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By generalizing to a mixed-state environment the treatment recently given to a model advanced by Cooper
et al. @Phys. Rev. Lett.72, 1337 ~1994!#, we show that some characteristics of the so-called semiquantum
chaos can be described by recourse to a special motion invariant of the problem, that thus becomes a chaos
indicator.@S1050-2947~98!09109-4#
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I. INTRODUCTION

In recent years, the study of semiclassical models
which a few classical variables interact with quantum on
has received renewed impetus~see, for instance, Refs.@1–3#
and references therein!. These systems can be understood
the \→0 limit, either by reference to the effective potenti
approach@4,5# or by recourse to standard semiclassical tre
ments~WKB, for example!. Such systems, characterized
the coexistence of both classical and quantum degree
freedom, have been recently employed, for instance, by B
illa and Guinea, who in such a fashion described meas
ment processes@6#, and also by Pattanayak and Schieve, w
studied quantum chaos by recourse to an appropriate, e
tive classical Hamiltonian@7#.

In this paper we shall traverse the road paved by
above-cited works, and investigate the interaction, betwe
quantum system and a classical one, described by the Ha
tonian

Ĥ5 1
2 @ p̂21PA

21v2x̂2#, ~1!

wherex̂ and p̂ are quantum operators,v25m21e2A2, m is
the mass, andA and PA are classical canonical conjugate
variables. This is, indeed, the Hamiltonian studied by Co
per et al. @1#, that represents the zero-momentum part of
problem of pair production of charged mesons by a stro
external electric field@1#.

Interestingly enough, these authors encountered cha
behavior~semiquantum chaos! associated with the working
of such a Hamiltonian, and concluded that one has to give
long-term forecasting for quantum-mechanical probabilit
@1#. This work of Cooperet al. @1# was recently generalize
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to a fully quantum treatment of the concomitant problem
Ref. @8#.

It is our intention here that of generalizing the treatme
given in Ref.@1# from a pure-state environment to a mixe
state one, which entails working with density matrices.
discussion of the Gaussian density-matrix formalism can
found in Refs.@9,10#. Additionally, in this Brief Report we
wish to show that an appropriately constructed invariant
the motion serves as a quantitative indicator of Coo
et al.’s semiquantum chaos@1#.

The dynamical evolution~Heisenberg picture! of a quan-
tal operatorÔ is the canonical onedÔ/dt5( i /\)@Ĥ,Ô#, and
we assume that the classical degrees of freedom obey
deterministic classical equations of motion. Following sta
dard procedures~see, for example, the illuminating discu
sion of Ref.@11#!, the energy is taken to coincide with th
quantum expectation value of the Hamiltonian, that in tu
generates the temporal evolution of the classical variab
Consequently, the classical equations of motion to be u
here are well-defined ones. If we take the classical variab
to be the positionA and the momentumPA , we write

dA

dt
5$^Ĥ&,PA%,

dPA

dt
5$^Ĥ&,A%. ~2!

It is of importance to point out that here one faces an ea
solvable set of equations for the description of the time e
lution of expectation values~EV’s!. Ours is a particular in-
stance of that case in which the EV’s of, say,q relevant
operators are the focus of interest,and these operators close
under commutation, a partial Lie algebra with respect to
HamiltonianĤ of the system. We have then a set of relatio
of the type@2#

@Ĥ~ t !,Ôj #5 i\(
i 51

q

gi j ~ t !Ôi , j 51,2, . . . ,q, ~3!
2596 © 1998 The American Physical Society
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wheregi j are the elements of aq3q matrix G. The gener-
alized Ehrenfest theorem@12# here yields a set of first-orde
differential equations

d^Ôj&
dt

52(
i 51

q

gi j ~ t !^Ôi&, j 51,2, . . . ,q, ~4!

for the temporal evolution of the EV’s of ourq relevant
operators, which, in turn, will,for our Hamiltonian Ĥ, de-
pend on the classical ones through thegji elements of the
matrix G @2#. The time evolution being canonical, all com
mutation relations are trivially conserved for all times@2#.

II. EQUATIONS OF MOTION AND THE INVARIANT I

Following Ref.@1#, we recast things in terms of adimen
sional variables (\51), i.e., x̂85m1/2x̂, p̂85 p̂/m1/2,
A85m1/2A, and PA85PA /m1/2, together with t85mt,
e85e/m3/2, and v85v/m. For the sake of notational sim
plicity, we afterwards exchange primed and unprimed qu
tities. The set of operators$x̂2,p̂2,L̂5 x̂p̂1 p̂x̂%, closes, under
commutation, a partial semialgebra of the above-mentio
kind, so that we are led to

d^x̂2&
dt

5^L̂&, ~5a!

d^ p̂2&
dt

52v2^L̂&, ~5b!

d^L̂&
dt

52~^ p̂2&2v2^x̂2&!, ~5c!

dA

dt
5PA , ~5d!

dPA

dt
52e2A^x̂2&, ~5e!

with

v2511e2A2. ~6!

One appreciates here the fact that Eqs.~5! constitute an au-
tonomous system of nonlinear coupled equations that g
erns the time evolution of our relevant variables. Of cour
studying the dynamics governed by Eqs.~5! entails working
in a mixed-state environment, as only expectation values
involved and one never deals indirect fashion with the den-
sity matrix, so there is no way of imposing an idempoten
requirement. We shall now pay special attention to the qu
tities

I 5^x̂2&^ p̂2&2
^L̂&2

4
, ~7a!

E5 1
2 @^ p̂2&1PA

21v2^x̂2&# ~7b!

~total energy per unit mass!, that happen to beinvariants of
the motion@3#. The former will play a leading role in ou
-

d

v-
,

re

y
n-

considerations. Notice that Eq.~7a! allows for the elimina-
tion of one of our quantum variables, as, for instance,

^ p̂2&5
1

4^x̂2&
~^L̂&214I !, ~8!

which is to be inserted into Eq.~5!. For the sake of facilitat-
ing comparisons with Ref.@1#, it is convenient to use Coope
et al.’s notation, i.e., to setG(t)5^x̂2&(t), so that our equa-
tions of motion become

1

2
S G̈

G
D 2

1

4
S Ġ

G
D 2

2
I

G2
1v250, ~9a!

Ä1e2GA50, ~9b!

which closely resemble the equations of motion of Ref.@1#.
Indeed, the above relations becomeidentical to their coun-
terparts in Ref.@1#, for theparticular case I5 1

4 . The invari-
ant I will play a leading part in what follows, so that it is o
importance to ascertain its significance.

Consider the quantum correlations@2# ^K̂11&5Dx2

5^ x̂2&2^x̂&2, ^K̂22&5Dp25^ p̂2&2^ p̂&2, and ^K̂12&5^L̂&
22^x̂&^ p̂&. In terms of them, Heisenberg’s uncertainty pri
ciple can be cast in the fashion@12#

^K̂11&^K̂22&2
^K12&

2

4
>

1

4
. ~10!

We gather from a comparison of Eq.~10! to the formI given
in the first of Eqs.~7!, that I values are intimately related t
the uncertainty principle. Indeed, minimization ofI with the
constraint that Eq.~10! adopts its minimum possible valu

( 1
4 ), leads to the valueI 5 1

4 , investigated by Cooperet al.
@1#. The caseI 5 1

4 ~minimum uncertainty! corresponds to a
pure state witĥ N̂&50. This assertion is immediately ver
fied by writing I in terms of the second quantization oper
tors a anda† @cf. the ansatz~5! of Ref. @1##, which leads to

I 5^N̂11/2&22^â2&^~ â†!2&, ~11!

where N̂5a†a stands for the number operator, and t
Wronskian condition of Eq.~6! in Ref. @1# has been em-
ployed. For the initial conditionŝN̂&5n and ^â2&50 @or

^(â†)2&50], Eq. ~11! adopts the appearanceI 5(n11/2)2,
which shows thatI grows in quadratic fashion with the mea
number of phononsn.

The natural question to be asked is, thus, what happ
for other ~larger! I values? Providing an answer is theleit-
motif of the present Brief Report.

I is bounded from below, but possesses an~energy-
dependent! upper bound as well, as it is easily seen fro
Eqs. ~7! by consideringA, ^L̂&, and ^x̂2& as independen
variables. One concludes thatI varies within the range

1

4
<I<

E2

v2
2

^L̂&2

4
. ~12!
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The dynamics described by the set of Eqs.~5! is suitably
restricted by the existence of the invariants of the motion~7!
to a submanifold of dimension 3, on account of the inequ
ity ~12!.

Now, the lowestI value investigated by Cooperet al. @1#
corresponds to a situation that they showed is character
by semiquantum chaos. One may wonder whether by a
mentingI one may not be able to observe a gradual van
ing of the chaotic features. If so, this should be of intere
because the invariantI will provide one with a signature o
semiquantum chaos.

Accordingly, the set formed by all possible initial cond
tions ~ic’s! becomes subdivided into ic subsetscompatible
with specified fixed values of the invariantsI and E. The
idea is then to~i! fix an E value and then choose differentI
values in the pertinent range~12!, that determines the phas
space segment of interest;~ii ! select an initial value forA
~which fixesv), and then choose suitable initial values f

^L& and ^x̂2&; and ~iii ! let the system evolve and dra
graphs1 ^L̂& versus^x̂2&.

One finds out that the global2 degree of ‘‘chaoticity’’
~GCD! decreases asI is augmented. Indeed, regular orb
are to be found whenI approaches its maximum allowe
value (I max5E2). On the other hand, if we proceed to fix a
I value and then choose differentE-values in the appropriate
range, then the GCD grows withE ~as expected!.

Changes become noticeable around a ‘‘signal point’’

IP5
E211/4

2
~13!

1Poincare´’s surfaces of section.
2The meaning of ‘‘global’’ is given in the text below Eqs.~16!.

FIG. 1. Poincare´ surfaces of section:̂L̂& vs ^x̂2&, for E55,
A(t50)50, and e5m51. I takes the values~a! 0.25 ~chaotic
regime, minimum uncertainty!, ~b! 12 ~transition region!, ~c! 20
~regular regime starts becoming evident!, and ~d! 22 ~regular re-
gime!. See text for the units of these quantities.
l-

ed
g-
-

t,

~with error bars of the order of a 15%). Roughly speakin
one finds chaos forI<IP , and ‘‘regular orbits’’ forI .IP .

Some relevant Poincare´ surfaces ~section cuts with
A50) are depicted in Fig. 1. All our orbits are enclos
within the region circumscribed by the curve

~^x̂2&2E!21S ^L̂&
2

D 2

5E22I , ~14!

a result easily obtained from Eqs.~7!. This curve ~with
A50 and PA50) represents a stable periodic solution f
the system of equations~5!. The transition process from
‘‘regular orbits’’ to chaotic ones can be clearly appreciate

III. A MORE QUANTITATIVE CRITERION

In order to discriminate between chaotic and regular
bits, it is advisable at this point to make use of a more qu
titative technique, Lyapunov’s exponent approach consti
ing the paramount alternative. However, we found

FIG. 2. ~a! Relative number of chaotic orbits vsI , as determined
by the mutual information criteria given in the second paragra

below Eqs.~16!. To this effect the initial condition̂ x̂2&(t50) is

subjected to a small shift (e5D^x̂2&51024). We take, as in Fig. 1,
E55, A(t50)50, ande5m51, but here for 100 different value
of I . For eachI value, we average over 132 orbits, corresponding

distinct, randomly selected initial values (^L̂&, ^x̂2&). ~b! Relative
number of chaotic orbits vsI , as in Fig. 2~a!, but for E54.
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convenient here, for simplicity’s sake, to employ the indic
tor of chaos recently advanced in Ref.@13#. Consider two
vectorsy1(t), y2(t) in RN, characteristic of a given orbit
but corresponding to slightly different initial conditions ‘‘1’
and ‘‘2.’’ We assume that the difference~221! is measured
by some suitable small quantitye5uy2(0)2y1(0)u. The or-
bits’ lengths traversed during an appropriate timeT are given
by Lk5*0

Tdtudyk /dtu, k51 and 2, and we denote b
L(1,2) the total length of the parametric curve@y1(t),y2(t)#.
Consider now the normalized quantities

pk~ t !5
1

Lk
U dyk

dt U, k51,2, ~15a!

p~1,2!~ t !5
1

L~1,2!
S dy1

2

dt
1

dy2
2

dt D 1/2

. ~15b!

A fundamental tenet of information theory establishes t
suitable information measures~IM’s ! can be associated wit
these$pk%. Following Fraser and Swinney@14#, the authors
of Ref. @13# made use of the three Shannon IM’s~computed
up to timeT)

Sk52E
0

T

dt pkln~pk!, k51,2, ~16a!

S~1,2!52E
0

T

dt p~1,2!ln p~1,2!, ~16b!

I ~1,2!5S~1,2!2 1
2 ~S11S2!. ~16c!

The ‘‘mutual information’’ I (1,2) can discriminate betwee
regular and chaotic orbits, as demonstrated in Ref.@13# with
reference to orbits pertaining to the celebrated He´non-Heiles
potential@15#.

After comparing it to other chaos indicators, it was sho
in Ref. @13# that I (1,2) constitutes a rather efficient one. O
finds that @13# I (1,2)!e gives a ‘‘regular’’ regime, and
I (1,2)>e yields a ‘‘chaotic’’ one. We have compute
hy

E

-

t

I (1,2), in the case of our system, for different values of t
relevant parameters. Figure 2 illustrates some typical res
We tooke'1024. As global properties are of interest her
we have performed ‘‘phase-space averages’’~mean values
over all initial conditions compatible with given values ofE
and I ). Averages overA(t50) are not performed, so as t
be able to compare the results of Fig. 2~a! to these of Fig. 1.
In any case, our results are not very sensitive to
A(t50)-value. Figure 2~b! is similar to Fig. 2~a!, but a dif-
ferent value of the energy~hereE54) is used. Comparison
of Figs. 2~a! and 2~b! illustrates the fact that the location o
the signal point strongly depends upon theE value.

‘‘Chaoticity’’ diminishes asI grows toward its maximum
value I max5E2, where the system of Eqs.~5! attains its only
~unique! fixed point (̂ x̂2&5I 1/2, ^ p̂2&5I 1/2, ^L̂&50, A
50, and PA50), which is stable. The above-mentione
stable periodic solution goes over to the fixed point forI
5I max. The signal points, located atI[14.5 @Fig. 2~a!# and
I[8.125 @Fig. 2~b!#, indicate the beginning of the ‘‘chaos
free’’ zone. We see that a transition region between a z
that exhibits chaos and one free of it can clearly be appr
ated.

IV. CONCLUSIONS

Based upon the semiclassical treatment of Cooperet al.
@1#, we have shown here that, in their model, the chaos
chaos-free transition regime can be investigated by reco
to one of the model’s invariants, namely,I . This transition
region becomes delineated in nitid fashion,I values seem-
ingly yielding the milestones of a route that traverses
road toward chaos.
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