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We consider a semiconductor microcavity driven by a coherent and stationary holding beam, in two distinct
configurations. In the first, no carriers are injected in the multiple-quantum-well structure and the optical
nonlinearity is governed by an excitonic resonance. The second corresponds to that of a vertical-cavity surface-
emitting laser kept slightly below threshold. We describe both configurations using a unified model that
includes both field diffraction and carrier diffusion. We calculate numerically both the time evolution and the
stationary profile of the solitonic solutions, using a generalization of the radial integration technique introduced
by Firth and ScroggiéPhys. Rev. Lett76, 1623(1996]. We analyze the instability that forms spatial patterns
and especially cavity spatial solitons. We predict the existence of these solitons in various parametric domains
for both configurations. We demonstrate that these results are independent of the periodic boundary conditions
used in the simulations. We show that, introducing a simple phase modulation in the holding beam, one can
eliminate the motions of solitons that arise from noise and from amplitude gradients. The solitons are robust
with respect to parametric variations, to carrier diffusion, and even to some amount of self-defocusing. This
picture points to the possibility of realizing arrays of solitonic pixels using semiconductor microresonators.
[S1050-294{@8)09909-7

PACS numbep): 42.65.5f, 42.65.Tg, 42.79.Ta

[. INTRODUCTION pulse, they persist as stationary dots until they are wiped out
by another suitable pulse. This behavior is ensured by the
Applications to information technology are one of the optical cavity, a distinctive feature of our research that is
goals of the extensive work in the field of transverse patterrabsent in previous studies on spatial optical solitons.
formation in nonlinear optical systemi&—6]. The main dif- Spatial solitons in cavity systems were predicted by Ro-
ficulty encountered is the fact that different points of an op-sanov and Khodov@l0-17; in that case they arise from a
tical pattern are strongly correlated, so that any local modistandard plane-wave bistability in combination with switch-
fication introduced to encode information either stronglying waves with zero velocity. A different kind of cavity SS
affects the whole pattern or is spontaneously erased. Thiwas predicted by Tlidi, Mandel, and Lefevielr3,14); in this
problem can be solved by generating spatial structures thaiase the mechanism is a modulational instabi(it#yl) in
are individually addressable and independent from one arcombination with the coexistence between a hexagonal
other. branch of bifurcated solutions and a plane-wave solution;
The idea is of considering the transverse planes, orthogdhis represents, in the domain of optics, an example of the
nal to the propagation direction of the beam, as a blackboargdhenomenon of “localized structures” previously discov-
on which light dots can be written and erased in any desireéred in other field§15,16. In this paper we discuss this kind
location. These spots are called spatial solit#Ss. They of SS. Cavity SSs of chaotic character have been also found
are generated by shining localized address pulses in the sy [17], but here we will consider only stationary SSs.
tem. The pulses locally create a bleached area that persists In two previous papers a simple two-level model for a
after the passage of the pulse, hence the name “optical bullefaturable absorber was analyZ&18]. In [7] the existence
holes” also used for this kind of spatial solitdi@]. The of stable spatial solitons in the system was predicted and the
bleached area exerts a guiding action on the optical field thgiossibility of defining preferred locations by introducing a
counterbalances the diffractive spreading and thus makes tlgpatial phase modulation in the driving field was shown.
soliton structure self-sustaining. Such solitons can arise, aglaxima in the phase profile of the driving field act as equi-
discussed ini7], in the absence of any refractive effect. The librium positions for the SSs, which move to these sites even
temporal solitons familiar from nonlinear fiber optics are duewhen the address pulse is not accurately aimed18}, on
to self-focusing and we show that spatial solitons based on the other hand, the formation and control of SSs as a func-
refractive nonlinearity can also exist as stable structures in #on of the characteristics of the address pulse were analyzed
optical cavity. In the general case, both refractive index an@nd their interaction properties were studied. In particular,
absorption(or gain exhibit nonlinearity and we find spatial the possibility of erasing SSs individually was investigated;
solitons also in such intermediate cases. this scheme was later successfully applied by Schreaibat.
Though there is extensive literature on spatial solitonso wipe out SSs in an optoelectronic systénliquid-crystal
(see, e.g9.[8,9]), the concepts developed in the past werelight valve) [19]. Spatial solitons have been observed re-
based on beam propagation, which instead plays a marginaéntly using an organic materiédberchromg[20].
role in our case. The basic property of the SSs considered in The results of7,18] pave the way to the realization of an
our scheme is that once they have been created by an addregstical memory array of individually addressable spatial soli-
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tons, with N coexisting states for an array df solitons differential equations, it can achieve very high spatial reso-
(i.e.,NXxN). However, we are basically interested in demon-lution. - . o

strating the feasible generation and controlling techniques for  Sections Il and lil are devoted to the detailed description
SSs in materials interesting for application; hence we preserf}l the semiconductor model and the analytical calculation of
a model specifically designed to describe the case in Which[‘e homogeneous stationary solutions and their stability. In
the nonlinear medium is a semiconductor ec. IV we report the features of the numerical split-step

Precisely, we formulate and analyze a unified model for zf‘ethOd we adopte_d for the mtegrathn of.the model equa-
semiconductor material in a resonant microcavity driven by glons and we describe the results obtained in both the passive
coherent plane-wave field in two different configurations.f'de the active case. We S.hOW also that the _rgsults on S.SS are
The first corresponds to the case where the material has dBdependent of th_e periodic boundary qond|t|ons used in the
population inversion; in the following, we will refer to this as S'm‘%'a“ons af_‘d discuss _effe_cts tha_t arse from the_presence
the case of a “passive system.” More precisely, the materian e|tr_1er spatial modulat_|on n th? Input f|el_d or noise. We
is assumed to be a muitiple quantum W@IQW) with an describe also the formation of stripelike solitons under con-

exciton nonlinearity that is modeled as a Lorentzian line. Theitions such that SSs are not stable. In Sec. V we describe

second corresponds to the “active” case of population inver-the shooting method and compare the results with those ob-

sion induced by an injected current. The configuration is baIa'nEd via the s_pllt-ste_p method. Section VI is devoted to a
sically that of a driven broad-area vertical cavity surface-Summary and discussion of the results.
emitting laser(VCSEL) with the gain arising from free

carriers; however, the values of the current are such that the Il. MODEL
VCSEL is below threshold in absence of the driving field.

The motivation for the choice of these two configurations

is the following. In our scheme, SSs develop in the neigh- 4 tor microresonator is of the Fabryr@tetype, with a

borhood of a spatial modulational instability that destabilizesMQW structure perpendicular to the directiarof propaga-

a stationary solution, _homogenepus n thg transverse pIanﬁOn of the radiation inside the cavity. The total electric field
According to our previous experience, this instability tends;

to appear under conditions such that the input-output curve composed of a forwartls and a backwardts component
of the homogeneous stationary solutiorSishaped, or close 1 Koz Kot

to S shaped. This is the reason why we use an optical reso-£= 5[Er(X,y,Z;)e"+Eg(x,y, z;t)e " Je o' +c.c.,

nator (the feedback of the cavity mirrors ensures the possi- (1)
bility of bistable responge while the two configurations

(passive and actiyedescribed above were selected becausavherek,= wgn/c, with w, being the frequency of the input
they readily lead to thes-shaped regime. Note, however, field andn the background refractive index of the medium.
that the homogeneous stationary solution in the lowest On the other hand, the material is described by the carrier
branch of theS-shaped curve must actually bebleagainst  gensityN. In the slowly varying envelope approximation the
small perturbations if stable SSs are to exist. In particulargynamical equations are

this is the motivation for keeping the VCSEL below thresh-

We consider a broad area semiconductor heterostructure
in both the passive and the active configuration. The semi-

old. A further reason for considering these two configura- 1, JEr 1 0B [ wol’
tions is that population inversion converts self-focusing me- 2ikZVLEF+ WJF o ot \'opeX @ Er, (28
dia into self-defocusing media and vice versa; hence, in this
way we have an important degree of freedom available. 1, JEg 1 JEg [.wgl
Here we analyze in full detail the model previously intro- Tkzvi B” 57 T, ot | 2ncX” % Ee: (2b)
duced in[21]. It is formulated in such a way that it is as
simple as possible, but incorporates all the main physical IN N ~ €o
processes, e.g., carrier diffusion and the linewidth enhance- i ;r—BNZJr Elm(X)(lEF|2+|EB|2)

ment factor familiar in semiconductor lasdi2?]. For sim-
plicity, the model includes only one longitudinal mode of the T -
cavity, which appears legitimate for the sort of microresona- +—+DV2N. (20
tors considered here. The model takes on the form of a set of eVa
partial differential equation§PDES9, numerically integrated . o . '
It is well known that the numerical integration of this kind Lo /L 1of the lenathL . of the region fill)gd b thgy uantum
of PDE is a difficult matter that requires sophisticated pro—W’:eIIS (QWS) to tge cgvit len thg' s the )I/inearqabsor i
cedures. For this reason we check the results of the comple[x ficient 'tyl gth da' o th terial i pth
and lengthy numerical integrations in time of the full model lon coefricient per unit 1eng ue to the matenal in the
using a powerful technique recently developed i This regions betW(.aen.the QWs and the rT.n'rror,s;s the F“?”rad"
numerical approach, called the shooting method, allows Ongtlv_e _recombmat_lon _rate_ of cgrrlerB, 1S th_e Eogfﬂment_of
to calculate the stationary SSs directly, bypassing dynamicfdiative recombination involving two carriers; is the dif-
transients. By assuming that SSs are cylindrically symmetri¢usion coefficient;l is the intensity of the injected current
in the radial direction, it reduces the €21)-dimensional full  (nonvanishing only in the active configuratjoe is the elec-
problem to a one-dimensional problem. More importantly,tron charge; and/, is the active volume. The transverse
because the method requires only the solution of ordinaryaplacian
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2 2
va_ 9 o 3) N L N+ BN2= 1+ E[AN=1)—12¥2N], (7b)
LooxE gy a prLh

wherex andy are Cartesian coordinates orthogonalzto where n=2q;L/T, 6=(w.—wg)/k is the cavity detuning
describes diffraction in the paraxial approximation. Theparameter,a=v/2«k, is the diffraction coefficient,|y
radiation-matter interaction is described by the linearized_ /f 7, is the diffusion length, aan=BT\Iorr.

complex susceptibility23,24 The last step consists in passing to adimensional indepen-

dent variables, by scaling time to the photon lifetime ¢)
y(N)=— E@A(N—N ) (4) and the transverse coordinateandy to ya. The equations
o o that will be the object of our following study are then

whereN, is the transparency value of the carrier density and’E . . .
A is the differential absorptiofgain coefficient in the pas- 5t —(1+7+i6)E+E—-2CiO(N-1)E+IVIE, (83
sive (active) case.

In the passive configuratio® =(A+i)/(1+A?) andA
= (we— w)/ ye, Wherew, is the the central frequency of the — = — 9[N+ 8N?—1 +|E|?(N—1)—dV?N], (8b)
excitonic absorption line, approximated by the Lorentzian at
shapd 23], and vy, is the half-width of the excitonic line. In ] ] 1 o
the active configuratior® = a+i [24], wherea is the line-  With the adlmeznsmnal decay raje=(«7,) " and diffusion
width enhancement fact§22). coefficientd=15/a. _ _

We get rid of the longitudinal coordinate by applying the In order to perform an analysis as close as possible to the
mean-field limit[25], which holds when the transmissivily ~ devices available nowadays, the choice of numerical values
and the single-pass absorption/gaiAL(ANo) are much of _the physical quantlt.|e5 characterizing our model was In-
smaller than unity. This is always true in a vertical cavity spired by some experimental works on optical bistability in
device and the ratio of these two guantities GaAs MQW structuressee, e.g.[26—2_a) and on characte_r-

ization of VCSELs(see, e.g.[29]). Typical values of physi-

~ cal parameters common to both configurations are
_ ALANg 5)
2T

No=2mc/wy=850 nm, n=3.5,

. o . _ ©
is called the bistability parameter. As it will become evident,
it is equivalent to the parametér of the two-level saturable
absorber model used [i7,18]. In addition, one assumes that
only one longitudinal cavity mode of frequeney; is rel-
evant in the dynamics, due to the short cavity. In this limitit 2 : ) .
is possible to show that the two counterpropagating fields ar =19.3 ., for both configurations. These values imply

. . . _1_ . .
approximately constant and equal along the cavity, so we sdpat the time unit isc*=11.7 ps gnd the space unit *5.
F(x.y.)=E~(x.y.2.t) = Eq(x.y.z.t), where the overbar de =4.39 um. As for the other quantities, we have to consider
1 Yol)— LF 1Y 4 t)— LB 1 Y1454 ), -

o . the passive and the active configuration separately; realistic
notes the average over the longitudinal coordimatere also | o) 1o are
introduce the adimensional electric field

Lo,=300 nm, 7,=6 ns, Ip=2 um,
egncr A 10
E=\/————Im(O)F. (6) (10
ﬁa)o

=25 cm?!, B=1.3x10Ycm’s?

No=2%10"% cm™3, T=4x10"3 L=2 um.

With this choice of physical quantities, we are led to a cavity
decay ratec=8.57x 10'° s~ and to a diffraction coefficient

Next, we take into accour4] the proper boundary condi-
tions of the problem, with partially reflecting mirrors and an
external field of frequencw, and slowly varying envelope
E, injected into the cavity. In this way the cavity half-width
k=vT/2L appears in the equation for the electric field as aT

dampingNteNrm. Finally, we de~fi£1e the normalized carrier den In the active case we neglect the additional absorption of
sity N=N/No and current =1/I,, where the transparency the material and the radiative recombination of carri{ees,

value of the injected current is given By=eVaNo/7, (in we seta;=0, B=0). In a broad-area device with a cross
the passive configuratiohis equal to zero because no cur- section S~5000 um? (for example, a square of about 70

for the passive configuration and
Lo=50 nm, 7,=1 ns, Ip=1 um 1y

or the active configuration.

rent is injected X 70 um?) the active volumé/, is about 25Qum?, so that
After these steps one arrives at the equations the transparency value of the injected currenitgis 80 mA
(corresponding to a current density b= 1.6 kA/cn¥). The

JE cavity detuning parametef can be chosen of order unity,

—=—«[(1+9+i0)E—E +2CiO(N—1)E—iaV’E],

ot corresponding to a mistuningA ~1 nm or less, between the

(79 driving wavelength\ , and the Fabry-Ret resonance peak.
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Ill. HOMOGENEOUS SOLUTION AND LINEAR with the real eigenvalue is called a Turing or stationary in-
STABILITY ANALYSIS stability because it brings the system to a new stationary

. state, different from the homogeneous one. The system
: The_homogenequs solutiol§,Ng) of Eqs.(8a) "’?”d(8b> asses from the stable to the unstable domain when the real
is obtained by setting equal to zero the time derivatives an

) S . : igenvalue changes its sign from negative to positive. There-
neglecting the Laplacian in the two equations. We obtain fo?e, the stabilityg boundagr]y i assiggrlled by tr?e condition
|E/|2=|E4H[1+ 7—2C Im(©)(Ns—1)]2 _=0, which is in turn equwalem ta0=0_. The .Iatter condi-

tion leads to the following cubic equation K?:
+[6+2C Re®)(Ng—1)7%}, (129 ) s -
d(K9)*+ (As+2dAy)(K?)

+[d(A2+ A%)+2A,A,— Re(@)A5]K?

_ 1+IEd? N V(1+[E4?)*+4B([EJ*+1)

ST 23 2B
(12b +AL A2+ A - A [REO)A,—IM(O)A]=0. (17

For appropriate choices of the parameters the curiEgf e fix all the parameters except the homogeneous intensity

as a function ofE,| is S shaped. |Es|? or, equivalently, the input intensit\, |2 and we find,
The linear stability of the homogeneous solution is anafor every value of|Eg?, the corresponding interval of un-

lyzed by studying the response of the system to small flucstable wave vectors. The Turing instability domain can then

tuations around the steady state. We set be drawn in the pland Eg|,K), where we can determine the
_ SE unstable portion of the homogeneous solution and the critical
SE(xy;t) 0 wave vectorK., which first destabilizes the homogeneous

5E* (X,y,t) — e[)\t+i(KxX+ Kyy)] 5E’6
SN(x,y;t) SN

, (13)  solution[see Figs. (b), 3(b), 4(b), 5(b), 8(b), and b)].

. . . IV. NUMERICAL ANALYSIS
assuming that the fluctuations grdar decay exponentially

in time and that they are modulated with transverse wave A. Method of integration

vector (K, ,K,). The set of equations obtained linearizing e gynamical equations were integrated numerically us-
Eq. (8a), its complex conjugate, and E¢BD) around the i,y 5 gpjit-step method with periodic boundary conditions.
homogeneous stationary soluti@a and(12h), and intro- i method consists in separating the algebraic and the La-
dycmg the ansqt@3) admits n_ontr|V|aI_ solutions only if the placian terms on the right-hand part of the equations; the
eigenvaluex satisfies the cubic equation algebraic term is integrated using a Runge-Kutta algorithm,
3, 2, L= whllg for the Laplagman operator a t_wo—@mensm(@lD) fast

A aA T aik+a0=0, 34 Eourier transform is adopted. This implies that the number of

where the coefficients; (i=0,1,2) depend on the system Points for each side of the grid must be a power of 2 and we

parametersy, 8, 7, ©, 6, d, C, 1, andE, and the modulus mos.tl.y assumed a 6464 grid. In ord(_ar to ensure proper
squarek? of the transverse wave vector stability and convergence of the algorithm, we chose a time

stepdt~10 2 and a space stefs varying from 0.3 to 0.6.

a,=2A;+ y(A;+dK?), (159 For the typical values of the recombination tinie and
the cavity decay rate given in Sec. Il the values of the
a;=A3+ (A, + K2+ y[2A,(As+dK?) + Az Im(0)], parametery= (k7)1 are of order 102—10 3. However,

(15p  inour simulations we adopt a much largap toy=1) value
for y because we observed that the only effect of decreasing
ao= Y{[AT+ (A, +K?)?](A,+dK?) v is to make the transient regime longer; the structure of the
final pattern does not depend gn as expected, since Eq.

—Adl(Ax+K*)ReO)— A, Im(O)]}, (159 (17) does not bear a dependency on time rates in determining
with the instabilities’ character. After having substantiated this
claim with careful sample simulations, we decided to reduce
A;=1+7—2C Im(®)(Ng—1), (169  the CPU time requirements by adopting high values af
further runs.
A,=6+2C Re(O)(Ng—1), (16b) The technique used to switch on a SS consists in super-
imposing to the homogeneous background of the input field
As=4C|Eg2(Ng—1), (160  E{™ (which we assume real and positive without loss of
generality a Gaussian pulse, centered at the poiy,Yo)
A,=1+|Eg?+28Ns. (160  where we want to create the spatial solifd8]. The injected
field is then

Equation(14) has usually one real and two complex conju- ) ,
gate roots. The two complex eigenvalues might in principle (b . (X=Xg)“+ (Y—VYo)

give rise to a Hopf instability, but a very simple argument E1(%Y;)=E["+he/¥ exp — 252 f(o),
shows that since<1, the real part of the complex conjugate (18
eigenvalues is always negative, so that there is no instability

related to the complex eigenvalues. The instability associatedith
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1, ostst 2 o
f(t)= — (19 B Unstable hom. branch & .
0, t>t, ol @ ol .'. a3 X
X Honeycomb - :P(%
whereh and ¢ are the amplitude and phase of the Gaussian BT a /
beam,o is its width, andt is the pulse duration. We set or -
=0, which means that the Gaussian beam is in phase with s
the background. A similar procedure is used to erase an SS: B ST e S
To this aim we create a dark hole in the homogeneous inten- ||
sity of the injected field by setting the phase of the Gaussian ()
pulse top= 7 [obviously, in this case the Gaussian ampli- 5o
tudeh in Eq. (18) must not exceed("]. K
In order to investigate the effects on SSs that arise by ’
using more realistic configurations of the input field, we per- =T
formed numerical simulations also considering a background L5y
input field with a broad Gaussian profile rather than a simply 1o}
homogeneous one. In this case we assume oslh
x2+y2 08, > " 3 8 o 12
E\(x,y)=E" exp( - 552 ) (20) | El
{b)
in the absence of a switching pulse. FIG. 1. Passive resonant casa). Steady-state curve of the ho-

The pinning effect exerted on solitons by a phase modumogeneous solution and results of numerical simulations. Different
lation of the input field 7] is simulated by considering in the patterns are indicated by different symbols; the ordinate of the sym-
transverse plane two orthogonal standing waves of amplitudiol corresponds to the maximum intensity in the pattésnTuring
{ superimposed on the homogeneous background and out wistability domain. The parameters a@=30, §=—-3, A=0, |
phase with respect to the latter ly2. Hence the input field =0, d=0.2, »=0.25, and3=1.6.
takes the form

1. Resonant cas¢A =0)

_(h) :
Ei(x,y)=E/"[1+ie(coskx+cosky)], (21 The values for the remaining parameters are chagen

(h) . . - =—3 andC=30. The steady-state curve and the instability
where e=2(/E[”. Providede is sufficiently small.E, ac-  g4omain are shown in Fig. 1. In Fig(@ we indicate with

quires essentially only a phase modulation: In fact, at firs{,arious symbols the results of numerical simulations when

order ine, they produce some transverse pattern. The branch of SSs is
_=(h . represented by closed circles. Note that the SSs coexist with

Ei(x.y)~E" exlie(coskx+cosky)], (22) the lower branch of the homogeneous steady state. To the

whie the corecton o the inensty s oy of o, €11 e stablly domin e 595 re o jonger b be
The pinning effect can also be analyzed in connection y Prog y

with the contemporary presence of a Gaussian modulation ing the peak intensity until they disappear. To the right of the

the amplitude of the injected field. From expressid@e) stability domain new structures arise spontaneously and fila-

; . e ._ments appear, emerging from the backgro[sek Fig. 2a)].
and (21) the natural choice for the input field in this case is Another situation that leads to the formation of filaments is

when two SSs are excited too close to each other: In this case
+ie(coskx+cosky)|. the structures repel each other and filaments are formed con-
necting the SSs. Filaments can be regarded as stripelike soli-

(23)  tons and will be analyzed more extensively in Sec. IV F.

x2+y?

23

exp —

Ei(x,y)=E{"

Finally, in order to verify the effect of noise on the SSs, we

) . X L EE——— S TETeTeT
included in our model the noise due to the driving fiégd [ ‘..‘....‘
and the injected currerit Thus we introduced white-noise I ....“‘.‘
terms, in the form of Gaussian processes with zero mean an r— '.Q..."‘
& correlated in space and time, to both E8g) for the field E— ‘.‘.‘...‘
E and Eq.(8b) for the carrier densit\. .:.:.:.:
I
(b) (©)

B. Passive configuration

In the following we will analyze three particular cases of £\ 2. Examples of patterns found in the passive resonant case
the passive configuration, relative to a resonant=Q), fo-  (see Fig. 1 The three 2D gray scale plotshite represents the
cusing A <0), and defocusingX>0) medium. In all three  maximum of intensity correspond to a square of 1440 xm? in
cases we sdt=0, »=0.25, 3=1.6, andd=0.2. The values the cross-section of the bearf@ dynamical coexistence of fila-
of these parameters are directly derived from the physicahents and SS|E,|=44), (b) rolls (|E,|=39), and(c) honeycomb
guantities listed at the end of Sec. IlI. (|E||=48).
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FIG. 3. Passive focusing cade) Steady-state curve of the ho- . . .
mogeneous solution and results of numerical simulatidmsTur- FIG. 4. Passive defocu;mg caga). Bistable Stead_y-stat_e curve
ing instability domain. The parameters aBe=40, 6= —3, A= of the homogeneous solution and results of numerical simulations.

—1,1=0,d=0.2, =0.25, and@=1.6. (b) Turing instability domain. The parameters &e- 40, §=—2,
' ' ' ' A=1,1=0,d=0.2, »=0.25, and3=1.6.

Other stable structures are the roll pattesee Fig. &)] and
the honeycomb patterfsee Fig. )], represented in Fig.
1(a) by open squares and crosses, respectively. The picture
qualitatively very similar to the case of purely absorptive
system, described if80], the only relevant difference being
that here we do not find stable positive hexagonal lattices for
the parameter ranges examined in our simulations.

simply moves a bit apart and decreases its peak intensity, but
it survives. In caséb) we observe that, as expected, the best
f&sult is obtained ab=, but the SS can be erased quite
fast for every value ofp between 2r/3 and 4r/3.

3. Defocusing cas€A>0)

This is a less favorable case for the formation of SSs
because now both diffraction and self-defocusing act in the
same direction. However, we were able to find several ex-

This is the situation where spatial solitons are most fagmples of robust SSs also in this situation. The parameters
vored, since the focusing action of the medium cooperategdopted for this case atk=1, 6= —2, andC=40 andA

with saturation to counteract diffraction. We consider in par-=15 g=—2, andC=20. The steady-state curves and the
ticular the caseA=—1, §=—3, andC=40. The steady- stability domains are shown in Figs. 4 and 5, respectively.
state curve with branches of different patterns and the instaye note that in the first case the homogeneous steady-state
bility domain are shown in Fig. 3. curve shows bistabilityFig. 4@)], while in the latter case the

An important feature of our device is the pOSS|b|||ty of curve is monostab|B:ig_ [—Xa)] Branches of the various spa-
erasing a SS once it has been created. It can thus work asig| patterns are also indicated with the usual symbols: The
memory, where a bit of information can be stored as well agcenario is similar to what we obtained in the resonant and
wiped out. We have already mentioned at the beginning ofpcusing case, with the only difference being that in the
this section which technique we use to erase an SS. In thigonostable case we found multistability among the lower
particular case we checked the validity of this technique inpranch of the homogeneous solution, SSs, and the hexagonal
two situations slightly different from the ideal one, namely, |attice, indicated by open triangles. This pattern is shown in
(@) when the center of the Gaussian beam is a bit displaceflig. 6, where the presence of several defects is evident.
from the center of the SS arf) when the Gaussian beamis  Erom the Turing domain in Fig. ) we find that the
not exactly in opposition of phase with respect to back-wave vector that destabilizes first the homogeneous solution
ground. In both cases we fixed the amplitude and width ofg Ko=1.43, which corresponds to a critical wavelength
the Gaussian injected peak =10 and¢=0.9, respec- )\ .=27/K.=4.39. On the other hand, from the measure of
tively, while the background homogeneous input field isthe cell lengthn of the honeycomb pattern emerging at the
E{"=27[see Eq(18)]. Moreover, we set the darkening time instability threshold fofE,| =38 we obtained\=4.56: The
around a typical value ot=300, which corresponds to two values\ and\¢ are in very good agreement.
about 3.5 ns. Our simulations showed that in c@s¢he SS Next we performed a detailed study of the behavior of the
can be erased when the separation between the Gaussian &fas when the integration parameters, i.e., the time step and
the SS is smaller than 1(5.27 um), which approximately the space step, are varied. In the bistable da@se1, 0
coincides with the size of a SS; for larger distances the SS —2, andC=40), we fixed the homogeneous input field at

2. Focusing casqA<0)
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10 point out that this picture remains unchanged for the resonant
T ke hom, b NG and focusing cases and it is basically the same observed for a

8H - Unstable hom, branch a0 xx

55 a0 X saturable absorbgd8]. Moreover, we note that the interac-

. R * tion distance is very close to the critical length calculated
| i above from the Turing domain. From this fact we can argue
‘ that the interaction properties of SSs are strictly related to the
MI affecting the system. The merging and repulsion actions
0 . between two SSs can be seen as the way adopted by SSs to

(E,| self-accommodate according to a underlying spatial pattern.

4. Variation of parameters
35

Kol k=224 After seeing the three case studies, let us now discuss the
2s) < K= 146 key point of the parametric dependence of the results. The
5ol (\ > bistability parametelC must be large enough so that the
sl \ \ input-output curve of the homogeneous stationary solution is
10 N _— bistable or close to bistable. The extension of the range of
ol ~— input intensities, for which SSs are found, becomes larger
oo . . . whenC is increased. In our calculations, we vari€dfrom

! 3 \E4s\ s 7 10 to 50; these values are accessible experimeri@fiy28.

) The paramete#, which measures the detuning of the input
frequency from the nearest longitudinal cavity mode in units
FIG. 5. Passive defocusing case) Monostable steady-state Of the cavity halfwidth, must be negative and typicallly
curve of the homogeneous solution and results of numerical simunust be on the order of 2 at least for the valuedofonsid-
lations. (b) Turing instability domain. Note the multistability among ered in our calculations. As for the parametkr for our
the lower homogeneous branch, SS, and hexagonal lattice. The pahoice of the parameters it results that in the self-defocusing
rameters ar€€=20, §=—2,A=1.5,1=0,d=0.2, »=0.25, and caseA must be about 2 or less; the existence of an upper
B=16. limit in A is related to the fact that self-defocusing, which is
unfavorable for SSs, increases with Our calculations per-
E{" =35 and observed the changes in the peak intensity anfdrmed after the publication d21] have shown that, in the
in the diameter of the SS as the space step and the time steplf-focusing case, also fav< —1 it is possible to generate
vary in a large range of values. We found that the SS persistsingle SSs and not only groups of solitons.
for a space step as large as 0.8, when the typical value of its As already discussed, the value of the ragiof the non-
diameter is around 3. Moreover, the diameter and peak inradiative recombination rate to the cavity damping rate turns
tensity vary little as the integration parameters are changeaut to be irrelevant. In a sense this is obvious because the
These results indicate that the integration method is quitgolutions that correspond to SSs are stationaryjagdverns
reliable. only the transient stage. However, it must be kept in mind
In view of possible applications it is interesting to know that y may, a priori, influence strongly the stability of SSs,
what the minimum allowable distance is between two SS$ut in our calculations we found that a SS stable for
because this is a measure of the density of information tha& 0.1 remains stable up to the realistic valye 0.002.
can be stored in the system. Then we performed numerical As for the parameteg that governs radiative recombina-
simulations to investigate the interaction properties of SSs imion, we considered two value8=0 and 1.6. The picture is
the bistable case. We observed that two SSs of diameter 3dlalitatively the same in both cases; we saw only that, when
behave as distinct entities when their center-to-center disg=1.6, the steady-state hysteresis cycle of the homogeneous
tance is larger than 4.2, while they mer@e., they fuse into  stationary state corresponds to larger values of the input in-
one soliton, with height, width, etc., identical to those of thetensity, while SSs can resist to a stronger diffusion process
two original soliton as their distance goes below 3.6. In (especially in the self-defocusing case
between, SSs repel each other until their distance reaches the The last parameter to be discussed,isvhich governs the
noninteraction value 4.2. Obviously, these figures depend oparrier diffusion. In Fig. 7 we show an example of Turing
the specific choice of the system parameters, but we caimstability domains for different values of the diffusion coef-
ficientd. We note that the instability domain shrinks as the
diffusion parameter increases. Nevertheless, while the left
boundary of the Turing domain is affected by diffusion, the
right one is left almost unchanged by the increase of diffu-
sion; both these features are positive for the existence of SSs
in the presence of diffusion: In fact, the stability of the lower
branch of the homogeneous solution together with an ex-
tended MI in the upper branch is a necessary condition for
SSs to be stable. As a matter of fact, diffusion tends to sta-
FIG. 6. Positive hexagonal pattern with defects found in thebilize the homogeneous solution. As for the effect of diffu-
passive monostable defocusing césee Fig. 5. The cross section sion on SSs, we can note that wheris increased, the SS
is 169x 169 uwm? wide; |E,|=19.1. becomes lower and wider, and beyond a certain maximum
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FIG. 7. Turing instability domains plotted for different values of (a)
d in the passive configuration. The other parametersCarel0, 6
=—-2,A=1,1=0, »=0.25, andB=1.6. LS

value d,5x it does not exist anymore. In the self-focusing
case diffusion is not at all a problem: We found stable SSs
even wherd was as large as 1@ypical values ofd are on

the order of 10%). For A=0 it is basically the same ard os|
can be safely raised to 0.75. As it may be expected, the
self-defocusing case is more sensitive to the presence of dif-

fusion. However, the robustness of SSs to carrier diffusion ) 05 ) Ts 20
increases with their height and when this is large enough we £l
found thatd can be raised to 0.55 f@~20-40, even in the (b)

presence of self-defocusing.

FIG. 8. Active focusing casd€a) Steady-state curve of the ho-
mogeneous solution and results of numerical simulati@msTur-
ing instability domain. The parameters a@=0.45, =2, «
In this case the device is supplied by an injected curfent =5.1=2,d=0.052,7=0, and5=0.

greater than the transparency valyein such a way that
>1. In this configuration the microresonator becomes a ver- — 1t7
. . L ” : . Ns=1+ , 27
tical cavity surface-emitting amplifier or laser with an in- 2C
jected fieldE,, according to whether or not the system is ] ) ) »
above laser threshold. In our study we always keep the sy&/hich, by inserting Eq(25), yields the condition foty,,
tem below lasing threshold in order to avoid the appearance 14 42
of dynamical instabilities typical of the VCSEL above ly=1+ -+ g1+ _77) . 28)
threshold. 2C 2C
In order to determine the threshold valyg and the laser . .
In the following we consider values<0l <lI,.

frequency in the absence of the injected fidéttle free- did in th . fi . | h

running regime we must sett, =0 in the stationary equa- ; As we did in t %%a?swe con |gurat|0n,d_we ana yzel the

tions of the model and consider the point for which the nonJocusing @>0) and de ocusing 4<0) media separately.
For the parameters of the active system, as in the passive

trivial stationary solutions give$Eg=0. To this aim, we . . .
start from Eq(12a). By settingE, =0, dividing by|E4?, and case, we adopt numerical values derived from the physical

C. Active configuration

settina® = a-+i we obtain the two equations q_uant_ities listed at the end of _Sec: II. In particular, for a
g “ g diffusion lengthlp=1 um, the diffusion parametet takes
1+ 7—2C(Ng—1)=0, (243 the value 0.052. Moreover, for the sake of simplicity, we
neglect the linear absorption term and the quadratic recom-
6+2Ca(Ng—1)=0. (24b) bination term choosingy=0 and 8=0. In this case Egs.

(26) and (28) simplify, becoming 6=—a and ly,=1
+1/2C, respectively. As for the bistability parameter we fix
C=0.45, leading to a threshold currett,=2.11. We
choosd =2 in order to keep the device just below threshold.
We have also investigated the case in which the cross section

On the other hand, from Eq12b) with |Eg/=0 andl =1y,
we obtain

N _ 1t NIH4ABIn (25) of the active region is smaller than the integration window to
S 2B ' verify the robustness of spatial solitons against the removal

of periodic boundary conditions adopted to perform the nu-
From Egs.(248 and(24b) we obtain the condition that de- merical integration.

termines the laser frequency
1. Focusing casq a>0)

0+a(l+n)=0 (26) In this case we considered the parameters5 and 6
=—2. In Fig. 8 we show thé&-shaped curve of the homo-
and the stationary carrier density at threshold geneous steady state and the Turing instability domain.
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TABLE I. Minimum value of the amplitudén,,;, necessary to TABLE Il. Minimum value of the amplitudéh,,;, sufficient to
excite a SS, for different values of the lighting tinieand of the ~ annihilate the SS, for different choices of the widthand of the
width o, [see Eq(18)]. We setE{"=0.75 ande=0. darkening timet [see Eq(18)]. We setE{"'=0.75 ande= .

o Nmin o Nrmin
t=86 t=8.6

2 0.69 2 0.40

3 0.53 3 0.34

4 0.46 4 0.31
t=258 1=25.8

2 0.36 2 0.21

3 0.27 3 0.17

4 0.23 4 0.16

Where the homogeneous solution is unstable, we found therder to switch on the SS. Moreover, we note that for the
stationary modulated patterns whose branches are indicatefifferent values ofr considered, the value &, decreases

with the usual symbols. _ _ by a factor 2 whert is increased by a factor 3.
We started our search just below the right-hand instability * Next we considered the switching problem when the

threshold. Here the system easily develops a perfect hone}’)hasego of the Gaussian beam is not exactly equal to 0. We
comb pattern. Then we constructed the branch of the honey;, o g o=3 and a lighting time equal to 86 and then we

comb pattern following its evolution for adiabatic variations determined, as before, the minimum amplitide,, needed
. . . .- ) 1 n
of the input amplitudeg, . It turns out that the instability of to excite a SS for various. The results are summarized in

the upper homogeneous solution is slightly subcritical: InT5p1e 111. If we further increase the modulus of that is, if

fact, there is a superposition between a stable portion of the, . put the homogeneous background and the Gaussian pulse
homogeneous curve and the honeycomb branch. By furthef, .« and more out of phase, the process of exciting a SS
decreasing the input amplitudg we observed the transition 1o-omes less and less efficient, up to the point that we are
from the honeycomb pattern to rolls. We found both perfect, s apje to switch on the SS: Heuristically, this can be un-

and imperfect structures, depending on the initial conditionsye sigod by considering that whép| becomes greater than
For values ofE, just below the right-hand turning point of /5 \ve enter a regime where the Gaussian pulse acts to dig
the S-shaped curve, we observed the presence of SSs. They yark spot in the homogeneous background rather than to

are stable foE, larger than about 0.74. Below this value, in create 4 peak of intensity. Nevertheless, Table Il demon-
fact, they disappear and the system evolves to the lower

branch of the homogeneous stationary solution. Between the - .

SSs and roll branches the system displays a dynamical be- 'ABLE lll. Minimum value of the amplitudéy, necessary to
havior, in which we observed spontaneous creation and ar?—xc't?h)a SS, for different values of the phasgsee Eq(18). We
nihilation of spatial solitons and filaments in different loca- S€tEi" =0.75, 0=3, andt=86.

tions of the transverse profile of the field and no stable
configuration was found even for very long times.

Once we demonstrated the existence of a sizable branch 0.82

hmin

S

of stable SSs, we studied the dependence of the switching _7§T

and erasing procedures on the injection parameters, namely, 0.65

the heighth, the width o, and the phase of the Gaussian _2 - '

beam superimposed on the homogeneous background and 9

the lighting timet. The amplitude of the homogeneous back- o 0.56

ground in these simulations B"=0.75. First we setp 9

=0 and determined, for different values of the lighting time T 0.54

t and of the widtho, the minimum value of the amplitude 18

hmin Necessary to excite an $8ee Eq(18)]. In Table | we 0 0.53

summarized our results for two choices of the lighting time: ” 0.52

t=286 and 258 in unik !, which corresponds to 1 and 3 ns, 18

respectively. Then we repeated the above simulations for the 053
) . - - .

erasing case= 7. We determinedsee Table )l the mini- Z

mum valueh,;, of the Gaussian amplitude sufficient to an- 9

nihilate the SS for different choices of the widitand of the 2 0.57

darkening timet. From our results it arises that for values 97

hmin Of the same order of magnitude, the darkening time m 0.67

necessary to switch off an SS is 10 times smaller than the 3

lighting time for which the Gaussian pulse must be kept in
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o4r /e“ : slzur:ycomb
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1E, FIG. 10. Positive hexagonal pattern found in the active defocus-
(a) ing case(see Fig. 9. The cross section is 130110 xm? wide;
|E||=1.55.
3.0
K K, =2.462
,sl ( of the critical wave vectoK:. For the hexagonal pattern in
AN Fig. 10 corresponding t{E,|=1.55 (the leftmost extremum
20l N T Femiew of the Turing domaip we obtained a cell length of 2.94
S T ) against a critical length.o=2#/K-=2.55. Moreover, the
. AN ..
s} . > honeycomb pattern arising at the other extremum of the Tur-
ing instability, when|E,|=5.25, has a cell length of 4.70 to
Lok - - - - be compared withh (=27/K;=4.05.
| |
(b) 3. Variation of parameters

FIG. 9. Active defocusing caséa) Steady-state curve of the Here we briefly describe what happens when some of the
homogeneous solution and results of numerical simulatigms. Main parameters of the model in the active configuration are
Turing instability domain. The parameters aBe=0.45, 9=—2,  changed, with particular attention to SSs. First, let us con-
a=-5,1=2,d=0.052, =0, and3=0. sider the variation of the diffusion parametér As in the

passive case, an increase of diffusion reduces the portion of

strates that the choice of the phasés not critical: There is  the homogeneous steady-state curve that is unstable against a
a wide range fore (at least going from— /3 to w/3) in ~ modulated perturbatiorisee Fig. 11 However, the left

which the excitation of a SS is reliable. Furthermore, we notdoundary of the Turing domain is only slightly affected by
a small difference irh,,;, for positive and negativeo. In  diffusion and again this feature is positive for the existence

particular, the excitation of a SS is more efficient if the of SSs in the presence of diffusion. The reduction of the

Gaussian pulse is slightly dephased with respect to the hdinstable portion of the homogeneous solution has the conse-

mogeneous background: In fact, we found the minimum forduence of shrinking and sometimes destroying the branches
the amplituden,;, when ¢ = 7/18. of the different spatial patterns in both the self-focusing and

self-defocusing cases. Moreover, in the self-focusing case an
increase of diffusion has practically no effect on the SS: The
extension of the SS branch remains unperturbed even if the
As we did for the passive configuration, we have analyze@jiffusion parameted becomes as large as 1.

the defocusing case, even if it is unusual to have a negative |n the self-focusing case>0, we observed that a de-
||neW|dth enhancement faCtOI’ in VCSELS NeVertheIess, W%rease in the b|Stab|||ty paramet@ has greater conse-
seta=—5 and kept for the others parameter the values useglyences on the branch of SSs. In fact, the reduction of the
in the focusing case. In particular, we note that in this casgjstable portion in the homogeneous steady-state curve,
the homogeneous steady-state curve is monosteile  caused by the approaching 6fto the bistability threshold,
9(@)]. As a consequence, there are only modulational instaimits the extension of the input field region where the SSs
bilities because the homogeneous solution is stable with resxist. On the other hand, the features of the remaining spatial
spect to plane-wave perturbatiofsee Fig. 8)]. patterns result practically unchanged. Next we observed that

In Fig. 9(a) we show also the branches of the different 5iso a decrease of the linewidth enhancement fagfoom 5
spatial patterns. We note that the homogeneous solution is

unstable for values of the input fie|&,| between 1.53 and Ls
5.28. In correspondence, a variety of spatial patterns de-
velop. In contrast to the focusing case, we have the presence
of a branch of positive hexagolisee Fig. 10 However, we
did not find the formation of SSs: As a matter of fact, any
attempt to excite a SS similarly to what we did for the fo- oSt
cusing case was not successful. This is due to the fact that
there is no coexistence between the hexagonal pattern and a
stable portion of the homogeneous branch. 00
Then we measured the cell length of the patterns arising
from the destabilization of the homogeneous solution at both FIG. 11. Turing instability domains plotted for different values
extremes of the Turing instability and compared it with theof d in the active configuration. The other parameters @re
characteristic length one would expect, given by the inverse-0.45, §=-2, =5, 1=2, =0, andB=0.

2. Defocusing casd€ a<0)

20
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\ntensity

FIG. 12. Limited injected currenta) Spatial profile of the cur-
rentl. (b) Five stable SS&D plot). The parameters are the same as
in Fig. 8. Spatial coordinates andy are expressed in units afa.

(b)

. FIG. 13. Active focusing cas€a) Three-dimensional plot of the

to about 3.5 leads to the disappearance of SSs. Neverthelegsodulus of the driving field, with the Gaussian profile as given in
_thls effect can be sometimes counteracted by a respectigy (20): E{("=0.75 ands, = 100. Spatial coordinatesandy in (a)
increment of| 6| (for example, SSs exist also far=3.5 and  gre expressed in units qfa. (b) Sequence of four frames describ-
9=—2.5 at|E,|~0.128. ing the converging effect due to the Gaussian profile shown above.

The most important differences we met analyzing the selfThe time interval between two frames is 1206 units of k1),
defocusing cased= —5) with respect to the self-focusing while their cross section is 140140 um? wide. The other param-
one is the absence of stable spatial solitonic solutions and thaters are the same as in Fig. 8.
appearance of the hexagonal pattern. Then we reverted the
sign of the cavity-detuning parametérby fixing #=2, re-  now the integration window has double the size. This was
storing in this way a bistable homogeneous steady-stateerformed by increasing the number of grid points to 128
curve. In general, in fact, one can observe that the homogex 128. Outside the active region the system behaves like an
neous solution given by Eg$12a and (12b) is symmetric  absorberi.e., there is no population inversipriThe profile
with respect to the simultaneous change in sigrx@tnd 6. of the pump parametdris shown in Fig. 123). We found
In this case the MI is located in the lower branch of thethat SSs are still stable also very close to the boundary of the
bistable steady-state curve. From this instability we observedctive region; in Fig. 1) we give an example of five stable
the supercritical bifurcation of stable hexagonal spatial patSSs. The suspicion that the SSs are an artifact of the numeri-
terns. Again, no stable SSs could be obtained. cal simulations, due to the imposition of periodic boundary

conditions, is definitely eliminated.
4. Spatially confined injected current

Up to now, in our simulations, we have assumed that the D. Modulated driving field

injected current, which pumps the microresonator in the  Here we investigate, in both the passive and active con-
active configuration, is homogeneous in the transverse planéigurations, what happens to SSs when the input figlds
In actual devices, however, the active area has always a limiot homogeneous in the transverse plane but has some kind
ited extension with a cross section that can take differenof spatial dependence. As anticipated in Sec. IV A, we ana-
shapes. It is important to include this feature in our model, inyzed first the effect of an injected field with a Gaussian
order to show that SSs are independent of the periodiprofile. Figure 18a) shows the input field with this kind of
boundary conditions used in the simulations. Furthermore, ispatial modulation. In the passive case it turns out that the
is well known that boundaries strongly affect transverse spaSSs are totally insensitive to intensity gradients, in the sense
tial structures in different system81-33. We are mainly that SSs remain stable at locations where they have been
interested in understanding whether boundary effects can atreated. In the active case, on the contrary, we observe a
fect SSs. It is worth noting that usually a limited profile in movement of SSs towards the maximum of the Gaussian
the driving field is assumed, while here we consider a limitedprofile. If we start with a certain number of SSs located in
profile in the pump current. various points of the transverse plane, they begin to converge
To this aim we considered a square active region with théowards the center of the Gaussian profile, merging together
size of the previous integration window for the active casewhen they are too close to remain independent. This process
surrounded by a region without injected current, such thaends when there is only one SS located at the Gaussian peak.
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FIG. 14. Active focusing caséa) Three-dimensional plot of the modulus of the driving fi@dwith the Gaussian profile and phase
modulation as given in Eq23): E{"=0.75,3 =100, ande=0.05. (b) Three-dimensional plot of the phase of the driving figld (c) Same
as in(b), but in on a 2D gray scale plofd) Sequence of four frames showing the pinning effect due to the input field given above: The SSs
move towards the maxima of the phaseEfshown in(c). The time interval between two frames is 60 units of k1), while the spatial
coordinate andy in (a) and(b) are expressed in units afa. The cross section of the 2D plots (g) and(d) is 140x 140 um? wide. The
other parameters are the same as in Fig. 8.

In Fig. 13b) we report a sequence of four frames to show E. Action of noise
this behavior: The numerical simulation begins with five SSs o analyzed the behavior of SSs when some noise is

in different positions of the transverse plane and, after a Su'%resent in our model. This is an important feature to study

ecause in practical devices a more or less important amount

Obviously, this is an unwanted effect that can destroy an)?f noise is always present; for this reason it is interesting to

kind of information one would encode in the transverse plan bserve what happens to SSs in suqh a case. .
by SSs. We already know that we can excite a SS in any position

We also studied the case of the phase modulation in th@f the tra_msverse plane so that every point results marginally
input field described in Sec. IV A. Frorfi7], in fact, we stable with respect to the presence _of a SS. Due to this fact,
know that a modulation in the phase of the injected field®N€ expects that the presence of noise causes a random walk
causes a drift of SSs towards the maxima of the function tha@f the SS in the transverse plane. Moreover, if the amount of
describes the phase itself. This pinning effect is necessary ifoise becomes too large, one could also expect that an SS
a soliton array memory to cancel possible errors in addressloes not persist stably as an individual entity, but it is de-
ing solitons. As we expected, in both the passive and thétroyed by random fluctuations.
active case a weak modulation produces a very fast drift of To test these features, we inserted noise in our model,
SS towards the nearest local maxima of the phase. adding to the equations for the fiecldand the carrier density

In the active case we analyzed the combined action oN white-noise terms. Precisely, we add to the right-hand side
these two effects, that is, we consider the simultaneous presf Egs. (82 and (8b) two terms of the formgg8¢,(X,y;t)
ence of a Gaussian amplitude modulation, as before, andand gyJ&é,(X,y;t), respectively, wheres¢; (i=1,2) are
phase modulation in the input field, as described in(28). Gaussian variables with zero mean ahdorrelated in both
We devoted particular attention to verify the possibility for space and time, whilge andgy measure the noise strength.
the pinning action due to the phase modulation to be strong First, we performed a numerical simulation considering
enough to overcome the converging effect of the Gaussiaonly the presence of noise and no spatial modulation in the
profile. We observed that it is possible, with a modulationinput field. As we expected, SSs wander around until the
amplitude €=0.05, to eliminate the converging motion distance between two of them becomes shorter than their
caused by the input field as in Fig. @R In Fig. 14a) we interacting range, so that, eventually, the two merge together
report the profile of|E,| with both Gaussian and phase in a single SS. In Fig. 15 we show a sequence of frames
modulation, while in Figs. 1) and 14c) the phase oE, is  taken at constant intervals during the time evolution, which
reported in both 3D and 2D plots. Finally, in Fig.(@4 four  shows the random walk experienced by the five SSs initially
frames are shown describing the motion of SSs towards thpresenithe initial condition is the same as in Fig.)1 this
maxima of the phase modulation even if a Gaussian curvasimulation we sefje=gy=0.03. Note that, even in the pres-
ture of the input field is present; the initial condition is the ence of this quantity of noise, SSs are stable, apart from their
same we adopted in Fig. 13. Though from Fig(a4t is interaction.
evident that our choice of the phase modulatisee Sec. The random walk that SSs undergo can destroy any infor-
IV A) produces also a modulation in the intensityggf, the  mation encoded in the transverse plane by means of SSs, in
maxima of intensity are completely ignored by SSs in theirthe same way as the presence of a Gaussian profile in the
motion. driving field E, does. As before, we thought to exploit the

able amount of time, only one SS remains in the center of th
integration window(i.e., the center of the Gaussian profile
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(2) (b)

FIG. 17. Passive defocusing case. Sequence of three frames
showing the formation of stripelike solitons from three SSs. We set
|E,| =38, while the other parameters are the same as in Fig. 4. The
time interval between two frames is 1i6 units of k1), while their
cross section is 280280 um? wide.

FIG. 15. Active focusing case. Sequence of four frames describp!ane' _On the other hand, they can be'regard'ed as zero-
dimensional structures from the geometrical point of view

ing the random walk of SSs under the effect of noise, for a uniform A . - e
input field; ge = gy=0.03. The time interval between two frames is Pe€cause they can be assimilated to a single point in that

7440 in units of k1), while their cross section is 140140 um?  Plane, where they are completely defined by their location. In
wide. The gray scale has been changed with respect to previofUr simulations we encountered also what appear to be one-

figures in order to emphasize the presence of noise. The other pelimensional solitons in the sense that they are stripelike
rameters are the same as in Fig. 8. structures, each of which behaves independently; we will

briefly report on them here since their behavior has not been

pinning effect exerted by the presence of a small phasthoroughly investigated yet.
modulation in the driving field in order to guide SSs towards As it appears in Fig. 4, there exists an interval of values
the desired locations of the array. for E, where the honeycomb pattern coexists with the roll

To verify if this procedure is reliable, we carried out a pattern and the SSs are not stable anymore. As one can in-
numerical simulation with the same amount of noise as irtuitively expect, a competition between the two sorts of
Fig. 15, but this time with a slight phase modulatibn  structures occurs, but it does not result in one overcoming
=0.05 in Eq.(21)] added to the driving field. In Fig. 16 we the other; on the contrary, at the regime one meets a new
show four frames taken at different times during the timescenario. Suppose that a single SS is excited in this interval
evolution of the system. We can see that the added phad®yy means of a beam pulse; at the regime one observes that
modulation is strong enough to overcome the random wallthe structure does not remain self-confined, but starts elon-
due to the noise and to pin down the SSs at the maxima ajating and eventually becomes a wandering, writhing stripe
phase, arranging them in the positions of @3 array. The whose length increases, while its width remains on the size
only remaining effect of noise on SSs is a small randomof the soliton diameter. The initial orientation of the stripe is
deformation of the peaks and a very short random displacegandom, but can be controlled by a slight ovalization of the

ment around their equilibrium positions. addressing pulse, the stripe emerging along the larger ellipse
axis.
F. Formation of stripelike solitons Elementary features of the interaction among stripelike

structures have been evidenced by simulations; generally

The SSs described henceforth are two dimensional in thgpeaking they tend to merge with each other whenever a
sense that they are self-confined in they) transverse  jision between two stripe edges occurs, but it is also evi-

dent that adjacent stripes can mutually influence the local

curvature radius. We could compare these results to previ-
| ous, unpublished results concerning atomic saturable absorb-
ers, where stripelike solitons had been observed; we infer
that the carrier dynamics and possibly diffusion play a role in
extending the stripe interaction range. This makes the control
of the stripe location and curvature by means of external
pulses more difficult. In Fig. 17 we report the evolution of
three SSs created in the self-defocusing bistable casg,for
=38. In Fig. 17a) the initial condition of the simulation is
shown: SSs are at a distance slightly larger than their inter-
action range(see Sec. IV B B The SSs start elongating as
described above and become stripes that strongly interact

and mutually merggsee Fig. 1f)], giving rise to a compli-

FIG. 16. Active focusing case. Sequence of four frames showingated structure, reported in Fig. (&Y.
the pinning effect due to a driving field with a phase modulation in ~ The character of the interaction is not univocal in the
presence of noise¢=0.05 andge=gy=0.03. The other param- Sense that two stripe fronts approaching each other can either
eters are the same as in Fig. 8. The time interval between twénerge or cause the deflection of the stripes and we have no
frames is 92(in units of 1), while their cross section is 140 evidence so far of a quantitative factor distinguishing be-
X 140 wm? wide and the gray scale is the same as in Fig. 15.  tween the two instances. Figure 18 shows the long-term evo-
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profile of which is shown in Fig. 1@); the initial condition
with three SSs reported in Fig. @9 is the same used in Fig.
17, here magnified.

As for the interest associated with such structures, we can
note that exactly as a line carries a higher semantic content,
associated with its shape, length, local curvature, etc., these
stripes may encode a larger information density, acting as
elements of an alphabet. Of course, robust and unartifacted

FIG. 18. Passive defocusing case. Sequence of three framggchniques must be designed to control them, a goal that lies
showing the long-term evolution of the case described in Fig. 17beyond the scope of this paper.

Again, |E,| =38 and the other parameters are the same as in Fig. 4.
The time interval between two frames is @6 units of x 1), while

their cross section is 280280 um? wide. V. SHOOTING METHOD

The radial integration method described 1 can be suc-
lution of the previous case. Comparing Figs(d&nd 18b),  cessfully employed also in our model, in both the passive
the front in the upper left quadrant has been deflected by thend active cases, to check the validity of the dynamical simu-
existing stripe towards the upper left corner. On the othetations. The idea is to find directly the radial stationary pro-
side, a comparison between Figs()8and 1&c) shows that file of SSs, bypassing the transient regime. This is done by
the front coming from the lower right corner, impinging on performing a spatial integration of the stationary equations
the lower part of the central structure, has collided andand assuming a cylindrically symmetric SS located at the
merged with it. All figures are separated by an intervat of center of the window. We describe here in details the tech-
=16 time units. nique adopted.

The question of whether these structures are stationary or With respect td7], here we have to cope with the major
restlessly dynamical is still under investigation. To our bestifficulty represented by the presence of one more equation
comprehension it appears that the role of the boundaries for the carrier densityN. For this reason we adopted a
decisive in this respect: In our simulations, whenever a wanslightly different method in which the radial integration is
dering stripe connects its two ends across the periodiperformed outward from the origin and matching with the
boundary, it becomes stationary and particularly stable. Ithomogeneous solution is required at largeThis method
preliminary simulations with diffraction limited beams, we has the advantage that it does not require us to express the
analyzed the behavior of the stripes in proximity of the in-trial solution as a combination of suitable Bessel functions as
jected field profile boundary. Although stripes stem from ain [7] and therefore we do not need to calculate the eigen-
competition with rolls, they do not connect orthogonally to values of the coefficient matrigvhich is now 3x 3) of the
the boundary{31]. Rather, they seem repelled thence andinear system. We simply look for those initial valués r
fold over to connect their ends in a figure that generally— o) of the electric fieldE and carrier density for which
reflects the boundary symmetry and becomes stable. In Figle solution integrated up to a fixed and large valyef the

19(c) we plot the stationary pattern at the regime using &gagjal coordinate is as close as possible to the homogeneous
super-Gaussiafrather than plane-wayenolding beam, the g5 ution.

Let (E(r;E,N),(r;E,N)) be the solution obtained starting
from the initial conditions

E(0)=E, dE 0)=0
(0)=E, 4-(0)=0,
(29)
N(0)=N, aN 0)=0

(0=N, 4 (0)=
and (Egs,Ng) the homogeneous solution. We define the func-
tion

M-1

_ 1 _
FEN)= 7 mZ:O [|E(r;—mAr;E,N)—Eg?

+|N(r;—mAr;E,N)—Ng/?], (30)

(b)

which measures the mean distance between the calculated

the modulus of the driving fiel, with the super-Gaussian profile splu’uon and the homogeneous .one, along thel\l‘ha’ntegra}-
used for this numerical simulatiofh) Initial condition. (b) Station- tion stepsAr. The problem now is thatgf finding the minima
ary pattern of the regime. The width of the super-Gaussian profile i§f f in the 3D space of the parametets(compley andN

99 um, while the cross section of the two frames is 140 (real). For this reason the method is also callgliboting

X 140 um? wide. The parameters are the same as in Fig. 4. because onshootsstarting from an initial condition in the

FIG. 19. Passive defocusing caé®. Three-dimensional plot of
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FIG. 20. Comparison between the radial integraiisalid line) and the dynamical solutioria) passive focusing configuration with the
parameters set &8=30, §=—-3, A=—1,1=0,d=0.2, »=0.25, 8=1.6, and|E,|=25 and(b) active focusing configuration with the
parameters set &=0.45, = -2, a=5,1=2,d=1, =0, 8=0, and|E,|=0.75.

3D space E,N) aiming at the particular points for which the cumvent this problem we adopted a perturbative method, in
function f is minimum. Usually we také as one-tenth of Which we take advantage of the smallnessidb expressN

the total number of steps; this ensures thi small only for ~ in & power series off itself

solutions that indeed tend to approach the homogeneous one,
excluding those that accidentally cross the homogeneous at
r=r,. E(r) andN(r) are solutions of the stationary equa-

N=N©+dNV+0(d?). (33

By inserting this expansion into the stationary equations

tions (318 and (31b) and neglecting terms of ordef or higher,
. . L2 we find
E;=(1+7+if)E+2CiO(N—1)E—-iVTE, (319
NO=[—(1+]|E|?) + JVAJ/28, (343

0=N+BN?—I+|E|A(N—1)—dV2N, (31b)
NY=2(4(I-1- B)[ReEE*)]YA—(NO-1)

X{[0+2C(NP—1)ReO)]|E|?
+E, Im(E)+|E, |2}/ A, (34b)

with the initial conditiong29). Therefore, one must integrate
the set of ordinary differential equations

—=E, (328 where A=(1+]|E|?)2+48(1+|E|?). In this way, at every
r, N is given to first order ird as a function ok and the set

dE E of equations reduces to
—— =iE,+[6—i(1+ 5)]E+2CO(N—1)E— Tr

dr dE
(32b) ar " Er (353
dN dE, _
W:Nr’ (320 W=|E|+[0_I(1+7])]E
E
dN 1 N (0) (1)_1y_
N Lk e+ RN 320 +2COEN®+dND-1)— . (35D

Of course this approximate method is reliable only for
to calculateE andN at everyr up tor; and then the function  small values ofd, becoming exact fod=0; however, we
f(E,N). found that it works well even for values of the diffusion

However, in almost all cases we found that the small dif-coefficientd as large as 0.2, as shown in Fig.(@0 where
fusion parameted in the denominator in Eq:32d makes the results are compared with those of the split-step integra-
the solution diverge before the poinf is reached. To cir- tion. For values ofl as large as 1 the shooting method can be
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e - output curve of the homogeneous stationary solution or to-
20} ,g:;;;ss wards the inflection point when the curve is close to bistable.
r This rule of thumb applies equally well in the passive and

active cases.

(ol o e T Also true in both cases is the following(i) The para-
T - metric domains, where SSs exist, are sizably extended and
05 Homogenwus's"eflﬂﬁe/_/—/—f’/ g H : H A H
| Tomoee®® accessible to the experimental realizati6i. An increase of
T T the parameterC (which is the bistability parameterin-
1E, creases the extension of the interval of input field intensities

) _ _where one meets stable S$idi.) SS are found for negative

FIG. 21. Branch of SSs obtained by the shooting method in thg 5 e of the cavity detuning parameter, i.e., the frequency of
perturbative approximatiosolid line), valid for smalld, compared the relevant longitudinal cavity mode must be redshifted
with that derived by the split-step meth¢®), for the active case; ith respect to the frequency of the driving field. This does
the dashed line represents the unstable portion of the branch of S\rgot hold in general, but is true when the detunin. arameter
(shooting method The homog_ene_ous solution is also shown. TheA (in the passive C,a$e)r the linewidth enhancemger?t factor
parameters are the same as in Fig. 8. (in the active caseis not large, as it is the case in our cal-
applied without an approximatiofisee Fig. 2(b)]. The culations_ in se_miconductor systems. T_he requirement@hat
shooting method, in its perturbative form, has been exploite?® negatl\éehanses from the compensation between cavity de-
also to find branches of SSs. In Fig. 21 we reconstructed, b{'MN9 anl t g Laplacian contnt?]L_Jtlon, described#r80] fEr
a radial integration of the stationary equations, the branch of'€ Purely a sorpt;]veh case. This compensation makes the
SSs previously obtained by means of the split-step methof2VIty resonant with the field in correspondence to the soli-
[see Fig. 8)]: We note that the agreement between the re{0niC peaks; ford #0, the resonance is with the cavity fre-
sults of two methods is very good. Furthermore, the shootin§lUency shifted by the refractive index of the medium.
method allows us to construct also the unstable portion of the FOr the other parameters, let us discuss the two cases
branch of SSsthe dashed line in Fig. 21which cannot be ~Separately.
determined via the split-step method. In this cdse0.052, (i) Passive systemVe found stable SSs when the modu-

so that the perturbative treatment of the carrier diffusion termjuS Of the detuning parametér (which measures the detun-
is fully justified. ing of the input frequency from the excitonic line, in units of

the excitonic half-width is on the order of or smaller than
unity; i.e., one must operate in a neighborhood of the exciton
resonance. The self-focusing cafe<0) is in principle the

We formulated and analyzed a model describing a semimost favorable for SS formation; in this case it is necessary
conductor MQW vertical cavity in both the passiyao  to substantiate our results by further investigations based on
population inversiopand the activg VCSEL below thresh- a more complete model that includes also the free carrier
old) cases. The numerical calculations were carried out bgontinuum that lies on the self-focusing side of the exciton
following two radically different approaches¢i) numerical peak. Quite interesting and encouraging is that robust SSs
integration in time and space of the partial differential equa-have been found also in the case of self-defocusing material
tions and(ii) direct numerical calculation of the stationary (A>0), which is easiest to operate and for which our model
SS profile, obtained by spatial integration of two ordinaryshould work best. The natural physical interpretation of this
differential equations. Whenever it was possible to use alsoesult is that the guiding effect provided by saturatjtme
the second approach, the results were in very good agreguidance arising from théegative loss profilg is still able
ment with those of the time integration, which makes us fullyto overcome the antiguiding action of self-defocusing. Car-
confident that the data obtained from the first method argier diffusion is evidently also an effect that tends to damp
reliable in general. SSs and represents an aspect that must be taken into account

Because the number of parameters in play is large and thespecially in the case of self-defocusing. However, the re-
same is true for the CPU time required by each simulation orsults indicate that for realistic values of the parametén
PDEs, we could explore only rather limited but selectedEq. (8b), carrier diffusion does not constitute a limitation in
ranges of the parameters. These were suggested by our pgactice.
vious experience with modeling semiconductor optical sys- (i) Active systemsEven though, as explained in the in-
tems and from experiments that are familiar to us; for extroduction, the VCSEL is kept below threshold, in order to
ample, the parametric values for the passive case werbtain SSs the injected current must be such that the system
mainly suggested by experiments on excitonic optical bistais close enough to thresholtypically 5% below the lasing
bility in GaAs MQWs, carried out by Sfegt al. in the past threshold. SSs were found when the linewidth enhancement
[26-28. factor is positive, which is the standard case. In our calcula-

Despite this limitation, we were able to collect a signifi- tions we seta=5; a drastic reduction ofx leads to the
cant set of numerical data, which led us to a clearcut picturelisappearance of SSs, but this effect can be counteracted by
for the appearance of SSs and their control. As a generahcreasingé. In recent experiments by TredicE@4], which
rule, the region where one can readily find stable SSs corredemonstrated the existence of standard optical bistability in
sponds to the leftmost extremum of the bifurcated branchVCSELs below threshold, the value éfwas small, but in
arising from the modulational instability. This branch is order to obtain SSs it is necessary to incrdasto the order
shifted towards the left turning point of the bistable input- of some units. Carrier diffusion tends to limit the domain of

VI. CONCLUSIONS
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coexistence of SSs, but, since we are here in the context of a |E|2

self-focusing system, it should not represent a problem. The W:WOWa (36)
analysis of the self-defocusing case, performed by setting

=-—5, led us to a variety of spatial patter@®ll, honey-

co_mb, and hexagonal structg}emth no appearance of SSS.' wherew,=# woL sNo/4n7, and takes the value 0.17 kW/ém
With respect to the defocusing case in the passive configu-

ration, this may be due to the value of the parametef| in both the passive and active cases. Let us consider the

—5 against the value of detuning parametes1 in the passive resonant case: The values of the physical powers are
passivge case 9p obviously dependent on the system parameters, especially on

. . . For this r n we ch make our simulations with
Furthermore, in order to make the modeling closer to reaig or this reason we chose to

. . . =0 and other parameters set as in Sec. IV B 1: It results
devices, we analyzed the effect induced by spatial modulas .~ . - L
o . . ) hat, in order to write a SS &E,| =25, it is necessary to use
tion in the holding beam and in the pump current. The intro- . ]
duction of a Gaussian modulation in the amplitude profile ofiGaUSS'an pulse of .the forta8) with h=29, o=0.9, and
the holding beam causes different effects for the two con! =6 ns. Correspondingly, we have a pulse power of 2.3
figurations considered here: Precisely, in the passive case MW, Which means a switching energy of 14 pJ, while the
seems not to affect SSs, which remain stable and unpeROWer of tr;e.holdmg beam, in the case of a cross sedion
turbed at their locations; on the contrary, in the active con-=2000um", is 0.18 W. In the active case, from parameters
figuration SSs undergo a slow drift motion towards the pointeStablished in Table | for the Gaussian pulse necessary to
of the transverse plane where the maximum of the Gaussiafffit¢ & SS, we can calculate an addressing power of 0.12
profile of the input field is located. Therefore, starting with MW (corresponding to 0.36 pJ swnchlngzene)rgyld a hold-
many SSs in different positions of the transverse plane, the{?d power(for a cross sectio$=5000 um) of 11 mW. We
merge all together and we are left with only one SS. note that the figures just stated are in reasonable agreement

On the other hand, if we consider a spatial modulation inVith the powers available and used in modern experiments
the phase of the holding beam, the behavior of SSs in the tw#ith semiconductor devices that can be described by the
configurations is the same: The SSs drift towards the close&f0del introduced in this paper. Further, we showed that a SS
local maximum of the phase. It is the same effect observed ifan be erased even when the address pulse is not aimed
a two-level saturable absorbgf] and it can be exploited to €xactly, i.e., the system is able to self-accommodate some
pin the SSs at precise positions in the transverse plane. WRITOS in the position of the address pulse with respect to that
find that in the case of active configuration, the presence off the SS to be wiped out. The time scale is set by the
both an amplitude Gaussian profile and a phase modulaticOWest of the time constants in play that, in the case of
in the holding beam causes a competition between the twéemiconductors, correspond to the carrier recombination
and the result depends on the relative amplitudes of the twbme 7; .
modulations. For appropriate choices of the two modula- The results of our theoretical and numerical calculations
tions, the pinning effect due to phase modulation overcomekead us to conclude that the realization of an array of spatial
the merging effect of the Gaussian profile of the holdingsolitons using semiconductor materials is feasible. By appro-
beam and is also robust with respect to noise. priate selection of the operative conditions, both the active

The consideration of a pump current with a limited crossand passive cases present promising perspectives to reach
section is very important in order to approach experimentathis objective.
realizations of this kind of devices. The persistence of SSs The formation of SSs in photorefractively pumped ring
even in this environment is a significant signal of robustnessesonatord35] and in active cavities with a saturable ab-
of these structures. In fact, it means that SSs are completeborber{36,37] has been reported. Also the possibility of hav-
independent of the periodic boundary conditions adopted iing SSs with quadratic nonlinear media has been predicted
the integration. recently[38,39.

In the paraxial approximation used in our models, the size After completion of the calculations reported in this pa-
of the SSs scales aa £/T)Y?, where\ is the wavelengthl per, we were informed about an article of Michaelis, Peschel,
is the length of the resonant cavity, aiids the transmissiv- and Lederef40] that analyzes a numerical model identical to
ity coefficient of the mirrors. In the case of standard mi-Egs.(8a and(8b) in the passive case, but without linear and
croresonatorsf is on the order of some wavelengths ahd nonlinear absorptive terms. The authors predict the forma-
is very small, so that an increaseTlinwould be beneficial to tion of stable SSs under conditions of large detunipg.e.,
decrease the size of the SSs. for strong self-defocusing. This result has been obtained for

We analyzed also the process of writing and erasing SSgalues ofC substantially larger than those considered in our
by means of narrow laser pulses; the picture remains baspaper. Under conditions of larg& the nonlinearity has a
cally that described if18]. Here we want to give some strongly antiguiding role; because both field diffraction and
examples of the real power and energy we must supply tearrier diffusion have a spreading effect, the mechanism that
semiconductor devices analyzed in this paper to excite aforms these cavity solitons is quite different from the usual
SS. From Eqgs(9)—(11) we can calculate the numerical value one that holds for standard SSs, i.e., the balance between a
of the rescaling factor of the intracavity fiek] indicated in  spreading mechanism and the confining effect of a nonlin-
Eq. (6). Nevertheless, the most relevant physical quantity isarity. These points, as well as the connection with the re-
the energy fluxw outside the cavity, which is related to the sults presented here, must be clarified and this is left for
adimensional intracavity fiel& by the relation future work.
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