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Elimination of spatiotemporal disorder by Fourier space techniques
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A recently proposed method for the stabilization of unstable patterns uses an instantaneous feedback derived
from the Fourier transform of the outpiR. Martin et al,, Phys. Rev. Lett66, 4007(1996]. We successfully
extend this method to regimes of spatiotemporal disorder. By focusing on two different nonlinear optical
systems, a laser and a Kerr slice with feedback, we demonstrate the usefulness, effectiveness, and generality of
the technique. Our method allows for high power outputs without loss of spatial and temporal coherence. It
also provides the possibility of pattern selection and, in some instances, tracking within a disordered regime.
[S1050-294@8)11209-X]

PACS numbd(s): 42.65.Sf, 47.54tr

I. INTRODUCTION tiotemporal disorder, and discuss the feasibility of such ex-
periments in nonlinear optics. To this end, we will discuss
The coupling of spatial and temporal degrees of freedonthe application of our control method to two specific optical
in nonlinear dynamical systems often leads to loss of spamodels that display pattern formation and optical turbulence:
tiotemporal coherence. A simple suppression of such beha@ Kerr slice with feedback mirrdil5-17 and a broad-area
ior can be obtained by reducing either the nonlinearity or thdaser[18,19. These systems display spatiotemporal disorder
number of Spatia| degrees of freed@ias in the use of aper- induced by instabilities of a different nature, as will be ex-
tures in laser CavitiésSuch approaches a|WayS result in se_plained later. The successful elimination of Spatial and tem-
rious limitations for practical applications. A less restrictive Poral disorder for a wide range of parameter values in both
restoration of spatial and temporal order is a highly desirabl8ystems is an indicator of the generality of our method.
feature in fields as diverse as laser and plasma physics as
well as hydrodynamics. II. ELIMINATION OF DISORDER IN A LIQUID CRYSTAL
Several techniques have recently been proposed to sup- LIGHT VALVE MODEL
press spatiotemporal disorder in systems governed by partial
differential equation$1—8]. One such approach has been to

decompose the system onto a small number of spatial mod ter realized in many experimer@0—23. In many of these
and then to apply the standard techniques of temporal controf <! €€ Y exper T y ;
realizations the Kerr nonlinearity is synthesized with a

[9-1]] to the resulting low-dimensional systefd,2,4,§. e . . .
Other methods require complicated mathematical transforl-'qu'd'crys’tal light valve (LCLV) with a feedback signal.

: ; e ; : - Such a system was originally introduced by Akhmaebwal.
mations, which makes them difficult to implement in experi- . . ) ; . :
mental systems with fast dynamigg,3,5. Finally, specific [24]; for a discussion of the LCLV device and its relation to

techniques have been successfully developed for particuIéﬁgcﬁfggigcﬁcg?nggb’ircaé'otﬂgéfusngh?htcL?l/a'sseashgli?t”gf a
types of instability or spatiotemporal structy@&6. P P

o : : “read” beam to be controlled by the intensity of a “write”
The stabilization method we recently introdudgd®] is . ! . o
based on feedback of spatial information filtered in Fouriergﬁa;hmé TVCIr|Steph ;32 SO?'I:]?L'EFIJ_L\J} gfet:-:(-jr Eol:ig g?s(t::nsc% ?)Sf ftﬁe;a"
space and is particularly amenable to application in optics.

This is because, in an optical system, it is easy to obtain thgPace propagation. The loop also contains an output coupler

spatial Fourier transforrtor far-field by using a single lens; ?[Iisresﬂes(ig\r/};tytﬁg.mF(;?jLé:ee luZ:(())\gESG i%%fnog;rﬁriieet#%:m
the control technique can then be implemented in a fully y ' q '

Our first example is a variant of a model describing a Kerr
gce with feedback mirror, as introduced in REE5], and

optical mannef13]. In [12] we focused on the use of such a 2 2

. s J J an
technigue to stabilize, select, and track unstable patterns. The - ( —+ _> n+—+n=|B|?, (1)
usefulness of filtering in Fourier space for control purposes X2 ay? ot

has also recently been discussed in conjunction with optical o ]

delay for one-dimensional models of semiconductor laser&/hereB(x,y), the backward field incident on the “write”

[14]. It is important to stress that the method introduced inSide of the LCLV, is related to the input optical field,

[12] and applied here uses no delay since the feedback timfe(X.Y). through the relation

is several orders of magnitude faster than the characteristic ) )

time scale of our mean-field dynamics and the feedback is g t)= VR, exg i ‘9_+i 9 F exp(ixn). (2)

coherent with the optical field. Note also that the absence of (xy,0=VRy T2 U(;yZ XD

delay simplifies application to experiments and numerical

simulations. The variablen(x,y) is the excitation of the simulated Kerr
In this paper, we describe the extension of the Fouriemedium; y measures the strength of the phase modulation

space technique introduced[ih2] to the elimination of spa- ando measures the relative strengths of field diffraction and
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FIG. 1. A schematic diagram showing the control scheme we FIG. 2. Snapshots in time of the complex dynamics of the vari-

propose for the LCLV with feedback system. ablen in the LCLV model. Parameters ate=1, y=1,1=5, R,
=0.9. Integrations were performed on a square grid ofX1233

points with periodic boundary conditions. Black in the image de-

diffusion of the medium excitation. The time varialildnas notes a small excitation and white a high one.

been normalized to the LCLV reaction time, which is
typically in the range of tens of milliseconds or longer.
The spatial variablesx(y) have been normalized to the
LCLYV diffusion length, which in real systems is around 50 to

1O|0:grmtr[1§3]l_.CLV svstem we consider a olane wave input We can inhibit this spatiotemporal disorder by a number
Y P Pul ¢ equivalent approaches based on the Fourier technique of

field F = I thf”lt describes the central par_t of th_e bror?u_j arégkef. [12]. First, an additional feedback loop can be included
beams used in such experimef2s]. For input intensities into the LCLV setup, as shown in Fig. 1. By a similar

above some threshold, the plane wave output beam los echanism to that described in our previous pdél, a
stability and forms a hexagonal _pattern. For_ larger value; raction of the field propagating to the “write” side of the
|, the hexagonal pattern breaks into fluctuating spots of light ¢ \/ js extracted and filtered in Fourier space to be recom-

[17]. In the case of strong diffusion, this instability leads 10,0 \yith the backward field. This corresponds to the addi-

“turbulent” motion shown in Fig. 2. The Fourier transform, ; :
' tion, on the right-hand side of EqR), of a control tern]12
averaged over several hundred units of tififég. 3(a)], Lleading ol ig si ® n{12]

clearly shows a large number of excited wave vectors. Suc
disorder strongly reduces spatial correlations, which decrease
to around a tenth of the system size in the “turbulent” re-
gime, as shown in Fig.(B). The spatiotemporal correlation
of the output intensity shown in Fig. 8b) is defined by

sity sampled locally is broadband, as shown in Fig).3All
of these quantities quantify the degree of disorder of the
system.

Brew(X,Y,1) =[1=SF " *M(kc k) FIB(X,y,t),  (4)

wheres is the strength of the control sign@ds negative sign
corresponding to increased losses of the controlled mpdes
Fis the Fourier transformation, amd(k, ,k,) is the applied
C(r) =X D1 )= (12061 ) 4+ (3 filter in the Fourier plane. (el PP

One important question regards the effect of the time de-
where (,¢) are the polar coordinates of the two- lay induced by the additional control loop as, for example,
dimensional vectox—x’, and{- - -}, indicates an average discussed ifi14]. For a typical feedback length of around 50
over the quantitye. The power spectrum of the light inten- c¢cm [23], the time delay is around a few nanoseconds while
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FIG. 3. Characterization of the dynamics of the LCLV model. The time-averaged Fourier transform intlndigld) is shown in panel
(3. Intensity correlation functions, defined in the text, are shown in p@éor the “turbulent” dynamics(full line) and a stable hexagonal
pattern,(dotted ling. The locally sampled temporal power spectrum is shown in panel
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FIG. 4. (a) The mask shaph (k, k) used to control hexagons.  FIG. 5. (a) The mask shap# (k, k) used to control squares.
Black indicates a value of zero and white a value of oite.A  Bjack indicates a value of zero and white a value of of.A
controlled hexagonal pattern. Parameters are the same as for Figcdntrolled square pattern. Parameters are the same as for Fig. 2 and
and a strength paramete+ 0.3 has been used. a strength parameter=0.3 has been used.

the time scale of the LCLV system is at least seven orders of 5 1sverse plane in the cases of “turbulent” and controlled
magnitude slower. Then, the control feedback can angyynamics. The controlled hexagonal pattern contains around
should be considered instantaneous. 97% of the “energy” of the “turbulent” one.

A further justification for introducing the control terms in A< o further demonstration of the power of our method we

Eq. (2) in the way we do is that our instantaneous feedback, e nerformed a tracking experiment with our model. The
control (IFC) can be optically implemented in several differ- . o¢ ,its are shown in Fig. 6. Pan@ shows the time evolu-

ent, but equivalent ways. For example, IFC can be obtainefly of the maximum in space of the excitation density
by placing a neutral density filtdNDF) at a Fourier plane in

the original feedback loop. Note that Fourier filtering of

LCLV systems has already been suggested as a technique for Nmax(t) =maxn(x,y,t)
the correction of input phase distortiof6]. Our approach (xy)

differs in that we stabilize unstable states of the system and

that the effect of our filtering vanishes when order isfor the same parameters as in Fig. 2, that is, with input in-
achieved — our technigue is noninvasive. tensityl =5. The shaded area shows the range of this maxi-

In the simulations we model the control by a mirror mum and its width indicates the strength of the dynamical
whose reflectivity depends on the incident wave vektahe  fluctuations. For a stable hexagonal pattern, there are no dy-

effective reflectivity is given by the formula namics and so the shaded region is very narrow. In pémel
the shaded area shows how these extrema,gf vary as a
R(ky,ky)= Ro[l—sM(kx,ky)]z, function of input intensityl. For| less than around 3.2, we

obtain stable hexagons and above this we obtain dynamical

wheres gives the strength of the control aMi(k, ,k,) isthe  (disordered patterns.
shape of the mask in Fourier space, normalized between zero In our tracking experiment, we start with input intensity
and one. Using this or the NDF approach can simplify thel =5. Just as one might do in a real experiment, we study the
experimental realization of the control technique. It is, how-time averaged far field, as shown in Fig. 3. We conclude that
ever, not as flexible as the extra feedback loop approachmuch of the energy in the turbulent regime is concentrated
where it is easier to change the valuesofind to include around wave vectors with modullis= 1.2k, wherek, is the
rotations and phase manipulations as describdd2h wave vector of the patterns at threshold, which is around

A typical mask shape used in Fourier space is shown in=1.3 for the chosen parameters. We construct a Fourier
panel(a) of Fig. 4. The form of the mask is chosen based onmask of hexagonal symmetry, as shown in Fig. 4, with a
the desired pattern, in this case a hexagonal pattern. The ligbtse size of 112.. As already shown in Fig. 4, the applica-
corresponding to six wave vectors on a circle, and to theition of such a mask can control a hexagonal pattern. The
harmonics due to nonlinear mixing, is blocked, iBl=0  value of n, for the stabilized pattern is shown, as a dia-
for dark regions of Fig. @&). The effect is to leave all wave mond, atl =5 in Fig. b).
vectors relevant to the desired pattern unaffected while un- Keeping the same mask and strength, we now decrease
desired wave vectors will experience additional losses prothe input intensity in order to track this solution. The other
portional tos. diamonds in pangb) of Fig. 6 show the hexagonal solutions

In this way, we have been able to stabilize hexagonalve have obtained. They are all exact solutions to the under-
patterns well beyond their normal regime of stability. Panellying system because the feedback signal vanishes. Note,
(b) of Fig. 4 shows this for the same parameters as in Fig. Zhowever, in the figure that the stabilized solution and that of
As in Ref. [12], by suitable modification of the mask we the uncontrolled systertdotted lineg do not have the same
have also successfully stabilized rolls and squéseg Fig. threshold. We have, in fact, stabilized the exact hexagonal
5), exact but unstable solutions to this system. It is importanpattern based on a wave vector equal tckd,2notk, .
to stress that our technique is noninvasive; the patterns it This further emphasizes the usefulness of our method.
stabilizes are exact solutions of the original system withoutNot only can it be used to control disorder and to select
control. Visualized as a feedback, the control signal vanishebetween a number of different possible pattdrt], but it
when control is established. As a quantitative measure of thisan also select between coexistent patterns of different wave
fact, we compared the excitatiom, integrated over the vectors.



2580 HARKNESS, OPPO, MARTIN, SCROGGIE, AND FIRTH PRA 58

B 17 e s e e s s s s e - inannannnn T T T

nmax
excitation density n

(0] I 1
100 120

140
time

1

. . I
160

180 200

FIG. 6. (a) The maximum of the excitation densityx,y) as a function of time. Parameters are the same as for Fig. 2. The shaded area
shows the extremdb) The shaded area shows how the extrema plottdd)inohange as a function of the input intendityDiamonds show
the maxima of the hexagonal patterns obtained by control, as described in the text.

l1l. ELIMINATION OF DISORDER IN MODELS The critical wave vectofk| =k is such that the laser oper-
OF BROAD AREA LASERS ates at the atomic transition frequency in order to maximize

, . . . |f|2. Only the magnitude of the wave vector is selected by
The second example configuration leading to spatiotem}, : ; L ;

] . this mechanism, the direction of transverse propagation of
poral disorder is a broad area laser modeled by the me

1] : . .
field Maxwell-Bloch equations for the interaction of a Iasef‘thev\\;vaves pemg enttljrerlly arpltrarr]y. £ fini ized qai
field with a collection of two-level atom27]: ve are interested here in the case o inite sized gain
profiles in order to model real experiments. We consider a
IF “top-hat” gain profile that is of a width equal to six times
—=—k[(1-16—iVA)F—P+sFg], the most unstable wavelength. In other words, the width of
at the pump is equal to 6 27/k.. The main effect produced
by this modification is to induce the appearance of sources
. and sinks of wave§28,19. For certain ranges of parameter
ot —(1+i9P+FA, ) values, the source of waves can become unstable. This re-
sults in the erratic emission of “wiggles” in one transverse
IA 1 dimension and of “optical vorticesT29] in two dimensions,
-y A—X(x,y)+§(F* P+FP*)|. as shown in Figs. 7 and 8, for one and two transverse dimen-
sions, respectively. These features are advected across the
) ) domain at the group velocity of the traveling waya§]. By
In these equation(x,y,t) andP(x,y,t) are, respectively, means of spatiotemporal correlations, such patterns have
the envelopes of the laser field and of the material polarlzabeen shown to be weakly “turbulenf31].
tion; A(x,y,t) is the population inversion between the tWo  Thjs instability can be suppressed by injecting into the
atomic levels; k,y) are the transverse coordinates normal-jaser an additional fieldFy, , derived from the output field
ized by the diffraction coefficienty andy are, respectively, py fiitering in Fourier space as shown in Fig. 9. The laser
Fhe da_mping rates of the electric fi_eld_and of th_e popL_JIatior],nodeKS) is based on the mean field approximatisnitable
inversion, both scaled to the polarization damping ral&s oy solid-state, gas, vertical-cavity surface-emitting lasers,
the detuning between the atomic ambde-pulledirequen- 4 highQ semiconductor lasersvhere the round-trip time
cies; andx(x,y) is a function describing the transverse gcale has been averaged out and the feedback control signal
variations of the input pump. The tersi,(x,y,t) describes  ghown in Fig. 9 is instantaneolt=C method. For short-
the effect of our control method and will be dlsc_ussed_laterpmsed' high gain, and very lossy lasers where the mean field
For the case of a spatially homogeneous gain profile, approximation cannot be applied and mo¢®| loses valid-
and without control $=0) the system generates transversejty optical delay of the feedback signal has to be considered

o

traveling waves of the forril8] [14]. The resulting techniques are more difficult to imple-
) ) ment both numerically and experimentally. Delay is not im-
F=f exp(ik-r—iQt), portant for our IFC method, which, as for the LCLV case,

) . ) can be equivalently described by the insertion of a neutral
wherek and(} are related through the dispersion relation density mask at a Fourier plane in the cavity. We compute
the feedback from
_ «|k?
T k1 Fio=F (ky.ky)M (ky ,Ky),
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far-field will approximately be a convolution between a pure
pattern and the pump shape, giving the Fourier transform in
. . . - the region of each wave vector of the pattern a finite width.
tically. Black means a small value of the laser intensity and whlteWe find that if the control annulus i space is chosen to be
means a large value. Parametersarey=1, 6=2, andy=6 with . . . P .
a top-hat profile of width 18.8. A series of “wiggles” are generated too narrow, not aI_Iowmg for this width, then the resulting
at a source on the right and propagate leftwards across the domaifontrolled pattern is much broader than the uncontrolled one.

We have used 256 transverse grid points with periodic transversloWeVer, if the annulus is chosen too broad, then the control
boundary conditions. scheme does not discriminate appropriately between wave

vectors close t&. and is ineffective. The choice of the feed-
ack mask shape must therefore be a compromise between

FIG. 7. Dynamics in a 1D two-level laser model. The one spatial
dimension is plotted on the horizontal axis and time is plotted ver

where the hatted variables are the Fourier transforms of th >
respective unhatted ones aktlis the shape of the mask in these t.W°| l';n't?j‘b K K sh f d
Fourier space, again normalized between zero and one. Tr(lje Typlc_:a Iee act _mas T‘ apes for one—dan ftWO'
mask shape and feedback strengtire chosen so as to leave Imensional geometries are shown in par@lsand (€) 0
wave vectors within an annulus aroukdunaffected and to Fig. 10 and the resulting controlled states are shown in pan-

provide negative feedback for all other wave vectors. TheeIS (c) and (f). Because of the finite size of the pattern we

instability in question arises due to the nonlinear coupling ofShOUId not expect the feedback signal to vanish exactly when

control is achieved, only to be small. In this case we compute
a broadband of wave vectors aroukdand so the suppres- y b
sion of wave vectors away froik, can control it.

This mechanism is identical to that used in the LCLV f |sFg|2dA
example but, due to the finite pump size, requires a further _JT
degree of care in its implementation. The finite pump size r= 5 '
means that the resulting pattern cannot be made up of a small L|F| dA

number of §-function Fourier modes, as for the cases con-
sidered in Ref[12] and in the LCLV example. The resulting

(a) (b)
d) e)

the ratio between the energy in the feedback field and in the
laser field. TheT in this expression denotdke transverse

plane For both the 1D and 2D cases shown, this quantity is
less than 1%, indicating that the stabilized state is at least
very close to an unstable state of the uncontrolled system.
The power output of the controlled state is the same, within
the bounds of numerical accuracy, as for the uncontrolled

(© state. This further emphasizes the importance of this tech-
(®

nique over more conventionally used “aperture” techniques
discussed in the Introduction.

In order to assess just how close these stabilized solutions
are to the unstable solutions of the original system, we must
have a technique for finding these underlying solutions. It is
this problem that we now consider.

( (

FIG. 8. Snapshots in time of the dynamics in a 2D two-level
laser model. Black means a small value of the laser intensity and
white means a large value. Parameters @rey=1, §=2, andy As discussed above, a laser of infinite transverse extent
=8 with a circular top-hat profile of diameter 18.8. A series of has exact traveling wave solutiof3]. In this case, one can
“optical vortices” are generated erratically at a source near the togstudy the effect of the control on these solutions and their
and propagate downwards. stability. Such a study has been performed on the traveling

A. Stationary solutions
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FIG. 10. Patterns from a laser model in 10pped and 2D (lower) geometries. Panels) and(d) show the absolute value of the laser
field as a function of the transverse coordiigteParameters are=y=1, §=2, andy=6 in 1D and y=8 in 2D. Panelgb) and(e) show
the feedback mashk, used in the control, and panédty and(f) show the resulting states, controlled using a strength paraswet®3. The
shaded area in pané) shows the feedback signiF,| when control is achieved.

waves in a laser model enhanced to include some effects We discretize the transverse direction intd distinct
peculiar to semiconductor devicg®4]. However, these ex- points, reducing the original boundary value differential
act solutions are not so relevant here for two main reasongquation into a set of coupled, nonlinear, algebraic ones. We
First, in a positively detuned two-level laser without trans-require to solve folN complex field values and the real fre-
verse boundaries, independent of the parameters, there auency,(), but because of the phase rotational symmetry of
ways exists an attracting, stable, traveling wave solution—Eqg. (6) we can take (0) real. We assume periodic boundary
so there is no complexity to control. Second, when the gairtonditions allowing us to compute the transverse Laplacian
has a more realistic transverse profile, as in our case, the#e Fourier space using a fast Fourier transform. This ap-
exact solutions no longer apply and the stability is radicallyproach is more advantageous than a traditional low-order fi-
altered. In this section, we describe a method we have usatlte difference technique because its high accurady)X,
to find solutions relevant to the laser model with gain profileallows us to use a smallét for the same precision. We have
and to study their stability. also employed a technique that takes advantage of the fact
To make the problem more tractable we limit ourselves tathat in regions where the pump=0, Eq.(6) is linear, with
one spatial dimensiorx. We allow the pump to depend on exponentially decaying traveling wave solutions
space,x(x), and look for solutions with the harmonic time

dependence exp({lt), solve the equations for the steady focexp(AX),
state values oP andA, and insert these into the field equa-
tion to obtain with

1-i(6—Q) N2=—Q/k—6—1i.

1-i6—iQ/k—iV2— x(X)

1+(6—Q)%+]f|? =0 _ _ _

(6) The sign qf)\ is ch_osen S0 as to ensure an exponentially
decaying field amplitude d%|— and the constant of pro-
portionality is chosen so that the solution matches onto the

whereF (x,t) = f(x)exp(—iQt). Note that ify is independent solution in a pumped region. Note that the phase waves al-
of x, then this equation has the same analytical travelingvays traveloutwards

wave solutions as the original sg). When this is not the With a top-hat pump profiley(x), a typical stationary
case, we must resort to a numerical solution of @j. This  state is shown in Fig. 11. Pan@) shows the field amplitude
method can yield all the stationary solutiorig$x), not just  profile, stationary in time. Panéb) shows a snapshot of the
the dynamically stable ones. real part of the field. Due to the trivial time dependence
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05k i FIG. 12. The stability of the solution shown in Fig. 11, as a
00 function of the pump parametgr. Panel(a) shows the space inte-

) ) grated intensity of the laser field and pafi@l shows the solution’s
frequency Q). The solution is stable only for values gfless than

FIG. 11. A stationary solution to the laser equations. Péael aPproximately 4.3solid line).
shows the absolute value of the laser field. The gray rectangle
shows the extent of the pumped region. Pailg¢lshows the real tions across the pumped region — see Fig. 11. At various
part of the laser field, emphasizing the traveling wave nature of thgoints along these branches we have computed the stability
output. Pane(c) shows the Fourier transforifar-field) of the so-  of the solutions; unstable ones are shown as empty squares.
lution. The stable ones, shown as filled squares, constitute the Busse
_ balloon[32]. All other branches we have found are unstable,
e ' (Q~1.84 in this cask the waves propagate leftwards independent of the value of. Plotted as a dashed line on
and rightwards away from the sourceat10. Panel(c)  panel(ii) of Fig. 13 is the threshold for the various solutions.
shows the far-fieldFourier transformof the solution. Note  This is the equivalent of theeutral stability curvedescribed
that it is strongly peaked nedt~—2, indicating waves in [32].
propagating mainly leftwards. The peak is, to a first approxi-  Figure 13 shows a number of interesting features. The
mation, the convolution of @& function, corresponding to a solution(c), with the lowest threshold, the one shown in Fig.
pure traveling wave, with the Fourier transform of the pump11, is stable at threshold and its stability extends to more
shape. Note also that there is a much smaller peak for posihan twice the threshold value. Numerical simulations of
tive k corresponding to waves propagating rightwards. Egs. (5) starting from small amplitude noise show that it is
We already commented on this numerical method’s abilthis solution that is generally excited. Solutions with a value
ity to find both stable and unstable stationary solutions. Aof () close to that of solutiofc), specifically(d) and(a), can
slight extension, detailed below, is able to determine theialso be stable but, in our experience, they are not usually
stability as well. We discretize the full set of E($). We  excited in simulations that start from noise. Even at the
then find the eigenvalues of the matrix that results from lin-places where the branches appear to bend back on them-
earizing around the stationary solution already found wherselves very sharply, they, and their derivatives, are in fact
solving Eq.(6). If any of these eigenvalues have a positive continuous. This phenomenon of solutions bending back on
real part, then the solution is unstable. themselves is not found for pure traveling wave solutions in
As an example of the power of this method, we havemodels with no gain profile. There is also no simple disper-
tracked the solution shown in Fig. 11 over a range of pumgsion relation that assigns a particular transverse wave vector,
values,y, computing its stability as we go. The results, in k, to a solution with a given temporal frequenfy.
Fig. 12, show the frequency), and the integrated intensity
of that solution. A solid line indicates stable solutions, a
dashed line unstable ones. The solutions’ stability, estab-
lished in this way, has been verified by direct numerical Now that we have found and described the relevant sta-
simulation of Egs(5). Close to threshold, there exist stable tionary solutions, we can compare them to the solutions ob-
solutions that numerical simulations show to be globally attained when the control is switched on. Figure 14 shows the
tracting. For larger values of the pump, our stability analysigesults of such a comparison. Two stationary solutions are
shows that these solutions become unstable via a Hopf bifushown: the one that has the lowest threshold, and the one
cation. that, far from threshold, has the largest output power. The
Further branches, representing a subset of the possibtfamonds show solutions stabilized by a feedback control
solutions, are shown in Fig. 13. These different branchesising a mask designed to favor the solution with the lowest
correspond to solutions with different numbers of oscilla-threshold. For small values of the pump, the stabilized solu-

B. Stabilization
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FIG. 13. A further subset of the possible solutions to the laser
equations. Stability is indicated by filled squares, instability by
empty ones. Pandji) shows the space integrated intensity as a
function of y, with the inset showing a magnification of the marked
region. Panelii) shows frequencie§) associated with each solu-
tion branch. Also plotted, as a dashed line, is the threshold for each
solution.

tion is very close to the stationary solution of the unper-
turbed system — the control is noninvasive. For larger val-
ues of the pump, although stabilization is achieved, the
resulting state is not an exact stationary solution of the origi-
nal system.
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The origin of this discrepancy can be found by studying FIG. 15. Stationary solutions to the laser equationsyfer3 in
further the nature of the stationary solutions. Figure 15panels(a) and(c) and fory=8 in panels(b) and(d). Panelgc) and
shows the stationary solutions on the branch with lowestd) show the local wave numbeq,.,, defined in the text, as a

threshold for pump valueg=3 and y=8. Also plotted is

function of the transverse coordinate
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the local wave number defined as IV. CONCLUSIONS
JE] Ix In conclusion, we have shown that by using carefully cho-
Kiocal(X) =1m E sen instantaneous feedback constructed in the Fourier space,

it is possible to stabilize complicated spatiotemporal behav-
This is a useful definition because, if the fidid-expfkx),  ior in pattern forming systems. Our technique is general, fast,
then ki,cs=Kk. Note that to the left of the pumped region, and simple, not requiring expensive computation or interro-
because the field there is a puU@mpley exponential, the gation of the system, and can be implemented in an all-
local wave vector is constant. To the right of the pumpedoptical way. We have demonstrated this in two different op-
region it is again flat with opposite sign compared to that ortical systems. For the case of periodic boundary conditions,
the left (not shown. For the case ofy=3 the local wave the controlled states are exact, but unstable, solutions to the
vector in the pumped region shows small oscillations aroundinperturbed system. With lateral boundaries, the stabilized
an essentially constant value. These small oscillations areo|ution is “close to” an unstable one of the original system.
due to the fact that the field is not a pure leftward traveling Because of its S|mp||c|ty and model independence' the
wave but also has a small component of the rightward travtechnique shows great promise for use, both as a theoretical/
eling wave. computational tool to track unstable states into “turbulent”
For the solution ay=8, there are the same small oscil- regimes and as an experimental tool to retain good spatial
lations but the local wave number increases sharply at thgnd temporal coherence for large values of the pump param-
right-hand side of the gain region, at the source of the traveters. By extending this technique in combination with those
eIing waves. This feature is common to all of the SO'UtionSproposed in Ref[lZ], it is also possib|e to select between
we have found above aroungd=6. different pattern states in the disordered regime. For ex-

The IFC method relies on the target solution having esample, both squares and hexagons can be stabilized in a re-
sentially one transverse wave vector. Solutions that rely on gime of optical turbulence in the LCLV system.

number of wave vectors for their precise shape cannot
readily be stabilized. As we have shown above, this does not
mean that a stable output cannot be achieved, just that the
output obtained is not exactly a solution to the underlying

system, an important distinction from a purist's point of view We acknowledge EPSRC for financial support through
but not for applications. A high power, stable output canGrant Nos. GR J/30998 and GR L/13636 and the British
always be obtained from the laser with the application of theCouncil through Grant No. ARC 881. R.M. acknowledges

ACKNOWLEDGMENTS

IFC technique. the financial support of the EPSRC.
[1] H. Gang and H. Kaifen, Phys. Rev. Leftl, 3794(1993. [15] W. J. Firth, J. Mod. Opt37, 151(1990.
[2] F. Qin, E. E. Wolf, and H.-C. Chang, Phys. Rev. L&, 1459 [16] G. D'Alessandro and W. J. Firth, Phys. Rev. Le86, 2597
(1994. (1991).
[3] I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lét2, [17] G. D'Alessandro and W. J. Firth, Phys. Rev48, 537(1992.
2561(19949. [18] P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. Indik,
[4] C. Loureno, M. Hougardy, and A. Babloyantz, Phys. Rev. E Phys. Rev. A45, 8129(1992.
52, 1528(1995. [19] G. K. Harkness, W. J. Firth, J. B. Geddes, J. V. Moloney, and
[5] V. Petrov, S. Metens, P. Borckmans, G. Dewel, and K. Show- E. M. Wright, Phys. Rev. A0, 4310(1994.
alter, Phys. Rev. Letfr5, 2895(1995. [20] M. Tamburrini, M. Bonavita, S. Wabnitz, and E. Santamato,
[6] A. Hagberg, E. Meron, |. Rubinstein, and B. Zaltzman, Phys. Opt. Lett.18, 855(1993.
Rev. Lett.76, 427 (1996. [21] R. MacDonald and H. J. Eichler, Opt. Commu89, 289
[7] W. Lu, D. Yu, and R. G. Harrison, Phys. Rev. Letb, 3316 (1992.
(1996. [22] T. Honda, Opt. Lettl8, 598 (1993.
[8] R. Martin, A. J. Kent, G. D’Alessandro, and G. L. Oppo, Opt. [23] R. Neubecker, G.-L. Oppo, B. Thuering, and T. Tschudi, Phys.
Commun.127, 161 (1996. Rev. A52, 791(1995.
[9] E. Oftt, C. Grebogi, and J. A. Yorke, Phys. Rev. Lé#t, 1196  [24] S. A. Akhmanov, M. A. Vorontsov, and V. Yu lvanov, Pis'ma
(1990. Zh. Eksp. Teor. Fiz.47, 611 (1989 [JETP Lett. 47, 707
[10] E. R. Hunt, Phys. Rev. Let67, 953(1991). (1988].
[11] K. Pyragas, Phys. Lett. A70 421(1992. [25] Self-Organization in Optical Systems and Applications in In-
[12] R. Martin, A. J. Scroggie, G.-L. Oppo, and W. J. Firth, Phys. formation Technologyedited by M. A. Vorontsov and W. B.
Rev. Lett.77, 4007(1996. Miller (Springer-Verlag, Berlin, 1995
[13] R. Neubecke(private communication [26] M. A. Vorontsov and W. J. Firth, J. Mod. Op#0, 1841

[14] M. E. Bleich, D. Hochheiser, J. V. Moloney, and J. E. S. (1993.
Socolar, Phys. Rev. B5, 2119(199%; D. Hochheiser, J. V. [27] L. A. Lugiato and C. Oldano, Phys. Rev. 3V, 3896(1988.
Moloney, and J. Lega, Phys. Rev.55, R4011(1997). [28] P. Coullet, T. Frisch, and F. Plaza, Physic&® 75 (1993.



2586 HARKNESS, OPPO, MARTIN, SCROGGIE, AND FIRTH PRA 58

[29] P. Coullet, L. Gil, and F. Rocca, Opt. Commun3, 403 [31] G. K. Harkness, J. Lega, and G.-L. Oppo, Chaos Solitons Frac-
(1989. tals 4, 1519(1994); Physica D96, 26 (1996.

[30] G. K. Harkness, Ph.D. thesis, University of Strathclyde, Glas-[32] P. K. Jakobsen, J. Lega, Q. Feng, M. Staley, J. V. Moloney,
gow, U.K. (19949. and A. C. Newell, Phys. Rev. A9, 4189(1994.



