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Dynamical suppression of decoherence in two-state quantum systems

Lorenza Viola* and Seth Lloyd†
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The dynamics of a decohering two-level system driven by a suitable control Hamiltonian is studied. The
control procedure is implemented as a sequence of radio-frequency pulses that repetitively flip the state of the
system, a technique that can be termed quantum ‘‘bang-bang’’ control after its classical analog. Decoherence
introduced by the system’s interaction with a quantum environment is shown to be washed out completely in
the limit of continuous flipping and greatly suppressed provided the interval between the pulses is made
comparable to the correlation time of the environment. The model suggests a strategy to fight against deco-
herence that complements existing quantum error-correction techniques.@S1050-2947~98!07109-1#

PACS number~s!: 03.67.Hk, 03.65.2w, 03.67.2a, 05.30.2d
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I. INTRODUCTION

The design of strategies able to protect the evolution o
quantum system against irreversible corruption due to e
ronmental noise represents a challenging conceptual issu
particular, since maintaining quantum coherence is a cru
requirement for exploiting the novel possibilities opened
by quantum parallelism, practical implementations of qu
tum computation and communication proposals requ
methods to effectively resist the action of quantum decoh
ence and dissipation@1–3#. Roughly speaking, two classes
procedures are available to overcome the decoherence p
lem: either passive stabilization or active manipulation of
quantum state. The first kind of solutions, recently form
ized aserror-avoiding codes@4#, relies on the existence of
subspace of states that, owing to special symmetry pro
ties, are dynamically decoupled from the environment. T
second approach, pioneered in@5# and closer in spirit to
quantum control theory@6,7#, embraces today a variety o
sophisticated schemes known aserror-correcting codes@8–
18#. Basically, loss of information is corrected by monitorin
the system and conditionally carrying on suitable feedb
operations.

In this work we investigate a third strategy for reduci
noise and decoherence. This strategy, which can be ter
quantum ‘‘bang-bang’’ control after its classical analog@19#,
works by averaging out the unwanted effects of the envir
mental interaction through the application of suitable op
loop control techniques on the system. The basic idea is
open-system properties, specifically decoherence, may
modified if a time-varying control field acts on the dynami
of the system over time scales that are comparable to
memory time of the environment. In particular, we work o
an exact model for a two-state quantum system@quantum bit
~qubit!# coupled to a thermal bath of harmonic oscillato
where decoherence is dynamically suppressed through
peated effective time-reversal operations on the combi
system plus bath. Although the phenomenon is mathem
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cally reminiscent of the quantum Zeno effect@20#, the essen-
tial physical idea comes from refocusing techniques
nuclear magnetic resonance spectroscopy~NMR! @21#. Since
the discovery of spin echoes in 1950@22#, clever pulse meth-
ods have been developed in NMR to eliminate much of
dephasing arising from variations in the local magnetic fi
acting on each spin. Because the latter effect can be tho
of in terms of an interaction with some classical enviro
ment, it is not obviousa priori whether similar techniques
work in the presence of a quantum mechanical environm
and purely nonclassical effects like entanglement. Our re
answers this question in the affirmative, and points out
role of the reservoir correlation time as a further paramete
be engineered in the struggle for preserving quantum co
ence.

The plan of the paper is the following. In Sec. II a gene
model of a two-state system interacting with a thermal en
ronment is reviewed and its decoherence properties in
absence of control recalled. In Sec. III the evolution und
the action of a sequence of perturbative kicks is analyz
Complete quenching of decoherence is established as a
iting situation. In Sec. IV the conditions for an effective d
coherence reduction are clarified with reference to a var
of possible environmental configurations and the method
compared to different quantum error-correction techniqu
We close by discussing possibilities for future work.

II. SINGLE-QUBIT DEPHASING MECHANISM

Our goal is to investigate how decoherence properties
an open quantum system may be modified through the ap
cation of an external controllable interaction. Decoherenc
a process whereby quantum systems lose their ability to
hibit coherent behavior such as interference@23–26#. We
start by introducing a model that allows investigation of t
problem in its simplest nontrivial configuration. The physic
system we are interested in is a single two-state quan
system, representing the elementary memory cell of quan
information. Although not strictly necessary, it will be con
venient to think of the physical qubit as realized by a sp
1/2 system, which will provide us with direct reference to t
well established language of nuclear magnetic resona
@21# and the rapidly growing field of NMR quantum compu
2733 © 1998 The American Physical Society
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2734 PRA 58LORENZA VIOLA AND SETH LLOYD
tation @27,28#. Decoherence arises due to the coupling to
quantized environment, here schematized as a continuu
harmonic modes. We assume that the dynamics of the o
all qubit plus bath is ruled by the following Hamiltonian:

H05HS1HB1HSB5\v0

sz

2
1(

k
\vkbk

†bk

1(
k

\sz~gkbk
†1gk* bk!, ~1!

where the first and second contributionHS andHB describe,
respectively, the free evolution of the qubit and the enviro
ment, and the third termHSB describes a bilinear interactio
between the two.sz is the standard diagonal Pauli matri
with qubit basis states denoted asu i &, i 50,1, whilebk

† ,bk are
bosonic operators for thekth field mode, characterized by
generally complex coupling parametergk . In the Schro¨-
dinger picture, the state of the combined system (S1B) is
represented by a density operatorr tot(t) and the reduced
qubit dynamics is thereupon recovered from a partial tr
over the environment degrees of freedom:

rS~ t !5 (
i , j 50,1

r i j ~ t !u i &^ j u5TrB$r tot~ t !%. ~2!

Hamiltonian~1!, which corresponds to a special case of t
so-called spin-boson problem@29#, has been used by man
authors to model decoherence in quantum computers@2–4#.
In particular, we adhere closely to the notations of@3#. The
basic fact about the dynamics induced by Eq.~1! is that,
since@sz ,H0#50, the interaction with the environment ha
the two memory statesu0&,u1& as eigenstates. In other word
the model describes a purely decohering mechanism, w
no energy exchange between qubit and bath is presen
NMR terminology, this implies that noT1 type of decay
takes place@21#. Equivalently, in terms of errors, only phas
errors are introduced. However, neglecting the effects a
ciated to quantum dissipation is justified, in a sense, by
related reasons: energy exchange processes not only pro
amplitude errors which need to be corrected even in the c
sical computation, but they typically involve time scal
much longer than decoherence mechanisms. In addition
ing exactly soluble, the model~1! has the advantage of a
lowing a clear picture of the decoherence properties in
absence of control. To this end, since spin populations
not affected by the environment, the relevant quantity is
qubit coherencer01(t) @of course,r10(t)5r01* (t)#.

It will be convenient to move to the interaction pictu
associated to the free dynamics (HS1HB), corresponding to
the transformed state vector

r̃ tot~ t !5ei ~HS1HB!t/\r tot~ t !e2 i ~HS1HB!t/\ ~3!

and to the effective Hamiltonian

H̃~ t !5H̃SB~ t !5\sz(
k

~gkbk
†eivkt1gk* bke

2 ivkt!. ~4!

Time evolution is determined by the time-ordered unita
operator
a
of
r-

-

e

e
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In
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e-

e
re
e

Ũ tot~ t0 ,t !5T expH 2
i

\Et0

t

dsH̃~s!J , ~5!

which can be evaluated exactly and can be written, up t
global c-number phase factor, in the following form:

Ũ tot~ t0 ,t !5expH sz

2 (
k

@bk
†eivkt0jk~ t2t0!

2bke
2 ivkt0jk* ~ t2t0!#J , ~6!

where the following complex function has been introduce

jk~Dt !5
2gk

vk
~12eivkDt!. ~7!

Note that the separate dependence of Eq.~6! on both initial
time t0 and evolution interval (t2t0) is consistent with the
time-reversal propertyŨ tot(t,t0)Ũ tot(t0 ,t)51. A nice discus-
sion on the entanglement generated byŨ tot(t0 ,t) between
qubit and field states is given in@3#. We are interested in
calculating

r̃01~ t !5^0uTrB$Ũ tot~ t0 ,t !r̃ tot~ t0!Ũ tot
† ~ t0 ,t !%u1&. ~8!

This can be done without approximations under two stand
assumptions:~i! qubit and environment are initially uncorre
lated, i.e.,

r tot~ t0!5rS~ t0! ^ rB~ t0!, ~9!

~ii ! the environment is initially in thermal equilibrium at tem
peratureT, i.e.,

rB~ t0!5)
k

rB,k~T!5)
k

~12eb\vk!e2b\vkbk
†bk. ~10!

In Eq. ~10!, b51/kBT, with kB the Boltzmann constant. Fo
simplicity, we choose henceforth units such that\5kB51.
Conditions~9! and ~10! are easily translated to interactio
picture and, inserting Eq.~6! into Eq. ~8!, the problem is
reduced to a single-mode trace:

r̃01~ t !5 r̃01~ t0!)
k

Trk$rB,k~T!D@eivkt0jk~ t2t0!#%

5 r̃01~ t0!e2G0~ t0 ,t !, ~11!

where, in the first equality, the harmonic displacement
eratorD(jk) is given by

D~jk!5ebk
†jk2bkjk* , ~12!

and the second equality defines the time-dependent func
G0(t0 ,t). The final step is to recognize that, for each mod
the quantity in curly brackets in Eq.~11! is nothing but the
symmetric order generating function for a thermal harmo
oscillator @30#. Thus the explicit expression forG0(t0 ,t) is

G0~ t0 ,t !5G0~ t2t0!5(
k

ujk~ t2t0!u2

2
cothS vk

2TD . ~13!

SinceG0 is a real function, it correponds to pure damping
Eq. ~11!. Accordingly, this function characterizes complete
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the dynamics of the decoherence process destroying the
bit phase information. Of course, the complete evolution
the original Schro¨dinger picture includes oscillation at th
natural frequencyv0,

r01~ t !5eiv0~ t2t0!2G0~ t2t0!r01~ t0!, ~14!

while, using Eq.~6!, one can check thatr i i (t)5r i i (t0), i
50,1.

Deeper insight into the time dependence of the deco
ence process is gained if the continuum limit is made exp
in Eq. ~13!. By substitutingujk(t2t0)u2 through Eq.~7!, we
get

G0~ t2t0!5E
0

`

dvF(
k

d~v2vk!ugku2G
34 cothS v

2TD12cosv~ t2t0!

v2 . ~15!

The quantity in square brackets is known as the spectral
sity I (v) of the bath. It turns out that, once the initial state
specified, complete information about the effect of the en
ronment is encapsulated in this single function. As a gen
feature, the spectral density is characterized by a certain
traviolet cutoff frequencyvc such that I (v)→0 for v
.vc . Although the specific value ofvc depends on a natu
ral cutoff frequency varying from system to system, the e
istence of a finitevc is always demanded on physic
grounds. Indeed, assuming that the environment does
have a high-frequency cutoff means, generally, that ene
can be dissipated instantaneously@31#. If, for instance, deco-
herence arises from the coupling to a phonon field, the n
ral cutoff frequency can be identified with the Debye fr
quency. In general,tc;vc

21 sets the fastest time scale~or
the memory time! of the environment. When a specifi
choice will be useful, we will assume a spectral density w
the following functional form:

I ~v!5
a

4
vne2v/vc, ~16!

the parametera.0 measuring~in suitable units! the strength
of the system-bath coupling and the indexn.0 classifying
different environment behaviors@3,29,31#.

In addition totc , another time scaletb;T21, associated
with the temperature of the bath, is expected to play a m
role in the evolution of the qubit coherence. This is manif
if Eq. ~15! is written in the equivalent form

G0~ t2t0!54E
0

`

dvI ~v!@2n̄~v,T!11#
12cosv~ t2t0!

v2 ,

~17!

where n̄(v,T)5exp(2v/2T)cosech(v/2T) is the average
number of field excitations at temperatureT. In this way,
effects due to the thermal noise are formally separated f
the ones due to purely vacuum fluctuations. Because of
different frequency composition, the two kinds of fluctu
tions dominate on different time scales, the relative imp
tance of vacuum to thermal contributions being determin
by tb . This multiplicity of time scales is one of the facto
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that makes the decoherence process quite complicate
should be important to keep in mind that there isno generic
decohering behavior, and in particular that the qubit dyna
ics depends crucially on both temperature and the detail
the spectral functionI (v). We will comment further on this
point later.

III. PULSED EVOLUTION OF QUANTUM COHERENCE

Let us now define a procedure aimed at modifying t
decoherence properties discussed so far. We choos
implement it as a suitable perturbation acting on some
servables$Oi% of systemS. This is obtained by adding to Eq
~1! a time-dependent term( ig i(t)Oi , where the input func-
tions $g i(t)% are assumed to be programmable at will, e.g
given schedule of time-varying magnetic fields in the case
a spin qubit. In control terminology, this realizes a so-cal
open-loop configuration@7#. Closed-loop~or feedback! con-
figurations have also been proposed in recent years to
nipulate decoherence in some quantum optical systems@32#.
There are many possible choices for the control Hamiltoni
Leaving aside the problem of controllability of the syste
~1! at the abstract level, we make here a pragmatic cho
partly suggested by semiclassical considerations.

Suppose that the perturbation we add is able to ind
spin-flip transitions. By inspection of the spin-bath intera
tion HamiltonianHSB, opposite contributions arise when th
spin belongs to the down or up eigenstate. Since a rela
minus sign will be present during time evolution, the effe
of theHSB coupling will eventually average out provided th
spin is flipped rapidly enough. There are two reasons wh
mechanism of this kind is expected to be possible. First
we already mentioned, similar methods are routinely use
NMR experiments to get rid of the effects of some unwan
interactions@21#. For instance, in the so-called spin-flip na
rowing, line broadening resulting from magnetic dipolar co
pling is reduced by repetitively flipping the spins among d
tinct energy configurations. The major difference here is t
the undesired decohering coupling is contributed by the i
nitely many quantized degrees of freedom of the heat b
The second reason is related to the finite response timetc of
the environment itself. In general, if perturbations act on
system more rapidly than this fastest time scale present in
bath, we expect that memory effects would be relevant,
that this non-Markovian dynamics would eventually lead
modified decoherence properties.

Having anticipated the intuitive idea, we start by writin
the total Hamiltonian as

H~ t !5H01H rf~v0 ,t !, ~18!

where H rf(v0 ,t) represents a monochromatic alternati
magnetic field applied at resonance. At this level, the pr
lem can be related to variants of the complete spin-bo
model; none of them is exactly solvable@29#. The main sim-
plification we introduce is to substitute the continuous-mo
operation, where the actions of the bath and the control
field are necessarily simultaneous, with a pulsed-mode
eration analogous to classical bang-bang control. Then,
der the working assumption that the typical decohere
time of the system and the duration of pulses define t
widely different time scales, we solve the problem by sett
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2736 PRA 58LORENZA VIOLA AND SETH LLOYD
~i! HSB50 within each pulse;~ii ! H rf50 between successiv
pulses. As usual, we invoke the rotating wave approxima
~RWA! and only look at the corotating component of the
field. The radio-frequency perturbation is assumed of the
lowing form:

H rf~v0 ,t !5 (
n51

nP

V~n!~ t !$cos@v0~ t2tP
~n!!#sx

1sin@v0~ t2tP
~n!!#sy%, ~19!

with tP
(n)5t01nDt, n51, . . . ,nP , and

V~n!~ t !5H V tP
~n!<t<tP

~n!1tP

0 elsewhere.
~20!

Equations~19! and~20! schematize a sequence ofnP identi-
cal pulses, each of durationtP , applied at instantst5tP

(n) .
The separationDt between pulses is assumed to be an in
of the model. The amplitude of the field is equal toV during
each pulse and will be further specified below together w
tP . In order to depict the evolution associated to a giv
pulse sequence, it is convenient to think of the latter
formed by successive elementary cycles of spin flips, a c
plete cycle being able to return the spin back to the star
configuration. We begin by analyzing the time evolution d
ing the first spin cycle.

A. Elementary spin-flip cycle

As in Sec. II, we exploit the interaction representation~3!.
Some instructive steps of an alternative derivation based
Heisenberg formalism are sketched in the Appendix. T
interaction picture transformed Hamiltonian is now

H̃~ t !5H̃SB~ t !1H̃ rf~ t !, ~21!

whereH̃SB(t) is given in Eq.~4!, andH̃ rf(t) is evaluated by
using Eq.~19! and the properties of Pauli matrices. We g

H̃ rf~ t !5 (
n51

nP

V~n!~ t !eiv0~sz /2!tP
~n!

sxe
2 iv0~sz /2!tP

~n!
. ~22!

According to Eq.~22!, the time dependence due to the rot
ing field is completely removed within each pulse. In fa
the interaction representation~3! on spin variables is identi
cal, at resonance, with the description in the rotating fra
associated to Eq.~19! @21#. The counter-rotating term that i
omitted within the RWA is seen to be negligible at res
nance. For the first spin cycle,nP52 and we have the fol-
lowing sequence: evolution underH̃SB(t) during t0<t

<tP
(1) ; pulseP1 at time tP

(1) ; evolution underH̃SB(t) during
tP
(1)1tP<t<tP

(2) ; pulse P2 at time tP
(2) . After a total time

t15t012Dt12tP , the first cycle is complete. In terms o
evolution operators, we have
n

l-

t

h
n
s
-

g
-

n
e

-
,

e

-

ŨP~ t0 ,t1!5ŨP2
ŨP1

@ŨP1

21Ũ tot~ tP
~1!1tP ,tP

~2!!ŨP1
#

3@Ũ tot~ t0 ,tP
~1!!#. ~23!

We can read the evolutions in the absence of rf field direc
from Eq. ~6!, for instance,

Ũ tot~ tP
~1!1tP ,tP

~2!!5expH sz

2 (
k

@bk
†eivk~ t01Dt1tP!jk~Dt !

2bke
2 ivk~ t01Dt1tP!jk* ~Dt !#J . ~24!

Concerning the evolution operator associated to the gen
j th pulse, this is found by exponentiating Eq.~22! (n5 j ):

ŨPj
5exp$2 iVtPeiv0~sz /2!tP

~ j !
sxe

2 iv0~sz /2!tP
~ j !

%

5eiv0~sz /2!tP
~ j !

e2 iVtPsxe2 iv0~sz /2!tP
~ j !

. ~25!

In order to proceed, we have to say more about pulses.
require

$ŨP1
,sz%50, @ŨP2

ŨP1
,sz#50, ~26!

$,% and @ ,# denoting anticommutator and commutator, r
spectively. These conditions imply, as expected from the
tuitive explanation, thatP1 ,P2 are p pulses, satisfying
2VtP56p. To simplify things, we imagine thatH̃ rf(t) is
large enough to produce~almost! instantaneous spin flips
Accordingly, tP→0 henceforth and we have to deal wi
ideal ‘‘kicks’’ of infinite power. Putting things together, w
find

ŨP2
ŨP1

52eiv0~sz/2!~ t12t0!, ~27!

ŨP1

21Ũ tot~ tP
~1! ,tP

~2!!ŨP1
5expH 2

sz

2 (
k

@bk
†eivk~ t01Dt !jk~Dt !

2bke
2 ivk~ t01Dt !jk* ~Dt !#J , ~28!

and we are therefore ready to write down the final result
the cycle evolution operator:

ŨP~ t0 ,t1!5expH iv0

sz

2
~ t12t0!1

sz

2 (
k

@bk
†eivkt0hk~Dt !

2bke
2 ivkt0hk* ~Dt !#J , ~29!

where, as before,c-number phase factors have been omitt
and

hk~Dt !5jk~Dt !~eivkDt21!52
2gk

vk
~12eivkDt!2.

~30!

It is interesting to compare the evolution described by E
~29! with the one in the absence of pulses. By recalling E
~6!, evaluated at timet15t012Dt, we report two differ-
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ences: a phase factor proportional tosz and the duration of
the cycle; a combinationhk(Dt)}@jk(Dt)#2 in place of
jk(2Dt). The first difference corresponds to the fact that, d
to the pulses, the oscillation at the natural frequencyv0 is
lost once the evolution is transferred back to the Schro¨dinger
picture@see Eq.~14!#. The second difference, as will be se
in a moment, is the signal that decoherence properties
modified.

B. Decoherence properties after a pulse sequence

The next step is to generalize the description to an a
trary numberN of elementary spin-flip cycles, thenth cycle
ending at time

tn5t012nDt, n51, . . . ,N ~31!

and the number ofp pulses involved in the sequence bei
nP52N. This is straightforward since Eq.~29! enables us to
write down the evolution operator for thenth cycle:

ŨP~ tn21 ,tn!5expH iv0

sz

2
2Dt1

sz

2

3(
k

@bk
†eivktn21hk~Dt !

2bke
2 ivktn21hk* ~Dt !#J . ~32!

The time development corresponding toN cycles is then
governed by the time-ordered finite product

ŨP
~N!~ t0 , . . . ,tN!5ŨP~ tN21 ,tN!•••ŨP~ t1 ,t2!ŨP~ t0 ,t1!.

~33!

Note that ŨP
(N)Þ(ŨP)N, the dependence on intermedia

times $t j% in the sequence being introduced by the enviro
ment dynamics. A closed formula forŨP

(N)($t j%) can still be
found quickly since, by neglecting state-independent glo
phase factors that are irrelevant to density matrix propa
tion, we are allowed to treat the factors in Eq.~33! as com-
muting operators. We get

ŨP
~N!~ t0 ,Dt !5expH iv0

sz

2
2NDt1

sz

2

3(
k

@bk
†eivkt0hk~N,Dt !

2bke
2 ivkt0hk* ~N,Dt !#J , ~34!

where

hk~N,Dt !5hk~Dt ! (
n51

N

e2i ~n21!vkDt, ~35!

and definition~31! has been exploited. Of course, the resu
of Sec. III A are recovered forN51. A more interesting
check can be done by relating the evolution~34! to the cor-
e

re

i-

-

al
a-

s

responding propagator in the absence of pulses. The tric
to switch back the minus sign in the definition~30! of
hk(Dt), that has been recognized as the key dynamical ef
due to the pulsing procedure. Sincejk(Dt)(eivkDt11)
5jk(2Dt), we are left with

jk~2Dt ! (
n51

N

e2i ~n21!vkDt5jk~2NDt !5jk~ tN2t0! ~36!

in place of Eq.~35!. Therefore this procedure gives

Ũ tot~ t0 ,tN!5expH sz

2 (
k

@bk
†eivkt0jk~ tN2t0!

2bke
2 ivkt0jk* ~ tN2t0!#J , ~37!

which does agree with the direct evaluation based on Eq.~5!.
It may be worth to make the connection with unperturb
evolution more explicit, which is done by writing

hk~N,Dt !5jk~2NDt !22jk~Dt ! (
n51

N

e2i ~n21!vkDt,

~38!

where the contribution due to the pulse sequence shows u
the form of a typical interference factor.

The decoherence properties corresponding to the pu
qubit plus bath evolution~34! are derived through the step
outlined in Sec. II for the unperturbed case. Incidentally,
still expect that spin populations are unchanged after a
quence ofN complete spin cycles, while qubit coherence
final time tN5t012NDt is given by

r̃01~ tN!5^0uTrB$ŨP
~N!~ t0 ,Dt !r̃ tot~ t0!ŨP

~N!†~ t0 ,Dt !%u1&.
~39!

The result is

r̃01~ tN!5e2 iv0~ tN2t0!2GP~N,Dt !r̃01~ t0!, ~40!

where

GP~N,Dt !5(
k

uhk~N,Dt !u2

2
cothS vk

2TD . ~41!

Comparing with Eq.~13!, the mathematical prescription fo
decoherence in the presence of pulses looks very simple:
use hk(N,Dt) instead ofjk(tN2t0) for each mode of the
bath. However, the final effect leading to Eq.~41! is not easy
to figure out and it is useful to compare first the decohere
due to a single mode with frequencyv with and without
pulses, respectively. Apart from identical time-independ
factors, we have to consider

uh~N,vDt !u254~12cosvDt !2

3S N1 (
n50

N21

2n cos@2~N2n!vDt# D ,

~42!
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vs

uj~N,vDt !u252~12cos 2NvDt !52@12cosv~ tN2t0!#,
~43!

where Eqs.~7! and ~35! have been used and an identic
proportionality factor is understood. The unperturbed con
bution uju2 simply oscillates between values 0,4 with a p
riod (p/N). The functionuhu2, instead, is strongly oscillating
for increasingN, developing 2(N21) local minima and a
sharply peaked absolute maximum atvDt5p. Constructive
interference is highest at the maximum, leading to a va
uhu max

2 516N2 that can be very large, while destructive inte
ference strongly damps the function forvDt,p/2, which is
a zero for bothuhu2 and uju2 for any N. One can show that

uh~N,vDt !u2<uj~N,vDt !u2 on @0,p/2# for anyN.
~44!

Back to decoherence properties, condition~44! means that,
for a mode at frequencyv, a finite regionvDt<p/2 exists,
where the contribution to decoherence issmaller in the pres-
ence of pulses. Since the ‘‘correcting region’’ is entered
smallDt values, this effect takes place in the regime of ra
flipping we expected. Since, moreover, smallerDt values
require longer pulse sequences in order to evolve the sys
over the same interval, it is useful to consider an interes
limiting case.

C. Limit of continuous flipping and suppression
of decoherence

Let us study an idealized situation represented by the
lowing mathematical limit:

Dt→0,

N→`,

2NDt5tN2t0 . ~45!

It is convenient to rewrite the decoherence function~41! by
exploiting Eq.~38! to separate formally the unperturbed a
the interference contributions. Thus

GP~N,Dt !5(
k

ujk~2NDt !u2

2
cothS vk

2TD u12 f k~N,Dt !u2,

~46!

where

f k~N,Dt !52
jk~Dt !

jk~2NDt ! (n51

N

e2i ~n21!vkDt. ~47!

In this way, G0(tN2t0) is recovered by settingf k50 for
each mode, see Eq.~13!. We evaluate the asymptotic limit o
f k(N,Dt) as follows:
l
i-
-

e

r
d

m
g

l-

lim
Dt→0

f k~N,Dt !5
e2 ivkt0

12eivk~ tN2t0!

3 lim
Dt→0

~12eivkDt!

Dt (
n51

N

2Dteivktn21

5
e2 ivkt0

12eivk~ tN2t0!
lim

Dt→0

~12eivkDt!

Dt E
t0

tN
dseivks

5 lim
Dt→0

Fsin vkDt

vkDt
1 i

12cosvkDt

vkDt G51. ~48!

If this result holds for an arbitrary field mode, then the im
plications for the decoherence properties are transparen

lim
Dt→0

GP~N,Dt !50, ~49!

i.e., in the limit of continuous flipping, decoherence is co
pletely and exactly eliminated for any temperature and a
spectral density function.

Obviously, there is no hope that a continuous limit of th
kind would ever be attained in practice. However, situat
~45! should be approached ifDt is made small compared t
the fastest characteristic time present in the dynamics of
system. From the considerations of Sec. II, the environm
correlation timetc certainly provides a lower bound sinc
there is no spectral content of the environmental noise
frequency higher thanvc . Hence, we expect that a sufficien
condition in order to meet Eq.~45! is

vcDt&1. ~50!

The question of whether we can do better than this may
be completely obvious, since time scales different fromtc
are also involved in the decoherence process. In what
lows, we try to understand this point both by presenting
physical explanation for the decoherence suppression an
analyzing some specific situations.

D. Physical interpretation

People familiar with quantum Zeno effect@20# may have
found some similarities with the behavior we are discussi
In particular, the basic mathematical modification associa
with pulses is a functionuhku2, which isO(vk

4Dt4) for short
time intervals, compared toujku25O(vk

2Dt2). Moreover, Eq.
~45! is formally the same continuous limit involved in man
quantum Zeno related proposals, notably the one by C
@33#. In both cases, a preexisting dynamics—the qubit p
bath evolution here, a stimulated two-level transition
Cook’s scheme—is modified through a pulsing procedu
Pulses, respectively, represent spin-flip interactions, s
enough that the action of the bath is made negligible,
measurement pulses, long enough that the coupling to
external environment~the measuring apparatus! is made ap-
preciable. A dynamical inhibition phenomenon occurs wh
pulses become sufficiently frequent. One can say that
opposite configurations are realized for decoherence: w
continuous measurements, the interaction with the bat
always ‘‘on’’ and internal dynamics becomes frozen; in t
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limit of continuous flipping, it is the two-level controlled
dynamics that dominates, and the interaction with the b
tends to be always ‘‘off,’’ as indicated by Eq.~49!. However,
the analogy stops from a more physical point of view.

A more interesting interpretation of the decoherence s
pression~49! can be obtained by connecting it to effec
already observed in magnetic resonance experiments,
spin echoes, solid echoes, or spin-flip narrowing@21#. All of
these are basically time-reversal experiments. In orde
capture the basic physical mechanism of our model, let u
back to the elementaty spin cycle~Sec. III A! and look more
carefully at the evolution operator~23!. This is made of two
pieces: a free evolution during the firstDt, followed by an
evolution governed by Eq.~28! during the second interva
Dt. It is this transformed operator thatsimulatesthe effect of
a time reversal. In fact, backward propagation during
second part of the cycle would correspond to

Ũ tot~ t01Dt,t0!5expH 2
sz

2 (
k

@bk
†eivkt0jk~Dt !

2bke
2 ivkt0jk* ~Dt !#J . ~51!

By comparison with Eq.~28!, forward propagation in the
presence of rf kicks only differs for an additional termeivkDt

affecting each mode. This phase factor, due to the dynam
of the bath oscillators, is ultimately responsible for the de
herence properties in the pulsed evolution of the system
not for this phase difference between Eqs.~28! and~51!, we
would havehk(Dt)50 and no decoherence. Instead, rev
sal is approximate since the bath restarts at timet01Dt after
the first pulse with a dephased initial condition~see also the
Appendix!. However, if eivkDt'1 for each mode, then th
couple of kicks produces an exact time reversal and, by
eration, we arrive at Eq.~49!. Equivalently, if the bath
Hamiltonian can be considered as a constant, then the
Hamiltonian ~1! acquires a minus sign and the system
traces the previous evolution. The validity of this conditi
depends on the time scale we are considering. For a si
mode of frequencyv, the time needed to produce appr
ciable dephasing ist'v21, so we expect decoherence co
rection for t/Dt*1. This is in agreement with both the in
terpretation of Eq.~44! and the semiclassical NMR argume
@21#, where motional effects are predicted fort comparable
to the mean time spent in a given spin configuration~here
Dt). For the whole environment, the correlation timetc is
the minimum time scale over which the dynamics is appro
mately unchanged, and the same reasoning leads to a p
cal explanation of the rapid flipping condition~50!.

As a final remark, we point out that the mechanism
complishing time reversal in our model is purelymacro-
scopicin the sense that no reference is made to the dyna
cal state of the system. This is different from the famil
case of the Maxwell demon, that effectively reverses a
namical evolution by operating over some microscopic va
ables~like velocities! at a given instant. Rather, the revers
is obtained by changing the sign of the system Hamilton
through the action of suitable external fields~control!. A dif-
ferent kind of demon, the so-called Loschmidt demon,
been introduced by some authors to account for this beha
th
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@34#. In this terminology, the spin-flip procedure realizes
principle a Loschmidt demon for a decohering qubit.

IV. ANALYSIS AND EXAMPLES

In this section we try to give some semiquantitative p
ture of the decoherence mechanisms discussed so far.
focus our attention on a representative class of reservo
corresponding to so-called Ohmic environments. The app
priate spectral density is given by Eq.~16! with n51. The
time dependence of the decoherence is summarized by
following expression:

G~ t !5aE
0

`

dve2v/vc@2n̄~v,T!11#
12cosvt

v

3u12 f ~v,N,Dt !u2, ~52!

where we assumet050. Equation~52! reproduces the un
perturbed behavior of Sec. II whenf 50, in which case
G(t)5G0(t), Eq. ~13!. In the presence ofN spin-flip cycles,
Eq. ~52! is found from the continuous limit ofGP(N,Dt) in
Eq. ~41!, with f (v,N,Dt) derived from Eq.~47!. According
to Sec. III, in this case we are interested in decoherence a
a complete pulse sequence, i.e.,t5tN52NDt. For a fixed
strengtha of the system-reservoir coupling, the properties
the environment enter Eq.~52! with two parameters,vc

;tc
21 , T;tb

21 .
Let us first analyze decoherence in the absence of

correction, f 50. Qualitatively different behaviors arise de
pending on the relationship between the cutoff frequencyvc
and the thermal frequencyvb5T. Typically, two extreme
situations are considered.

~i! vc!vb : high-temperature limit orclassicalenviron-
ment. Decoherence dynamics is relatively easy to describ
this regime since, due to the exponential dependence on
cutoff, vc is actually the only characteristic frequency acce
sible to the system. The environment looks classical in
sense that its quantized structure cannot be appreciated
pared to the thermal quantumvb . Accordingly, thermal
fluctuations always dominate over vacuum ones and, aft
short transientO(tb) where decoherence is almost ineffe
tive, dynamics becomes very fast and coherence is lost c
pletely after a time comparable totc . In general, one expect
that in this limit equivalent results are obtained by assum
a heat bath of classical harmonic oscillators. A mix
quantum-classical derivation for a two-state open system
given, for instance, in@35#.

~ii ! vc@vb : low-temperature limit orquantumenviron-
ment. In this limit a more complex interplay between therm
and vacuum effects arises. Thermal fluctuations are only
fective for t.tb and, due to the exponential suppression
n̄(v,T), they are almost totally contributed by low
frequency modesv&vb . The effects of vacuum fluctua
tions dominate on an intermediate regiontc,t,tb , a non-
vanishing contribution remaining, however, at longer tim
scalest.tb . The frequency composition of the fluctuation
is now less clear: while modes below the thermal thresh
are still responsible for the long-time dynamicst.tb , fre-
quencies in the range up tovc mostly contribute fort,tb
but are also present beyondtb . As a consequence, even
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thermal time scalest.tb@tc , high-frequency modes con
tribute appreciably to the decoherence process and chara
istic timesO(tc) are still relevant in the underlying dynam
ics.

Typical decoherence curvese2G(t) for the Ohmic environ-
ment are found by numerical integration of Eq.~52! and are
shown in Fig. 1 for two choices corresponding to high- a
low-temperature limit,vc /T51022 andvc /T5102, respec-
tively. The partial contributions due to thermal and vacuu
fluctuations are indicated separately where possible. In
low-temperature case, a quiet (t,tc), a quantum (tc,t
,tb), and a thermal (t.tb) regime are easily identified in
the process, as indicated above and discussed in more d
by many authors@2,3,29#. In both configurations, the qub
coherence decays exponentially fast once the thermal reg
is well established,

e2G~ t !'e2t/t th, ~53!

for a suitable time constantt th . In models where the deco
herence rate is constant in time, Eq.~53! is usually assumed
as the definition of a typical decoherence time,tdec5t th . In
our case, since the whole behavior ofG(t) is required for a
complete knowledge of the decoherence dynamics, the d
nition of a characteristic time for loss of unitarity is le
clear. Oversimplifying things, the situation can be summ
rized as follows: for both the high- and the low-temperatu
regimes, a characteristic time exists, indicating the depar
of coherence from unity. This time is determined by t
shortest between the two time scalestc ,tb . Once this tran-
sient is over, the duration of the actual decoherence pro
is at least comparable totc in the classical environment, an
to tb in the quantum one. If this information is used as
estimate for a characteristic decoherence time, we are le
tdec'O(tc /a) for the high-temperature limit andtdec
'O(tb /a) for the low-temperature limit, respectively. Fo

FIG. 1. Qubit decoherence as a function of time for an Ohm
environment, Eq.~52! ( f 50). Time is in units ofT21 and the
values vc5100, a50.25 have been chosen. High- and low
temperature behaviors are shown,~H! vc /T51022 and ~L! vc /T
5102, respectively. The contributions arising from the separate
tegration of thermal and vacuum fluctuations are displayed in
latter case,e2G(t)5e2G th(t)e2Gv(t).
ter-
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identical values ofa andvc , decoherence occurs extreme
faster in the former case, as expected on intuitive ground

We now come back to examine how decoherence is
proved in the presence of spin-flip cycles. With the interfe
ence contributionf restored in Eq.~52!, we have calculated
numerically the decoherence values obtained when a fi
time intervalt is divided in an increasing number of cycle
of duration 2Dt, i.e.,

Dt5
t

2N
, N51,2, . . . ,Nmax. ~54!

The behavior ofe2G(t) as a function of the pulse frequenc
1/Dt has been studied, and the procedure repeated for di
ent representative times. The results for the high- and lo
temperature reservoirs considered above are shown in Fig
and 3, respectively. The unperturbed values of decohere
at the appropriate times can be read from Fig. 1. We see t
as predicted by Eq.~49!, decoherence correction starts a
soon as the regiontc /Dt*1 is entered. For times shor
enough thatvct,2N, this may even be accomplished with
single cycle. In general, once this condition is fulfilled, n
further reduction ofDt is demanded to evolve the system
a decoherence-free way. However, a warning also eme
from Fig. 3: if flipping is not frequent enough, not only doe
the correction effect disappear, but decoherence can actu
be made worse compared to the one in the absence of pu
The explanation of this behavior is rooted into the interfe
ence mechanism that builds up the correction factor~30!: in
a sense, decoherence can be subtracted almost comp
from the frequency rangevDt&1 only at the expense o
enhancing the decoherence contributions from modes out
that region. This intrinsic feature of the model is also re
evant to understand why, despite the differences existing
tween the high- and low-temperature decoherence proper
the same conditionvcDt&1 is required to prevent both ther
mal and vacuum noises. In fact, this condition comes qu

c

-
e

FIG. 2. Qubit decoherence in the presence of rf pulses for
high-temperature configuration,vc /T51022. For a fixed time,
each point corresponds to a numberN of cycles,N51, . . . ,Nmax

510. The results from Eq.~52! are plotted as a function of the
normalized pulse frequencytc /Dt. The unperturbed values of de
coherence are read from Fig. 1~H!.
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natural for a classical environment, but one might at fi
wonder why a weaker conditionvbDt&1 would not suffice
for the quantum case, even if the frequenciesv&vb contain
the fraction that mostly contributes at times of the order
tdec. The reason for this failure is the presence of vacu
fluctuations. By satisfying conditionvbDt&1, we do get rid
of thermal dephasing, but we do not completely corr
vacuum noise untilvcDt&1. Precisely, we are missin
modes of intermediate frequencyvb&v&vc that, although
of minor importance at long times, may introduce amplifi
decoherence contributions if not properly corrected.

We conclude with a few comments on the relevance
our procedure for quantum information processing. Wh
the idealized character of the model prevents us from a qu
titative discussion of implementation criteria, we can co
pare with the principles underlying current quantum err
correction proposals. Essentially, these are scheme
encode redundantly information in such a way that it can
restored also when errors due to external sources have
curred. The syndrome-identification and the error-correct
stages may be regarded as a feedback configuration: sui
measurement protocols are required both in conventio
schemes@5,8–15# and in alternate techniques based on
quantum Zeno effect@16,17#, while conditional logic is ex-
ploited in the coherence-preserving routines proposed
@18#. In any case, error-correction methods have the effec
reducing the error rate per unit time and, in order to be
fective, they must be repeated at time intervalsDt shorter
than the typical decoherence time of the system,
tdec/Dt*1. In comparison to quantum error-correctio
schemes, our procedure exhibits two fundamental dif
ences: no ancillary bits are required to store the informat
no measurements are performed. In principle, these coul
advantageous features, since encoding would be more
cient and, by avoiding measurements, no slow down of
computational speed would be introduced. In addition, rat
than reducing the error rate, this method would suppr
completely the error source provided the appropriate co

FIG. 3. Same as in Fig. 2 for the low-temperature configurati
vc /T5102. The maximum number of spin cycles is equal
N max530 in the simulations atvct51.0,10, whileNmax5100 at
vct5102. The unperturbed values of decoherence are read f
Fig. 1~L!.
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tion tc /Dt*1 is fulfilled. From a more practical perspectiv
it is the accessibility of this rapid flipping limit, demandin
fast and short pulses,tc /Dt*1 andtP /Dt!1, that deter-
mines the viability of the procedure itself. If such requir
ments can be satisfied, our method might be valuable in c
figurations wheretdec tends to be shorter thantc @36# or,
even in casetdec is longer compared totc , for systems where
tipping the state is easier than exploiting conventional err
correction protocols. While the existence of an interact
able to implement aNOT gate by inverting the state is de
manded for any two-level system relevant to quantum co
putation, both the present technological capabilities for
plying p pulses and the relevant environmental cut
frequencies depend considerably on the specific physical
tem and the mechanism responsible for decoherence. S
important time scales for various prospective qubits can
found in @1#.

V. CONCLUSIONS

Our work demonstrates the possibility to modify the ev
lution of a quantum open system through the application
an external controllable interaction. A prototype situation
volving a two-level system coupled to a quantized reserv
in thermal equilibrium has been worked out in detail a
dynamical suppression of quantum decoherence has
evidenced. From the perspective of quantum information,
analysis suggests a different direction compared to conv
tional quantum error-correction techniques, based on the
of forcing the system into a dynamics that disturbs the de
herence process. Our present study for a specific exam
brings up, among other issues, the question of whether s
lar decoherence correction mechanisms would be opera
under more general conditions, including either differe
open system dynamics, or different control configurations
both. In particular, an interesting possibility could emer
from examining decoherence properties within a fully qua
tum mechanical description where the control degrees
freedom are explicitly included and the system is driven b
quantum controller as recently proposed in@7#.
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APPENDIX: HEISENBERG REPRESENTATION

Compared to the interaction picture, the Heisenberg r
resentation has two advantages: first, it does not require
liminary transformations on the state vector; second, it gi
to a certain extent a more intuitive description of the sp
motion. In this appendix, we outline the evolution of th
qubit coherence, by restricting ourselves to the first elem
tary spin-flip cycle. In the Heisenberg picture, the releva
information is contained in
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s1~ t !5
1

2
@sx~ t !1 isy~ t !#, ~A1!

since, by averaging over the quantum state,^s1(t)&
5r01(t). As in Sec. III, we evaluate the qubit dynamics u
der the separate action of the spin-bath HamiltonianHSB and
the radio-frequency perturbationH rf . The description of ap
pulse turns out to be extremely simple in the Heisenb
representation. Nothing happens to the bath operatorsbk ,bk

†

in the limit of instantaneous pulses, while spin dynamics
governed by the equations

ṡa52 i @sa ,„HS1H rf~v0 ,t !…#, a5x,y,z ~A2!

with H rf(v0 ,t) given in Eq.~19!. By denoting withtP
2(1) the

instants immediately before~after! a pulse, respectively, a
very simple result is found:

sz~ tP
1!52sz~ tP

2!,
~A3!

s1~ tP
1!5@s1~ tP

2!#†.

The action onsz corresponds, in particular, to the pictori
spin-flip effect operated by ap pulse. Now denote as
Gtot(t i ,t j ) the operator evolving coherence fromt i to t j in
the absence of rf pulses, i.e.,

s1~ t j !5Gtot~ t i ,t j !s1~ t i !. ~A4!

Then, using relation~A3! for s1 twice, we find the follow-
ing representation for the coherence evolution during the
complete cycle:

s1~ t012Dt !5Gtot~ t0 ,t01Dt !s1~ t0!

3Gtot
† ~ t01Dt,t012Dt !, ~A5!

to be compared with

s1~ t012Dt !5Gtot~ t01Dt,t012Dt !Gtot~ t0 ,t01Dt !s1~ t0!
~A6!

in the absence of pulses. Even before knowing the exp
form of Gtot , we see from Eqs.~A5! and~A6! that the pres-
ence of a time-reversed evolution during the second inte
Dt of the cycle is already enucleated at this stage.

In order to evaluate the propagatorGtot , the Heisenberg
equations for the coupled spin plus bath motion have to
solved. From Hamiltonian~1! we get

ḃk52 ivkbk2 igksz ,

ḃk
†51 ivkbk

†1 igk* sz ,
~A7!

ṡ15 iv0s112i(
k

~gkbk
†1gk* bk!s1 ,

ṡz50.

Since instantaneous pulses introduce discontinuous cha
in operators, the propagatorsGtot(t0 ,t01Dt), Gtot(t0
g

s

st

it

al

e

ges

1Dt,t012Dt) have to be considered separately, by solvi
Eq. ~A7! with initial conditions att5t0, t5tP

15t01Dt, re-
spectively.

~i! t0°t01Dt: Sincesz(t)5sz(t0), the equations for the
bath variables are completely solved by

bk~ t !5e2 ivk~ t2t0!bk~ t0!2sz~ t0!
gk

vk
~12e2 ivk~ t2t0!!,

~A8!

and bk
†(t)5@bk(t)#†. These solutions should be inserted

the expression fors1(t):

s1~ t !5T expH i E
t0

t

ds$v012@gkbk
†~s!

1gk* bk~s!#%J s1~ t0!. ~A9!

The time-ordered exponential can be evaluated exactly
the following result is found for the first propagator:

Gtot~ t0 ,t01Dt !5expH iv0Dt14i
ugku2

vk
S Dt2

sin vkDt

vk
D

3@12sz~ t0!#J expH 2(
k

@bk
†~ t0!jk~Dt !

2bk~ t0!jk* ~Dt !#J , ~A10!

where the same notation forjk(Dt) has been used, Eq.~7!.
~ii ! t01Dt°t012Dt: By exploiting Eq. ~A10!, we can

immediately write down the expression for the propaga
Gtot

† (t01Dt,t012Dt) in terms of the new initial condition a
t5tP

1 :

Gtot
† ~ t01Dt,t012Dt !5expH 2 iv0Dt24i

ugku2

vk

3S Dt2
sin vkDt

vk
D @12sz~ tP

1!#J
3expH 1(

k
@bk

†~ tP
1!jk~Dt !

2bk~ tP
1!jk* ~Dt !#J . ~A11!

Now everything can be evaluated with respect to the ini
time of the cycle. We exploit Eq.~A3! for sz(tP

1) and, since
bk(tP

1)5bk(tP
2)5bk(t01Dt), bath operators evolve as

bk~ t01Dt !5e2 ivkDtbk~ t0!2sz~ t0!
gk

vk
~12e2 ivkDt!,

~A12!

and Hermitian conjugate. As we discussed in the text,
presence in Eq.~A12! of an initial condition dephased b
e6 ivkDt for each environmental mode is the ultimate sou
of decoherence. We arrive at the following expression for
cycle evolution:
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s1~ t012Dt !5expH iw1~Dt !@12sz~ t0!#

1(
k

@bk
†~ t0!hk~Dt !2bk~ t0!hk* ~Dt !#

1 iw2~Dt !J s1~ t0!exp$ isz~ t0!w2~Dt !

2 iw1~Dt !@11sz~ t0!#%, ~A13!

where

w1~Dt !54(
k

ugku2

vk
S Dt2

sin vkDt

vk
D ,

w2~Dt !58(
k

ugku2

vk
2 sin vkDt~12cosvkDt !. ~A14!
c

The final step is to calculate the coherence evolution as

r01~ t012Dt !5^s1~ t012Dt !&

5 (
j 50,1

^ j uTrB$~rB^ rS!s1~ t012Dt !%u j &.

~A15!

By inserting Eqs.~A13! and ~A14!, phase factors drop ou
and we find

r01~ t012Dt !5r01~ t0!e2GP~N51,Dt !, ~A16!

in agreement with the result found from Eqs.~40! and~41! in
the Schro¨dinger representation. The procedure can be ge
alized to arbitraryN and the complete expressionGP(N,Dt)
is thereby recovered.
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