sequence of perturbafuve k'Ck.S IS analyze_d.
18]. Basically, loss of information is corrected by monitoring COMPI€te guenching of decoherence is established as a lim-

the system and conditionally carrying on suitable feedbacking Situation. In Sec. IV the conditions for an effective de-
operations. coherence reduction are clarified with reference to a variety

In this work we investigate a third strategy for reducing of possible environmental configurations and the method is

noise and decoherence. This strategy, which can be term mpared to d_ifferen_t quantum _e_rror-correction techniques.
quantum “bang-bang” control after its classical anajag], e close by discussing possibilities for future work.
works by averaging out the unwanted effects of the environ-
mental interaction through the application of suitable open-
loop control techniques on the system. The basic idea is that Our goal is to investigate how decoherence properties of
open-system properties, specifically decoherence, may len open quantum system may be modified through the appli-
modified if a time-varying control field acts on the dynamicscation of an external controllable interaction. Decoherence is
of the system over time scales that are comparable to the process whereby quantum systems lose their ability to ex-
memory time of the environment. In particular, we work out hibit coherent behavior such as interferej@8—-2¢. We
an exact model for a two-state quantum sysfgomantum bit  start by introducing a model that allows investigation of the
(qubit)] coupled to a thermal bath of harmonic oscillators, problem in its simplest nontrivial configuration. The physical
where decoherence is dynamically suppressed through reystem we are interested in is a single two-state quantum
peated effective time-reversal operations on the combinedystem, representing the elementary memory cell of quantum
system plus bath. Although the phenomenon is mathematinformation. Although not strictly necessary, it will be con-
venient to think of the physical qubit as realized by a spin-
1/2 system, which will provide us with direct reference to the
*Electronic address: vlorenza@mit.edu well established language of nuclear magnetic resonance
"Electronic address: slloyd@mit.edu [21] and the rapidly growing field of NMR quantum compu-
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tation [27,28. Decoherence arises due to the coupling to a - it
quantized environment, here schematized as a continuum of Uoto, ) =Texp — 5| dsH(s), 5
harmonic modes. We assume that the dynamics of the over- fo

all qubit plus bath is ruled by the following Hamiltonian:  \yhich can be evaluated exactly and can be written, up to a
o global c-number phase factor, in the following form:

Ho=Hg+Hg+Hsg=fhawo— + 2 fiokbiby . o, _

“ Utot(tht):eXp{ 7 2 [bee o (t—to)

+ 2 fioy (gl + gk by, (D |
“ —bye ' logg (t_to)]] , (6)
where the first and second contributibiy andHg describe, ) ) )
respectively, the free evolution of the qubit and the environWhere the following complex function has been introduced:
ment, and the third terril g5 describes a bilinear interaction Ok _
between the twoo, is the standard diagonal Pauli matrix, E(At)= ——(1—e'xdt), )
with qubit basis states denoted|&s i =0,1, whileb/ ,b, are @k
bosonic operators for thth field mode, characterized by a Note that the separate dependence of Bgon both initial
generally complex coupling parametgi. In the Schre  timety and evolution intervalt(—ty) is consistent with the
dinger picture, the state of the combined systedrB) is  time-reversal propert®o(t,to) U to,t) = 1. A nice discus-
represented by a density operajep(t) and the reduced gjon on the entanglement generated by (to,t) between

qubit dynami_cs is thereupon recovered from a partial trac@ubit and field states is given if8]. We are interested in
over the environment degrees of freedom: calculating

Ps(t): z Pij(t)|i><j|:TrB{ptot(t)}- (2) BOl(t):<0|TrB{Utot(t0vt);tot(to)tj;rot(tht)Hl>' (8)
i,]=0,1

This can be done without approximations under two standard

Hamiltonian (1), which corresponds to a special case of theassumptions(i) qubit and environment are initially uncorre-
I lated, i.e.,

so-called spin-boson problef29], has been used by many
authors to model decoherence in quantum compliferd]. Prot(to) = ps(to) @ pa(to), (9)

In particular, we adhere closely to the notationd ®ff The . ] o ] o

basic fact about the dynamics induced by Egj. is that, (ii) the enw_ronment is initially in thermal equilibrium at tem-
since[o,,Ho]=0, the interaction with the environment has PEraturer, i.e.,

the two memory statg€),|1) as eigenstates. In other words, "

the model describes a purely decohering mechanism, where  ps(to) =11 pe(T) =11 (1—eftexeProdi® (10)
no energy exchange between qubit and bath is present. In : .

NMR terminology, this implies that nd’; type of decay In Eq.(10), 8=1/kgT, with kg the Boltzmann constant. For
takes plac¢21]. Equivalently, in terms of errors, only phase simplicity, we choose henceforth units such thatkg=1.
errors are introduced. However, neglecting the effects ass@onditions(9) and (10) are easily translated to interaction
ciated to quantum dissipation is justified, in a sense, by twicture and, inserting Eq(6) into Eq. (8), the problem is
related reasons: energy exchange processes not only produegluced to a single-mode trace:

amplitude errors which need to be corrected even in the clas-

sical computation, but they typically |r_1volve time _s'cales P01(t):P01(to)H Trd pe «(T) DL€ “Kog (t—to) T}

much longer than decoherence mechanisms. In addition, be- k

ing exactly soluble, the mod€ll) has the advantage of al- ~

lowing a clear picture of the decoherence properties in the =pou(tg)e” oot (1)
absence of control. To this end, since spin populations ar
not affected by the environment, the relevant quantity is th
qubit coherenceg,(t) [of course,pio(t) = pgi(t)].

fhere, in the first equality, the harmonic displacement op-
e'eratorD(fk) is given by

It will be convenient to move to the interaction picture D(gk)zeblfk—bkff, (12
associated to the free dynamidd4+ Hg), corresponding to
the transformed state vector and the second equality defines the time-dependent function
I'y(tg,t). The final step is to recognize that, for each mode,
Prof(t) =€ (HstHeVA, ()@ i(HstHp)UA (3)  the quantity in curly brackets in E¢l1) is nothing but the
symmetric order generating function for a thermal harmonic
and to the effective Hamiltonian oscillator[30]. Thus the explicit expression fary(tg,t) is
2
H(O=Hss()=ho22, (gbie ¥ +gkbe™ ). (4) To(to,) =To(t=to)= ng“T“J)'cotr( %) (13

Time evolution is determined by the time-ordered unitarySincel’ is a real function, it correponds to pure damping in
operator Eq. (11). Accordingly, this function characterizes completely
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the dynamics of the decoherence process destroying the gtikat makes the decoherence process quite complicated. It
bit phase information. Of course, the complete evolution inshould be important to keep in mind that theregsgeneric
the original Schrdinger picture includes oscillation at the decohering behavior, and in particular that the qubit dynam-

natural frequencyo, ics depends crucially on both temperature and the details of
ot — T (t—t the spectral functiom(w). We will comment further on this
poy(t) =€l ot~ =Tt =l) 5 (), (149 point later.
while, using Eq.(6), one can check tha;;(t) = p;i(to), i

=01 Ill. PULSED EVOLUTION OF QUANTUM COHERENCE

Deeper insight into the time dependence of the decoher- |et us now define a procedure aimed at modifying the
ence process is gained if the continuum limit is made explicidecoherence properties discussed so far. We choose to
in Eq. (13). By substituting|&(t—to)|? through Eq.(7), we  implement it as a suitable perturbation acting on some ob-
get servabled O;} of systemS. This is obtained by adding to Eq.

(1) a time-dependent term; y,(t) O; , where the input func-
E 5(“’_(’-’k)|gk|2} tipns{yi(t)} are as;umed to be programm_able at will, e.g., a
k given schedule of time-varying magnetic fields in the case of
0| 1—cosw(t—tg) a spin qubit. In.contr.ol terminology, this realizes a so-called
X4 CO“-( _)—0_ (15) open-loop configuratiofi7]. Closed-loop(or feedback con-
2T o’ figurations have also been proposed in recent years to ma-
o . nipulate decoherence in some quantum optical sysfégis
The quantity in square brackets is known as the spectral deRpqre are many possible choices for the control Hamiltonian.
sity I (w) of the bath. It turns out that, once the initial state is Leaving aside the problem of controllability of the system
specified, complete information about the effect of the envi-( ) at the abstract level, we make here a pragmatic choice
ronment is encapsulated in this single function. As a gener artly suggested by serr,liclassical considerations. ’
feature, the spectral density is characterized by a certain ul- Suppose that the perturbation we add is able to induce

traviolet cutoff frequencyw. such thatl(w)—0 for @  gnin fiip transitions. By inspection of the spin-bath interac-

> w . Although the specific value ab. depends on a natu- oy HamiltonianHgg, opposite contributions arise when the
ral cutoff frequency varying from system to system, the eX-nin pelongs to the down or up eigenstate. Since a relative
istence of a finitew. is always demanded on physical

. . minus sign will be present during time evolution, the effect
grounds. Indeed, assuming that the environment does n

i 3 the Hsg coupling will eventually average out provided the
have a high-frequency cutoff means, generally, that energy,in is flipped rapidly enough. There are two reasons why a
can be dissipated instantaneousy|. If, for instance, deco- echanism of this kind is expected to be possible. First, as

herence arises from the coupling to a phonon field, the natyge giready mentioned, similar methods are routinely used in
ral cutoff frequency can_tie identified with the Debye fre- R experiments to get rid of the effects of some unwanted
quency. In generalr.~w ~ sets the fastest time scaler  jnteractiong21]. For instance, in the so-called spin-flip nar-

the memory timg of the environment. When a specific yowing, line broadening resulting from magnetic dipolar cou-
choice will be useful, we will assume a spectral density Wlthp”ng is reduced by repetitively flipping the spins among dis-

ro(t_to) = J'O d(l)

the following functional form: tinct energy configurations. The major difference here is that
o the undesired decohering coupling is contributed by the infi-
(w)= ane_“’/“’c, (1)  nitely many quantized degrees of freedom of the heat bath.

The second reason is related to the finite response tjnoé

the environment itself. In general, if perturbations act on the

. : o system more rapidly than this fastest time scale present in the
of the system-bath coupling and the index 0 classifying bath, we expect that memory effects would be relevant, and

dlfflerer(;tdipwr?nment b;ahhavtlp[§,29,?]].~_ril iated that this non-Markovian dynamics would eventually lead to
h addition o7, another ime scale, , associate modified decoherence properties.

with _the temperature of the bat.h, is expected to play a ”T‘ajor Having anticipated the intuitive idea, we start by writing
role in the evolution of the qubit coherence. This is mamfes&he total Hamiltonian as '
if Eg. (15) is written in the equivalent form

the parametesr>0 measurindin suitable unitsthe strength

o o l—COSw(t—to) H(t):HO+Hrf(w01t)7 (18)
FO(t_tO)_A'fo dol(w)[2n(e,T)+1] w? ’ where H(wq,t) represents a monochromatic alternating
17 magnetic field applied at resonance. At this level, the prob-
o lem can be related to variants of the complete spin-boson
where n(w,T) =exp(—w/2T)cosechf/2T) is the average model; none of them is exactly solvaij@9]. The main sim-
number of field excitations at temperatufe In this way, plification we introduce is to substitute the continuous-mode
effects due to the thermal noise are formally separated froroperation, where the actions of the bath and the controlling
the ones due to purely vacuum fluctuations. Because of thiéeld are necessarily simultaneous, with a pulsed-mode op-
different frequency composition, the two kinds of fluctua- eration analogous to classical bang-bang control. Then, un-
tions dominate on different time scales, the relative impor-der the working assumption that the typical decoherence
tance of vacuum to thermal contributions being determinedime of the system and the duration of pulses define two
by 75. This multiplicity of time scales is one of the factors widely different time scales, we solve the problem by setting
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(i) Hgg= 0 within each pulseii) Hrf=Q between succe;sivg DP(t01t1):DPZD Pl[UgllUtot(tf:l)‘F - ,tg))DPl]
pulses. As usual, we invoke the rotating wave approximation
(RWA) and only look at the corotating component of the rf X[Utot(to't(pl))]- (23
field. The radio-frequency perturbation is assumed of the fol-
lowing form: We can read the evolutions in the absence of rf field directly
from Eq. (6), for instance,
np
~ g .
Hi(wo,t)= 2, VM (t){cogwo(t—ti")]oy Ut + 7 ,tg»:exp{ 3 [bfelenlor 3t oig (At)
n= k
+sin wo(t—t") oy}, (19

_bkefiwk(tOJrAtJrfp)g:(At)] . (24)

i (N — + =
with t5"=to+nat, n=1,... fip, and Concerning the evolution operator associated to the generic

jth pulse, this is found by exponentiating E§2) (n=j):
Votp<t<t+7p i i
virH= 0 elsewhere (20 UPj:eXp{—iVTPeiMO(”Z/Z)tg)Uxe_i“’O(”Z/Z)tg)}
= glooloz 2t a=IVrpoya—iwg(o, 2th) (25)

Equations(19) and(20) schematize a sequencerof identi-
cal pulses, each of duratiorp, applied at instants=t(p”). In order to proceed, we have to say more about pulses. We
The separatiorAt between pulses is assumed to be an input€dquire
of the model. The amplitude of the field is equaMaluring
each pulse and will be further specified below together with

7p. In order to depict the evolution associated to a given . .
pulse sequence, it is convenient to think of the latter ag- @nd[,] denoting anticommutator and commutator, re-

formed by successive elementary cycles of spin flips, a comPectively. These conditions imply, as expected from the in-

plete cycle being able to return the spin back to the startingUitivé explanation, thatP,,P, are m pulses, satisfying

configuration. We begin by analyzing the time evolution dur-2V7p=* . To simplify things, we imagine thatl 4(t) is

ing the first spin cycle. large enough to produc&lmos) instantaneous spin flips.
Accordingly, 7— 0 henceforth and we have to deal with

o ideal “kicks” of infinite power. Putting things together, we
A. Elementary spin-flip cycle find

{Up,04=0, [Up,Up,,04]=0, (26

As in Sec. Il, we exploit the interaction representat{8h ~
Some instructive steps of an alternative derivation based on Up,Up,
Heisenberg formalism are sketched in the Appendix. The
interaction picture transformed Hamiltonian is now

— —ei“’O(Uz/z)(tl_tO), (27)

- e - o .
UpllUtot(tgnl) ,tff))Upl:eXp{ - ?Z zk, [bIE""k(t0+At)§k(At)
H(t)=Hgg(t)+ Hy(1), (21

- - —bkei“’k“o*“)fi(At)]], (28)
whereHgg(t) is given in Eq.(4), andH (t) is evaluated by

using Eq.(19) and the properties of Pauli matrices. We get and we are therefore ready to write down the final result for

the cycle evolution operator:
np

~ , ) - )
B (1) = vVt emo(azlz)tg‘ e oot (oo _ o o _
(V) n§=:1 ® X 22 Up(ty,t;)=ex |w0?z(t1_to)+3z§k: [bje' oz, (At)

Acco_rding to Eq.(22), the time depe_nc_ience due to the rotat- _ bkeiwkton:(m)]] , (29)
ing field is completely removed within each pulse. In fact,

the interaction representatid8) on spin variables is identi-

cal, at resonance, with the description in the rotating framavhere, as beforez-number phase factors have been omitted
associated to Eq19) [21]. The counter-rotating term that is and

omitted within the RWA is seen to be negligible at reso-

nance. For the first spin cycIeP=2~and we have the fol- (A= (At (el okdt—1)= — @(1_eiwkm)2_
lowing sequence: evolution undefgg(t) during to<t Wk

<t®: pulseP, at timet; evolution undeH sg(t) during

t+ rp<t<t?; pulse P, at timet{?). After a total time It is interesting to compare the evolution described by Eq.
t;=to+2At+27p, the first cycle is complete. In terms of (29) with the one in the absence of pulses. By recalling Eqg.
evolution operators, we have (6), evaluated at time,=ty+2At, we report two differ-

(30)
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ences: a phase factor proportionalatg and the duration of responding propagator in the absence of pulses. The trick is
the cycle; a combinationy (At)x[£,(At)]? in place of to switch back the minus sign in the definitiq80) of
éc(2At). The first difference corresponds to the fact that, duen,(At), that has been recognized as the key dynamical effect
to the pulses, the oscillation at the natural frequengyis due to the pulsing procedure. Sincg(At)(e'“k*t+1)

lost once the evolution is transferred back to the Sdimger = £,(2At), we are left with

picture[see Eq(14)]. The second difference, as will be seen

in a moment, is the signal that decoherence properties are N B
modified. 6240 2 e2NTVUA= G (2NAD = £ty to) (30

B. Decoherence properties after a pulse sequence in place of Eq.(35). Therefore this procedure gives

The next step is to generalize the description to an arbi-
trary numbem of elementary spin-flip cycles, th&h cycle U (tn ta) =X 9z blei@ktog, (tn—t
onding at tme toto,th) 52 [breHog(t—to)
=tg+ =1,... i

fn=tor2ndt, =N &0 —bke—'wk‘%;(tN—to)]], @7
and the number ofr pulses involved in the sequence being
np=2N. This is straightforward since E(9) enables us to  \hich does agree with the direct evaluation based or{(Hq.
write down the evolution operator for tireth cycle: It may be worth to make the connection with unperturbed
evolution more explicit, which is done by writing

~ . o 0z
Up(tnfl,tn):ex |(.L)0?2At+? N
T(N,AD = E(2NAY — 28 (A1) X, @M Do,
n=1
x; [ble'“kn-1, (At) (38)
where the contribution due to the pulse sequence shows up in
—bke_i‘”ktnlr,?:(At)]}_ (32)  the form of a typical interference factor.
The decoherence properties corresponding to the pulsed

) . ) qubit plus bath evolutiori34) are derived through the steps
The time development corresponding Itb cycles is then  gytlined in Sec. Il for the unperturbed case. Incidentally, we

governed by the time-ordered finite product still expect that spin populations are unchanged after a se-
=) ~ ~ ~ quence ofN complete spin cycles, while qubit coherence at
Up'(to, .- tn)=Up(ty-1,tn) - 'UP(tlrtZ)UP(tOvtl()- ) final time ty=ty+ 2NAt is given by
33

- - Po1(tn) =(0| Trg{UN (1o, A1) pioi( to) U B (1o, AL)}[1).
Note that U0+ (Up)V, the dependence on intermediate poitn) = (OITrs{Up7 (o A i to) Up™ (o, AL >(39)

times{t;} in the sequence being introduced by the environ-
ment dynamics. A closed formula f&r({t;}) can still be ~ The resultis
found quickly since, by neglecting state-independent global

phase factors that are irrelevant to density matrix propaga- poi(ty) =e oot "TR(NAYS (44) (40)
tion, we are allowed to treat the factors in E§3) as com-
muting operators. We get where
~ .o o . |77k(N,At)|2 Wk
UE,N>(t0,At):exF{|w0722NAt+7Z FP(N,M)—EK — 5 coth ==/ (42)

ot Comparing with Eq(13), the mathematical prescription for
X ; [bye' o (N,At) decoherence in the presence of pulses looks very simple: just
use 7 (N,At) instead of¢, (ty—tp) for each mode of the
ot bath. However, the final effect leading to E41) is not easy
—bee "oni (N, A, B4 1 figure out and it is useful to compare first the decoherence
due to a single mode with frequeney with and without
where pulses, respectively. Apart from identical time-independent
factors, we have to consider
N
T(N,AD = p(At) X, @M D, (35 | 7(N,wAt)[?=4(1-cos wAt)®
n=1
N—1

and definition(31) has been exploited. Of course, the results X|{ N+ ZO 2n co§2(N—n)wAt] |,
of Sec. Il A are recovered foN=1. A more interesting "=
check can be done by relating the evoluti@4) to the cor- (42
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VS e—iwkto
lim (N, At)y=—————
2 At—0 1_elwk(tN—to)
[E(N,wAt)[*=2(1—cos NwAt)=2[1—-cosw(ty—to)],
(43 1—elodty N
X lim %2 2Atel“ktn-1
where Egs.(7) and (35 have been used and an identical At—0 n=1

proportionality factor is understood. The unperturbed contri-

—iw o, A
bution |¢|? simply oscillates between values 0,4 with a pe- __ e i (1) N jsdwis
riod (7/N). The function| 7|2, instead, is strongly oscillating 1-elexinTloy o At to
for increasingN, developing 2N—1) local minima and a )
sharply peaked absolute maximumaaht= 7. Constructive . wAt +i1—005kat ~1. 49
interference is highest at the maximum, leading to a value Atool  @kAt w At '
| 7/2,a= 16N? that can be very large, while destructive inter-

ference strongly damps the function feAt<<z/2, which is  If this result holds for an arbitrary field mode, then the im-
a zero for both #|? and|&|? for any N. One can show that plications for the decoherence properties are transparent:

lim I'p(N,At)=0, 49
| 7(N,wA1)|2<|&(N,wAt)|?> on[0,7/2] foranyN. AtS0 Pl ) 49

(44)

i.e., in the limit of continuous flipping, decoherence is com-
Back to decoherence properties, conditidd) means that, pletely and e>_<actly el_lmlnated for any temperature and any
for a mode at frequency, a finite regionwAt< /2 exists, SPectral density function. _ o _
where the contribution to decoherencesisallerin the pres-  Obviously, there is no hope that a continuous limit of this
ence of pulses. Since the “correcting region” is entered forkind would ever be attained in practice. However, situation
smallAt values, this effect takes place in the regime of rapid(49 should be approached &t is made small compared to
flipping we expected. Since, moreover, smaler values the fastest characteristic time present in the dynamics of the
require longer pulse sequences in order to evolve the systeﬁYStem- From the considerations of Sec. Il, the environment

over the same interval, it is useful to consider an interestingorrelation timer certainly provides a lower bound since
limiting case. here is no spectral content of the environmental noise at

frequency higher tham.. Hence, we expect that a sufficient

o ) o _ condition in order to meet Ed45) is
C. Limit of continuous flipping and suppression

of decoherence wAts1. (50

L'et us study an 'de.al'.zfed situation represented by the f0|=I'he question of whether we can do better than this may not
lowing mathematical limit:

be completely obvious, since time scales different from
At—0, are also involved in the decoherence process. In what fol-
lows, we try to understand this point both by presenting a
physical explanation for the decoherence suppression and by
N—o0, analyzing some specific situations.

2NAt=t\y—tq. (45) D. Physical interpretation

People familiar with quantum Zeno effg@0] may have
It is convenient to rewrite the decoherence functidt) by  found some similarities with the behavior we are discussing.
exploiting Eq.(38) to separate formally the unperturbed andIn particular, the basic mathematical modification associated
the interference contributions. Thus with pulses is a functiohz,|2, which isO(wyAt*) for short
time intervals, compared {d,|?= O(w?2At?). Moreover, Eq.
|€(2NAL)|? wy (45) is formally the same continuous limit involved in many
Tp(N, AL = TCOti‘(ﬁ)H—fk(N,Atﬂz, quantum Zeno related proposals, notably the one by Cook
. (46) [33]. In both cases, a preexisting dynamics—the qubit plus
bath evolution here, a stimulated two-level transition in
Cook’s scheme—is modified through a pulsing procedure.

where Pulses, respectively, represent spin-flip interactions, short
enough that the action of the bath is made negligible, or
E(AY) N measurement pulses, long enough that the coupling to the

f (N,At)=2 > - Dwght, (47)  external environmentthe measuring apparajus made ap-

&(2NAY A= preciable. A dynamical inhibition phenomenon occurs when

pulses become sufficiently frequent. One can say that two
In this way, I'o(ty—1p) is recovered by setting,=0 for  opposite configurations are realized for decoherence: with
each mode, see E(L3). We evaluate the asymptotic limit of continuous measurements, the interaction with the bath is
f(N,At) as follows: always “on” and internal dynamics becomes frozen; in the
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limit of continuous flipping, it is the two-level controlled [34]. In this terminology, the spin-flip procedure realizes in
dynamics that dominates, and the interaction with the batlprinciple a Loschmidt demon for a decohering qubit.
tends to be always “off,” as indicated by E(9). However,
the analogy stops from a more physical point of view. IV. ANALYSIS AND EXAMPLES

A more interesting interpretation of the decoherence sup-
pression(49) can be obtained by connecting it to effects In this section we try to give some semiquantitative pic-
already observed in magnetic resonance experiments, likélre of the decoherence mechanisms discussed so far. We
spin echoes, solid echoes, or spin-flip narrowfigg)]. All of focus our attention on a representative class of reservoirs,
these are basically time-reversal experiments. In order tgorresponding to so-called Ohmic environments. The appro-
capture the basic physical mechanism of our model, let us gbriate spectral density is given by EQ6) with n=1. The
back to the elementaty spin cydi8ec. Ill A) and look more time dependence of the decoherence is summarized by the
carefully at the evolution operat¢23). This is made of two  following expression:
pieces: a free evolution during the firAt, followed by an 1 .
evolution governed by Eq28) during the second interval N A —COSw
At. It is this transformed operator thsimulateshe effect of rt= ajo dwe 12n(e,T)+1] 0}
a time reversal. In fact, backward propagation during the
second part of the cycle would correspond to X[1—f(w,N,At)?, (52

~ B o, t oot where we assumg,=0. Equation(52) reproduces the un-
Utot(to+At,to) = €x _72( [be™ o8 (AL) perturbed behavior of Sec. Il whefh=0, in which case
I'(t)=Ty(t), Eq. (13). In the presence dfl spin-flip cycles,
ot ok Eq. (52) is found from the continuous limit of p(N,At) in
—be g (AD)] (51 Eq. (41, with f(w,N,At) derived from Eq{(47). According
to Sec. lll, in this case we are interested in decoherence after

By comparison with Eq(28), forward propagation in the a complete pulse sequence, "t?':’tNZZ.NAt' For a fixgd
presence of rf kicks only differs for an additional tegfid! strengtha of the system-reservoir coupling, the properties of

affecting each mode. This phase factor, due to the dynamictgefimfl'_rcmrl]{e nt enter Eq52) with two parametersmc
y ’VTB .

of the bath oscillators, is ultimately responsible for the deco- ¢ ; .

herence properties in the pulsed evolution of the system. If L€t us first analyze decoherence in the absence of any
not for this phase difference between E€®8) and(51), we correction,f=0. Qualitatively different behaviors arise de-
would havez, (At)=0 and no decoherence. Instead, rever-P€Nding on the relationship between the cutoff frequengy

sal is approximate since the bath restarts at tigieAt after ~@nd the thermal frequency;=T. Typically, two extreme

the first pulse with a dephased initial condititsee also the ~Situations are considered. o _ _
AppendiX. However, ifel®t~1 for each mode, then the (i) oc<wg: h|gh-temper§1tur_e Ilmlt_oclasswalenwron-_ _
couple of kicks produces an exact time reversal and, by itMent. Decoherence dynamics is relatively easy to describe in
eration, we arrive at Eq(49). Equivalently, if the bath this regime since, due to the exponen.tlall dependence on the
Hamiltonian can be considered as a constant, then the totgHtoff, @ is actually the only characteristic frequency acces-
Hamiltonian (1) acquires a minus sign and the system re-Sible to the system. The environment looks classical in the
traces the previous evolution. The validity of this condition S€NS€ that its quantized structure cannot be appreciated com-
depends on the time scale we are considering. For a singRa"ed to the thermal quantumas. Accordingly, thermal
mode of frequencyw, the time needed to produce appre- fluctuations always dominate over vacuum ones and, after a
ciable dephasing is~w 1, so we expect decoherence cor- short transienD(75) where decoherence is almost ineffec-

rection for 7/At=1. This is in agreement with both the in- V€, dynamics becomes very fast and coherence is lost com-

terpretation of Eq(44) and the semiclassical NMR argument Pl€tely after a time comparable tg. In general, one expects
[21], where motional effects are predicted focomparable that in this limit equivalent results are obtained by assuming
to tr'1e mean time spent in a given spin configuratibare @ heat bath of classical harmonic oscillators. A mixed
At). For the whole environment, the correlation timeis quantum-classical derivation for a two-state open system is
the minimum time scale over which the dynamics is approxi-9\Ven, for instance, ifi35].

mately unchanged, and the same reasoning leads to a physi- (i) @c> @ low-temperature limit oquantumenviron-
cal explanation of the rapid flipping conditids0). ment. In this limit a more complex interplay between thermal
As a final remark, we point out that the mechanism acand vacuum effects arises. Thermal fluctuations are only ef-

complishing time reversal in our model is pureiyacro- fective fort> 7, and, due to the exponential suppression of
scopicin the sense that no reference is made to the dynami(w,T), they are almost totally contributed by low-
cal state of the system. This is different from the familiarfrequency modess<w;. The effects of vacuum fluctua-
case of the Maxwell demon, that effectively reverses a dytions dominate on an intermediate regigr<t<7z, a non-
namical evolution by operating over some microscopic vari~vanishing contribution remaining, however, at longer time
ables(like velocitieg at a given instant. Rather, the reversal scalest> 7. The frequency composition of the fluctuations
is obtained by changing the sign of the system Hamiltoniaris now less clear: while modes below the thermal threshold
through the action of suitable external fieldentro). A dif- are still responsible for the long-time dynamics 74, fre-
ferent kind of demon, the so-called Loschmidt demon, hasjuencies in the range up ®, mostly contribute fort<r,
been introduced by some authors to account for this behavidout are also present beyong. As a consequence, even at
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. . . . FIG. 2. Qubit decoherence in the presence of rf pulses for the
FIG. 1. Qubit decoherence as a function of time for an Ohm'chigh-temperature configurationy, /T=10"2. For a fixed time
Cc . L]

. - . . . 1
environment, Eq.52) (f=0). Time is in units of T+ and the each point corresponds to a numBerof cycles,N=1, . .. Ny

values wo=100, «=0.25 have been chosen. High- and low- _10 The results from Eq(52) are plotted as a function of the
tiemg)zerature b_ehawors are showm “’C/T__lo and (L) /T . normalized pulse frequency,/At. The unperturbed values of de-
=1 g respectively. The contributions arising from th_e separate inonerence are read from FigHD.
tegration of thermal and vacuum fluctuations are displayed in the

Tt = g~ T . .
latter casee e e ’ identical values otxr andw., decoherence occurs extremely

. . faster in the former case, as expected on intuitive grounds.
thermal time scales> 75> 7., high-frequency modes con- ' P 9

tribute appreciably to the decoherence process and character-We now come back to examine how decoherence is im-
mbute app ytoth . P . proved in the presence of spin-flip cycles. With the interfer-
istic timesO(7.) are still relevant in the underlying dynam-

ics ence contributiorf restored in Eq(52), we have calculated
~o <T'(1) . : numerically the decoherence values obtained when a fixed
Typical decoherence curves " \* for the Ohmic environ-

menit are found by numerical integration of E52) and are time intervalt is divided in an increasing number of cycles
o y . ; ) of duration 2At, i.e.,

shown in Fig. 1 for two choices corresponding to high- and

low-temperature limitw,/T=102 andw./T=10?, respec- ¢

tively. The partial contributions due to thermal and vacuum At= 5N’ N=1,2,... Nmax- (54)

fluctuations are indicated separately where possible. In the

low-temperature case, a quiet<{r;), a quantum ¢.<t ) 1 )

<14), and a thermalt(>75) regime are easily identified in The behavior o™ ™ as a function of the pulse frequency

the process, as indicated above and discussed in more detaff*t has been studied, and the procedure repeated for differ-

by many author§2,3,29. In both configurations, the qubit ent representative times. The results for the high- and low-

coherence decays exponentially fast once the thermal reginjf§MpPerature reservoirs considered above are shown in Figs. 2
is well established and 3, respectively. The unperturbed values of decoherence

at the appropriate times can be read from Fig. 1. We see that,
e I~ gttn (53 as predicted by Eq(49), decoherence correction starts as

soon as the region./At=1 is entered. For times short
for a suitable time constanf,. In models where the deco- enough thatt<2N, this may even be accomplished with a
herence rate is constant in time, Ef3) is usually assumed single cycle. In general, once this condition is fulfilled, no
as the definition of a typical decoherence timg~ty,. In  further reduction ofAt is demanded to evolve the system in
our case, since the whole behaviorldft) is required for a a decoherence-free way. However, a warning also emerges
complete knowledge of the decoherence dynamics, the defirom Fig. 3: if flipping is not frequent enough, not only does
nition of a characteristic time for loss of unitarity is less the correction effect disappear, but decoherence can actually
clear. Oversimplifying things, the situation can be summabe made worse compared to the one in the absence of pulses.
rized as follows: for both the high- and the low-temperatureThe explanation of this behavior is rooted into the interfer-
regimes, a characteristic time exists, indicating the departurence mechanism that builds up the correction fa(36y: in
of coherence from unity. This time is determined by thea sense, decoherence can be subtracted almost completely
shortest between the two time scales7z. Once this tran-  from the frequency rangeAt<1 only at the expense of
sient is over, the duration of the actual decoherence procegmhancing the decoherence contributions from modes outside
is at least comparable tg. in the classical environment, and that region. This intrinsic feature of the model is also rel-
to 74 in the quantum one. If this information is used as anevant to understand why, despite the differences existing be-
estimate for a characteristic decoherence time, we are led tween the high- and low-temperature decoherence properties,
tgec=O(7./a) for the high-temperature limit andg. the same conditiom .At=<1 is required to prevent both ther-
~0O(7gla) for the low-temperature limit, respectively. For mal and vacuum noises. In fact, this condition comes quite
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! DA T * * tion 7./At=1 is fulfilled. From a more practical perspective,
000l _ it is the accessibility of this rapid flipping limit, demanding
fast and short pulses;./At=1 and rp/At<1, that deter-
o, ot-10 | Mines the viability of the procedure itself. If such require-
0.7, - = = - - - ments can be satisfied, our method might be valuable in con-
, \ figurations wheret 4. tends to be shorter than, [36] or,
‘ even in caseéye.is longer compared te,, for systems where

ZZ L | tipping the state is easier than exploiting conventional error-
w0 | correction protocols. While the existence of an interaction
ol . . . . tme able to implement alOT gate by inverting the state is de-
0 1 2 3 4 5 6 manded for any two-level system relevant to quantum com-
! ' ' ' ' ' ' ' e putation, both the present technological capabilities for ap-
plying 7 pulses and the relevant environmental cutoff
frequencies depend considerably on the specific physical sys-
o 1= 10° tem and the mechanism responsible for decoherence. Some
(L N— ; ; : ittt ' ' important time scales for various prospective qubits can be

[ 02 04 06 08 1 12 1.4 16 18 2

T /8t found in[1].
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FIG. 3. Same as in Fig. 2 for the low-temperature configuration,
wc/T=10%. The maximum number of spin cycles is equal to V. CONCLUSIONS
N nax=30 in the simulations at.t=1.0,10, whileN,,,,= 100 at
wt=10%. The unperturbed values of decoherence are read from Our work demonstrates the possibility to modify the evo-
Fig. 1(L). lution of a quantum open system through the application of
an external controllable interaction. A prototype situation in-
natural for a classical environment, but one might at firstyolving a two-level system coupled to a quantized reservoir
wonder why a weaker conditiomgAt=<1 would not suffice  in thermal equilibrium has been worked out in detail and
for the quantum case, even if the frequeneiesw, contain  dynamical suppression of quantum decoherence has been
the fraction that mostly contributes at times of the order ofevidenced. From the perspective of quantum information, the
tgec- The reason for this failure is the presence of vacuumanalysis suggests a different direction compared to conven-
fluctuations. By satisfying conditiom gAt<1, we do getrid tional quantum error-correction techniques, based on the idea
of thermal dephasing, but we do not completely correciof forcing the system into a dynamics that disturbs the deco-
vacuum noise untilw,At<1. Precisely, we are missing herence process. Our present study for a specific example
modes of intermediate frequenay;= w=w. that, although  brings up, among other issues, the question of whether simi-
of minor importance at long times, may introduce amplifiedlar decoherence correction mechanisms would be operating
decoherence contributions if not properly corrected. under more general conditions, including either different
We conclude with a few comments on the relevance obpen system dynamics, or different control configurations, or
our procedure for quantum information processing. Whileboth. In particular, an interesting possibility could emerge
the idealized character of the model prevents us from a quarrom examining decoherence properties within a fully quan-
titative discussion of implementation criteria, we can com-tum mechanical description where the control degrees of
pare with the principles underlying current quantum error-freedom are explicitly included and the system is driven by a
correction proposals. Essentially, these are schemes tuantum controller as recently proposed 7.
encode redundantly information in such a way that it can be
restored also when errors due to external sources have oc-
curred. The syndrome-identification and the error-correction ACKNOWLEDGMENTS
stages may be regarded as a feedback configuration: suitable

. - ' One of us(L.V.) is grateful to Carlo Presilla for enlight-
measurement protocols are required both in conventional . . : " . .
ening discussions and a critical reading of the manuscript.

schemeg5,8—19 and in alternate techniques based on the.l_his work was supported by ONR, by AFOSR, and by

guantum Zeno effedtl6,17], while conditional logic is ex- . g
ploited in the coherence-preserving routines proposed ir[1)'A‘RP'A‘/'A‘RO under the Quantum Information and Compu

[18]. In any case, error-correction methods have the effect Oﬁittli?a Tile?ﬁlm/;EchL)JIC) and the NMR Quantum Computing
reducing the error rate per unit time and, in order to be ef- '

fective, they must be repeated at time intervAls shorter

than the typical decoherence time of the system, 'i.e., APPENDIX: HEISENBERG REPRESENTATION
tgec/At=1. In comparison to quantum error-correction

schemes, our procedure exhibits two fundamental differ- Compared to the interaction picture, the Heisenberg rep-
ences: no ancillary bits are required to store the informationfesentation has two advantages: first, it does not require pre-
no measurements are performed. In principle, these could Haminary transformations on the state vector; second, it gives
advantageous features, since encoding would be more effio a certain extent a more intuitive description of the spin
cient and, by avoiding measurements, no slow down of thenotion. In this appendix, we outline the evolution of the
computational speed would be introduced. In addition, rathequbit coherence, by restricting ourselves to the first elemen-
than reducing the error rate, this method would supprestry spin-flip cycle. In the Heisenberg picture, the relevant
completely the error source provided the appropriate condiinformation is contained in
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1 +At,tg+ 2At) have to be considered separately, by solving
o ()=5lo(t)+ioy (D], (A1) Eq. (A7) with initial conditions att=t,, t=t} =t,+At, re-
spectively.
since, by averaging over the quantum state;, (t)) (i) to—>to+ At: Sinceo,(t) = o,(to), the equations for the

=poy(t). As in Sec. IIl, we evaluate the qubit dynamics un- bath variables are completely solved by

der the separate action of the spin-bath Hamiltomag and

the radio-frequency perturbatid . The de;cription qf ar by(t)=e Tekt=t)p (t,) — oz(to)%(l—e““’k(“‘o)),

pulse turns out to be extremely simple in the Heisenberg Wi

representation. Nothing happens to the bath operbﬁgml (A8)

in the Ilnéltboft;]nstantart'\_eous pulses, while spin dynamics 1S3 bi(t)=[by(t)]". These solutions should be inserted in
governed by Ihe equations the expression foo (t):

0o==il0g,(HstH(wo,t)], a=xy,z (A2) t
a+(t):Texp[if ds{wo+2[ gybl(s)
with H+(wq,t) given in Eq.(19). By denoting Witht;(+) the to

instants immediately befor&fter a pulse, respectively, a
very simple result is found: +0k bk(S)]}} a4 (to). (A9)
_ _
oo(tp) ==~ 0altp), The time-ordered exponential can be evaluated exactly and

i - (A3) the following result is found for the first propagator:
o (t))=[o.(tp)]".

. |gul? sin wyAt
The action ono, corresponds, in particular, to the pictorial Gtot(to.to+At) =exp i woAt+4i “or At— Tor
spin-flip effect operated by ar pulse. Now denote as

Gui(ti ,ti) the operator evolving coherence framto t; in
thtemalbsjence of rf pulses, i.e., B X[1=o,(to)]ex —Ek [bl(to) &(AL)
o4 (1) =Gty 1) oo (t). (A4)
T e —bk(to>§§(m>]]. (A10)

Then, using relatiortA3) for o, twice, we find the follow-
ing representation for the coherence evolution during the firsynere the same notation fgr(At) has been used, EG7).
complete cycle: (i) to+ At—ty+2At: By exploiting Eq.(A10), we can
B immediately write down the expression for the propagator
7+ (toF 280 = Gro(to,to+ At) 07+ (to) G (to+ At,to+2At) in terms of the new initial condition at
XGl(to+At,to+2At),  (A5)  t=tg:

. 2
to be compared with Gl (to+ At to+ 2At)=exp{ iwgat—ai 9 i)"l
0+ (tg- 2A1) = Gr(to - At tg+ 2A1) Gy to to+ At) o4 (o) .
w
(A6) x m——k)[l—az(t;n]

in the absence of pulses. Even before knowing the explicit
form of G, we see from Eq9A5) and (A6) that the pres- oot
ence of a time-reversed evolution during the second interval xex +§k‘* [bi(te) &(AD)
At of the cycle is already enucleated at this stage.
In order to evaluate the propagat@t,;, the Heisenberg _ .
equations for the coupled spin plus bath motion have to be bi(tp) & (AD] . (ALD)
solved. From Hamiltoniaiil) we get
Now everything can be evaluated with respect to the initial
b= —iwbr—igyo,, time of the cycle. We exploit EA3) for o,(tp) and, since
b(tp) =Db(tp) =by(to+ At), bath operators evolve as
bi=+iwbl+igyo,, .
(A7) by(to+ At):e_i“’kmbk(to)—az(to)w—kk(l—e““’k“),
&+=iwoa++2i§k: (kb +gib o, (A12)

and Hermitian conjugate. As we discussed in the text, the
o,=0. presence in Eq(A12) of an initial condition dephased by
e* 1At for each environmental mode is the ultimate source
Since instantaneous pulses introduce discontinuous changesdecoherence. We arrive at the following expression for the
in operators, the propagator&,(tg,to+At), Gilto cycle evolution:
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a+<to+2At>=exp{im(At)[ﬂ—aZ(to)]
+Zk [bi(to) M At) — by(to) 7 (At)]

+i <P2(At)] o (to)explio,(to) 2(At)

—iei(AY[1+0,(to) ]}, (A13)

where

2
el (AD) =4 19 /At
T o\

sin kat>

Wi

2
@ (At)=8>, lg—"';sin o At(1—cosw,At). (Al4)
k Wy

The final step is to calculate the coherence evolution as
pouto+2At)=(0o (to+2AL))
= 2 (ilTrsl(pe®pg)ors (to+280}1]).
(A15)

By inserting Egqs(A13) and (A14), phase factors drop out
and we find

por(to+2At) = poy(tg)e~ TPIN=1AD, (A16)

in agreement with the result found from E@¢40) and(41) in

the Schrdinger representation. The procedure can be gener-
alized to arbitraryN and the complete expressidip(N,At)

is thereby recovered.
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