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We have shown[Phys. Rev. Lett.80, 3673 (1998] that the wave-function representatiofi(¢)
=Ejaj[E]§j Rs(€), developed in either configuration or momentum space for a suitafideence function
Rg(€), defines a highly accurate, multidimensional, energy-quantization procedure, once the convergent zeros
of the power-series expansion coefficiea{$E]=0 (j—) are determined. In this paper we amplify the
underlying analysis and also examine some of the consequences for generating accurate wave functions.
[S1050-294@8)04210-3

PACS numbds): 03.65.Ge, 02.30.Hq

[. INTRODUCTION This computational efficiency extends to more complex
problems in multidimensions, formulated in either configu-
The use of power-series expansions is one of the moshtion or momentum space. In the latter case, Hg.is
basic techniques for solving differential equation§, includingimplemented in the Fourier space, which in turn, through its
the Sturm-Liouville problem defined by the ScHimger inverse Fourier transform, defines another approximation for
wave equatior{1]. Such methods, in the context of eigen- the configuration-space wave function. This is discussed be-
value problems, are limited because they are essentially Iqgyy.

cal, not global, approximation techniques. _ . In this paper we present a comprehensive overview, with

_However, if we combine such a philosophy with a slightly examples, of the entire formalism. Whereas the cited inves-
different representation for the wave function tigation by us only focused on obtaining the eigenenergies,
the present work examines some of the consequences for the
wave functions as well.

whereR, defines an appropriateference functionthen the This paper is orgamzed as folloyvs. In S?C' .“ we present
power-series expansion féx(x) (assuming analyticity at the results for various one_-d|men3|onal_ parity invariant sys-
=0) is better suited for addressing the global issues relevarff™s such as the quartic anharmonic oscillator and the
to determining the eigenenergies. This is because the expafiouPle-well quartic anharmonic potential. We then general-
sion A(x)=3,a,x', combined with the reference function, 1Z& the method to include parity-nonconserving potentials
can be interpreted as the projection of the wave function ont@nd a transcendental potential. Included is a discussion on
the (nonorthogonal basis{x’ R(x)[0=<i<oo}: criteria for selecting appropriate reference functions. In Sec.
Il we extend the formalism to momentum space. Several
i one-dimensional examples afe)examined. We then pro-
W(x)= Z a(E)x'Rg(x). (1) ceed to extend this formalism to radial problems, which also
allows us to solve potential well problentg/hich are not
Recently[2], we have studied the latter perspective byreadily accessible in configuration spade Sec. IV we ex-
utilizing Hill-determinant motivated relations in order to de- @mine the multidimensional implementation of our formal-
rive energy-quantization approximations based on explicitsm. In particular, we consider the two-dimensional anhar-
analysis of the energ -dependent power-series coefficients Monic  oscillator - potential V(x,y) =x*+y?+gx%y?, the
a;. For instance, in the case of one-dimensional parity-duadratic Zeeman problem, and the hydrogen diatomic ion.
invariant problems,a;(E) is a polynomial inE. It was Inthe'Appendix we provideath_eoretical justification for our
shown that the roots of the equatiaf(E{’) =0 converge to guantization formula, as given in E().
the discrete state energies,iaso:

W (x)=A()R(X),

a(E")=0= lim E=E(& ) Il. CONFIGURATION-SPACE ANALYSIS
e A. Parity-invariant potentials

This is very convenient, in comparison to explicitly work- ~ We now demonstrate the capabilities of the preceding
ing with the Hill determinant, since the;(E) coefficients method. For completeness, we note that for the case of ex-
usually satisfy a recursive structure that is readily programactly solvable potentials, where the wave function can be
mable, to arbitrary order. Thus, for problems in one spacexpressed as a polynominal multiplied by a suitable refer-
dimension involvingN basis statefx'Rg(x), O<i<N-—1],  ence function, our method reproduces the exact solutions.
our analysis ofay(E)=0 reduces the quantization problem  Consider a nonexactly solvable problem, such as the quar-
to a one-dimensional projection subspace analysis. tic anharmonic oscillator
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TABLE |. Calculated ground- and first excited-state energies for the quartic anharmonic oscillator with

g=1.

En

10 1/2
40 1/2
160

1/2

500 8

Refs.[6,7]

oFRPORogPORoROR

Eo

1.41

4.9

1.392

4.65

1.392 349

4.648 84

1.392351 6414

4.648 812 70

1.392 351 641 530 291

4.648 812 704 212

1.392 351 641 530 291 855 657 507 876

4.648 812 704 212 077 536 377 032 91

1.392 351 641 530 291 855 657 507 876
609 934 184 600 066 711 220 834 088
906 349 323 877 567 431 875 646 528
590 973 563 467 791 759 121 151 375
341 738 817 445 551 624 046 383 713
043 817 869 737 001 346 093 516 81

1.392 351 641 530 291 85

4.648 812 704

2

d
H=—d—xz+X2+gX4.

Using the reference functioRB:exp(—sz), one obtains

the recursion relation

a(B)=

i(i—1)

where Q;=4Bi—6B8—E, a;=0 for i<0, and{ap=1.a;

)

Qa_5(E)+(1-48%)a_4(E) +ga_e(E)

(4)

Table | shows the calculated energies of the ground and
first excited states fog=1. Our method shows systematic
convergence for increasinlgy exceeding some of the high-
accuracy solutions publishe—5]. As a benchmark, we
also include in Table | the high-accuracy result for the
ground-state energy with 150 digits. The calculation was car-
ried out on our local workstation. Figure 1 shows the depen-
dence of the ground-state energy on the coupling parameter
g for 0<g=10. Figures 2 and 3 show the ground- and first
excited-state wave functions calculated using our expansion
for selected values of the coupling constant &ahd40. As

=0} or {ap=0,a,=1} for the symmetric or antisymmetric can be seen from Figs. 2 and 3, we obtain excellent point-

states, respectively. The value of th@arameter is arbitrary,

wise convergence of the wave functions on the interval

but it can be optimized in order to accelerate the convergences[—3,3]; however, as also can be seen in the inset of Fig. 2
rate of the quantization analysis. This is discussed in Sedfor g=1), aroundx=4.2 the wave function deviates from
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FIG. 1. Calculated ground-state energy for the quartic anhar- FIG. 2. Ground-state wave functions fgr=0, % and 1 for the

monic oscillator for Gsg=<10.

quartic anharmonic oscillator.
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FIG. 4. Ground-state wave functions for the sextic, octic, and

FIG. 3. First excited-state wave functions fpr 0, % and 1 for . . .
dectic anharmonic oscillatay=1.

the quartic anharmonic oscillator.

function starts to diverge, increases as the order of the ex¢arly dependent om,=W¥(0) anda,;=¥'(0) [provided
pansion increases. As long as the desired solution admits @(0)=1 and Rb(O)zO]. This introduces the additional
analytic A(x) function factor [W(x)=A(X)Rs(x)], our  complication of determining these unknowns.

quantization proceduréEg. (2)] should yield converging ap- Let us consider two successiag’s
proximants to the true wave function, over an increasing do-
main. a,(E,ap,a1)=A o(E)ag+A 1(B)ay,
The results for higher-degree potentials, such as the sex- ()
tic, octic, and dectic anharmonic potentials, are given in a,,1(E,ag,a1)=A;1{E)ag+A ,11(E)ay,

Table 1. In Fig. 4 we show the plots of the ground-state
wave f_unct|ons_for the sextic, octic, and dectic anharmonlcWhere theA, J-(E) are polynominals irE determined via it-
potentials forg= 1. :

X . . . . eration of the recursion equation for tlg’'s. These linear

An important version of the quartic anharmonic oscnlatore Lations can be written in a more compact form
potential is the double-well probleii(x) = — Z?x?+x*. ltis q b
well known that in the deep-well limitZ?—x), the two . .
lowest states are almost degenerfd@ Application of our a=A"(E)ay, (6)
method(refer to Table Il) readily confirms this, and by its
high-accuracy nature, significantly disagrees with the predicynere
tions of de Saavedra and Buend&B) [6]. In particular, for
Z%2=25, we observe that the quasidegenerate nature of the

ground- and first excited-state energies becomes apparent 502 o 512 a(E,a0,a1)
only after 26 significant digits, not the 16 predicted by SB. )’ a+1(E,a0,a1) |’
The generality of our method permits the study of tran- (7)
scendental potentials, provided the potential functifx) A oE) A 1(E)
admits a power-series expansion that is monotonically con- AV(E)= ’ ' }
Arv1dE) Ap1i(E)

vergent(nonalternating For instance, in the case df(x)

=exp’)—1, we immediately obtain the first three energy ] ) .
levels. Table IV shows our results for this potential. TABLE III._ Calculated 2grzoun?- and first excited-state energies
for the potentiaM(x) = —Z°x“+x".

B. Parity-nonconserving potentials 72

Parity E.

We can readily extend our method to include parity-
nonconserving potentials. In this case, thgE)’s are lin- 0 * 1.060 362 090 484 182 899 647 046 016
- 3.799 673 029 801 394 168 783 094 188
TABLE II. Calculated ground-state energies of the sextic, octic, 1 + 0.657 653 005 180 715 123 059 021 723
and dectic anharmonic potentials fpr=1 calculated in configura- - 2.834 536 202 119 304 214 654 676 208
tion space(B=4, 8, and 12 and =100, 200, and 300, respec- 5 + —3.410 142 761 239 829 475 297 709 653
tively). - —3.250 675 362 289 235 980 228 513 775
10 + —20.633 576 702 947 799 149 958 554 634
V(x) Eo® Eo - —20.633 546 884 404 911 079 343 874 899
X2+ x8 14356246190  1.435624619003392315762 15 + —50.841 387 284 381 954 366 250 996 515
X2+ x8 1.491 019 895 1.491 019 895 662 204 964 166 - —50.841 387 284 187 005 154 710 149 735
w24 10 1.546 263 512 572 345 728 25 + —149.219 456 142 190 888 029 163 966 538

- —149.219 456 142 190 888 029 163 958 974

%Referencd3].
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TABLE 1V. First three eigenenergies for the potenti(x) - V(x)—).(4+gx
=e’—1. [Rg(x) = e A and B=21] = V(x)=x4gx® 1
| n E,
40 0 1.356 371 —
1 4.63307 =
2 8.970 66
80 0 1.356 371 24
1 4.633078 50
2 8.970678 2
120 0 1.356 371 240 434
1 4.633 078 504 735 .
2 8.970 678 204 19 1020 30

FIG. 5. Ground-state wave functions for the parity-
Applying our method to this equation requires that we sefonconserving potentiale’+gx andx*+gx® for g=1.

a, =0. This allows us to solve for the unknown energies and .
;ar{\itial values by taking g method. Figure 5 shows the plots of both ground-state wave

functions forg=1. The lack of symmetry in the ground
states is apparent.

DefA(E)]=0. (8)

C. Criteria for selecting the reference function

As | -, the roots of Eq(8) approach the exact eigenener-  The selection of the reference function is important. For
gies. the potentialV(x)=x?+gx®, our method works ifR(X)

Let us consider two representative examplgx) =gx =e*BX”, n=2 andn=3. For n=4, corresponding to the

4 P | ; . . -
+x* and V(x)=gx°+x". Table V summarizes our results asymptotic form of the wave functio ,,.{x)=e" Vgx4/4’

for these potentials for selected valuegofit is worth men- g convergent roots were observed. We have also checked
tioning that it is possible to calculate to high precision thes for the higher-order potentials and have found this prop-
values ofg that giveEy=0. For our first example we find grty to be true in all cases considered.
9eric=1.987 513 084 045 7 and for our second example We |n general,Ry(x) should not fall off faster than the
have gei=3. This further underscores the utility of our asymptotic form of the wave function. This is because, from
the perspective of the underlying Hill determinant analysis
TABLE V. Ground- and first excited-state energies for the framework (refer to Appendix, the support of the basis
parity-nonconserving potentialsV(x) =x*+gx and V(x)=x* states<iRB(x) should not besignificantly) smaller than that
+gx°. (RB:e*BXZ, B=3, andN=100.) of the solutionW (x). Such behavior complicates the exten-

sion of our method to potential wells, where the wave func-

V(x) 9 n En tion falls of asymptotically a& (r)—e ™ “IEI". However, this
x4+ gx 0 0 1.060 362 090 484 182 899 Qiffiqulty can be circumvented by transfqrming our formal-
1 3.799 673029 801 394 168  ISM into a momentum-space representation an.d then recov-
1 0 1.027526 822910167805  ©fing the solution .th_rough an app'l|cat|on of the inverse Fou-
1 3795 588 118 233 139 437 rier transform. Th|s is dlscussed in Sec. Ill. _ _
1 0 0.930 546 034 189 970 049 As stated earlier for the quartic anharmonlc_po'Fe_nnal case,
the convergence rate of our results can be significantly im-
3 (1) 2;;3; EZS 532 i(l)g Zéz ;231 proved through an optimal choice of Usually., increas?ng;
2 : leads to a faster decrease in the asymptotic behavior of the
1 3.754 7774941646 378650 reference function. Since the reference function normally de-
2 0 0.562135610771295649  crease slower than the true wave function, increasing the
1 3709174584 241651216 yalue of B can be seen as a way to improve the correlation
x*+gx® 0 0 1.060 362 090 484 182899  petween the true solution and the expansion in B,
1 3.799 673029 801394168  thereby speeding up the numerical convergence behavior.
1 0 1.025 348988818159 058  Evidence of this is readily apparent, particularly for increas-
1 3.713901 988 923026 496  ing expansion ordet, a,(E{’)=0. Refer to Fig. 6, which
1 0 0.905 341 223793293275  shows improvedexpandegirange of3 values, with increas-
1 3.441 398 835169418870  ing expansion order, yielding accurate results.
3 0 0.633 719 071 342 323 228 In Fig. 7 we plot loggEo—Ri(B)] and
1 2.938268 791220008332 10919 Eo— Rao(B)| VS B, whereEj is the ground-state energy
2 0 —0.025 531 976 453 041 235 of the quartic anharmonic oscillator. Referring to Fig. 7, as
1 2172528 222 090 785 784  the order of the calculation increasgsthe range of3, lead-

ing to accuracies better than 1%, increases andi) the 3
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1.42[ T T " T " — 7 ] Of course, transforming thésecond-order differential
Schralinger operator into momentum space increases the or-
" R 1 der of the generated momentum-space differential equation.
i . N=10 This introduces more unknown parameters into the problem,
1ab i A N=20] in a manner analogous to the parity-nonconserving case stud-
— 3 e —& ied previously. Within our particular approach, these addi-
% 130 el ) tional parameters correspond to th@ssing momenvari-
i ables introduced in the eigenvalue moment metteRiM)
138l i ] guantization formalism developed by Handy and BeEBjs
A second motivation for extending our formalism into
157l ] momentum space is that it provides a convenient estimation
’ theory for the EMM missing moments. It has been estab-

N Ry e e Y lished that moment quantization .is equivalent to continuous
' ) I3 ' wavelet transform theory8]. An important component of
such an analysis is the determination of the energy and cor-
FIG. 6. First root ofa;o(E, 8) anda,yE,8) vs B for the quartic ~ responding missing moment values. This is readily obtain-
anharmonic oscillator. The solid line is the ground-state energy. able through the methods presented here.

Consider¥ (x) to be symmetric, for simplicity. Its Fou-
value corresponding to optimal accuracy increases. This beier transform is generally analytic with a power-series ex-
havior is confirmed by other examples in this work. Thepansion of the form
determination of the optimaB is still not completely under-
stood; we are in the process of developing a more complete 1

approach, to be presented elsewhere. (k)= N f_mdk e W (x)= N zo (2p)!

_ kZ)p

up),

9
IIl. MOMENTUM-SPACE ANALYSIS ©

There are several compelling reasons for extending thg]volvmg the moments
preceding formalism to momentu(Rourie) space. The first w0
of these is that by so doing, we can achieve a more global u(p)=f x2PW (x)dx. (10
analysis of the quantization problem. That is, a power-series e

expansion for the momentum-space configurati¥itk)  For any rational fractionmultidimensional potential, the

= A(K)Rg(K) is sensitive to the small momentuilarge spa- moments will satisfy a finite-difference moment equation of
tial scale structure of the physical system. Upon determiningeffective ordermg+1, which is problem dependent. This
the power-series expansion representation4¢k) and in- means that all of the moments depend linearly on the first

verting the(truncated expansion ms+ 1 (missing moments. We can represent this through the
relations
\P(k)z(jzo ajki)ﬁzﬁ(k) m,
U(p)ZZO M, AE)u(/), (11)

through the inverse Fourier transform, one expects to see
improved global convergence for the configuration-space

where theM , (E)’s are known and satisfy the initialization
representation. ./
P condmonsMp AE)=46, , for 0<p,/<ms.
0.000 —— . . . . . : Taking RB(k) e '3" , for convenience, one can deter-
mine A(k) by expandmgeﬁk oo [(=K)PI(2p)! Tu(p).
2171} § This leads to the representauon
= -4.343 ~ 1 2
i V(K)=—=| 2 anE,u(0), ... umyl(—k»"|e A,
P V2 \n=0
uf -6.514} 12
S -8.686 where
-10.86}
an[E,U(0), ... u(mg)]= 2 D AE)U(/) (13
00 10 20 30 40
B and
FIG. 7. Logarithm of the error of the first roots afyE,8) and n _B3)iM E
ayo(E,B) from the ground-state energy for the quartic anharmonic D = z B)'Mn-;,E) (14)

oscillator. nAETEL j2(n—))]!
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TABLE VI. Calculated ground-state energies of the quartic, sextic, and octic anharmonic potentials for
g=1 calculated in momentum space. The first three entries correspond mgth#,2,3 missing moment
problems, respectively. The last entry corresponds tortfi'e0 missing moment reformulation for the sextic
anharmonic oscillator.

V(x) Eo? Eo

X2+ x4 1.392 351 641 530 1.392 351 641 530 291 855 6

X2+ x8 1.435624 619 0 1.435 624 619 003 393

x2+x8 1.491 019 895 1.491 019 895 66

x2+x8 1.435 624 619 003 392 315 761 272 220 1.435 624 619 003 392 315 761 272 220

%Referencd3].
According to our quantization procedure, as detailed in 1 N 520 ,
the Appendix, there exists a sequence of energy and missing W (X)~ > a —= (&7 X146), a7
moment values satisfying 2\mp =0 =X
a[E™ {uM(/)}]=0, Figure 8 shows the reconstructed wave functions. As can be

seen, the reconstructed wave function converges in a multi-
converging to the physical values ms-o. Since the matrix ~scale mannefwith improving small-scale behavior with in-
D, ~(E) is not degenerate for alf’s, we can approximate Ccreasing order From the inset it is clear that there are small
the Converging energy and missing moment sequences bgscillations Iocally, which diminish as well, with increasing

considering thg my+ 1]X[m+ 1] matrix equation order N of the calculation. This behavior should be con-
trasted with that displayed corresponding to the application
Mg of our formalism directly in configuration spad&ec. ).
/Eo DN+/1,/2[E]U(/2)201 (15  There the convergence is more local in nat(re., essen-
Sy

tially pointwisg, with the domain of convergence increasing
with the expansion order.

For completeness, we note that representations of the type
in Eqg. (12) were also developed in the context of a varia-
tional, Rayleigh-Ritz, missing moment formulation. Refer to

Ref.[9].
After solving for the approximate eigenenergies through Eq. [l

(16), one generates the missing moment values through Eq.

(15) by imposing some convenient.t) normalization, such

asu(0)=1. This is also done for the multidimensional case Some problems involve no missing moments. One of

discussed below. these is the aforementioned sextic anharmonic oscillator,
Implementing the above for the quartim{=1), sextic  provided one first expresses the configuration-space wave

(mg=2), and octic (ns=3) anharmonic oscillators yields function¥(x) as[7(a)]

the results in Table VI, which are consistent with those cited

in Tables | and Il. We are also able to reconstruct the wave _ 4

functions in configuration space through the approximation P (x)=2(x)ex R (18)

derived from performing the inverse Fourier transform

0=<Il;=<mg, and the ensuing determinant equation

Det DN[E])=0. (16)

A. Zero missing moments

One then implements the momentum-space formalism on the

1.0 resulting equation fob, which transforms the originahg
=2 problem into aimy=0 problem. The ensuing calculation
0sl yields excellent results, which we also show in Table VI. We
have also calculated the ground-state energy for the potential
[10]
® 06}
- s V(Xx)=x2+ M 19
04l ; X y 5.0 4 (x)=x 1+gx2’ (19
02f provided we represent the wave functid(x) as
0.0 1
0.0 3.0 W (x)=(1+gx*)P(x)ex §X2 : (20

FIG. 8. Wave functions for the quartic, sextic, and octic anhar-Table VII summarizes our results for this case, which surpass
monic oscillator §=1), reconstructed through the momentum for- the exceptional accuracy calculated by Hodgson through an
mulation. analytic continuation quantization proced(ifel].
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TABLE VII. First four symmetric state energies for the rational 0.2
fraction potentiaV(x) =x2+ Ax?/(1+gx?).

A=g n E,

0.1 0 1.043 173 713 044 445 233 778 700 870 546 094
2 5.181 094 785 884 700 927 110 409 072 888 3
4 9.272 816 970 035 252 254 582 438 478 9
6 13.339 390 726 973 551 2329331705

1.0 0 1.232 350 723 406 062
2
4
6

0.15

0.1

W(r)

5.589 778 933 739
9.684 042 015 236
13.733 241 012 127 0.05

B. Radial potential problems

For physical problems restricted to the non-negative real 0.0 e IR B e e o e e e e e e e

axisr=0 and of asymptotic form?(r)—e~“IE", one can- 0.0 2.0 4.0 60 80 10.0
not immediately apply the previous formalism. This is be- r (Bohr Radii)

cause the Fourier transforfof the extended problem satis-
fying ¥(r)=0 for r<0] will not be entire, a preferable 1o
characteristic. In addition, the asymptotic behaviokas~ af
does not decrease sufficiently fast to justify a Gaussian-type
expansion, as represented by Ebp). proximation, which includes the singularity, is actually more

Instead, if we map the problem onto the space defined byccurate, particularly near the origin.
r=z2for ze (—»,»), qf(z)—|z|qf(22) we can proceed to All of these calculations were done f@=1. This is sig-

apply the previous momentum-space formalism to the symnificant with respect to our earlier discussion on selecting the
reference function. In partlcular the asymptotic behavior of

—Z2/ar

FIG. 9. Approximations to the Bohr atom ground-state solution
~ "2 from the expansion in Eq23) (open circlesand the same
expansmn modulo zeroth-order sufly (crossek

metric conflguratlonlf(z). Relative to this configuration, the

asymptotic forme~ ViE[z2 admits an entirez-space Fourier t_hel tr?nsErmgd expre]:c35|0h(z)llgt())eﬁ ase , wh_ere"I‘
transform. The required even-order moments =2. lts Fourier transiorm will behave asymptotically as
e 'k, The choice of a Gaussian, momentum-space refer-

_ - 20 ence functiore #<° should lead to converging results f6r
u(p)= dz z2°¥(2) 1 ) .
_ <I'=3. Instead, we find converging results fox(0.1)< g
<0O(2), for N=30. In particular, good results are obtained
become precisely at the correct asymptotic vale=3. A similar
analysis can be implemented with respect to the potential

u(p)=J:dr rPw(r) (21 I(1+1) 1

V="

(24)
and satisfy a linear moment equation leading to an expres-

sion of the form in Eq(11) [7(a)]. This permits an analysis (utilizing thems=2 missing moment equations in Rgf2)),
similar to that represented by Eq40)—(14). Application to  yielding the results presented in Table VIII.

the Coulomb potential yields rapidly converging estimates to

the exact energies. Furthermore, reconstruction of the wave C. One-dimensional wells

function through expansions of the type in Efj7), We can also study potentials of the form

_ % O—,Zn , _
V(z)~ e Z14P) (22 -
or TABLE VIII. Ground-state energy of the potenti&8(r)=I(l
+1)/r? — Z€(r+b), whereZ=1 ande?=2.
N
1
W(r)~ ( a P(r))e”“ﬂ (23 | b E
2\/7T_,3I’ nzo n’-n 0
0 0.0 —1.000 000 000 00
[P,(r) a polynomial inr], yield very good results, despite 05 —1.719 643 08
the singular appearance of the/L/factor in Eq.(23). 1.0 —1.000 000 000 00
In Fig. 9 we compare the true solutighre "2, the solid 1 0.0 —0.250 000 000 00
line) with the above expansiofiN= 30, corresponding to the 05 —0.195 311 233 07
open circley and with the above expansion modulg 1.0 —0.165 724 840 88

=>Na,P,(0) (since we anticipateZy,_,..—0). The first ap-
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TABLE IX. First three symmetric state energies of the potendit) = — f/(1+ ox?).

f o Eo E, E,
1 0.0001 —0.990 074 442 —0.950 966 595 —0.913 036 071

0.001 —0.969 109 931 —0.851 372 541 —0.744 906 128
0.01 —0.906 983 436 —0.589 356 621 —0.367 693 169
0.1 —0.744 761 201

10 0.0001 —9.968 452 050 —9.842 858 475 ~9.473 335
0.001 —9.900 744 425 —9.509 665 958 ~9.130 360 71
0.01 —9.691 099 314 ~8.513 725 416 —7.449 061 286
0.1 —9.069 834 361 —5.893 566 217 —3.676 931 698

as long as we use the preceding transformation. Table IXlimensional analysis previously presented and proceed to

gives the results for several different parameters ). generate the converging energy roots and corresponding
missing moment values.
IV. EXTENSION TO HIGHER DIMENSIONS An important aspect of the extension of our formalism to

the multidimensional case is that careful consideration must
We outline the extension of the formalism to multidimen- be given to determining which of tmnl,nz[Ea{ﬂ(i/ JNH
sions through three two-dimensional problems. The twotgefficients are to be set to zero in order to define the mul-

dimensional(analytio Fourier transform tidimensional counterpart to EGL5). An improper selection
1 of such coefficients will not produce a converging sequence
\if(kl,kz)z il f f dx dy & (kixrkan)p(x,y) of. approximants to the physical energy and corresponding
2 missing moments.

Once the energy and missing moments have been gener-

can be expanded into the form ated, one can approximate the configuration-space solution
by performing an inverse Fourier transform on E2g),

- 1 (—iky)P(—iky)"

Wik ko)= 5 >

P.a p!q! n(p,q), (26

1
\P(X):E nEn anl,nz(_(?X)nl(_&y)anB(va)v (29)

where the two-dimensiongHamburger moments are de-
fined by where

wpa= [ [ axayeyeviey. @ Rsy)= o | | dhadige vk ko).

. . . One can also implement a similar procedure directly in con-
As for the one-dimensional problems considered, the two; P P y

dimensional(Hamburger moments also satisfy @roblem- figuration space. This involves the representation
dependentlinear, finite-difference equation of infinite order.
An infinite subset of the momentghe missing moments Y(x,y)=
{un(i,,j )|0=/<=} are required as initialization variables

before all of the remaining moments can be determined, N - .
Thus, as in Eq(11), all of the moments depend on theseWhere the{a; ;} coefficients depend, linearly, on a smaller

S , dsubset, such as; o}. Quantization can be achieved by set-
missing moments. Fortunately, any given moment depen Ba a finite subset of thda, }'s to zero, for instance
only on a finite number of the missing moments 9 ; L] ’ '
{ann-i|0<i=N,N<c}.

Ej ai,;xiy")Rﬁ<x,y), (30)

w(P.= >  Me(p,a, )uli/ j). A. H,, problem
/<L(p.q)

To demonstrate the effectiveness of either method, first

Now consider the representatid@rEAlA? consider the important problem defined by the Hamiltonian

[13]
Pk — S ik )M (—iky)"2 | Ry(ky K s
(kq, 2)—5 e an, n,(—iky)"(—iky) (k1K) ny:—ﬁ—xz—W+x2+y2+gx2y2. (31)

(28

] ) . Limiting the analysis to the symmetric stat@sith respects
for some suitable reference function. The power-series coety, ransformations < — x ys —y, andx«Yy), the effective

ficienISaHl,nz depend not only on the energy parameter vari-yyo-dimensional Stieltjes moments

able E, but also on the missing moments
an, n,[E{u(i, .j)}]. As such, one can imitate the one- u(p,q)=u(2p,2q) (32
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TABLE X. First two symmetric energy levels foH,, and 3.0
(binding energyHo. I 090
""" 10
H Eground Efirst excited 8?8
H,, configuration space  2.195918 085200  7.031272 46 002
H,, Fourier space 2.195918 086 7.031 272 466
HozAB=0.1,L=22) 0.547 526 46 0.148 089 156
Hoz(B=1, L=26) 0.831 167 94 0.160 469 049 y 00
HoAB=2,L=28) 1.0222140 0.1739397
satisfy the moment equation
—2p(2p—1)u(p—19)—29(2g—1)u(p,q—1)
3.0 L
+u(pt10)+u(p,g+1)+gu(p+19+1)=Eu(p,q) 30 00 30

X
(33 .
FIG. 10. Contour plot of the ground-state wave function for the

for p,gq=0. Because of thex«—y symmetry, u(p,q) two-dimensional anharmonic oscillator fge= 1.

=u(q,p); accordingly, specification of the missing moments

{u(i,0)|0=<i=<N} is sufficient to generate all the moments  We also applied our configuration-space formalism to this
{u(p,q)|0=<p,q=<N} for a given value of energy parameter problem, which depends on the set of “missing” coefficients
value E. We may represent the linear dependence on thé¢ay y_;[E]}. Table X gives the results of our calculations in
missing moments as both momentum and configuration space and Figs. 10 and 11

N give plots of the first two symmetric states.

u(p,q)= Me(p,q,/)u(/,0) for p,g<N. (34
(P.a) /ZO e(P.a./)u(.0) P-4 (34 B. Quadratic Zeeman problem

The desired expansion for a Gaussian reference function OUr second example, the quadratic Zeeman problem, is
more conveniently solved in terms of the momentum formu-

. I _ >0 kZ
is [W(k)=A(k)e” ] lation. For thel,=0 angular momentum states of the qua-
dratic Zeeman problem the Hamiltonian is

e*ﬁ(*[k%kg])g (_ki)p(_kg)qM
P (2p)!(2q)! 1., 2 1 , .,
HQZ:_EV —F+§ B (X +y ). (39)
=2 (—K)"(=K)"2ay (35)
ny.ny The binding energye is related to the total energy by

=B/2—E(Z=1B). Transforming the Hamiltonian into
parabolic coordinate&=r —z>0 andn=r+z>0) and de-
(—B)" u(p,g) fining the Stielties moments

or

= — . (36
T I IR PO TP X TR 0
Incorporating the missing moment dependence from Eq.
(34), we have
a’nl,nz[E,{U(/,O)}]
, (=B Me(p,g,/)
=2 u/0 > X Terik y 00
/=0 i+p=ny j+q=ny ] (Zp)(ZQ)
(37)
The configuration-space reconstruction becomes
- 2Ny 52020~ (x*+y?)I4B
P(X,y) 4B i, an, n,dy 19, e . (38
3.0 .
The momentum-space formalism was applied to -30 00 30
{anl,n2|n1=N,0s n,<N} (i.e., the coefficients set to zgro X
The calculated ground-state enerfyable X) agrees with FIG. 11. Contour plot of the first symmetric excited-state wave

that of Vrscay and HandyB=0.5,N=20) [13]. function for the two-dimensional anharmonic oscillator ¢pr 1.
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w o i This expansion is consistent with our general rules for
u(n,m)=f0 Jo dédn £"n"p(§,7) selecting appropriate reference functions since the
asymptotic form of the wave functions corresponds to
for the p configuration satisfying7b]
W(r,,z)—exp— ;Bri—(2¢)*2]).

B
‘I’(f,n)=p(§,77)exp<zﬁn
This is valid only forB#0. At B=0, the|z| becomesr.

allows us to generate the moment equation Accordingly, p(r ,2) —exp(— 3Bri —(2e)3z|), which falls
off faster than thee™ "?# reference function in Eq(43),
except for purerly longitudinal directior{ge., parallel to the

z axi9). In such cases, the" (2932 factor will also fall off
L faster thare™ /28 if 1/28<(2€)*?, which is the case for all
— Z[Bm+ €Ju(n+1,m)+Zu(n,m)=0. (40) ~ examples considered herg<1). _
2 Excellent results are obtained if we set to zero the coeffi-
cients {a, n/n+m=2L+1, m=<L}, which depend on the
For states with the same symmetry as the ground staigyissing momentgu(i,i)|0<i<L}. That is, by setting to
(7<¢), the missing moments correspond to the setzero the first set, we determine both the energy and the cor-
{u(i,i)|0o<i=<L}, which generate all the moments within the responding missing moment values in a manner identical to
antidiagonals1+m<2L +1, that in Eq.(15). Knowledge of the firsL + 1 missing mo-
ments determines all moments within the 21 antidiago-
nal {u(p,q)|p+qg=<2L+1}. Accordingly, only the corre-
sponding  coefficients {a, y/n+m=<2L+1} can be
determined through Eq36) and utilized in Eqs(42) and

As for one-dimensional radial potential problems, we are(43).

implicitly working with the extended, symmetric, configura- ~ The first two binding energy levelsvith same symmetry
tion as ground staje for various magnetic-field valueB<2

(a.u), are given in Table X. In each case, we quote the num-
~ = 2 42 ber of missing moments usad(B8=1 in each cage Given
POCO=IElP (O, L, the expansion orde¥ [the range of,; andn, values used

where é=y? and 7=¢2 It then follows that the two- N EQ.(43), ny+ny,<N]is determined byV<2L+1. Our

dimensional Fourier transform fgs exists and is analytic results are consistent with those of Rosagal. [14].

and the (nonzer9 even-order Hamburger moments are ((j)ur trefcor;ﬁtructlon ?nal)tlsls '.f ogfly swtabITe_:hfﬁ(rr_i 'g)
equivalent to the Stielties momenign,m): and not for the wave function itseW(r, ,z). This is be-

cause the expansion in E¢3) cannot capture the global
o oo ~ quadratic dropoff of the true solution, at relatively low ex-
u(n,m)=f_ f_ dy dZ x2"o(x,0). pansion orders, as described above. That is, if we use Eq.

(43), together withW =pe®¥r! then the overall product
Reconstruction of the configuration-space solution within the? ill not .dec'rease sufflClentIy fast, partlcularly. fBe~2. The
x X { representation is then given by implementing an in-EXPpansion in Eq(43) is therefore o_nly approprlate_fo_r study-
verse Fourier transform on ing the qual features of thp_solutlon, near the origin. F_ur-
thermore, in light of the 1/ singularity in the reconstruction
formula (43), which is similar to that for the Bohr case dis-
cussed earlier, one also expects that our expansion will be
valid close to(but not orn) the z axis as well.
Preliminary results foB=<2 suggest that implementation
of the preceding reconstruction procedure gives results in
general agreement with those of Roseeal. [14] and Liu
and Staracgl5]. In particular, upon comparing Figs. 12 and
S ap o.0°MeP e WCHAAE (47) 13 [generated al.=0(20) and A'=8], we see that for
iy 12X smaller magnetic fields, the contour plots for the ground-
state configuratiomp(r, ,z) become broaderB=0.1), and
or not as rapidly(steeply varying as for the higher magnetic
field (B=2) case. Our results also emphasize that there is a

1
nu(n—1m)+miu(n,m—1)— 5[Bn+eJu(n,m+1)

(n+m)/2

u(n,m)= ZO Meg(n,m, )u(/,7). (41)

z(klka) = A(kl ,kz)eiﬂ(kiJrkg)_

The formalism is identical to that of the previous problem
[Egs. (35—(38)]. We obtain for the configuration-space
wave function

- B 1
P(Xyl)—m

1 “pinching” of the wave-function contours a=0. This i
B on on pinching” of the wave-function contours s is
pl&n)= anBEn ﬂ%g 8, n,(2VET) M2\ 73,) "2 intuitively obvious since both the attractive Coulombic and
quadratic potentials are their strongestzat0. This is not
x e~ (EXmIB (43)  quite as evident from the results of Roseeml. and Liu and

Starace, although there is the suggestion of this in one of
wherer = (¢+ 7)/2 andr?=¢7. Liu-Starace plot§see Fig. 4a) in Ref.[15]].
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FIG. 12. Contour plot ofp(x,z) for the quadratic Zeeman
ground-state configuration based on &) for B=0.1.

C. Hydrogen molecular ion

Our final two-dimensional example is the hydrogen mo
lecular ion H*. Expressed in elliptic coordinates, thé (
=0) Hamiltonian becomes

2_1 i+i
(E-17g+ 5

(1- 73 W& m)
OE K™ 7

J
9

2

1 e
+rig 7E (-7 + @4‘1'(77,5)=0, (44)
where
I’A+rB I’A—rB 82
= 1] 77: ) E,:E__ (45)
I'aAB I'aAB I'aAB

Expanding this wave function as
. ragE’
V(=2 ai,jg'nlexp( -\ 6) (46)

+0.00
+0.02
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FIG. 13. Contour plot ofp(x,z) for the quadratic Zeeman
ground-state configuration based on &) for B=2.
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TABLE XI. First two symmetric energy levels for the hydrogen
dimer ion H," for selected seperation distangeg; .

N:} Eground Efirst excited

1.0 —1.451 786 313 377 —0.422 924 588
1.5 —1.248 989 872 121 6 —0.3886009121
2.0 —1.102 634 214 494 94 —0.360 864 875 33

allows us to generate a recusion relation that we used to
obtain the ground- and first symmetric excited-state energies
in Table XI for selected seperation distancgg=|ra—rg|-

In Fig. 14 we plot the ground-state state energy versus the
seperation distance of the nuclgjg.

V. SUMMARY

We have developed a multidimensional, iterative quanti-
zation procedure based on wave-function representations of
the form ¥ =(Z,;a[E,...]¢)R(§), involving some suitable
reference functiofk. Upon identifying the convergent zeros,
in the energy domain, of the power-series coefficients,
a[E,]=0, highly accurate estimates for théh state energy
E, and wave functionV',, were obtained. Our procedure is
very algebraic in naturéalthough also implementable nu-
merically) and lends itself well to algebraic software pro-
gramming. We applied it to various prototypical problems in
configuration €=x) and momentum {=Kk) space with
great success.
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APPENDIX | aj[EI(I)]

|
OreM1yi L i
We present two arguments for the validity of EB). The JZO Vi TEIX R/”(X)_),-ZO a[E("] "Rp() = Wy(x).
first is more rigorous than the second, in that it requires one (A7)
extra assumption. In each case, our objective is to understand
how the power-series-generated coefficients of the waven this context we equate the coefficienaa[(Ef')]aEO)
function expansionV (x) = (Z;a;[ E]x')R(x) relate to the co-
efficients generated through a Hill-determinant-based analy- Orel) aj[Ef')]
sis, utilizing the nonorthogonal, complete, basi(x) Vi'lE = a[EM] (A8)
=xR(x): ¥(X)=Sv;[E]B{(X). e

For the Schrdinger-Hamiltonian eigenenergy problem for o<j<|. Note that we are not necessarily extending this
HW=EW, let us takeW(x)=Zv;B;(x) and project unto equality to the entire energy domain.
the B; state through the equatidis;|H—E|¥)=0. Alterna- We now present our first proof of E¢), based upon the
tively, 3;M; ;[EJv;[E]=0, where M;;[E]=(Bi|H[B;)  preceding assumptions. There are two cases to be considered.
—E(B;|B;). The solution to this infinite set of matrix equa- The first corresponds to the simplest energy dependence for
tions are the energy and coefficients for thelth state: the a coefficients. The second generalizes things to include
E(**=E(") andv;[E("]. the dependence on the missing momémt other similay

The standard Galerkin approximation involves thevariables.
Ith-order truncation

| 1. Proof 1
v(x)=> v;Bi(X), (A1) Case 1: g[E] a rational fraction. This corresponds to
i=0 most one-dimensional configuration-space problems and

some special momentum-space problems. The expression

leading to thd th-order equation |

| PLE]= 2, M; [Elaj[E] (A9)
> Mi[E("[E"1=0, (A2) e

=0 will also be a rational fraction irE and continuous akE
=E{". From Eqgs.(A8) and (A5) we haveP[E{"]=0, as

involving the Hill-determinant equation ; X : k
long asi<I|. We are interested in evaluating

Det M V[E{V]) =0, A3 _
MELETD (A9 Paia[E—E( ), (A10)
| _ P
where M i(j)_zMiJ for O=i,j<I. _ _ In this regard, the partial sum
For a suitable basis the roots of the Hill determinant con-
verge to the true eigenvalues of the Hamiltoniar as» (I -1
indexes the rools > M [EVa[E Y]
i=0
lim EV=E(*. (A4) -1
| - — - — —
=aalEf V12 ME VRE )

This is our assumption. (A11)

We now adopt a different notation for thecoefficients in
order to emphasize the particular normalization prescriptioris zero since the latter summation corresponds to (B§)
to be used: for 1 —1—1. Accordingly,

S[EM=VI[ED], M [E' Ve [Ef VI=PE'Y]  (AL2)
(A5 for o=i=I-1.

|
> Mi[EPIVIVLE!]=0 Since lim_...(E{' "V~ Ef")—0 and
=0

PlE"]=0, (A13)
for 0<i<I| where we normalize by/"=1. For sufficiently _ -1
large values of the expansion ordewe should have we then haveif M;<,_1[E}~]#0)
a[E"] lim a[E{'""Y]=0. (A14)
V(') E(') N (AB) | oo
E T ED]

Therefore, the zeros af|[ E] should converge to the physi-
for 0<j =<1 since each sequence of coefficients generates theal energies.
same wave function Case 2.The more general case corresponds to
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ooom One can recursively generate, through an effective LU de-
aj[E,X]ZZO D; AEIx,. (A15)  composition method, an infinite set of vectdié('[E.]|0
’ <| <} satisfying
where theD; ,[E]'s are rational fractions ife. The preced- I
ing proof appljes providied one works with the continuous 2 Mi,j[EC]V}')ZO (A20)
function P,[ E, x], wherey is a unknown vector determined =0
by the boundary conditons andP[E,x] satisfies for g<i<|-1 and

PLEM xM1=0. .

A (=
> Proof 2 ,Zo M, [EIV]V=D[E], (A21)
Our second proof will assume that E&\8) extends to the
energy domain, beyond the energy values explicitly note
(i.e., theE{"’s). More specifically, consider the expansions

here V{'=1 and V{"=0 for j=I+1. One also has
et(M O[E])=11]_¢D[E].
The relation in Eq(A20) involves| constraints fol un-
1+1 knowns[recall V{""=1, thus Eq.(A20) is actually an inho-
W)= VITUE("YIXR4(x)  (A16)  mogeneous relatidnThe second relation, E¢A21), serves
=0 to defineD|[E,].
For a given ordet, the roots of Eq(A21) corresponds to

and(from Eq.(A8)] the roots of Eq.(A3) E=E(", defined by (implicitly)

11 _'“ a[El'""Y] Det(M "<D[EM])#0 and Detm O[EM])=0, or
R4 (X)—;O a B Re(x).  (Al7)  p[EM]=0. We denote the corresponding vectors by
+1LE VOLED].
If we assume that From the recursion formulas for thés we have
|
vf'“>[E]=—aa'[fé] (A18) 2, VI'[EIM 44[E]
1+1 Vle)[E]: _ 1=0 (AZZ)

for 0O<i<I+1 andEe[E{" ,E{('"* Y], then we can show that Di[E]

a,.[EM]=0. (A19) Thus, in theE—E}" limit, for a givenl|, one obtains

: : : : VI YIEN ] = £, (A23)

This follows from immediate properties of theelements, as

developed below. provided the numerator expression in E§8) does not si-
Let E assume any valuE=E for which the infinite ma- multaneously go to zero. The above infinite relation yields

trix M;;[Ec] has no minor submatrix with zero determinant. the desired result in EJA19).
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