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Kinematical bounds on optimization of observables for quantum systems
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Upper and lower kinematical bounds for the expectation values of arbitrary observables of driven quantum
systems in mixed states are derived, and criteria for their attainability established. The results are applied to the
problem of maximizing the energy of a laser-driven four-level Morse oscillator model for HF, as well as a
four-level harmonic-oscillator model.@S1050-2947~98!01510-8#

PACS number~s!: 03.65.Bz, 05.30.2d, 31.70.Hq
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I. INTRODUCTION

Recent advances in laser technology have opened up
possibilities for laser control of phenomena in the quant
regime, such as molecular dynamics or chemical reac
dynamics @1#. The limited success of initially advocate
schemes based largely on physical intuition has promp
researchers in recent years to systematically study these
tems using control theory. This is also the subject of t
paper. We generalize the results in@2# by establishing kine-
matical bounds for the expectation values of arbitrary
servables of driven quantum-mechanical systems. These
results are then applied to the problem of maximizing
energy for a four-level HF~hydrogen fluoride! model and a
four-level harmonic-oscillator model.

II. MATHEMATICAL SETUP

We consider a quantum-mechanical system whose s
spaceH is a separable Hilbert space. Any mixed state of
system can be represented by a density operatorr̂(t) ~acting
onH! with eigenvalue decomposition

r̂~ t !5(
k

wkuCk~ t !&^Ck~ t !u, ~1!

wherewk are the eigenvalues, anduCk(t)& the corresponding
normalized eigenstates ofr̂(t), which evolve in time accord-
ing to the time-dependent Schro¨dinger equation. The eigen
values satisfy

0<wk<1; k and (
k

wk51, ~2!

i.e., they can be ordered in a~possibly finite! nonincreasing
sequence:
PRA 581050-2947/98/58~4!/2684~6!/$15.00
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w1>w2>¯>wk>¯>0.

Unless otherwise specified, we will use the word ‘‘state
in the following to refer to a mixed quantum state repr
sented by a density operatorr̂ acting onH. Let r̂(t i) de-
scribe the initial state of the system. If the system is l
alone, its state will evolve with time according to the qua
tum Liouville equation

]

]t
r̂~ t !52

i

\
@Ĥ0 ,r̂~ t !#, ~3!

whereĤ0 is the Hamiltonian of the system.
The goal of controlling the system is, in general, to dri

it in such a way as to maximize or minimize the expectat
value

^Â~ t !&5Tr@Âr̂~ t !# ~4!

of a given observableÂ, e.g., the energy, at some target tim
t5t f .

When the system is driven, i.e., subject to external c
trol, then the time-evolution equation must be modified
adding a perturbation termĤ1„f(t)… to the HamiltonianĤ0 .
Hence, the controlled system obeys the quantum Liouv
equation

]

]t
r̂~ t !52

i

\
@Ĥ„f~ t !…,r̂~ t !#, ~5!

where

Ĥ„f~ t !…5Ĥ01Ĥ1„f~ t !… ~6!

is the total Hamiltonian, andf(t) ~which may be multidimen-
sional! represents a control function belonging to a class
2684 © 1998 The American Physical Society
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admissible controlsU. The minimum requirement for a con
trol function to be admissible is that it be bounded and m
surable. However, the class of admissible controls may
restricted further to reflect physical or experimental co
straints.

In laser-driven applications, such as laser control of m
lecular dynamics,Ĥ1 is usually the dot product of an exte
nal laser field, which serves as a control function, and
electric dipole operator.

A given initial stater̂(t i) can only evolve into statesr̂(t f)
that are related tor̂(t i) by

r̂~ t f !5Û~ t f ,t i !r̂~ t i !Û
†~ t f ,t i !, ~7!

where Û(t,t i) is the time-evolution operator of the contr
system, which satisfies the Schro¨dinger equation

]

]t
Û~ t,t i !52

i

\
Ĥ„f~ t !…Û~ t;t i !. ~8!

While the concrete dynamical law obeyed byÛ(t,t i) de-
pends on the control system, and thus an input functionf(t),
which is to be determined, it is clear thatÛ(t f ,t i) must be a
unitary operator for any control system. Therefore, only t
get statesr̂(t f) that are related tor̂(t i) as Eq.~7!, for some
unitary operatorÛ(t f ,t i), arekinematically attainable.

Kinematical attainability does not implydynamical reach-
ability, i.e., that there exists an admissible control-traject
pair that would transfer the system from the initial stater̂(t i)
to a target stater̂(t f) for which the expectation value of th
observable assumes its~kinematical! maximum or minimum.
Nevertheless, kinematical bounds impose restrictions on
dynamical evolution of expectation values of observab
and thus knowing these bounds, as well as the set of ta
statesS1 or S2 for which the maximum or minimum is
realized, is useful.

If one tries to solve the optimal control problem of max
mizing ^Â(t f)& numerically, using, e.g., a nonlinear eige
system method as described in@3#, then knowing the exac
kinematical maximum, and for which states it is attaine
provides a way to check the quality of the numerical solut
for the control field: One~numerically! computes the trajec
tories as well as the time-dependent expectation value of
observable for the~numerically! obtained optimal contro
field. If the kinematical bound is dynamically realizable th
the ratio of the computed value of^Â(t f)& and the kinemati-
cal upper bound should approach 1, andr̂(t f) should ap-
proach a point inS1 .

III. KINEMATICAL BOUNDS

Under certain circumstances, kinematical bounds sim
to those we shall derive for finite-dimensional systems
be established for infinite-dimensional systems as w
However, since for practical computational purposes it
necessary to truncate the system to finitely many levels,
shall in the following only consider the case of a syste
whose state space is a Hilbert spaceH of dimensionN
,`.
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Any real observable of a quantum-mechanical system
represented by a Hermitian operatorÂ onH. In the special
case thatÂ is a projector onto a subspace, the followin
result was proved in@2#:

Theorem 1:If Â is a projector onto a subspaceS of di-
mensiond then

^Â~ t !&<(
k51

d

wk;t, ~9!

and if wd11,w1 then we have equality exactly if

spank51,...,duCk~ t !&5S. ~10!

Furthermore, if the state spaceH has finite dimensionN
then

^Â~ t !&> (
k5N2d11

N

wk;t, ~11!

and if wN2d.wN then we have equality exactly if

spank5N2d11,...,NuCk&5S. ~12!

In the case of an arbitrary observableÂ with eigenvalues
ai and corresponding eigenspacesE(ai), we note that~since
H is assumed to be finite dimensional! there exists a unique
eigenvalue decomposition

Â5(
i 51

m

ai Î ~ai !, ~13!

whereÎ (ai) denotes the projector onto the eigenspaceE(ai).
SinceÂ is Hermitian, all its eigenvalues are real and we m
assume that they are ordered in a finite, decreasing sequ
a1.a2.¯.am .

The problem of determining the kinematical maximum
minimum of the expectation value

^Â~ t f !&5Tr@ÂÛ~ t f ,t i !r̂~ t i !Û
†~ t f ,t i !# ~14!

at some fixed timet5t f , for a given mixed initial state
r̂(t i), is equivalent to finding a unitary transformationÛ0
that maximizes or minimizes the value of the function

Û° f ~Û !5Tr@ÂÛ r̂~ t i !Û
†#, ~15!

as a function from the unitary group U(N) to the real num-
bers. f assumes both its maximum and its minimum sin
U(N) is a compact Lie group.

Supposef assumes an extremum atÛ0PU(N). Letting
x̂5Û0r̂(t i)Û0

† , we obtain a map

Û°Tr~ÂÛx̂Û†! ~16!

that has an extremum atÛ51̂ where 1̂is the identity opera-
tor.

Theorem 2:If the mapÛ°Tr(ÂÛx̂Û†) has an extremum
at the identity 1ˆ PU(N) then Â and x̂ commute.
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Proof: Assume Tr(ÂÛx̂Û†) is maximal whenÛ51̂ and
let Û(t) be any path in U(N) which starts at the identity
Then we must have

d

dt
Tr@ÂÛ~t!x̂Û†~t!#U

t50

50.

Since the trace is linear, this is equivalent to

Tr@ÂÛ8~0!x̂Û†~0!1ÂÛ~0!x̂@Û†#8~0!#50.

Observing that Û(0)51̂, and letting (d/dt)Û(t)ut50

5Û8(0)[B̂, we have thus

Tr~ÂB̂x̂1Âx̂B̂†!50. ~17!

If B̂ is the derivative of a pathÛ(t),U(N) at t50 then
it is skew-Hermitian, and conversely, every skew-Hermit
operatorB̂ is the derivative of some pathÛ(t),U(N) at t
50, since the Lie algebra of U(N) consists of all skew-
Hermitian matricesu(N). Therefore condition~17! must
hold for any skew-Hermitian operatorB̂. Using B̂†52B̂,
we can rewrite Eq.~17! as

Tr@~ x̂Â2Âx̂ !B̂#50.

We will show that this condition impliesM̂5@ x̂,Â#50.
Note thatM̂ is skew-Hermitian sincex̂ andÂ are Hermitian.

ChoosingB̂5(bkl ) with

bkl 5H i for k5s,l 5s

0 otherwise

yields

Tr~M̂ B̂!5 (
j ,k51

N

mjkbk j5 iM ss50.

This holds fors51 to N. Hence, all the diagonal elements
M̂ must vanish.

If

bkl 5H 1 for k5s,l 5r

21 for k5r ,l 5s

0 otherwise

then

Tr~M̂ B̂!5 (
j ,k51

N

mjkbk j5mrs2msr5mrs1mrs* 52 Re~mrs!

50,

and if

bkl 5H i for k5s,l 5r

i for k5r ,l 5s

0 otherwise
then

Tr~M̂ B̂!5 (
j ,k51

N

mjkbk j5 i ~mrs1msr!

5 i ~mrs2mrs* !522 Im~mrs!50.

Since this holds forr ,s51 to N, all off-diagonal elements of
M̂ must be zero. HenceM̂ vanishes identically andÂ and x̂
commute.

Theorem 3:Let Â be a Hermitian operator onH with
eigenvalue decomposition~13!, wherel1>l2>¯>lN be
the eigenvaluesai , counted with multiplicity, and ordered in
a decreasing sequence. Then we have

(
k51

N

lN2k11wk<Tr@Âr̂~ t !#<(
k51

N

lkwk . ~18!

Proof: By the previous theorem a necessary condition

^Â(t)& to have an extremum at timet f is that Â and x̂

5 r̂(t f) commute. But if they commute then they can
simultaneously diagonalized. Hence

Tr@Âr̂~ t f !#5 (
k51

N

lkws~k! ,

wheres is a permutation of thewk’s. It is now obvious that

(
k51

N

lN2k11wk<Tr@Âr̂~ t f !#<(
k51

N

lkwk .

Theorem 4:̂ A(t f)& assumes its upper bound if for allk
51 to m

spanj 51,...,d~k!uC r ~k, j !~ t f !&5E~ak!, ~19!

and its lower bound if

spanj 51,...,d~k!uC r ~k, j !~ t f !&5E~aN2k11!, ~20!

where d(k)5dimE(ak) and r (k, j )5d(1)1¯1d(k21)
1 j .

If the wk are all different then the if’s in the previou
theorem are really ‘‘if and only if’s.’’

Proof:

^A~ t !&5Tr~Âr̂~ t !!5(
j

wj^C j~ t !uÂC j~ t !&

5(
j

wj K C j~ t !U(
i

ai Î ~ai !C j ~ t !L
5(

j
wj(

i
ai i Î ~ai !C j~ t !i2

5(
i

ai(
j

wj i Î ~ai !C j~ t !i25(
i

ai f i~ t !,

where we let
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f i~ t ![(
j

wj i Î ~ai !C j~ t !i2.

The kinematical upper bound will be realized att5t f if

f i~ t f !5(
j 51

d~ i !

wr ~ i , j !

for i 51 to m, which is the case if

spanj 51,...,d~ i !uC r ~ i , j !~ t f !&5E~ai !

for i 51 to m by theorem 2.
The kinematical lower bound will be realized if

f N2 i 11~ t f !5(
j 51

d~ i !

wr ~ i , j !

for i 51 to m, which is the case if

spanj 51,...,d~ i !uC r ~ i , j !~ t f !&5E~aN2 i 11!

for i 51 to m by theorem 2.
Proof: Hence the kinematical maximum of^Â(t)& is de-

termined by the eigenvaluesak of Â, as well as the eigen
valueswk of r̂(t i), and it is attained at timet f if the d(1)
eigenstatesuCk(t f)& of r̂(t) with the greatest statistica
weightsw1 ,...,wd(1) span thed(1)-dimensional eigenspac
corresponding to the biggest eigenvaluel1 of Â, and if the
nextd(2) eigenstates ofr̂(t) corresponding to the next larg
est statistical weightswd(1)11 ,...,wd(1)1d(2) span the
d(2)-dimensional eigenspace corresponding to the sec
largest eigenvaluel2 of Â, and so forth.

IV. APPLICATION: MAXIMIZING THE ENERGY

As an example for molecular quantum control, we co
sider a diatomic molecule model withN discrete vibrational
energy levelsEn corresponding to independent statesun& of
the system. Together, the states$un&:n51,...,N% form a
complete orthonormal basis of the state spaceH. The unper-
turbed Hamiltonian is thus

Ĥ05 (
n51

N

Enun&^nu. ~21!

The interaction Hamiltonian of the driven system isĤ1

5 f (t)V̂, wheref (t) is an external laser field that serves a
control function, andV̂ is the transition operator, which w
choose to be of the dipole form

V̂5 (
n51

N21

dn~ un&^n11u1un11&^nu!. ~22!

We consider mixed initial states of the system that
statistical mixtures of eigenstates ofĤ0 , i.e., we assign each
pure stateun& a probabilitywn with 0<wn<1, wherewn of
some energy levels may be 0. Hence, the initial state is
resented by the diagonal density operator
nd

-

e

p-

r̂~0!5 (
n51

N

wnun&^nu, ~23!

and(n51
N wn51, since the total probability for the system

be found in any of these eigenstates must be 1.
Our goal is to determine the laser fieldf (t) so as to maxi-

mize the expectation value of the observable

Â5Ĥ05 (
n51

4

Enun&^nu, ~24!

which corresponds to the energy of the system at a cer
target timet5t f .

In the following examples the optimal electric fieldf (t)
of the laser pulse is computed using a nonlinear eigensys
method @3#. Optimization is carried out for a fixed puls
lengtht f5200 fs and a sequence of increasing pulse fluen

ep5E
0

t f
F2~ t !dt, ~25!

whereF(t)5p12f (t)/\, and p12 is the 1→2 transition di-
pole moment.

A. Morse oscillator model

In our computations for a HF molecule, we used a fo
level Morse oscillator model as described in@4#. The vibra-
tional energy levels are determined by

En5\v0S n2
1

2D F12
1

2 S n2
1

2DBG ~26!

FIG. 1. Optimal pulse, Morse oscillator.

FIG. 2. Populations, Morse oscillator.
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for n51 to 4, wherev057.831014 s21 andB50.0419, and
the dipole moments are

dn50.097n1/2 D, n51,...,3. ~27!

The initial ensemble isun&5u1&,...,u4& and the statistica
weights of the unperturbed states are given by a Boltzm
distribution

wn5const3e2En /kT with kT5E42E1 , ~28!

i.e., concretelyw150.3850, w250.2758, w350.1976, and
w450.1416.

Theorem 3 gives the kinematical upper bound

^Ĥ0~ t f !&<(
i 51

4

wiEi52.2592\v0 , ~29!

which is exactly attained if the population of levelE1 is w4 ,
that of levelE2 is w3 , that ofE3 is w2 , and that ofE4 is w1
by theorem 4.

We verified that this system is~completely! controllable
according to theorem 4.1 in@5#, or corollary 1~chapter 3! in
@6#, if the class of admissible controls consists of all bound
measurable functions.~For a proof of the original result on
controllability see@7#.! Therefore any kinematically attain
able state is dynamically reachable for some bounded m
surable controlf (t). Although not every bounded measu
able function is a physically reasonable control, and
optimization program required in addition the pulse fluen

FIG. 3. Energy, Morse oscillator.

FIG. 4. Optimal pulse, harmonic oscillator.
n

d

a-

r
e

to be constant during each optimization step, we expect
it should be possible to approximate the kinematical up
bound closely with a physically admissible control fieldf (t)
for a suitably chosen, increasing sequence of fixed pulse
ences.

Figure 1 shows the computational results for the optim
pulse. The evolution of the energy level populations, sho
in Fig. 2 for the final fluence 0.25 fs21, demonstrates that th
initial eigenstateu1& evolves into a state closely approxima
ing eigenstateu4& at the target time,u2& into u3&, u3& into u2&,
and u4& into u1&. Notice that this inversion of the ordering o
the populations implies a strongly off-diagonal form ofr̂(t)
at intermediate times. The final populations for energy lev
1 through 4 are 0.1445, 0.1979, 0.2758, and 0.3834, res
tively, agreeing with the initial populations~except for inver-
sion! to within 2%. The energy curve is shown in Fig. 3. Th
final energy waŝĤ0(200)&52.2579\v0 or about 99.94% of
the kinematical upper bound.

B. Harmonic-oscillator model

We performed similar computations for a four-level tru
cated harmonic-oscillator model with the same energy lev
E1 andE2 as Eq.~26! but energy levelsE3 andE4 adjusted
slightly to achieve equal spacing of adjacent energy lev
The dipole momentsdn and statistical weightswn were cho-
sen to be the same as for the HF model, and the goal
again to maximize the energy of the system.

Theorem 3 predicts the kinematical upper bound

^Ĥ0~ t f !&<(
i 51

4

wiEi52.3192\v0 , ~30!

FIG. 5. Populations, harmonic oscillator.

FIG. 6. Energy, harmonic oscillator.
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which is by theorem 4 exactly attained if the population
level E1 is w4 , that of levelE2 is w3 , that ofE3 is w2 , and
that of E4 is w1 .

We verified that the dimension of the Lie algebra~over
the reals! generated byĤ0 andV̂ is less than 16, the maxima
dimension for the system, and thus this system is not~com-
pletely! controllable according to theorem 4.1 in@5#, or cor-
ollary 1 ~chapter 3! in @6#. Nevertheless, the computation
results strongly suggest that the kinematical upper bound
this particular choice of observable can still be closely
proximated dynamically. Future research on dynami
ys

v.
f

or
-
l

reachability and the structure of the set of accessible ta
states would therefore be interesting.

The final populations for energy levels 1 through 4 a
0.1478, 0.1987, 0.2726, and 0.3838, respectively, agre
with the result predicted by the theorem to within 4%

The final energy iŝĤ0(200)&52.3119\v0 or about 99.68%
of the kinematical upper bound. The numerical results
the optimal pulse, the evolution of the populations, a
the observable for the final fluence 0.28 fs21, are shown in
Figs. 4, 5, and 6.
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