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Iterative solutions to quantum-mechanical problems

C. J. Tymczak, G. S. Japaridze, C. R. Handy, and Xiao-Qian Wang
Department of Physics and Center for Theoretical Studies of Physical Systems, 223 James P. Brawley Drive,
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~Received 4 May 1998!

We have shown@Phys. Rev. Lett.80, 3673 ~1998!# that the wave-function representationC~j!
5( jaj@E#j jRb(j), developed in either configuration or momentum space for a suitablereference function
Rb(j), defines a highly accurate, multidimensional, energy-quantization procedure, once the convergent zeros
of the power-series expansion coefficientsaj@E#50 ( j→`) are determined. In this paper we amplify the
underlying analysis and also examine some of the consequences for generating accurate wave functions.
@S1050-2947~98!04210-3#

PACS number~s!: 03.65.Ge, 02.30.Hq
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I. INTRODUCTION

The use of power-series expansions is one of the m
basic techniques for solving differential equations, includ
the Sturm-Liouville problem defined by the Schro¨dinger
wave equation@1#. Such methods, in the context of eige
value problems, are limited because they are essentially
cal, not global, approximation techniques.

However, if we combine such a philosophy with a sligh
different representation for the wave function

C~x!5A~x!Rb~x!,

whereRb defines an appropriatereference function, then the
power-series expansion forA(x) ~assuming analyticity atx
50! is better suited for addressing the global issues relev
to determining the eigenenergies. This is because the ex
sion A(x)5( iaix

i , combined with the reference function
can be interpreted as the projection of the wave function o
the ~nonorthogonal! basis$xiRb(x)u0< i ,`%:

C~x!5(
i

ai~E!xiRb~x!. ~1!

Recently @2#, we have studied the latter perspective
utilizing Hill-determinant motivated relations in order to d
rive energy-quantization approximations based on exp
analysis of the energyE -dependent power-series coefficien
ai . For instance, in the case of one-dimensional par
invariant problems,ai(E) is a polynomial in E. It was
shown that the roots of the equationai(En

( i ))50 converge to
the discrete state energies, asi→`:

ai~En
~ i !!50⇒ lim

i→`

En
~ i !5En

~exact! . ~2!

This is very convenient, in comparison to explicitly wor
ing with the Hill determinant, since theai(E) coefficients
usually satisfy a recursive structure that is readily progra
mable, to arbitrary order. Thus, for problems in one sp
dimension involvingN basis states@xiRb(x), 0< i<N21#,
our analysis ofaN(E)50 reduces the quantization proble
to a one-dimensional projection subspace analysis.
PRA 581050-2947/98/58~4!/2708~13!/$15.00
st
g

o-

nt
n-

to

it

-

-
e

This computational efficiency extends to more comp
problems in multidimensions, formulated in either config
ration or momentum space. In the latter case, Eq.~1! is
implemented in the Fourier space, which in turn, through
inverse Fourier transform, defines another approximation
the configuration-space wave function. This is discussed
low.

In this paper we present a comprehensive overview, w
examples, of the entire formalism. Whereas the cited inv
tigation by us only focused on obtaining the eigenenerg
the present work examines some of the consequences fo
wave functions as well.

This paper is organized as follows. In Sec. II we pres
the results for various one-dimensional parity invariant s
tems such as the quartic anharmonic oscillator and
double-well quartic anharmonic potential. We then gene
ize the method to include parity-nonconserving potenti
and a transcendental potential. Included is a discussion
criteria for selecting appropriate reference functions. In S
III we extend the formalism to momentum space. Seve
one-dimensional examples are~re!examined. We then pro
ceed to extend this formalism to radial problems, which a
allows us to solve potential well problems~which are not
readily accessible in configuration space!. In Sec. IV we ex-
amine the multidimensional implementation of our forma
ism. In particular, we consider the two-dimensional anh
monic oscillator potential V(x,y)5x21y21gx2y2, the
quadratic Zeeman problem, and the hydrogen diatomic
In the Appendix we provide a theoretical justification for o
quantization formula, as given in Eq.~2!.

II. CONFIGURATION-SPACE ANALYSIS

A. Parity-invariant potentials

We now demonstrate the capabilities of the preced
method. For completeness, we note that for the case of
actly solvable potentials, where the wave function can
expressed as a polynominal multiplied by a suitable re
ence function, our method reproduces the exact solution

Consider a nonexactly solvable problem, such as the q
tic anharmonic oscillator
2708 © 1998 The American Physical Society
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TABLE I. Calculated ground- and first excited-state energies for the quartic anharmonic oscillato
g51.

I b n En

10 1/2 0 1.41
1 4.9

1 0 1.392
1 4.65

40 1/2 0 1.392 349
1 4.648 84

1 0 1.392 351 641 4
1 4.648 812 70

160 1/2 0 1.392 351 641 530 291
1 4.648 812 704 212

1 0 1.392 351 641 530 291 855 657 507 876
1 4.648 812 704 212 077 536 377 032 91

500 8 0 1.392 351 641 530 291 855 657 507 876
609 934 184 600 066 711 220 834 088
906 349 323 877 567 431 875 646 528
590 973 563 467 791 759 121 151 375
341 738 817 445 551 624 046 383 713
043 817 869 737 001 346 093 516 81

Refs.@6,7# E0 1.392 351 641 530 291 85
E1 4.648 812 704
c
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a

H52
d2

dx2 1x21gx4. ~3!

Using the reference functionRb5exp(2bx2), one obtains
the recursion relation

ai~E!5
V iai 22~E!1~124b2!ai 24~E!1gai 26~E!

i ~ i 21!
,

~4!

where V i54b i 26b2E, ai50 for i ,0, and $a051,a1
50% or $a050,a151% for the symmetric or antisymmetri
states, respectively. The value of theb parameter is arbitrary
but it can be optimized in order to accelerate the converge
rate of the quantization analysis. This is discussed in S
II C.

FIG. 1. Calculated ground-state energy for the quartic anh
monic oscillator for 0<g<10.
ce
c.

Table I shows the calculated energies of the ground
first excited states forg51. Our method shows systemat
convergence for increasingI , exceeding some of the high
accuracy solutions published@3–5#. As a benchmark, we
also include in Table I the high-accuracy result for t
ground-state energy with 150 digits. The calculation was c
ried out on our local workstation. Figure 1 shows the dep
dence of the ground-state energy on the coupling param
g for 0<g<10. Figures 2 and 3 show the ground- and fi
excited-state wave functions calculated using our expan
for selected values of the coupling constant andN540. As
can be seen from Figs. 2 and 3, we obtain excellent po
wise convergence of the wave functions on the inter
xP@23,3#; however, as also can be seen in the inset of Fig
~for g51!, aroundx54.2 the wave function deviates from
the true solution. The value ofx, beyond which the wave

r- FIG. 2. Ground-state wave functions forg50, 1
2 , and 1 for the

quartic anharmonic oscillator.
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2710 PRA 58TYMCZAK, JAPARIDZE, HANDY, AND WANG
function starts to diverge, increases as the order of the
pansion increases. As long as the desired solution admit
analytic A(x) function factor @C(x)5A(x)Rb(x)#, our
quantization procedure@Eq. ~2!# should yield converging ap
proximants to the true wave function, over an increasing
main.

The results for higher-degree potentials, such as the
tic, octic, and dectic anharmonic potentials, are given
Table II. In Fig. 4 we show the plots of the ground-sta
wave functions for the sextic, octic, and dectic anharmo
potentials forg51.

An important version of the quartic anharmonic oscilla
potential is the double-well problemV(x)52Z2x21x4. It is
well known that in the deep-well limit (Z2→`), the two
lowest states are almost degenerate@6#. Application of our
method~refer to Table III! readily confirms this, and by its
high-accuracy nature, significantly disagrees with the pre
tions of de Saavedra and Buendia~SB! @6#. In particular, for
Z2525, we observe that the quasidegenerate nature of
ground- and first excited-state energies becomes appa
only after 26 significant digits, not the 16 predicted by SB

The generality of our method permits the study of tra
scendental potentials, provided the potential functionV(x)
admits a power-series expansion that is monotonically c
vergent~nonalternating!. For instance, in the case ofV(x)
5exp(x2)21, we immediately obtain the first three ener
levels. Table IV shows our results for this potential.

B. Parity-nonconserving potentials

We can readily extend our method to include pari
nonconserving potentials. In this case, thean(E)’s are lin-

TABLE II. Calculated ground-state energies of the sextic, oc
and dectic anharmonic potentials forg51 calculated in configura-
tion space~b54, 8, and 12 andI 5100, 200, and 300, respec
tively!.

V(x) E0
a E0

x21x6 1.435 624 619 0 1.435 624 619 003 392 315 76
x21x8 1.491 019 895 1.491 019 895 662 204 964 16
x21x10 1.546 263 512 572 345 728

aReference@3#.

FIG. 3. First excited-state wave functions forg50, 1
2 , and 1 for

the quartic anharmonic oscillator.
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early dependent ona05C(0) and a15C8(0) @provided
Rb(0)51 and Rb8 (0)50#. This introduces the additiona
complication of determining these unknowns.

Let us consider two successivean’s

aI~E,a0 ,a1!5AI ,0~E!a01AI ,1~E!a1 ,
~5!

aI 11~E,a0 ,a1!5AI 11,0~E!a01AI 11,1~E!a1 ,

where theAi , j (E) are polynominals inE determined via it-
eration of the recursion equation for thean’s. These linear
equations can be written in a more compact form

a¢I5A~ I !~E!a¢0 , ~6!

where

a¢05Fa0

a1
G , a¢I5F aI~E,a0 ,a1!

aI 11~E,a0 ,a1!G ,
~7!

A~ I !~E!5F AI ,0~E! AI ,1~E!

AI 11,0~E! AI 11,1~E!
G .

FIG. 4. Ground-state wave functions for the sextic, octic, a
dectic anharmonic oscillatorg51.

,

TABLE III. Calculated ground- and first excited-state energ
for the potentialV(x)52Z2x21x4.

Z2 Parity E6

0 1 1.060 362 090 484 182 899 647 046 016
2 3.799 673 029 801 394 168 783 094 188

1 1 0.657 653 005 180 715 123 059 021 723
2 2.834 536 202 119 304 214 654 676 208

5 1 23.410 142 761 239 829 475 297 709 653
2 23.250 675 362 289 235 980 228 513 775

10 1 220.633 576 702 947 799 149 958 554 634
2 220.633 546 884 404 911 079 343 874 899

15 1 250.841 387 284 381 954 366 250 996 515
2 250.841 387 284 187 005 154 710 149 735

25 1 2149.219 456 142 190 888 029 163 966 538
2 2149.219 456 142 190 888 029 163 958 974
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Applying our method to this equation requires that we
a¢I50W . This allows us to solve for the unknown energies a
initial values by taking

Det@A~ I !~E!#50. ~8!

As I→`, the roots of Eq.~8! approach the exact eigenene
gies.

Let us consider two representative examplesV(x)5gx
1x4 and V(x)5gx31x4. Table V summarizes our result
for these potentials for selected values ofg. It is worth men-
tioning that it is possible to calculate to high precision t
values ofg that giveE050. For our first example we find
gcrit51.987 513 084 045 7 and for our second example
have gcrit53. This further underscores the utility of ou

TABLE IV. First three eigenenergies for the potentialV(x)

5ex2
21. @Rb(x)5e2bx2

andb52.#

I n En

40 0 1.356 371
1 4.633 07
2 8.970 66

80 0 1.356 371 24
1 4.633 078 50
2 8.970 678 2

120 0 1.356 371 240 434
1 4.633 078 504 735
2 8.970 678 204 19

TABLE V. Ground- and first excited-state energies for t
parity-nonconserving potentialsV(x)5x41gx and V(x)5x4

1gx3. ~Rb5e2bx2
, b53, andN5100.!

V(x) g n En

x41gx 0 0 1.060 362 090 484 182 899
1 3.799 673 029 801 394 168

1
2 0 1.027 526 822 910 167 805

1 3.795 588 118 233 139 437
1 0 0.930 546 034 189 970 049

1 3.781 896 248 503 017 521
3
2 0 0.773 537 208 410 451 181

1 3.754 774 941 646 378 650
2 0 0.562 135 610 771 295 649

1 3.709 174 584 241 651 216
x41gx3 0 0 1.060 362 090 484 182 899

1 3.799 673 029 801 394 168
1
2 0 1.025 348 988 818 159 058

1 3.713 901 988 923 026 496
1 0 0.905 341 223 793 293 275

1 3.441 398 835 169 418 870
3
2 0 0.633 719 071 342 323 228

1 2.938 268 791 220 008 332
2 0 20.025 531 976 453 041 235

1 2.172 528 222 090 785 784
t
d

e

method. Figure 5 shows the plots of both ground-state w
functions for g51. The lack of symmetry in the groun
states is apparent.

C. Criteria for selecting the reference function

The selection of the reference function is important. F
the potentialV(x)5x21gx6, our method works ifRb(x)
5e2bxn

, n52 and n53. For n54, corresponding to the
asymptotic form of the wave functionCasym(x)5e2Agx4/4,
no convergent roots were observed. We have also chec
this for the higher-order potentials and have found this pr
erty to be true in all cases considered.

In general, Rb(x) should not fall off faster than the
asymptotic form of the wave function. This is because, fro
the perspective of the underlying Hill determinant analy
framework ~refer to Appendix!, the support of the basis
statesxiRb(x) should not be~significantly! smaller than that
of the solutionC(x). Such behavior complicates the exte
sion of our method to potential wells, where the wave fun

tion falls of asymptotically asC(r )→e2AuEur . However, this
difficulty can be circumvented by transforming our forma
ism into a momentum-space representation and then re
ering the solution through an application of the inverse F
rier transform. This is discussed in Sec. III.

As stated earlier for the quartic anharmonic potential ca
the convergence rate of our results can be significantly
proved through an optimal choice ofb. Usually, increasingb
leads to a faster decrease in the asymptotic behavior of
reference function. Since the reference function normally
crease slower than the true wave function, increasing
value ofb can be seen as a way to improve the correlat
between the true solution and the expansion in Eq.~1!,
thereby speeding up the numerical convergence beha
Evidence of this is readily apparent, particularly for increa
ing expansion orderI , aI(En

(I ))50. Refer to Fig. 6, which
shows improved~expanded! range ofb values, with increas-
ing expansion order, yielding accurate results.

In Fig. 7 we plot log10uE02R10(b)u and
log10uE02R20(b)u vs b, whereE0 is the ground-state energ
of the quartic anharmonic oscillator. Referring to Fig. 7,
the order of the calculation increases~i! the range ofb, lead-
ing to accuracies better than 10210, increases and~ii ! the b

FIG. 5. Ground-state wave functions for the parit
nonconserving potentialsx41gx andx41gx3 for g51.
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value corresponding to optimal accuracy increases. This
havior is confirmed by other examples in this work. T
determination of the optimalb is still not completely under-
stood; we are in the process of developing a more comp
approach, to be presented elsewhere.

III. MOMENTUM-SPACE ANALYSIS

There are several compelling reasons for extending
preceding formalism to momentum~Fourier! space. The first
of these is that by so doing, we can achieve a more glo
analysis of the quantization problem. That is, a power-se

expansion for the momentum-space configurationĈ(k)
5A(k)R̂b(k) is sensitive to the small momentum~large spa-
tial scale! structure of the physical system. Upon determini
the power-series expansion representation forA(k) and in-
verting the~truncated! expansion

Ĉ~k!5S (
j 50

a j k
j D R̂b~k!

through the inverse Fourier transform, one expects to
improved global convergence for the configuration-sp
representation.

FIG. 6. First root ofa10(E,b) anda20(E,b) vs b for the quartic
anharmonic oscillator. The solid line is the ground-state energy

FIG. 7. Logarithm of the error of the first roots ofa10(E,b) and
a20(E,b) from the ground-state energy for the quartic anharmo
oscillator.
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Of course, transforming the~second-order differential!
Schrödinger operator into momentum space increases the
der of the generated momentum-space differential equat
This introduces more unknown parameters into the probl
in a manner analogous to the parity-nonconserving case s
ied previously. Within our particular approach, these ad
tional parameters correspond to themissing momentvari-
ables introduced in the eigenvalue moment method~EMM!
quantization formalism developed by Handy and Bessis@7#.

A second motivation for extending our formalism in
momentum space is that it provides a convenient estima
theory for the EMM missing moments. It has been est
lished that moment quantization is equivalent to continuo
wavelet transform theory@8#. An important component of
such an analysis is the determination of the energy and
responding missing moment values. This is readily obta
able through the methods presented here.

ConsiderC(x) to be symmetric, for simplicity. Its Fou
rier transform is generally analytic with a power-series e
pansion of the form

Ĉ~k!5
1

A2p
E

2`

`

dk e2 ikxC~x!5
1

A2p
(
r50

`
~2k2!r

~2r!!
u~r!,

~9!

involving the moments

u~r!5E
2`

`

x2rC~x!dx. ~10!

For any rational fraction~multidimensional! potential, the
moments will satisfy a finite-difference moment equation
effective orderms11, which is problem dependent. Th
means that all of the moments depend linearly on the fi
ms11 ~missing! moments. We can represent this through t
relations

u~r!5 (
l 50

ms

M r,l ~E!u~ l !, ~11!

where theM r,l (E)’s are known and satisfy the initializatio
conditionsM r,l (E)5dr,l for 0<r,l <ms .

Taking R̂b(k)[e2bk2
, for convenience, one can dete

mine A(k) by expandingebk2
(r50

` @(2k2)r/(2r)! # u(r).
This leads to the representation

Ĉ~k!5
1

A2p
S (

n50
an@E,u~0!, . . . ,u~ms!#~2k2!nDe2bk2

,

~12!

where

an@E,u~0!, . . . ,u~ms!#5 (
l 50

ms

Dn,l ~E!u~ l ! ~13!

and

Dn,l ~E!5(
j 50

n
~2b! jMn2 j ,l ~E!

j ! @2~n2 j !#!
. ~14!c
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TABLE VI. Calculated ground-state energies of the quartic, sextic, and octic anharmonic potentia
g51 calculated in momentum space. The first three entries correspond to thems51,2,3 missing moment
problems, respectively. The last entry corresponds to thems50 missing moment reformulation for the sext
anharmonic oscillator.

V(x) E0
a E0

x21x4 1.392 351 641 530 1.392 351 641 530 291 855 6
x21x6 1.435 624 619 0 1.435 624 619 003 393
x21x8 1.491 019 895 1.491 019 895 66
x21x6 1.435 624 619 003 392 315 761 272 220 1.435 624 619 003 392 315 761 272 2

aReference@3#.
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According to our quantization procedure, as detailed
the Appendix, there exists a sequence of energy and mis
moment values satisfying

an@E~n!,$u~n!~ l !%#50,

converging to the physical values asn→`. Since the matrix
Dn,l (E) is not degenerate for allE’s, we can approximate
the converging energy and missing moment sequence
considering the@ms11#3@ms11# matrix equation

(
l 250

ms

DN1l 1 ,l 2
@E#u~ l 2!50, ~15!

0< l 1<ms , and the ensuing determinant equation

Det~D~N!@E# !50. ~16!

After solving for the approximate eigenenergies through
~16!, one generates the missing moment values through
~15! by imposing some convenient (L1) normalization, such
asu(0)[1. This is also done for the multidimensional ca
discussed below.

Implementing the above for the quartic (ms51), sextic
(ms52), and octic (ms53) anharmonic oscillators yield
the results in Table VI, which are consistent with those ci
in Tables I and II. We are also able to reconstruct the w
functions in configuration space through the approximat
derived from performing the inverse Fourier transform

FIG. 8. Wave functions for the quartic, sextic, and octic anh
monic oscillator (g51), reconstructed through the momentum fo
mulation.
n
ng

by

.
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n

C~x!'
1

2Apb
(
n50

N

an

]2n

]x2n ~e2 x2/4b!. ~17!

Figure 8 shows the reconstructed wave functions. As can
seen, the reconstructed wave function converges in a m
scale manner~with improving small-scale behavior with in
creasing order!. From the inset it is clear that there are sm
oscillations locally, which diminish as well, with increasin
order N of the calculation. This behavior should be co
trasted with that displayed corresponding to the applicat
of our formalism directly in configuration space~Sec. II!.
There the convergence is more local in nature~i.e., essen-
tially pointwise!, with the domain of convergence increasin
with the expansion order.

For completeness, we note that representations of the
in Eq. ~12! were also developed in the context of a var
tional, Rayleigh-Ritz, missing moment formulation. Refer
Ref. @9#.

A. Zero missing moments

Some problems involve no missing moments. One
these is the aforementioned sextic anharmonic oscilla
provided one first expresses the configuration-space w
function C(x) as @7~a!#

C~x!5F~x!expSAg

4
x4D . ~18!

One then implements the momentum-space formalism on
resulting equation forF, which transforms the originalms
52 problem into anms50 problem. The ensuing calculatio
yields excellent results, which we also show in Table VI. W
have also calculated the ground-state energy for the pote
@10#

V~x!5x21
lx2

11gx2 , ~19!

provided we represent the wave functionC(x) as

C~x!5~11gx2!F~x!expS 1

2
x2D . ~20!

Table VII summarizes our results for this case, which surp
the exceptional accuracy calculated by Hodgson through
analytic continuation quantization procedure@11#.

-
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B. Radial potential problems

For physical problems restricted to the non-negative r

axis r>0 and of asymptotic formC(r )→e2AuEur , one can-
not immediately apply the previous formalism. This is b
cause the Fourier transform@of the extended problem satis
fying C(r )50 for r ,0# will not be entire, a preferable
characteristic. In addition, the asymptotic behavior ask→`
does not decrease sufficiently fast to justify a Gaussian-t
expansion, as represented by Eq.~12!.

Instead, if we map the problem onto the space defined

r 5z2 for zP(2`,`), C̃(z)[uzuC(z2), we can proceed to
apply the previous momentum-space formalism to the s

metric configurationC̃(z). Relative to this configuration, th
asymptotic forme2AuEuz2 admits an entirez-space Fourier
transform. The required even-order moments

u~r!5E
2`

`

dz z2rC̃~z!

become

u~r!5E
0

`

dr r rC~r ! ~21!

and satisfy a linear moment equation leading to an exp
sion of the form in Eq.~11! @7~a!#. This permits an analysis
similar to that represented by Eqs.~10!–~14!. Application to
the Coulomb potential yields rapidly converging estimates
the exact energies. Furthermore, reconstruction of the w
function through expansions of the type in Eq.~17!,

C̃~z!'
1

2Apb
(
n50

N

an

]2n

]z2n ~e2z2/4b! ~22!

or

C~r !'
1

2Apbr
S (

n50

N

anPn~r !D e2r /4b ~23!

@Pn(r ) a polynomial inr #, yield very good results, despit
the singular appearance of the 1/Ar factor in Eq.~23!.

In Fig. 9 we compare the true solution~1
4 re2r /2, the solid

line! with the above expansion~N530, corresponding to the
open circles! and with the above expansion moduloZN

[(n
NanPn(0) ~since we anticipateZN→`→0!. The first ap-

TABLE VII. First four symmetric state energies for the ration
fraction potentialV(x)5x21 lx2/(11gx2).

l5g n En

0.1 0 1.043 173 713 044 445 233 778 700 870 546 09
2 5.181 094 785 884 700 927 110 409 072 888 3
4 9.272 816 970 035 252 254 582 438 478 9
6 13.339 390 726 973 551 232 933 170 5

1.0 0 1.232 350 723 406 062
2 5.589 778 933 739
4 9.684 042 015 236
6 13.733 241 012 127
al
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proximation, which includes the singularity, is actually mo
accurate, particularly near the origin.

All of these calculations were done forb51. This is sig-
nificant with respect to our earlier discussion on selecting
reference function. In particular, the asymptotic behavior

the transformed expressionC̃(z) goes ase2z2/4G, whereG
5 1

2 . Its Fourier transform will behave asymptotically a
e2Gk2

. The choice of a Gaussian, momentum-space re
ence functione2bk2

should lead to converging results forb
,G5 1

2 . Instead, we find converging results forO(0.1),b
,O(2), for N530. In particular, good results are obtaine
precisely at the correct asymptotic valueb5 1

2 . A similar
analysis can be implemented with respect to the potentia

V~r !5
l ~ l 11!

r 2 2
1

r 1b
~24!

~utilizing thems52 missing moment equations in Ref.@12#!,
yielding the results presented in Table VIII.

C. One-dimensional wells

We can also study potentials of the form

V~x!5
2 f

11sxq ~25!

FIG. 9. Approximations to the Bohr atom ground-state solut
1
4 re2 r /2 from the expansion in Eq.~23! ~open circles! and the same
expansion modulo zeroth-order sumZN ~crosses!.

TABLE VIII. Ground-state energy of the potentialV(r )5 l ( l
11)/r 2 2 Ze2(r 1b), whereZ51 ande252.

l b E0

0 0.0 21.000 000 000 00
0.5 21.719 643 08
1.0 21.000 000 000 00

1 0.0 20.250 000 000 00
0.5 20.195 311 233 07
1.0 20.165 724 840 88
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TABLE IX. First three symmetric state energies of the potentialV(x)5 2 f /(11sx2).

f s E0 E2 E4

1 0.0001 20.990 074 442 20.950 966 595 20.913 036 071
0.001 20.969 109 931 20.851 372 541 20.744 906 128
0.01 20.906 983 436 20.589 356 621 20.367 693 169
0.1 20.744 761 201

10 0.0001 29.968 452 050 29.842 858 475 29.473 335
0.001 29.900 744 425 29.509 665 958 29.130 360 71
0.01 29.691 099 314 28.513 725 416 27.449 061 286
0.1 29.069 834 361 25.893 566 217 23.676 931 698
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as long as we use the preceding transformation. Table
gives the results for several different parameters (q52).

IV. EXTENSION TO HIGHER DIMENSIONS

We outline the extension of the formalism to multidime
sions through three two-dimensional problems. The tw
dimensional~analytic! Fourier transform

Ĉ~k1 ,k2!5
1

2p E E dx dy e2 i ~k1x1k2y!C~x,y!

can be expanded into the form

Ĉ~k1 ,k2!5
1

2p (
p,q

~2 ik1!p~2 ik2!q

p!q!
m~p,q!, ~26!

where the two-dimensional~Hamburger! moments are de
fined by

m~p,q!5E
2`

` E
2`

`

dx dy xpyqC~x,y!. ~27!

As for the one-dimensional problems considered, the tw
dimensional~Hamburger! moments also satisfy a~problem-
dependent! linear, finite-difference equation of infinite orde
An infinite subset of the moments~the missing moments!
$m( i l , j l )u0<l ,`% are required as initialization variable
before all of the remaining moments can be determin
Thus, as in Eq.~11!, all of the moments depend on the
missing moments. Fortunately, any given moment depe
only on a finite number of the missing moments

m~p,q!5 (
l <L~p,q!

ME~p,q,l !m~ i l , j l !.

Now consider the representation,Ĉ[AR̂,

Ĉ~k1 ,k2!5
1

2p S (
n1 ,n2

an1 ,n2
~2 ik1!n1~2 ik2!n2D R̂b~k1 ,k2!

~28!

for some suitable reference function. The power-series c
ficientsan1 ,n2

depend not only on the energy parameter va

able E, but also on the missing momen
an1 ,n2

@E,$m( i l , j l )%#. As such, one can imitate the on
X

-

-

d.

ds

f-
-

dimensional analysis previously presented and procee
generate the converging energy roots and correspon
missing moment values.

An important aspect of the extension of our formalism
the multidimensional case is that careful consideration m
be given to determining which of thean1 ,n2

@E,$m( i l , j l )%#

coefficients are to be set to zero in order to define the m
tidimensional counterpart to Eq.~15!. An improper selection
of such coefficients will not produce a converging seque
of approximants to the physical energy and correspond
missing moments.

Once the energy and missing moments have been ge
ated, one can approximate the configuration-space solu
by performing an inverse Fourier transform on Eq.~28!,

C~x!5
1

2p (
n1 ,n2

an1 ,n2
~2]x!

n1~2]y!n2Rb~x,y!, ~29!

where

Rb~x,y!5
1

2p E E dk1dk2ei ~xk11yk2!R̂~k1 ,k2!.

One can also implement a similar procedure directly in c
figuration space. This involves the representation

C~x,y!5S (
i , j

ai , j x
iy j DRb~x,y!, ~30!

where the$ai , j% coefficients depend, linearly, on a small
subset, such as$ai ,0%. Quantization can be achieved by se
ting a finite subset of the$ai , j% ’s to zero, for instance,
$aN,N2 i u0< i<N,N,`%.

A. H xy problem

To demonstrate the effectiveness of either method, fi
consider the important problem defined by the Hamilton
@13#

Hxy52
]2

]x2 2
]2

]y2 1x21y21gx2y2. ~31!

Limiting the analysis to the symmetric states~with respects
to transformationsx↔2x, y↔2y, andx↔y!, the effective
two-dimensional Stieltjes moments

u~p,q![m~2p,2q! ~32!



ts
ts
er
th

tio

E

to

his
ts
in
d 11

, is
u-
a-

6
6

he

ve

2716 PRA 58TYMCZAK, JAPARIDZE, HANDY, AND WANG
satisfy the moment equation

22p~2p21!u~p21,q!22q~2q21!u~p,q21!

1u~p11,q!1u~p,q11!1gu~p11,q11!5Eu~p,q!

~33!

for p,q>0. Because of thex↔y symmetry, u(p,q)
5u(q,p); accordingly, specification of the missing momen
$u( i ,0)u0< i<N% is sufficient to generate all the momen
$u(p,q)u0<p,q<N% for a given value of energy paramet
value E. We may represent the linear dependence on
missing moments as

u~p,q!5 (
l 50

N

ME~p,q,l !u~ l ,0! for p,q<N. ~34!

The desired expansion for a Gaussian reference func

is @Ĉ(kW )5A(kW )e2bk2
#

e2b~2[k1
2
1k2

2] !(
p,q

~2k1
2!p~2k2

2!q
u~p,q!

~2p!! ~2q!!

5 (
n1 ,n2

~2k1
2!n1~2k2

2!n2an1 ,n2
~35!

or

an1 ,n2
5 (

i 1p5n1
(

j 1q5n2

~2b! i 1 j

i ! j !

u~p,q!

~2p!! ~2q!!
. ~36!

Incorporating the missing moment dependence from
~34!, we have

an1 ,n2
@E,$u~ l ,0!%#

5 (
l 50

u~ l ,0! (
i 1p5n1

(
j 1q5n2

~2b! i 1 j

i ! j !

ME~p,q,l !

~2p!! ~2q!!
.

~37!

The configuration-space reconstruction becomes

C~x,y!5
1

4pb (
n1 ,n2

an1 ,n2
]x

2n1]y
2n2e2~x21y2!/4b. ~38!

The momentum-space formalism was applied
$an1 ,n2

un15N,0<n2<N% ~i.e., the coefficients set to zero!.
The calculated ground-state energy~Table X! agrees with
that of Vrscay and Handy~b50.5, N520! @13#.

TABLE X. First two symmetric energy levels forHxy and
~binding energy! HQZ .

H Eground Efirst excited

Hxy configuration space 2.195 918 085 200 7.031 272 4
Hxy Fourier space 2.195 918 086 7.031 272 46
HQZ(B50.1, L522) 0.547 526 46 0.148 089 156
HQZ(B51, L526) 0.831 167 94 0.160 469 049
HQZ(B52, L528) 1.022 214 0 0.173 939 7
e

n

q.

We also applied our configuration-space formalism to t
problem, which depends on the set of ‘‘missing’’ coefficien
$aN,N2 i@E#%. Table X gives the results of our calculations
both momentum and configuration space and Figs. 10 an
give plots of the first two symmetric states.

B. Quadratic Zeeman problem

Our second example, the quadratic Zeeman problem
more conveniently solved in terms of the momentum form
lation. For theLz50 angular momentum states of the qu
dratic Zeeman problem the Hamiltonian is

HQZ52
1

2
¹22

Z

r
1

1

8
B2~x21y2!. ~39!

The binding energye is related to the total energy bye
5 B/22E(Z51,B). Transforming the Hamiltonian into
parabolic coordinates~j5r 2z.0 andh5r 1z.0! and de-
fining the Stieltjes moments

FIG. 10. Contour plot of the ground-state wave function for t
two-dimensional anharmonic oscillator forg51.

FIG. 11. Contour plot of the first symmetric excited-state wa
function for the two-dimensional anharmonic oscillator forg51.
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u~n,m!5E
0

`E
0

`

dj dh jnhmr~j,h!

for the r configuration satisfying@7b#

C~j,h!5r~j,h!expS B

4
jh D

allows us to generate the moment equation

n2u~n21,m!1m2u~n,m21!2
1

2
@Bn1e#u~n,m11!

2
1

2
@Bm1e#u~n11,m!1Zu~n,m!50. ~40!

For states with the same symmetry as the ground s
(h↔j), the missing moments correspond to the
$u( i ,i )u0< i<L%, which generate all the moments within th
antidiagonalsn1m<2L11,

u~n,m!5 (
l 50

~n1m!/2

ME~n,m,l !u~ l ,l !. ~41!

As for one-dimensional radial potential problems, we a
implicitly working with the extended, symmetric, configur
tion

r̃~x,z![uxuuzur~x2,z2!,

where j[x2 and h[z2. It then follows that the two-
dimensional Fourier transform forr̃ exists and is analytic
and the ~nonzero! even-order Hamburger moments a
equivalent to the Stieltjes momentsu(n,m):

u~n,m!5E
2`

` E
2`

`

dx dz x2nz2mr̃~x,z!.

Reconstruction of the configuration-space solution within
x3z representation is then given by implementing an
verse Fourier transform on

r̂̃~k1 ,k2!5A~k1 ,k2!e2b~k1
2
1k2

2
!.

The formalism is identical to that of the previous proble
@Eqs. ~35!–~38!#. We obtain for the configuration-spac
wave function

r̃~x,z!5
1

4pb (
n1 ,n2

an1 ,n2
]x

2n1]z
2n2e2 ~x21z2!/4b ~42!

or

r~j,h!5
1

4pbAjh
(

n1 ,n2

an1 ,n2
~2Aj]j!

2n1~2Ah]h!2n2

3e2 ~j1h!/4b, ~43!

wherer 5 (j1h)/2 andr'
2 5jh.
te
t

e

e
-

This expansion is consistent with our general rules
selecting appropriate reference functions since
asymptotic form of the wave functions corresponds to

C~r' ,z!→exp~2 1
4 Br'

2 2~2e!1/2uzu!.

This is valid only for BÞ0. At B50, the uzu becomesr .

Accordingly,r(r' ,z)→exp(2 1
2Br'

22(2e)1/2uzu), which falls
off faster than thee2 r /2b reference function in Eq.~43!,
except for purerly longitudinal directions~i.e., parallel to the
z axis!. In such cases, thee2(2e)1/2uzu factor will also fall off
faster thane2 r /2b if 1/2b,(2e)1/2, which is the case for all
examples considered here (b51).

Excellent results are obtained if we set to zero the coe
cients $an,mun1m52L11, m<L%, which depend on the
missing moments$u( i ,i )u0< i<L%. That is, by setting to
zero the first set, we determine both the energy and the
responding missing moment values in a manner identica
that in Eq.~15!. Knowledge of the firstL11 missing mo-
ments determines all moments within the 2L11 antidiago-
nal $u(p,q)up1q<2L11%. Accordingly, only the corre-
sponding coefficients $an,mun1m<2L11% can be
determined through Eq.~36! and utilized in Eqs.~42! and
~43!.

The first two binding energy levels~with same symmetry
as ground state!, for various magnetic-field valuesB<2
~a.u.!, are given in Table X. In each case, we quote the nu
ber of missing moments usedL ~b51 in each case!. Given
L, the expansion orderN @the range ofn1 andn2 values used
in Eq. ~43!, n11n2<N# is determined byN<2L11. Our
results are consistent with those of Rosneret al. @14#.

Our reconstruction analysis is only suitable forr(r' ,z)
and not for the wave function itselfC(r' ,z). This is be-
cause the expansion in Eq.~43! cannot capture the globa
quadratic dropoff of the true solution, at relatively low e
pansion orders, as described above. That is, if we use

~43!, together withC5re(B/4)r'
2
, then the overall produc

will not decrease sufficiently fast, particularly forB'2. The
expansion in Eq.~43! is therefore only appropriate for study
ing the local features of ther solution, near the origin. Fur
thermore, in light of the 1/r' singularity in the reconstruction
formula ~43!, which is similar to that for the Bohr case dis
cussed earlier, one also expects that our expansion wil
valid close to~but not on! the z axis as well.

Preliminary results forB<2 suggest that implementatio
of the preceding reconstruction procedure gives results
general agreement with those of Rosneret al. @14# and Liu
and Starace@15#. In particular, upon comparing Figs. 12 an
13 @generated atL5O(20) andN58#, we see that for
smaller magnetic fields, the contour plots for the groun
state configurationr(r' ,z) become broader (B50.1), and
not as rapidly~steeply! varying as for the higher magneti
field (B52) case. Our results also emphasize that there
‘‘pinching’’ of the wave-function contours atz50. This is
intuitively obvious since both the attractive Coulombic a
quadratic potentials are their strongest atz50. This is not
quite as evident from the results of Rosneret al.and Liu and
Starace, although there is the suggestion of this in one
Liu-Starace plots@see Fig. 4~a! in Ref. @15##.
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C. Hydrogen molecular ion

Our final two-dimensional example is the hydrogen m
lecular ion H2

1 . Expressed in elliptic coordinates, thel
50) Hamiltonian becomes

F ]

]j
~j221!

]

]j
1

]

]h
~12h2!

]

]h GC~j,h!

1r AB
2 F1

4
E8~j22h2!1

e2

r AB
j GC~h,j!50, ~44!

where

j5
r A1r B

r AB
, h5

r A2r B

r AB
, E85E2

e2

r AB
. ~45!

Expanding this wave function as

C~h,j!5(
i , j

ai , jj
ih jexpS 2Ar AB

2 E8

4
j D ~46!

FIG. 12. Contour plot ofr(x,z) for the quadratic Zeeman
ground-state configuration based on Eq.~43! for B50.1.

FIG. 13. Contour plot ofr(x,z) for the quadratic Zeeman
ground-state configuration based on Eq.~43! for B52.
-

allows us to generate a recusion relation that we used
obtain the ground- and first symmetric excited-state ener
in Table XI for selected seperation distancesr AB5ur A2r Bu.
In Fig. 14 we plot the ground-state state energy versus
seperation distance of the nucleir AB .

V. SUMMARY

We have developed a multidimensional, iterative quan
zation procedure based on wave-function representation
the form C5(( iai@E,...#j i)R(j), involving some suitable
reference functionR. Upon identifying the convergent zero
in the energy domain, of the power-series coefficien
ai@En

i #50, highly accurate estimates for thenth state energy
En and wave functionCn were obtained. Our procedure
very algebraic in nature~although also implementable nu
merically! and lends itself well to algebraic software pr
gramming. We applied it to various prototypical problems
configuration (j5x) and momentum (j5k) space with
great success.
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TABLE XI. First two symmetric energy levels for the hydroge
dimer ion H2

1 for selected seperation distancesr AB .

r AB Eground Efirst excited

1.0 21.451 786 313 377 20.422 924 588
1.5 21.248 989 872 121 6 20.388 600 912 1
2.0 21.102 634 214 494 94 20.360 864 875 33

FIG. 14. Ground-state energy of H2
1 as a function of the inter-

atomic distancer .
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APPENDIX

We present two arguments for the validity of Eq.~2!. The
first is more rigorous than the second, in that it requires
extra assumption. In each case, our objective is to unders
how the power-series-generated coefficients of the wa
function expansionC(x)5(( iai@E#xi)R(x) relate to the co-
efficients generated through a Hill-determinant-based an
sis, utilizing the nonorthogonal, complete, basisBi(x)
[xiR(x): C(x)5( iv i@E#Bi(x).

For the Schro¨dinger-Hamiltonian eigenenergy proble
HC5EC, let us takeC(x)5( jv jBj (x) and project unto
theBi state through the equation^Bi uH2EuC&50. Alterna-
tively, ( jMi , j@E#v j@E#50, where Mi , j@E#5^Bi uHuBj&
2E^Bi uBj&. The solution to this infinite set of matrix equa
tions are the energy andv coefficients for thel th state:
El

(exact)[El
(`) andv j@El

(`)#.
The standard Galerkin approximation involves t

I th-order truncation

C~ I !~x!5(
i 50

I

v iBi~x!, ~A1!

leading to theI th-order equation

(
j 50

I

Mi , j@El
~ I !#v j@El

~ I !#50, ~A2!

involving the Hill-determinant equation

Det~M ~ I !@El
~ I !# !50, ~A3!

whereM i j
(I )[Mi j for 0< i , j <I .

For a suitable basis the roots of the Hill determinant c
verge to the true eigenvalues of the Hamiltonian asI→` ~l
indexes the roots!:

lim
I→`

El
~ I !5El

~`! . ~A4!

This is our assumption.
We now adopt a different notation for thev coefficients in

order to emphasize the particular normalization prescrip
to be used:

vW @El
~ I !#[VW ~ I !@El

~ I !#,
~A5!

(
j 50

I

Mi , j@El
~ I !#Vj

~ I !@El
~ I !#50

for 0< i<I where we normalize byVI
(I )51. For sufficiently

large values of the expansion orderI we should have

Vj
~ I !@El

~ I !#→
aj@El

~ I !#

aI@El
~ I !#

~A6!

for 0< j <I since each sequence of coefficients generates
same wave function
e
nd
e-

y-

-

n

he

(
j 50

I

Vj
~ I !@El

~ I !#xjRb~x!→(
j 50

I aj@El
~ I !#

aI@El
~ I !#

xjRb~x!→C l~x!.

~A7!

In this context we equate the coefficients (aI@El
(I )#Þ0)

Vj
~ I !@El

~ I !#5
aj@El

~ I !#

aI@El
~ I !#

~A8!

for 0< j <I . Note that we are not necessarily extending t
equality to the entire energy domain.

We now present our first proof of Eq.~2!, based upon the
preceding assumptions. There are two cases to be consid
The first corresponds to the simplest energy dependence
the a coefficients. The second generalizes things to inclu
the dependence on the missing moment~or other similar!
variables.

1. Proof 1

Case 1: aj@E# a rational fraction. This corresponds to
most one-dimensional configuration-space problems
some special momentum-space problems. The expressio

Pi@E#[(
j 50

I

Mi , j@E#aj@E# ~A9!

will also be a rational fraction inE and continuous atE
5El

(I ) . From Eqs.~A8! and ~A5! we havePi@El
(I )#50, as

long asi<I . We are interested in evaluating

Pi<I 21@E→El
~ I 21!#. ~A10!

In this regard, the partial sum

(
j 50

I 21

Mi , j@El
~ I 21!#aj@El

~ I 21!#

5aI 21@El
~ I 21!#(

j 50

I 21

Mi , j@El
~ I 21!#Vj

~ I 21!@El
~ I 21!#

~A11!

is zero since the latter summation corresponds to Eq.~A5!
for I→I 21. Accordingly,

Mi ,I@El
~ I 21!#aI@El

~ I 21!#5Pi@El
~ I 21!# ~A12!

for 0< i<I 21.
Since limI→`(El

(I 21)2El
(I ))→0 and

Pi@El
~ I !#50, ~A13!

we then have~if Mi<I 21,I@El
(I 21)#Þ0!

lim
I→`

aI@El
~ I 21!#50. ~A14!

Therefore, the zeros ofaI@E# should converge to the phys
cal energies.

Case 2.The more general case corresponds to
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aj@E,xW #5 (
l 50

ms

D j ,l @E#x l , ~A15!

where theD j ,l @E# ’s are rational fractions inE. The preced-
ing proof applies provided one works with the continuo
functionPi@E,xW #, wherexW is a unknown vector determine
by the boundary conditions andPi@E,xW # satisfies
Pi@El

(I ) ,xW l
(I )#50.

2. Proof 2

Our second proof will assume that Eq.~A8! extends to the
energy domain, beyond the energy values explicitly no
~i.e., theEl

(I )’s!. More specifically, consider the expansion

C l
~ I 11!~x!5(

i 50

I 11

Vi
~ I 11!@El

~ I 11!#xiRb~x! ~A16!

and @from Eq. ~A8!#

C l
~ I 11!~x!5(

i 50

I 11 ai@El
~ I 11!#

aI 11@El
~ I 11!#

xiRb~x!. ~A17!

If we assume that

Vi
~ I 11!@E#5

ai@E#

aI 11@E#
~A18!

for 0< i<I 11 andEP@El
(I ) ,El

(I 11)#, then we can show tha

aI 11@El
~ I !#50. ~A19!

This follows from immediate properties of theV elements, as
developed below.

Let E assume any valueE5Ec for which the infinite ma-
trix Mi j @Ec# has no minor submatrix with zero determinan
l

n

d

.

One can recursively generate, through an effective LU
composition method, an infinite set of vectors$VW (I )@Ec#u0
<I ,`% satisfying

(
j 50

I

Mi , j@Ec#Vj
~ I !50 ~A20!

for 0< i<I 21 and

(
j 50

I

MI , j@Ec#Vj
~ I !5DI@Ec#, ~A21!

where VI
(I )51 and Vj

(I )50 for j >I 11. One also has
Det(M (I )@Ec#)5P i 50

I Di@Ec#.
The relation in Eq.~A20! involves I constraints forI un-

knowns@recall VI
(I )51, thus Eq.~A20! is actually an inho-

mogeneous relation#. The second relation, Eq.~A21!, serves
to defineDI@Ec#.

For a given orderI , the roots of Eq.~A21! corresponds to
the roots of Eq. ~A3! E5El

(I ) , defined by ~implicitly !

Det(M (I 8,I )@El
(I )#)Þ0 and Det(M (I )@El

(I )#)50, or
DI@El

(I )#50. We denote the corresponding vectors
V(I )@El

(I )#.
From the recursion formulas for theV’s we have

VI
~ I 11!@E#52

(
i 50

I

Vi
~ I !@E#Mi ,I 11@E#

DI@E#
. ~A22!

Thus, in theE→El
(I ) limit, for a given l , one obtains

VI
~ I 11!@El

~ I !#56`, ~A23!

provided the numerator expression in Eq.~68! does not si-
multaneously go to zero. The above infinite relation yie
the desired result in Eq.~A19!.
.
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