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Elimination of spatiotemporal disorder by Fourier space techniques

G. K. Harkness, G.-L. Oppo, R. Martin, A. J. Scroggie, and W. J. Firth
Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG, Scotland

~Received 26 March 1997; revised manuscript received 25 March 1998!

A recently proposed method for the stabilization of unstable patterns uses an instantaneous feedback derived
from the Fourier transform of the output@R. Martin et al., Phys. Rev. Lett.66, 4007~1996!#. We successfully
extend this method to regimes of spatiotemporal disorder. By focusing on two different nonlinear optical
systems, a laser and a Kerr slice with feedback, we demonstrate the usefulness, effectiveness, and generality of
the technique. Our method allows for high power outputs without loss of spatial and temporal coherence. It
also provides the possibility of pattern selection and, in some instances, tracking within a disordered regime.
@S1050-2947~98!11209-X#

PACS number~s!: 42.65.Sf, 47.54.1r
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I. INTRODUCTION

The coupling of spatial and temporal degrees of freed
in nonlinear dynamical systems often leads to loss of s
tiotemporal coherence. A simple suppression of such beh
ior can be obtained by reducing either the nonlinearity or
number of spatial degrees of freedom~as in the use of aper
tures in laser cavities!. Such approaches always result in s
rious limitations for practical applications. A less restricti
restoration of spatial and temporal order is a highly desira
feature in fields as diverse as laser and plasma physic
well as hydrodynamics.

Several techniques have recently been proposed to
press spatiotemporal disorder in systems governed by pa
differential equations@1–8#. One such approach has been
decompose the system onto a small number of spatial m
and then to apply the standard techniques of temporal con
@9–11# to the resulting low-dimensional system@1,2,4,8#.
Other methods require complicated mathematical trans
mations, which makes them difficult to implement in expe
mental systems with fast dynamics@2,3,5#. Finally, specific
techniques have been successfully developed for partic
types of instability or spatiotemporal structure@3,6#.

The stabilization method we recently introduced@12# is
based on feedback of spatial information filtered in Four
space and is particularly amenable to application in opt
This is because, in an optical system, it is easy to obtain
spatial Fourier transform~or far-field! by using a single lens
the control technique can then be implemented in a fu
optical manner@13#. In @12# we focused on the use of such
technique to stabilize, select, and track unstable patterns.
usefulness of filtering in Fourier space for control purpo
has also recently been discussed in conjunction with opt
delay for one-dimensional models of semiconductor las
@14#. It is important to stress that the method introduced
@12# and applied here uses no delay since the feedback
is several orders of magnitude faster than the character
time scale of our mean-field dynamics and the feedbac
coherent with the optical field. Note also that the absenc
delay simplifies application to experiments and numeri
simulations.

In this paper, we describe the extension of the Fou
space technique introduced in@12# to the elimination of spa-
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tiotemporal disorder, and discuss the feasibility of such
periments in nonlinear optics. To this end, we will discu
the application of our control method to two specific optic
models that display pattern formation and optical turbulen
a Kerr slice with feedback mirror@15–17# and a broad-area
laser@18,19#. These systems display spatiotemporal disor
induced by instabilities of a different nature, as will be e
plained later. The successful elimination of spatial and te
poral disorder for a wide range of parameter values in b
systems is an indicator of the generality of our method.

II. ELIMINATION OF DISORDER IN A LIQUID CRYSTAL
LIGHT VALVE MODEL

Our first example is a variant of a model describing a K
slice with feedback mirror, as introduced in Ref.@15#, and
later realized in many experiments@20–23#. In many of these
realizations the Kerr nonlinearity is synthesized with
liquid-crystal light valve ~LCLV ! with a feedback signal.
Such a system was originally introduced by Akhmanovet al.
@24#; for a discussion of the LCLV device and its relation
the Kerr slice configuration, see@25#. The LCLV is a hybrid
electrical/optical device that allows the phase shift of
‘‘read’’ beam to be controlled by the intensity of a ‘‘write’
beam. This phase shifted input field is fed back so as to
on the ‘‘write’’ side of the LCLV after some distance of fre
space propagation. The loop also contains an output cou
of reflectivity R0 . Figure 1 shows details of the setup. F
this system, the model equations@16,17# can be written as

2S ]2

]x2
1

]2

]y2D n1
]n

]t
1n5uBu2, ~1!

whereB(x,y), the backward field incident on the ‘‘write’’
side of the LCLV, is related to the input optical field
F(x,y), through the relation

B~x,y,t !5AR0 expS is
]2

]x2
1 is

]2

]y2D F exp~ ixn!. ~2!

The variablen(x,y) is the excitation of the simulated Ker
medium; x measures the strength of the phase modula
ands measures the relative strengths of field diffraction a
2577 © 1998 The American Physical Society
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diffusion of the medium excitation. The time variablet has
been normalized to the LCLV reaction time, which
typically in the range of tens of milliseconds or longe
The spatial variables (x,y) have been normalized to th
LCLV diffusion length, which in real systems is around 50
100 mm @23#.

For the LCLV system we consider a plane wave inp
field F5AI that describes the central part of the broad a
beams used in such experiments@23#. For input intensities
above some threshold, the plane wave output beam l
stability and forms a hexagonal pattern. For larger value
I , the hexagonal pattern breaks into fluctuating spots of li
@17#. In the case of strong diffusion, this instability leads
‘‘turbulent’’ motion shown in Fig. 2. The Fourier transform
averaged over several hundred units of time@Fig. 3~a!#,
clearly shows a large number of excited wave vectors. S
disorder strongly reduces spatial correlations, which decre
to around a tenth of the system size in the ‘‘turbulent’’ r
gime, as shown in Fig. 3~b!. The spatiotemporal correlatio
of the output intensityI shown in Fig. 3~b! is defined by

C~r !5^Š^I ~x8,t !I ~x,t !&x2^I 2~x,t !&x‹t&f , ~3!

where (r ,f) are the polar coordinates of the two
dimensional vectorx2x8, and ^•••&a indicates an averag
over the quantitya. The power spectrum of the light inten

FIG. 1. A schematic diagram showing the control scheme
propose for the LCLV with feedback system.
t
a

es
of
t
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sity sampled locally is broadband, as shown in Fig. 3~c!. All
of these quantities quantify the degree of disorder of
system.

We can inhibit this spatiotemporal disorder by a numb
of equivalent approaches based on the Fourier techniqu
Ref. @12#. First, an additional feedback loop can be includ
into the LCLV setup, as shown in Fig. 1. By a simila
mechanism to that described in our previous paper@12#, a
fraction of the field propagating to the ‘‘write’’ side of th
LCLV is extracted and filtered in Fourier space to be reco
bined with the backward field. This corresponds to the ad
tion, on the right-hand side of Eq.~2!, of a control term@12#
leading to

Bnew~x,y,t !5@12sF21M ~kx ,ky!F#B~x,y,t !, ~4!

wheres is the strength of the control signal~its negative sign
corresponding to increased losses of the controlled mod!,
F is the Fourier transformation, andM (kx ,ky) is the applied
filter in the Fourier plane.

One important question regards the effect of the time
lay induced by the additional control loop as, for examp
discussed in@14#. For a typical feedback length of around 5
cm @23#, the time delay is around a few nanoseconds wh

e FIG. 2. Snapshots in time of the complex dynamics of the va
able n in the LCLV model. Parameters ares51, x51, I 55, R0

50.9. Integrations were performed on a square grid of 1283128
points with periodic boundary conditions. Black in the image d
notes a small excitation and white a high one.
l

FIG. 3. Characterization of the dynamics of the LCLV model. The time-averaged Fourier transform intensity~far-field! is shown in panel

~a!. Intensity correlation functions, defined in the text, are shown in panel~b! for the ‘‘turbulent’’ dynamics~full line! and a stable hexagona
pattern,~dotted line!. The locally sampled temporal power spectrum is shown in panel~c!.
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the time scale of the LCLV system is at least seven order
magnitude slower. Then, the control feedback can
should be considered instantaneous.

A further justification for introducing the control terms i
Eq. ~2! in the way we do is that our instantaneous feedb
control ~IFC! can be optically implemented in several diffe
ent, but equivalent ways. For example, IFC can be obtai
by placing a neutral density filter~NDF! at a Fourier plane in
the original feedback loop. Note that Fourier filtering
LCLV systems has already been suggested as a techniqu
the correction of input phase distortions@26#. Our approach
differs in that we stabilize unstable states of the system
that the effect of our filtering vanishes when order
achieved — our technique is noninvasive.

In the simulations we model the control by a mirr
whose reflectivity depends on the incident wave vectork; the
effective reflectivity is given by the formula

R~kx ,ky!5R0@12sM~kx ,ky!#2,

wheres gives the strength of the control andM (kx ,ky) is the
shape of the mask in Fourier space, normalized between
and one. Using this or the NDF approach can simplify
experimental realization of the control technique. It is, ho
ever, not as flexible as the extra feedback loop appro
where it is easier to change the value ofs and to include
rotations and phase manipulations as described in@12#.

A typical mask shape used in Fourier space is shown
panel~a! of Fig. 4. The form of the mask is chosen based
the desired pattern, in this case a hexagonal pattern. The
corresponding to six wave vectors on a circle, and to th
harmonics due to nonlinear mixing, is blocked, i.e.,M50
for dark regions of Fig. 4~a!. The effect is to leave all wave
vectors relevant to the desired pattern unaffected while
desired wave vectors will experience additional losses p
portional tos.

In this way, we have been able to stabilize hexago
patterns well beyond their normal regime of stability. Pa
~b! of Fig. 4 shows this for the same parameters as in Fig
As in Ref. @12#, by suitable modification of the mask w
have also successfully stabilized rolls and squares~see Fig.
5!, exact but unstable solutions to this system. It is import
to stress that our technique is noninvasive; the pattern
stabilizes are exact solutions of the original system with
control. Visualized as a feedback, the control signal vanis
when control is established. As a quantitative measure of
fact, we compared the excitation,n, integrated over the

FIG. 4. ~a! The mask shapeM (kx ,ky) used to control hexagons
Black indicates a value of zero and white a value of one.~b! A
controlled hexagonal pattern. Parameters are the same as for F
and a strength parameters50.3 has been used.
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transverse plane in the cases of ‘‘turbulent’’ and control
dynamics. The controlled hexagonal pattern contains aro
97% of the ‘‘energy’’ of the ‘‘turbulent’’ one.

As a further demonstration of the power of our method
have performed a tracking experiment with our model. T
results are shown in Fig. 6. Panel~a! shows the time evolu-
tion of the maximum in space of the excitation density

nmax~ t !5max
~x,y!

n~x,y,t !

for the same parameters as in Fig. 2, that is, with input
tensity I 55. The shaded area shows the range of this ma
mum and its width indicates the strength of the dynami
fluctuations. For a stable hexagonal pattern, there are no
namics and so the shaded region is very narrow. In pane~b!
the shaded area shows how these extrema ofnmax vary as a
function of input intensityI . For I less than around 3.2, w
obtain stable hexagons and above this we obtain dynam
~disordered! patterns.

In our tracking experiment, we start with input intensi
I 55. Just as one might do in a real experiment, we study
time averaged far field, as shown in Fig. 3. We conclude t
much of the energy in the turbulent regime is concentra
around wave vectors with modulusk'1.2kc wherekc is the
wave vector of the patterns at threshold, which is arounI
51.3 for the chosen parameters. We construct a Fou
mask of hexagonal symmetry, as shown in Fig. 4, with
base size of 1.2kc . As already shown in Fig. 4, the applica
tion of such a mask can control a hexagonal pattern. T
value of nmax for the stabilized pattern is shown, as a di
mond, atI 55 in Fig. 6~b!.

Keeping the same mask and strength, we now decre
the input intensity in order to track this solution. The oth
diamonds in panel~b! of Fig. 6 show the hexagonal solution
we have obtained. They are all exact solutions to the und
lying system because the feedback signal vanishes. N
however, in the figure that the stabilized solution and tha
the uncontrolled system~dotted line! do not have the same
threshold. We have, in fact, stabilized the exact hexago
pattern based on a wave vector equal to 1.2kc , not kc .

This further emphasizes the usefulness of our meth
Not only can it be used to control disorder and to sel
between a number of different possible patterns@12#, but it
can also select between coexistent patterns of different w
vectors.

. 2

FIG. 5. ~a! The mask shapeM (kx ,ky) used to control squares
Black indicates a value of zero and white a value of one.~b! A
controlled square pattern. Parameters are the same as for Fig.
a strength parameters50.3 has been used.



d area

2580 PRA 58HARKNESS, OPPO, MARTIN, SCROGGIE, AND FIRTH
FIG. 6. ~a! The maximum of the excitation densityn(x,y) as a function of time. Parameters are the same as for Fig. 2. The shade
shows the extrema.~b! The shaded area shows how the extrema plotted in~a! change as a function of the input intensityI . Diamonds show
the maxima of the hexagonal patterns obtained by control, as described in the text.
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III. ELIMINATION OF DISORDER IN MODELS
OF BROAD AREA LASERS

The second example configuration leading to spatiote
poral disorder is a broad area laser modeled by the m
field Maxwell-Bloch equations for the interaction of a las
field with a collection of two-level atoms@27#:

]F

]t
52k@~12 id2 i¹2!F2P1sFfb#,

]P

]t
52~11 id!P1FD, ~5!

]D

]t
52gFD2x~x,y!1

1

2
~F* P1FP* !G .

In these equationsF(x,y,t) and P(x,y,t) are, respectively,
the envelopes of the laser field and of the material polar
tion; D(x,y,t) is the population inversion between the tw
atomic levels; (x,y) are the transverse coordinates norm
ized by the diffraction coefficient;k andg are, respectively,
the damping rates of the electric field and of the populat
inversion, both scaled to the polarization damping rate;d is
the detuning between the atomic andmode-pulledfrequen-
cies; andx(x,y) is a function describing the transvers
variations of the input pump. The termsFfb(x,y,t) describes
the effect of our control method and will be discussed la

For the case of a spatially homogeneous gain profile,x,
and without control (s50) the system generates transve
traveling waves of the form@18#

F5 f exp ~ ik•r2 iVt !,

wherek andV are related through the dispersion relation

V5
kuku2

k11
.

-
an
r

-

-

n

r.

e

The critical wave vectoruku5kc is such that the laser oper
ates at the atomic transition frequency in order to maxim
u f u2. Only the magnitude of the wave vector is selected
this mechanism, the direction of transverse propagation
the waves being entirely arbitrary.

We are interested here in the case of finite sized g
profiles in order to model real experiments. We conside
‘‘top-hat’’ gain profile that is of a width equal to six time
the most unstable wavelength. In other words, the width
the pump is equal to 632p/kc . The main effect produced
by this modification is to induce the appearance of sour
and sinks of waves@28,19#. For certain ranges of paramete
values, the source of waves can become unstable. This
sults in the erratic emission of ‘‘wiggles’’ in one transver
dimension and of ‘‘optical vortices’’@29# in two dimensions,
as shown in Figs. 7 and 8, for one and two transverse dim
sions, respectively. These features are advected acros
domain at the group velocity of the traveling waves@30#. By
means of spatiotemporal correlations, such patterns h
been shown to be weakly ‘‘turbulent’’@31#.

This instability can be suppressed by injecting into t
laser an additional fieldsFfb , derived from the output fieldF
by filtering in Fourier space as shown in Fig. 9. The las
model~5! is based on the mean field approximation~suitable
for solid-state, gas, vertical-cavity surface-emitting lase
and high-Q semiconductor lasers! where the round-trip time
scale has been averaged out and the feedback control s
shown in Fig. 9 is instantaneous~IFC method!. For short-
pulsed, high gain, and very lossy lasers where the mean
approximation cannot be applied and model~5! loses valid-
ity, optical delay of the feedback signal has to be conside
@14#. The resulting techniques are more difficult to impl
ment both numerically and experimentally. Delay is not im
portant for our IFC method, which, as for the LCLV cas
can be equivalently described by the insertion of a neu
density mask at a Fourier plane in the cavity. We comp
the feedback from

F̂ fb5F̂~kx ,ky!M ~kx ,ky!,
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where the hatted variables are the Fourier transforms of
respective unhatted ones andM is the shape of the mask i
Fourier space, again normalized between zero and one.
mask shape and feedback strengths are chosen so as to leav
wave vectors within an annulus aroundkc unaffected and to
provide negative feedback for all other wave vectors. T
instability in question arises due to the nonlinear coupling
a broadband of wave vectors aroundkc and so the suppres
sion of wave vectors away fromkc can control it.

This mechanism is identical to that used in the LCL
example but, due to the finite pump size, requires a furt
degree of care in its implementation. The finite pump s
means that the resulting pattern cannot be made up of a s
number ofd-function Fourier modes, as for the cases co
sidered in Ref.@12# and in the LCLV example. The resultin

FIG. 7. Dynamics in a 1D two-level laser model. The one spa
dimension is plotted on the horizontal axis and time is plotted v
tically. Black means a small value of the laser intensity and wh
means a large value. Parameters arek5g51, d52, andx56 with
a top-hat profile of width 18.8. A series of ‘‘wiggles’’ are generat
at a source on the right and propagate leftwards across the dom
We have used 256 transverse grid points with periodic transv
boundary conditions.

FIG. 8. Snapshots in time of the dynamics in a 2D two-le
laser model. Black means a small value of the laser intensity
white means a large value. Parameters arek5g51, d52, andx
58 with a circular top-hat profile of diameter 18.8. A series
‘‘optical vortices’’ are generated erratically at a source near the
and propagate downwards.
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far-field will approximately be a convolution between a pu
pattern and the pump shape, giving the Fourier transform
the region of each wave vector of the pattern a finite wid
We find that if the control annulus ink space is chosen to b
too narrow, not allowing for this width, then the resultin
controlled pattern is much broader than the uncontrolled o
However, if the annulus is chosen too broad, then the con
scheme does not discriminate appropriately between w
vectors close tokc and is ineffective. The choice of the feed
back mask shape must therefore be a compromise betw
these two limits.

Typical feedback mask shapes for one- and tw
dimensional geometries are shown in panels~b! and ~e! of
Fig. 10 and the resulting controlled states are shown in p
els ~c! and ~f!. Because of the finite size of the pattern w
should not expect the feedback signal to vanish exactly w
control is achieved, only to be small. In this case we comp

r 5

E
T
usFfbu2dA

E
T
uFu2dA

,

the ratio between the energy in the feedback field and in
laser field. TheT in this expression denotesthe transverse
plane. For both the 1D and 2D cases shown, this quantity
less than 1%, indicating that the stabilized state is at le
very close to an unstable state of the uncontrolled syst
The power output of the controlled state is the same, wit
the bounds of numerical accuracy, as for the uncontro
state. This further emphasizes the importance of this te
nique over more conventionally used ‘‘aperture’’ techniqu
discussed in the Introduction.

In order to assess just how close these stabilized solut
are to the unstable solutions of the original system, we m
have a technique for finding these underlying solutions. I
this problem that we now consider.

A. Stationary solutions

As discussed above, a laser of infinite transverse ex
has exact traveling wave solutions@18#. In this case, one can
study the effect of the control on these solutions and th
stability. Such a study has been performed on the trave

l
r-
e

in.
se

l
d

p

FIG. 9. A schematic diagram showing the control scheme
propose for the laser system.
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FIG. 10. Patterns from a laser model in 1D~upper! and 2D~lower! geometries. Panels~a! and ~d! show the absolute value of the las
field as a function of the transverse coordinate~s!. Parameters arek5g51, d52, andx56 in 1D andx58 in 2D. Panels~b! and~e! show
the feedback mask,M , used in the control, and panels~c! and~f! show the resulting states, controlled using a strength parameters50.3. The
shaded area in panel~c! shows the feedback signalusFfbu when control is achieved.
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waves in a laser model enhanced to include some eff
peculiar to semiconductor devices@14#. However, these ex
act solutions are not so relevant here for two main reas
First, in a positively detuned two-level laser without tran
verse boundaries, independent of the parameters, ther
ways exists an attracting, stable, traveling wave solutio
so there is no complexity to control. Second, when the g
has a more realistic transverse profile, as in our case, t
exact solutions no longer apply and the stability is radica
altered. In this section, we describe a method we have u
to find solutions relevant to the laser model with gain pro
and to study their stability.

To make the problem more tractable we limit ourselves
one spatial dimension,x. We allow the pump to depend o
space,x(x), and look for solutions with the harmonic tim
dependence exp(2iVt), solve the equations for the stead
state values ofP andD, and insert these into the field equ
tion to obtain

F12 id2 iV/k2 i¹22x~x!
12 i ~d2V!

11~d2V!21u f u2G f 50,

~6!

whereF(x,t)5 f (x)exp(2iVt). Note that ifx is independent
of x, then this equation has the same analytical trave
wave solutions as the original set~5!. When this is not the
case, we must resort to a numerical solution of Eq.~6!. This
method can yield all the stationary solutions,f (x), not just
the dynamically stable ones.
ts

s.
-
al-
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y
ed

o

g

We discretize the transverse direction intoN distinct
points, reducing the original boundary value different
equation into a set of coupled, nonlinear, algebraic ones.
require to solve forN complex field values and the real fre
quency,V, but because of the phase rotational symmetry
Eq. ~6! we can takef (0) real. We assume periodic bounda
conditions allowing us to compute the transverse Laplac
in Fourier space using a fast Fourier transform. This
proach is more advantageous than a traditional low-orde
nite difference technique because its high accuracy, (dx)N,
allows us to use a smallerN for the same precision. We hav
also employed a technique that takes advantage of the
that in regions where the pumpx50, Eq. ~6! is linear, with
exponentially decaying traveling wave solutions

f }exp~lx!,

with

l252V/k2d2 i .

The sign ofl is chosen so as to ensure an exponentia
decaying field amplitude asuxu→` and the constant of pro
portionality is chosen so that the solution matches onto
solution in a pumped region. Note that the phase waves
ways traveloutwards.

With a top-hat pump profilex(x), a typical stationary
state is shown in Fig. 11. Panel~a! shows the field amplitude
profile, stationary in time. Panel~b! shows a snapshot of th
real part of the field. Due to the trivial time dependen
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e2 iVt (V'1.84 in this case!, the waves propagate leftward
and rightwards away from the source atx'10. Panel~c!
shows the far-field~Fourier transform! of the solution. Note
that it is strongly peaked neark'22, indicating waves
propagating mainly leftwards. The peak is, to a first appro
mation, the convolution of ad function, corresponding to a
pure traveling wave, with the Fourier transform of the pum
shape. Note also that there is a much smaller peak for p
tive k corresponding to waves propagating rightwards.

We already commented on this numerical method’s a
ity to find both stable and unstable stationary solutions
slight extension, detailed below, is able to determine th
stability as well. We discretize the full set of Eqs.~5!. We
then find the eigenvalues of the matrix that results from
earizing around the stationary solution already found wh
solving Eq.~6!. If any of these eigenvalues have a positi
real part, then the solution is unstable.

As an example of the power of this method, we ha
tracked the solution shown in Fig. 11 over a range of pu
values,x, computing its stability as we go. The results,
Fig. 12, show the frequency,V, and the integrated intensit
of that solution. A solid line indicates stable solutions,
dashed line unstable ones. The solutions’ stability, es
lished in this way, has been verified by direct numeri
simulation of Eqs.~5!. Close to threshold, there exist stab
solutions that numerical simulations show to be globally
tracting. For larger values of the pump, our stability analy
shows that these solutions become unstable via a Hopf b
cation.

Further branches, representing a subset of the pos
solutions, are shown in Fig. 13. These different branc
correspond to solutions with different numbers of oscil

FIG. 11. A stationary solution to the laser equations. Panel~a!
shows the absolute value of the laser field. The gray recta
shows the extent of the pumped region. Panel~b! shows the real
part of the laser field, emphasizing the traveling wave nature of
output. Panel~c! shows the Fourier transform~far-field! of the so-
lution.
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tions across the pumped region — see Fig. 11. At vari
points along these branches we have computed the stab
of the solutions; unstable ones are shown as empty squ
The stable ones, shown as filled squares, constitute the B
balloon@32#. All other branches we have found are unstab
independent of the value ofx. Plotted as a dashed line o
panel~ii ! of Fig. 13 is the threshold for the various solution
This is the equivalent of theneutral stability curvedescribed
in @32#.

Figure 13 shows a number of interesting features. T
solution~c!, with the lowest threshold, the one shown in Fi
11, is stable at threshold and its stability extends to m
than twice the threshold value. Numerical simulations
Eqs. ~5! starting from small amplitude noise show that it
this solution that is generally excited. Solutions with a val
of V close to that of solution~c!, specifically~d! and~a!, can
also be stable but, in our experience, they are not usu
excited in simulations that start from noise. Even at t
places where the branches appear to bend back on th
selves very sharply, they, and their derivatives, are in f
continuous. This phenomenon of solutions bending back
themselves is not found for pure traveling wave solutions
models with no gain profile. There is also no simple disp
sion relation that assigns a particular transverse wave ve
k, to a solution with a given temporal frequencyV.

B. Stabilization

Now that we have found and described the relevant
tionary solutions, we can compare them to the solutions
tained when the control is switched on. Figure 14 shows
results of such a comparison. Two stationary solutions
shown: the one that has the lowest threshold, and the
that, far from threshold, has the largest output power. T
diamonds show solutions stabilized by a feedback con
using a mask designed to favor the solution with the low
threshold. For small values of the pump, the stabilized so

le

e

FIG. 12. The stability of the solution shown in Fig. 11, as
function of the pump parameterx. Panel~a! shows the space inte
grated intensity of the laser field and panel~b! shows the solution’s
frequency,V. The solution is stable only for values ofx less than
approximately 4.3~solid line!.
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tion is very close to the stationary solution of the unp
turbed system — the control is noninvasive. For larger v
ues of the pump, although stabilization is achieved,
resulting state is not an exact stationary solution of the or
nal system.

The origin of this discrepancy can be found by studyi
further the nature of the stationary solutions. Figure
shows the stationary solutions on the branch with low
threshold for pump valuesx53 andx58. Also plotted is

FIG. 13. A further subset of the possible solutions to the la
equations. Stability is indicated by filled squares, instability
empty ones. Panel~i! shows the space integrated intensity as
function ofx, with the inset showing a magnification of the mark
region. Panel~ii ! shows frequenciesV associated with each solu
tion branch. Also plotted, as a dashed line, is the threshold for e
solution.
-
l-
e
i-

5
t

r

ch

FIG. 14. A comparison between the solutions stabilized by
control method~diamonds! and those of the underlying system
plotted as full lines.

FIG. 15. Stationary solutions to the laser equations forx53 in
panels~a! and~c! and forx58 in panels~b! and~d!. Panels~c! and
~d! show the local wave numberklocal , defined in the text, as a
function of the transverse coordinatex.
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the local wave number defined as

klocal~x!5ImS ]E/]x

E D .

This is a useful definition because, if the fieldE;exp(ikx),
then klocal5k. Note that to the left of the pumped regio
because the field there is a pure~complex! exponential, the
local wave vector is constant. To the right of the pump
region it is again flat with opposite sign compared to that
the left ~not shown!. For the case ofx53 the local wave
vector in the pumped region shows small oscillations aro
an essentially constant value. These small oscillations
due to the fact that the field is not a pure leftward travel
wave but also has a small component of the rightward tr
eling wave.

For the solution atx58, there are the same small osc
lations but the local wave number increases sharply at
right-hand side of the gain region, at the source of the tr
eling waves. This feature is common to all of the solutio
we have found above aroundx56.

The IFC method relies on the target solution having
sentially one transverse wave vector. Solutions that rely o
number of wave vectors for their precise shape can
readily be stabilized. As we have shown above, this does
mean that a stable output cannot be achieved, just tha
output obtained is not exactly a solution to the underly
system, an important distinction from a purist’s point of vie
but not for applications. A high power, stable output c
always be obtained from the laser with the application of
IFC technique.
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IV. CONCLUSIONS

In conclusion, we have shown that by using carefully ch
sen instantaneous feedback constructed in the Fourier sp
it is possible to stabilize complicated spatiotemporal beh
ior in pattern forming systems. Our technique is general, f
and simple, not requiring expensive computation or inter
gation of the system, and can be implemented in an
optical way. We have demonstrated this in two different o
tical systems. For the case of periodic boundary conditio
the controlled states are exact, but unstable, solutions to
unperturbed system. With lateral boundaries, the stabili
solution is ‘‘close to’’ an unstable one of the original syste

Because of its simplicity and model independence,
technique shows great promise for use, both as a theoret
computational tool to track unstable states into ‘‘turbulen
regimes and as an experimental tool to retain good spa
and temporal coherence for large values of the pump par
eters. By extending this technique in combination with tho
proposed in Ref.@12#, it is also possible to select betwee
different pattern states in the disordered regime. For
ample, both squares and hexagons can be stabilized in
gime of optical turbulence in the LCLV system.
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