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By generalizing to a mixed-state environment the treatment recently given to a model advanced by Cooper
et al. [Phys. Rev. Lett72, 1337 (1994], we show that some characteristics of the so-called semiquantum
chaos can be described by recourse to a special motion invariant of the problem, that thus becomes a chaos
indicator.[S1050-294{@8)09109-4

PACS numbegps): 03.65.Sq, 05.45:b, 95.10.Fh

I. INTRODUCTION to a fully quantum treatment of the concomitant problem in
Ref.[8].

In recent years, the study of semiclassical models in It is our intention here that of generalizing the treatment
which a few classical variables interact with quantum onegiven in Ref.[1] from a pure-state environment to a mixed-
has received renewed impet{see, for instance, Refgl—-3]  state one, which entails working with density matrices. A
and references therginThese systems can be understood, indiscussion of the Gaussian density-matrix formalism can be
the #—0 limit, either by reference to the effective potential found in Refs[9,10]. Additionally, in this Brief Report we
approach4,5] or by recourse to standard semiclassical treatwish to show that an appropriately constructed invariant of
ments(WKB, for examplé. Such systems, characterized by the motion serves as a quantitative indicator of Cooper
the coexistence of both classical and quantum degrees et al’s semiquantum chadd].
freedom, have been recently employed, for instance, by Bon- The dynamical evolutiofiHeisenberg pictupeof a quan-
illa and Guinea, who in such a fashion described measurea| operatoiO is the canonical ondO/dt=(i/%)[H,0], and
ment processg$], and also by Pattanayak and Schieve, whowe assume that the classical degrees of freedom obey the
studied quantum chaos by recourse to an appropriate, effegreterministic classical equations of motion. Following stan-
tive classical Hamiltoniaf7]. dard procedure$see, for example, the illuminating discus-

In this paper we shall traverse the road paved by th&ion of Ref.[11]), the energy is taken to coincide with the
above-cited works, and investigate the interaction, between guantum expectation value of the Hamiltonian, that in turn
quantum system and a classical one, described by the Hamienerates the temporal evolution of the classical variables.

tonian Consequently, the classical equations of motion to be used
here are well-defined ones. If we take the classical variables
A=1 [f)2+ Pi+w2§<2] (1) to be the positiorA and the momentun®,, we write
dA . Pa -
wherex andp are quantum operators>=m?+e?AZ, m is H_{<H>’PA}' dt ={(H).A}. @

the mass, and\ and P, areclassical canonical conjugates

variables This is, indeed, the Hamiltonian studied by Coo- |t js of importance to point out that here one faces an easily

peret al.[1], that represents the zero-momentum part of thesolvable set of equations for the description of the time evo-

problem of pair production of charged mesons by a strongution of expectation valuegEV's). Ours is a particular in-

external electric field1]. stance of that case in which the EV's of, sayrelevant
Interestingly enough, these authors encountered chaotigperators are the focus of intereatid these operators close,

behavior(semiquantum chapassociated with the workings under commutation, a partial Lie algebra with respect to the

of such a Hamilton_ian, and concluded that one has to gi_v_e_ UBjamiltonianA of the system. We have then a set of relations
long-term forecasting for quantum-mechanical probab|I|t|esOf the type[2]

[1]. This work of Coopeeet al.[1] was recently generalized

q
H(t),0,1=i%> g:(H)0;, j=12,...a (3
* Author to whom correspondence should be addressed. [H® '] 2:1 g”( )0 : A ©

1050-2947/98/58)/25964)/$15.00 PRA 58 2596 © 1998 The American Physical Society



PRA 58

whereg;; are the elements of @< q matrix G. The gener-
alized Ehrenfest theorefd 2] here yields a set of first-order
differential equations

d(O;) ] - .

g =2 GM(0), =124, @
for the temporal evolution of the EV’s of ouy relevant
operators, which, in turn, willfor our Hamiltonian H de-
pend on the classical ones through the elements of the
matrix G [2]. The time evolution being canonical, all com-
mutation relations are trivially conserved for all timex.

IIl. EQUATIONS OF MOTION AND THE INVARIANT |

Following Ref.[1], we recast things in terms of adimen-
sional variables =1), ie., X'=mY%, p’'=p/m*3
A'=m'2A, and Pp=P,/m*2 together with t'=mt,
e’=e/m*®? and w’'=w/m. For the sake of notational sim-
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considerations. Notice that E¢ra) allows for the elimina-
tion of one of our quantum variables, as, for instance,

1
4(x?)

(p?)= (L)2+41), ®

which is to be inserted into E@5). For the sake of facilitat-

ing comparisons with Ref1], it is convenient to use Cooper
et al’s notation, i.e., to seG(t) =(x?)(t), so that our equa-

tions of motion become

1 G) 1('@ Z - o
2\s) alg] “@t Y (94
A+e’GA=0, (9b)

which closely resemble the equations of motion of R&f.
Indeed, the above relations becoidentical to their coun-

plicity, we afterwards exchange primed and unprimed quanterparts in Ref[1], for the particular case k ;. The invari-

tities. The set of operatof?,p?,L=xp+ px}, closes, under

ant! will play a leading part in what follows, so that it is of

commutation, a partial semialgebra of the above-mentionelinPortance to ascertain its significance.

kind, so that we are led to

d(x?) .
dt _<L>* (56\)
d(p? .
P i), (5
d(L . .
%=2(<p2>—w2<x2>>. (50
dA
gt - Par (5d)
dd% =—e?A(x?), (50
with
w?=1+e?A% (6)

One appreciates here the fact that E&$.constitute an au-

Consider the quantum correlationg2] (Ki;)=Ax?
= ()= (%)%, (Rzy=Ap=(p)— (P2 and (Ry)=(L)
—2(x){p). In terms of them, Heisenberg’s uncertainty prin-
ciple can be cast in the fashi¢h2]

(K1p)?
4

1
>

7 (10

(R (Koo —
We gather from a comparison of Ed.0) to the forml given
in the first of Eqs(7), thatl values are intimately related to
the uncertainty principle. Indeed, minimization lofith the
constraint that Eq(10) adopts its minimum possible value
(%), leads to the valué=3%, investigated by Coopegt al.
[1]. The casd =3 (minimum uncertaintycorresponds to a
pure state withN)=0. This assertion is immediately veri-
fied by writing | in terms of the second quantization opera-
torsa anda’ [cf. the ansatZ5) of Ref.[1]], which leads to

I =(N+1/2)2—(a?)((a")?), (1D

where N=a'a stands for the number operator, and the

tonomous system of nonlinear coupled equations that gowVronskian condition of Eq(6) in Ref. [1] has been em-
erns the time evolution of our relevant variables. Of coursep|oyed. For the initial conditiongN)=n and(a?)=0 [or

studying the dynamics governed by E¢®). entails working

in a mixed-state environment, as only expectation values ar.

involved and one never deals direct fashion with the den-
sity matrix, so there is no way of imposing an idempotenc
requirement. We shall now pay special attention to the qu
tities

(D)2
=Gy -5, 7a
E=3[(p?)+Pat+ 0X(x?)] (7b)

(total energy per unit magsthat happen to bawvariants of
the motion[3]. The former will play a leading role in our

(a")?)=0], Eq. (11) adopts the appearante: (n+ 1/2)?,
hich shows that grows in quadratic fashion with the mean
number of phonons.

Y The natural question to be asked is, thus, what happens
A¥or other (largep | values? Providing an answer is thet-

motif of the present Brief Report.

| is bounded from below, but possesses (@mergy-
dependentupper bound as well, as it is easily seen from
Egs. (7) by consideringA, (L), and (x?) as independent
variables. One concludes thlavaries within the range

>2

I
/\)

n
Slm

(12

N
2
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FIG. 1. Poincaresurfaces of sectior(L) vs (x?), for E=5, 7 ’
A(t=0)=0, ande=m=1. | takes the valuega) 0.25 (chaotic o
regime, minimum uncertainty (b) 12 (transition regioh, (c) 20 zZ 0.54 b
(regular regime starts becoming eviderdand (d) 22 (regular re-
gime). See text for the units of these quantities. 031 T
The dynamics described by the set of E¢. is suitably 0,14 T
restricted by the existence of the invariants of the motion
. . . H _ -0,1 T T T T T
;tt(;z?lszl;bmanlfold of dimension 3, on account of the inequal 52500 1575 81250 12,0025 16,0000
Now, the lowest value investigated by Coopet al.[1] I

corresponds to a situation that they showed is characterized 5 5 (a) Relative number of chaotic orbits ¥sas determined

by Se_mlquantum chaos. One may wonder whether by f_iUQD'y the mutual information criteria given in the second paragraph
mentingl one may not be able to opserve a gradual. vanishg o\, Egs.(16). To this effect the initial conditioqx?)(t=0) is
ing of the chaotic features. If so, this should be of interest, " _ N I
because the invariamtwill provide one with a signature of Eu_bgecze(?_mo?_sgna!nzh;f_kié<1X %;tlr?erg .f(\),:/i(;gkgi’ffzfel:‘lltlfllgl.uts
Ser/zl;qc%?gitﬁg?yc?ﬁgzet formed by all possible initial cond of I. For eacH value, we average over 132 orbits, corresponding to
, - - PO .
tions (ic’'s) becomes subdivided into ic subsetsmpatible gf;;gcefr ;?T:ggtl?:: zﬂﬁg?ﬁi '2:"?] ;?IUZ%OBSE fi))r'éi) 4Relat've
with specified fixed values of the invariantsand E. The 9. 48, '
idea is then tdi) fix an E value and then choose differeint
values in the pertinent rang&?2), that determines the phase
space segment of interegti) select an initial value foA
(which fixesw), and then choose suitable initial values for
(L) and (x?); and (iii) let the system evolve and draw
graphs (L) versus(x?).

One finds out that the glodadegree of “chaoticity” A
(GCD) decreases ak is augmented. Indeed, regular orbits ((x?)—E)%+
are to be found whem approaches its maximum allowed
value (| max=E?). On the other hand, if we proceed to fix an
| value and then choose differdatvalues in the appropriate
range, then the GCD grows with (as expected

Changes become noticeable around a “signal point”

(with error bars of the order of a 15%). Roughly speaking,

one finds chaos for<1,, and “regular orbits” forl >1 .
Some relevant Poincarsurfaces (section cuts with

A=0) are depicted in Fig. 1. All our orbits are enclosed

within the region circumscribed by the curve

~ 2

%) =E%-1, (14)

a result easily obtained from Eq$7). This curve (with
A=0 andP,=0) represents a stable periodic solution for
the system of equationé). The transition process from
“regular orbits” to chaotic ones can be clearly appreciated.

E2+1/4
lp= 2 13 ll. A MORE QUANTITATIVE CRITERION

In order to discriminate between chaotic and regular or-

bits, it is advisable at this point to make use of a more quan-

!Poincares surfaces of section. titative technique, Lyapunov’s exponent approach constitut-
°The meaning of “global” is given in the text below Eqgl6). ing the paramount alternative. However, we found it
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convenient here, for simplicity’s sake, to employ the indica-1(1,2), in the case of our system, for different values of the
tor of chaos recently advanced in RgL3]. Consider two relevant parameters. Figure 2 illustrates some typical results.
vectorsy; (1), y,(t) in RN, characteristic of a given orbit, We took e~10 “. As global properties are of interest here,
but corresponding to slightly different initial conditions “1” we have performed “phase-space averagésiean values
and “2.” We assume that the differen¢8—1) is measured over all initial conditions compatible with given values Bf
by some suitable small quantits=|y,(0)—y,(0)|. The or- andl). Averages oveA(t=0) are not performed, so as to
bits’ lengths traversed during an appropriate timare given  be able to compare the results of Figa2to these of Fig. 1.
by Lszgdtldyk/dt|, k=1 and 2, and we denote by In any case, our results are not very sensitive to the
L(1,2) the total length of the parametric cufsg(t),y»(t)]. ~ A(t=0)-value. Figure @) is similar to Fig. Za), but a dif-
Consider now the normalized quantities ferent value of the energthereE=4) is used. Comparison
of Figs. 2a) and 2b) illustrates the fact that the location of

(t)= — % k=12 (159 the signal point strongly depends upon thesalue.
Pl = Ly dt|” — 7% “Chaoticity” diminishes asl grows toward its maximum
, ) 12 valuel ., =E? where the system of Eq5) attains its only
(1,2)(t)= o %J’_ dyz (15b) (unique fixed point (x?)=1*2 (p®)=1*"% (L)=0, A
(L L(1,2\ dt ~ dt =0, and P,=0), which is stable. The above-mentioned

stable periodic solution goes over to the fixed point for
A fundamental tenet of information theory establishes that=|__ . The signal points, located &t 14.5[Fig. 2a)] and

suitable information measuréV’s) can be associated with | =8.125[Fig. 2(b)], indicate the beginning of the “chaos-
these{p,}. Following Fraser and Swinnejl4], the authors  free” zone. We see that a transition region between a zone

of Ref.[13] made use of the three Shannon IM&®mputed  that exhibits chaos and one free of it can clearly be appreci-
up to timeT) ated.

.
Sk:_f dt pdn(py), k=1.2, (163 IV. CONCLUSIONS
0

Based upon the semiclassical treatment of Coatet.
T [1], we have shown here that, in their model, the chaos to
S(1,2)= —f dt p(1,2Inp(1,2), (16b) chaos-free transition regime can be investigated by recourse
0 to one of the model’s invariants, namely, This transition
region becomes delineated in nitid fashidnyalues seem-
ingly yielding the milestones of a route that traverses the
road toward chaos.

1(1,2=S(1,2 - 3(S;+ ). (160

The “mutual information” 1 (1,2) can discriminate between
regular and chaotic orbits, as demonstrated in Rled] with
reference to orbits pertaining to the celebratechdteHeiles
potential[15]. A.M.K. and A.N.P. acknowledge support from Comisio

After comparing it to other chaos indicators, it was shownde Investigaciones Cieffisas de la Provincia de Buenos
in Ref.[13] thatl (1,2) constitutes a rather efficient one. One Aires (CIC). M.T.M., J.N., and A.P. acknowledge support
finds that[13] 1(1,2)<e gives a “regular’ regime, and from Consejo Nacional de Investigaciones Ciicds y Tec-
1(1,2)=€ yields a “chaotic’ one. We have computed nologicas(CONICET).
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