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Re_:c_e_n_t advances in laser technology havg opened up new Unless otherwise specified, we will use the word “state”
p053|b|lltles for laser control of phe_nomena n the quantu_n]n the following to refer to a mixed quantum state repre-
regime, such as molecular dynamics or chemical reaction i - i X
dynamics[1]. The limited success of initially advocated SENted by a density operatpracting on’{. Let p(t;) de-
schemes based largely on physical intuition has prompte§CriPe the initial state of the system. If the system is left
researchers in recent years to systematically study these syd9ne its state will evolve with time according to the quan-
tems using control theory. This is also the subject of thigum Liouville equation
paper. We generalize the results[#] by establishing kine- 9 i
matical bounds for the expectation yalues of arbitrary ob- — p(t)=——[Ho.p(1)], (3)
servables of driven quantum-mechanical systems. These new at h
results are then applied to the problem of maximizing the .
energy for a four-level HEhydrogen fluoridemodel and a WhereH is the Hamiltonian of the system.
four-level harmonic-oscillator model. The goal of controlling the system is, in general, to drive

it in such a way as to maximize or minimize the expectation
Il. MATHEMATICAL SETUP value

We consider a quantum-mechanical system whose state (A(t))=Tr[Ap(t)] (4)

spaceH is a separable Hilbert space. Any mixed state of the

system can be represented by a density opefgtr(acting  Of @ given observabld, e.g., the energy, at some target time

on ‘H) with eigenvalue decomposition t=t;. o _ _
When the system is driven, i.e., subject to external con-

. trol, then the time-evolution equation must be modified by
p(t)=§k: Wi W) (WD), (1) adding a perturbation tertd ,(f(t)) to the HamiltoniarH .
Hence, the controlled system obeys the quantum Liouville
wherew, are the eigenvalues, afidf (t)) the corresponding €duation
normalized eigenstates pft), yvhich evolve in time accord- P i .
ing to the time-dependent Scliinger equation. The eigen- — p(t)=——[H{(1)),p(t)], (5)
values satisfy at h

where
O<w,<1V k and >, w,=1, ) . .
k H(f(t))=Ho+Ha(f(1) (6)
i.e., they can be ordered in(possibly finite¢ nonincreasing is the total Hamiltonian, anf{t) (which may be multidimen-
sequence: siona) represents a control function belonging to a class of
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admissible controlg/. The minimum requirement for a con- Any real observable of a quantum-mechanical system is
trol function to be admissible is that it be bounded and mearepresented by a Hermitian Operaﬁ\bron H. In the Specia]

surable. However, the class of admissible controls may b
;?rsatirﬁtsed further to reflect physical or experimental CON-asult was proved if2]:

In laser-driven applications, such as laser control of mo- 1 heorem Lif A'is a projector onto a subspaeof di-
LA mensiond then
lecular dynamicsH; is usually the dot product of an exter-

Base thatA is a projector onto a subspace, the following

nal laser field, which serves as a control function, and the d
electric dipole operator. (A<D, W, Vt, 9)
A given initial statep(t;) can only evolve into statgs(t;) k=1
that are related tp(t;) by and if wg, ;<w, then we have equality exactly if
p(t)=U(ts t)p(t) (1 1)), (7) spap-1,. glVi(t))=S. (10
where U(t,t;) is the time-evolution operator of the control  Furthermore, if the state spaé¢ has finite dimensiomN
system, which satisfies the ScHinger equation then
J . i ) "
— 0(t,t)=— + AFEW)0EL). 8) (At)y= 2wt (11)
ot h k=N—d+1

While the concrete dynamical law obeyed bi(t,t;) de- and ifwy_4>wy then we have equality exactly if
pends on the control system, and thus an input fundiion

which is to be determined, it is clear thét(tf ,t;) must be a
unitary operator for any control system. Therefore, only tar- In the case of an arbitrary observalilewith eigenvalues

get stategp(t;) that are related tp(t;) as Eq.(7), for some 5. and corresponding eigenspade@;), we note thatsince

unitary operatoit (t;,t;), arekinematically attainable ‘H is assumed to be finite dimensiop#iere exists a unique
Kinematical attainability does not implyynamical reach-  eigenvalue decomposition

ability, i.e., that there exists an admissible control-trajectory

pair that would transfer the system from the initial stage)

to a target staté(tf) for which the expectation value of the
observable assumes {fanematical] maximum or minimum.

Nevertheless, kinematical bounds impose restrictions on thgneref (a,) denotes the projector onto the eigensp&ca,).
dynamical evolution of expectation values of observablesSinceA is Hermitian, all its eigenvalues are real and we may

and thus knowing thesg bounds, as well as thg §et of t.arg%tssume that they are ordered in a finite, decreasing sequence
statesS, or S_ for which the maximum or minimum is

realized, is useful 8178, = an.
C : . : The problem of determining the kinematical maximum or
If one tries to solve the optimal control problem of maxi-

o A i ] ) ) minimum of the expectation value
mizing (A(t;)) numerically, using, e.g., a nonlinear eigen-
system method as described[B], then knowing the exact (A(t))=TrH AU (t,t)p(t) 0T (t,1)] (14)
kinematical maximum, and for which states it is attained,
provides a way to check the quality of the numerical solutionat some fixed timet=t;, for a given mixed initial state

for the control field: Onénumerically computes the trajec- A(t;), is equivalent to finding a unitary transformatich,

tories as well as the time-dependent expectation value of thﬁ']at maximizes or minimizes the value of the function
observable for thgnumerically obtained optimal control

field. If.the kinematical bound is dynamically reali;able then O f(0) =TI AUp(t) 0], (15)
the ratio of the computed value ¢A(t;)) and the kinemati-
cal upper bound should approach 1, aﬁ;(df) should ap- as a function from the unitary group Nj to the real num-

spank-n—d+1,. NP =S. (12

A:E aii(ai), (13)
=1

proach a point irs;. . bers.f assumes both its maximum and its minimum since
U(N) is a compact Lie group.
[l. KINEMATICAL BOUNDS Supposef assumes an extremum @be U(N). Letting

y = ) - . | T 1
Under certain circumstances, kinematical bounds similaf Uop(ti)Uo. we obtain a map

to those we shall derive for finite-dimensional systems can
be established for infinite-dimensional systems as well.
However, since for practical computational purposes it is
necessary to truncate the system to finitely many levels, WIEh
shall in the following only consider the case of a systemtor' N A

i i i - Theorem 21f the mapU+~ Tr(AU yUT) has an extremum
whose state space is a Hilbert spaleof dimensionN ! p | X
<oo, at the identity 1= U(N) thenA and y commute.

U—Tr(AUyUT) (16)

at has an extremum &t=1 where 1is the identity opera-
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Proof: Assume TrAU yUT) is maximal whenJ =1 and

let U(7) be any path in U{) which starts at the identity.
Then we must have

d _ .. ..
37 TTAU(n)XU'(7)] T:O:o.

Since the trace is linear, this is equivalent to

T AU’ (0)xUT(0)+AU(0)x[UT)'(0)]=0.
Observing that U(0)=1, and letting @/d7)U(7)|,—o
=U0’(0)=B, we have thus

Tr(AByx+AyB")=0. (17)

If B is the derivative of a patbl(7) CU(N) at 7=0 then
it is skew-Hermitian, and conversely, every skew-Hermitian

operatorl% is the derivative of some pallfj(r)CU(N) atr
=0, since the Lie algebra of W) consists of all skew-
Hermitian matricesu(N). Therefore condition(17) must

hold for any skew-Hermitian operatds. Using BT=—B,
we can rewrite Eq(17) as

T (yA—Ay)B]=0.

We will show that this condition impliegvi=[x,A]=0.

Note thatM is skew-Hermitian sincg andA are Hermitian.
ChoosingB= (by,) with

for k=s,/=s

0 otherwise

i
by, =

yields
N
Tr MB 2_ mjkbkj:iMSSZO'

This holds fors=1 toN. Hence, all the diagonal elements of

M must vanish.
If

1 for k=s,/=r
b, =4 —1 for k=r,/=s
0 otherwise
then
N
Tr(M B):j%l mjkbkj:mrs_msr: mrs+m:€s:2 Rem;s)
:0,
and if
i for k=s,/=r
b, =41 for k=r,/=s

0 otherwise

GIRARDEAU, SCHIRMER, LEAHY, AND KOCH

PRA 58

then

N
2 mjby ;=1 (mps+mg,)

T(MB)=

:i(mrs_m?s): —21Im(m)=0.

Since this holds for,s=1 to N, all off-diagonal elements of

M must be zero. Hencl vanishes identically and and y
commute.

Theorem 3:Let A be a Hermitian operator of with
eigenvalue decompositiof13), where\;=A,=---=\y be
the eigenvaluesg; , counted with multiplicity, and ordered in
a decreasing sequence. Then we have

N N

E ANk WS TV[AP(U]<E AWy . (18)

Proof: By the previous theorem a necessary condition for
(A(t)) to have an extremum at timg is that A and y

=p(t;) commute. But if they commute then they can be
simultaneously diagonalized. Hence

N
Tr[Aﬁ(tf)]=k21 NWor (i

whereo is a permutation of thev,’s. It is now obvious that

N N
21 )\N—k+1Wk$Tr[A;)(tf)]$kZl N Wk -

Theorem 4:(A(t;)) assumes its upper bound if for &l
=1ltom

span-1,_._dul ¥k (tH))=E(ay), (19
and its lower bound if
span-1, il ¥rkj)(tr) =E(an—k+1), (20

where d(k)=dimE(a,) and r(k,j)=d(1)+---+d(k—1)
+j.

If the w, are all different then the if's in the previous
theorem are really “if and only if's.”

Proof:

(A))=Tr(Ap(t) =2 wi(¥;(1)|AW;(1))
J

=> w,—<\1f,-<t>‘2 aif<ai)wj<t>>
j i
12

=2 w; > ai(a)®;t)
j i

IP=2 afi(b),

:E aiz w; [[T(a) Wit
i 1

where we let
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for i=1 to m by theorem 2. FIG. 1. Optimal pulse, Morse oscillator.
The kinematical lower bound will be realized if
N
d(i -
a p(0)= >, wyn)nl, (23
fN7i+l(tf):jZl Weij) n=1

andE,’}‘= 1W,=1, since the total probability for the system to

be found in any of these eigenstates must be 1.

span-1._ai)| Wript))=E@n_i+1) _Our goal is to d_etermlne the laser fidlft) so as to maxi-
mize the expectation value of the observable

for i=1 tom, which is the case if

for i=1 tom by theorem 2.

Proof: Hence the kinematical maximum ¢A(t)) is de-
termined by the eigenvalues, of A, as well as the eigen-
valueswy of p(t;), and it is attained at time; if the d(1)
eiggnstatesJ‘Pk(tf)> of p(t) with the grgatest 'statistical target timet=t, .
we|ghtsw1,....,wd(1) span thed(.l)-dlmensmnAaI €IgENSPACE 11y the following examples the optimal electric fiefdt)
corresponding to the biggest eigenvalugof A, and if the  of the laser pulse is computed using a nonlinear eigensystem
nextd(2) eigenstates gi(t) corresponding to the next larg- method[3]. Optimization is carried out for a fixed pulse

est statistical weightswg1).1,-.-Wq1)+d2) SPan the lengtht;=200 fs and a sequence of increasing pulse fluences
d(2)-dimensional eigenspace corresponding to the second

H A t
largest eigenvalug, of A, and so forth. Gp:f sz(t)dt,
0

4
A=Ho=n§1 Ealn)(nl, (24)

which corresponds to the energy of the system at a certain

(25

IV. APPLICATION: MAXIMIZING THE ENERGY
where F(t) = p4,f(t)/%, and p,, is the 1—-2 transition di-

As an example for molecular quantum control, we CON-nole moment.

sider a diatomic molecule model withh discrete vibrational
energy levelsE,, corresponding to independent stafe} of

the system. Together, the statg®):n=1,...N} form a A. Morse oscillator model

complete orthonormal basis of the state spac&he unper- In our computations for a HF molecule, we used a four-
turbed Hamiltonian is thus level Morse oscillator model as described[#]. The vibra-
N tional energy levels are determined by
o=, Eqln)nl. (2D 0N 1/ 1
0 e E,=fhog n—z) 1—5(1'1_5)5 (26)

The interaction Hamiltonian of the driven system I-Arlsl

~ 0.40
=f(t)V, wheref(t) is an external laser field that serves as a
control function, and/ is the transition operator, which we 0.35
choose to be of the dipole form  0.30
Nl %025
V=2 dy(In)(n+1]+|n+1)(n]). (22 g
n=1 a-0.20
We consider mixed initial states of the system that are 0.15
statistical mixtures of eigenstatesi&f), i.e., we assign each 0.10 IR R TR S R S R R
pure statgn) a probabilityw,, with 0<w,=<1, wherew,, of 0 20 40 60 8_ 100 120 140 160 180 200

L . Time (fs)
some energy levels may be 0. Hence, the initial state is rep-

resented by the diagonal density operator FIG. 2. Populations, Morse oscillator.
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FIG. 3. Energy, Morse oscillator. FIG. 5. Populations, harmonic oscillator.

to be constant during each optimization step, we expect that
it should be possible to approximate the kinematical upper
bound closely with a physically admissible control fiéld)
for a suitably chosen, increasing sequence of fixed pulse flu-
ences.
o ) o Figure 1 shows the computational results for the optimal
The initial ensemble isn)=|1),... |4) and the statistical pyise. The evolution of the energy level populations, shown
weights of the unperturbed states are given by a Boltzman(y, Fig. 2 for the final fluence 0.25 4, demonstrates that the
distribution initial eigenstatdl) evolves into a state closely approximat-
ing eigenstate4) at the target time}2) into [3), |3) into |2),
and|4) into |1). Notice that this inversion of the ordering of
the populations implies a strongly off-diagonal formmt)
at intermediate times. The final populations for energy levels
1 through 4 are 0.1445, 0.1979, 0.2758, and 0.3834, respec-
tively, agreeing with the initial populatiorigxcept for inver-
sion) to within 2%. The energy curve is shown in Fig. 3. The
final energy wagHo(200)) = 2.257% w, or about 99.94% of
the kinematical upper bound.

for n=1 to 4, wherew,=7.8x 10* s 1 andB=0.0419, and
the dipole moments are
d,=0.09%h*? D,

n=1,...,3. 27)

wp=consx e En/kT with kT=E,—E,, (28
i.e., concretelyw,;=0.3850,w,=0.2758,w;=0.1976, and

w,=0.1416.
Theorem 3 gives the kinematical upper bound

4
<Ho(tf)>s21 W;,E;=2.259Ziw,, (29

B. Harmonic-oscillator model

which is exactly attained if the population of lev€] is w,,
that of levelE, is wy, that ofE; is w,, and that ofE, is wy
by theorem 4.

We performed similar computations for a four-level trun-
cated harmonic-oscillator model with the same energy levels
E; andE, as Eq.(26) but energy level&; andE, adjusted

We verified that this system icompletely controllable  sjightly to achieve equal spacing of adjacent energy levels.
according to theorem 4.1 {i%], or corollary 1(chapter 3in The dipole moments,, and statistical weighte,, were cho-

[6], if the class of admissible controls consists of all boundedsen to be the same as for the HF model, and the goal was
measurable functiongFor a proof of the original result on again to maximize the energy of the system.

Controllability See[7].) Therefore any kinematically attain- Theorem 3 predicts the kinematical upper bound

able state is dynamically reachable for some bounded mea-

surable controlf (t). Although not every bounded measur- 4

abl_e fungtlon is a physmally r'eason'a'ble control, and our (Ho(tf)>$2 W,E,=2.319% w,, (30)
optimization program required in addition the pulse fluence i=1
010 T T T T T T T T T 240 T T T T T T T T T
0.08 - 230 5
006 ‘x ‘ . 220 .
| | |
’\.0.04 r “\ “‘ \‘ \‘ | 1 5210 b
3002 | J VA A A ‘\ iy i 8200 -
=0.00 [r{ -ttt A R f >
§-0.02 L | “ Al | 51'90 ]
| i 1.80 1
-0.04 R ‘ | E
_0.06 H ‘\ ‘ i 1.70 -
-0.08 |- | 4 1.60 -
»010 1 1 \‘I 1 1 1 1 1 1 150 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
Time (fs) Time (fs)

FIG. 4. Optimal pulse, harmonic oscillator.

FIG. 6. Energy, harmonic oscillator.
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which is by theorem 4 exactly attained if the population ofreachability and the structure of the set of accessible target
level Eq is wy, that of levelE, is ws, that ofE; isw,, and  states would therefore be interesting.
that of E, is wy . The final populations for energy levels 1 through 4 are

We verified that the dimension of the Lie algelfmver  0.1478, 0.1987, 0.2726, and 0.3838, respectively, agreeing
the real generated by, andV is less than 16, the maximal with the result predicted by the theorem to within 4%.
dimension for the system, and thus this system is(eom-  The final energy i (200)) = 2.3119: w, or about 99.68%
pletely) controllable_accordmg to theorem 4.1[, or €O~ of the kinematical upper bound. The numerical results for
ollary 1 (chapter 3 in [6]. Nevertheless, the computational ) . .

0tlhe optimal pulse, the evolution of the populations, and

results strongly suggest that the kinematical upper bound f , ¥ .
this particular choice of observable can still be closely apth€ observable for the final fluence 0.28 fsare shown in

proximated dynamically. Future research on dynamicafigs. 4, 5, and 6.
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