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Spatial solitons in semiconductor microcavities
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We consider a semiconductor microcavity driven by a coherent and stationary holding beam, in two distinct
configurations. In the first, no carriers are injected in the multiple-quantum-well structure and the optical
nonlinearity is governed by an excitonic resonance. The second corresponds to that of a vertical-cavity surface-
emitting laser kept slightly below threshold. We describe both configurations using a unified model that
includes both field diffraction and carrier diffusion. We calculate numerically both the time evolution and the
stationary profile of the solitonic solutions, using a generalization of the radial integration technique introduced
by Firth and Scroggie@Phys. Rev. Lett.76, 1623~1996!#. We analyze the instability that forms spatial patterns
and especially cavity spatial solitons. We predict the existence of these solitons in various parametric domains
for both configurations. We demonstrate that these results are independent of the periodic boundary conditions
used in the simulations. We show that, introducing a simple phase modulation in the holding beam, one can
eliminate the motions of solitons that arise from noise and from amplitude gradients. The solitons are robust
with respect to parametric variations, to carrier diffusion, and even to some amount of self-defocusing. This
picture points to the possibility of realizing arrays of solitonic pixels using semiconductor microresonators.
@S1050-2947~98!09909-0#

PACS number~s!: 42.65.Sf, 42.65.Tg, 42.79.Ta
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I. INTRODUCTION

Applications to information technology are one of th
goals of the extensive work in the field of transverse patt
formation in nonlinear optical systems@1–6#. The main dif-
ficulty encountered is the fact that different points of an o
tical pattern are strongly correlated, so that any local mo
fication introduced to encode information either strong
affects the whole pattern or is spontaneously erased.
problem can be solved by generating spatial structures
are individually addressable and independent from one
other.

The idea is of considering the transverse planes, ortho
nal to the propagation direction of the beam, as a blackbo
on which light dots can be written and erased in any des
location. These spots are called spatial solitons~SSs!. They
are generated by shining localized address pulses in the
tem. The pulses locally create a bleached area that per
after the passage of the pulse, hence the name ‘‘optical b
holes’’ also used for this kind of spatial soliton@7#. The
bleached area exerts a guiding action on the optical field
counterbalances the diffractive spreading and thus make
soliton structure self-sustaining. Such solitons can arise
discussed in@7#, in the absence of any refractive effect. T
temporal solitons familiar from nonlinear fiber optics are d
to self-focusing and we show that spatial solitons based o
refractive nonlinearity can also exist as stable structures
optical cavity. In the general case, both refractive index a
absorption~or gain! exhibit nonlinearity and we find spatia
solitons also in such intermediate cases.

Though there is extensive literature on spatial solito
~see, e.g.,@8,9#!, the concepts developed in the past we
based on beam propagation, which instead plays a marg
role in our case. The basic property of the SSs considere
our scheme is that once they have been created by an ad
PRA 581050-2947/98/58~3!/2542~18!/$15.00
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pulse, they persist as stationary dots until they are wiped
by another suitable pulse. This behavior is ensured by
optical cavity, a distinctive feature of our research that
absent in previous studies on spatial optical solitons.

Spatial solitons in cavity systems were predicted by R
sanov and Khodova@10–12#; in that case they arise from
standard plane-wave bistability in combination with switc
ing waves with zero velocity. A different kind of cavity S
was predicted by Tlidi, Mandel, and Lefever@13,14#; in this
case the mechanism is a modulational instability~MI ! in
combination with the coexistence between a hexago
branch of bifurcated solutions and a plane-wave soluti
this represents, in the domain of optics, an example of
phenomenon of ‘‘localized structures’’ previously disco
ered in other fields@15,16#. In this paper we discuss this kin
of SS. Cavity SSs of chaotic character have been also fo
in @17#, but here we will consider only stationary SSs.

In two previous papers a simple two-level model for
saturable absorber was analyzed@7,18#. In @7# the existence
of stable spatial solitons in the system was predicted and
possibility of defining preferred locations by introducing
spatial phase modulation in the driving field was show
Maxima in the phase profile of the driving field act as eq
librium positions for the SSs, which move to these sites e
when the address pulse is not accurately aimed. In@18#, on
the other hand, the formation and control of SSs as a fu
tion of the characteristics of the address pulse were analy
and their interaction properties were studied. In particu
the possibility of erasing SSs individually was investigate
this scheme was later successfully applied by Schreiberet al.
to wipe out SSs in an optoelectronic system~a liquid-crystal
light valve! @19#. Spatial solitons have been observed
cently using an organic material~aberchrome! @20#.

The results of@7,18# pave the way to the realization of a
optical memory array of individually addressable spatial so
2542 © 1998 The American Physical Society
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tons, with 2N2
coexisting states for an array ofN2 solitons

~i.e., N3N!. However, we are basically interested in demo
strating the feasible generation and controlling techniques
SSs in materials interesting for application; hence we pre
a model specifically designed to describe the case in wh
the nonlinear medium is a semiconductor.

Precisely, we formulate and analyze a unified model fo
semiconductor material in a resonant microcavity driven b
coherent plane-wave field in two different configuration
The first corresponds to the case where the material ha
population inversion; in the following, we will refer to this a
the case of a ‘‘passive system.’’ More precisely, the mate
is assumed to be a multiple quantum well~MQW! with an
exciton nonlinearity that is modeled as a Lorentzian line. T
second corresponds to the ‘‘active’’ case of population inv
sion induced by an injected current. The configuration is
sically that of a driven broad-area vertical cavity surfac
emitting laser ~VCSEL! with the gain arising from free
carriers; however, the values of the current are such tha
VCSEL is below threshold in absence of the driving field

The motivation for the choice of these two configuratio
is the following. In our scheme, SSs develop in the nei
borhood of a spatial modulational instability that destabiliz
a stationary solution, homogeneous in the transverse pl
According to our previous experience, this instability ten
to appear under conditions such that the input-output cu
of the homogeneous stationary solution isS shaped, or close
to S shaped. This is the reason why we use an optical re
nator ~the feedback of the cavity mirrors ensures the po
bility of bistable response!, while the two configurations
~passive and active! described above were selected beca
they readily lead to theS-shaped regime. Note, howeve
that the homogeneous stationary solution in the low
branch of theS-shaped curve must actually bestableagainst
small perturbations if stable SSs are to exist. In particu
this is the motivation for keeping the VCSEL below thres
old. A further reason for considering these two configu
tions is that population inversion converts self-focusing m
dia into self-defocusing media and vice versa; hence, in
way we have an important degree of freedom available.

Here we analyze in full detail the model previously intr
duced in@21#. It is formulated in such a way that it is a
simple as possible, but incorporates all the main phys
processes, e.g., carrier diffusion and the linewidth enhan
ment factor familiar in semiconductor lasers@22#. For sim-
plicity, the model includes only one longitudinal mode of t
cavity, which appears legitimate for the sort of microreso
tors considered here. The model takes on the form of a se
partial differential equations~PDEs!, numerically integrated
in space and time by means of split-step techniques.

It is well known that the numerical integration of this kin
of PDE is a difficult matter that requires sophisticated p
cedures. For this reason we check the results of the com
and lengthy numerical integrations in time of the full mod
using a powerful technique recently developed in@7#. This
numerical approach, called the shooting method, allows
to calculate the stationary SSs directly, bypassing dynam
transients. By assuming that SSs are cylindrically symme
in the radial direction, it reduces the (211)-dimensional full
problem to a one-dimensional problem. More importan
because the method requires only the solution of ordin
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differential equations, it can achieve very high spatial re
lution.

Sections II and III are devoted to the detailed descript
of the semiconductor model and the analytical calculation
the homogeneous stationary solutions and their stability
Sec. IV we report the features of the numerical split-s
method we adopted for the integration of the model eq
tions and we describe the results obtained in both the pas
and the active case. We show also that the results on SS
independent of the periodic boundary conditions used in
simulations and discuss effects that arise from the prese
of either spatial modulation in the input field or noise. W
describe also the formation of stripelike solitons under c
ditions such that SSs are not stable. In Sec. V we desc
the shooting method and compare the results with those
tained via the split-step method. Section VI is devoted t
summary and discussion of the results.

II. MODEL

We consider a broad area semiconductor heterostruc
in both the passive and the active configuration. The se
conductor microresonator is of the Fabry-Pe´rot type, with a
MQW structure perpendicular to the directionz of propaga-
tion of the radiation inside the cavity. The total electric fie
is composed of a forwardEF and a backwardEB component

E5
1

2
@EF~x,y,z;t !eikzz1EB~x,y,z;t !e2 ikzz#e2 iv0t1c.c.,

~1!

wherekz5v0n/c, with v0 being the frequency of the inpu
field andn the background refractive index of the medium

On the other hand, the material is described by the car
densityÑ. In the slowly varying envelope approximation th
dynamical equations are

1

2ikz
¹'

2 EF1
]EF

]z
1

1

v
]EF

]t
5S i

v0G

2nc
x2a i DEF , ~2a!

1

2ikz
¹'

2 EB2
]EB

]z
1

1

v
]EB

]t
5S i

v0G

2nc
x2a i DEB , ~2b!

]Ñ

]t
52

Ñ

t r
2BÑ21

e0

2\
Im~x!~ uEFu21uEBu2!

1
Ĩ

eVA
1D̃¹'

2 Ñ. ~2c!

In these equationsv5c/n; G is the confinement factor
which, in the case of a vertical cavity, is simply the rat
LA /L of the lengthLA of the region filled by the quantum
wells ~QWs! to the cavity lengthL; a i is the linear absorp-
tion coefficient per unit length due to the material in t
regions between the QWs and the mirrors;t r is the nonradi-
ative recombination rate of carriers;B is the coefficient of
radiative recombination involving two carriers;D̃ is the dif-
fusion coefficient;Ĩ is the intensity of the injected curren
~nonvanishing only in the active configuration!; e is the elec-
tron charge; andVA is the active volume. The transvers
Laplacian
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¹'
2 5

]2

]x2 1
]2

]y2 , ~3!

where x and y are Cartesian coordinates orthogonal toz,
describes diffraction in the paraxial approximation. T
radiation-matter interaction is described by the lineariz
complex susceptibility@23,24#

x~Ñ!52
nc

v0
QA~Ñ2Ñ0!, ~4!

whereÑ0 is the transparency value of the carrier density a
A is the differential absorption~gain! coefficient in the pas-
sive ~active! case.

In the passive configurationQ5(D1 i )/(11D2) and D
5(ve2v0)/ge , whereve is the the central frequency of th
excitonic absorption line, approximated by the Lorentz
shape@23#, andge is the half-width of the excitonic line. In
the active configurationQ5a1 i @24#, wherea is the line-
width enhancement factor@22#.

We get rid of the longitudinal coordinate by applying th
mean-field limit@25#, which holds when the transmissivityT
and the single-pass absorption/gain (ALAÑ0) are much
smaller than unity. This is always true in a vertical cav
device and the ratio of these two quantities

C5
ALAÑ0

2T
~5!

is called the bistability parameter. As it will become evide
it is equivalent to the parameterC of the two-level saturable
absorber model used in@7,18#. In addition, one assumes th
only one longitudinal cavity mode of frequencyvc is rel-
evant in the dynamics, due to the short cavity. In this limi
is possible to show that the two counterpropagating fields
approximately constant and equal along the cavity, so we
F(x,y,t)5ĒF(x,y,z,t)5ĒB(x,y,z,t), where the overbar de
notes the average over the longitudinal coordinatez; we also
introduce the adimensional electric field

E5Ae0nct rA

\v0
Im~Q!F. ~6!

Next, we take into account@24# the proper boundary condi
tions of the problem, with partially reflecting mirrors and a
external field of frequencyv0 and slowly varying envelope
EI injected into the cavity. In this way the cavity half-widt
k5vT/2L appears in the equation for the electric field a
damping term. Finally, we define the normalized carrier d
sity N5Ñ/Ñ0 and currentI 5 Ĩ / Ĩ 0 , where the transparenc
value of the injected current is given byĨ 05eVAÑ0 /t r ~in
the passive configurationI is equal to zero because no cu
rent is injected!.

After these steps one arrives at the equations

]E

]t
52k@~11h1 iu!E2EI12CiQ~N21!E2 ia¹'

2 E#,

~7a!
d

d

n

,

t
re
et

a
-

]N

]t
52

1

t r
@N1bN22I 1uEu2~N21!2 l D

2 ¹'
2 N#, ~7b!

where h52a iL/T, u5(vc2v0) /k is the cavity detuning
parameter, a5v/2kkz is the diffraction coefficient, l D

5AD̃t r is the diffusion length, andb5BÑ0t r .
The last step consists in passing to adimensional indep

dent variables, by scaling time to the photon lifetime (k21)
and the transverse coordinatesx andy to Aa. The equations
that will be the object of our following study are then

]E

]t
52~11h1 iu!E1EI22CiQ~N21!E1 i¹'

2 E, ~8a!

]N

]t
52g@N1bN22I 1uEu2~N21!2d¹'

2 N#, ~8b!

with the adimensional decay rateg5(kt r)
21 and diffusion

coefficientd5 l D
2 /a.

In order to perform an analysis as close as possible to
devices available nowadays, the choice of numerical val
of the physical quantities characterizing our model was
spired by some experimental works on optical bistability
GaAs MQW structures~see, e.g.,@26–28#! and on character-
ization of VCSELs~see, e.g.,@29#!. Typical values of physi-
cal parameters common to both configurations are

l0[2pc/v05850 nm, n53.5,
~9!

Ñ05231018 cm23, T5431023, L52 mm.

With this choice of physical quantities, we are led to a cav
decay ratek58.5731010 s21 and to a diffraction coefficient
a519.3mm2, for both configurations. These values imp
that the time unit isk21511.7 ps and the space unit isAa
54.39mm. As for the other quantities, we have to consid
the passive and the active configuration separately; real
values are

LA5300 nm, t r56 ns, l D52 mm,
~10!

a i52.5 cm21, B51.3310210 cm3 s21

for the passive configuration and

LA550 nm, t r51 ns, l D51 mm ~11!

for the active configuration.
In the active case we neglect the additional absorption

the material and the radiative recombination of carriers~i.e.,
we seta i50, B50!. In a broad-area device with a cros
section S'5000mm2 ~for example, a square of about 7
370 mm2! the active volumeVA is about 250mm3, so that
the transparency value of the injected current isI 0580 mA
~corresponding to a current density ofJ051.6 kA/cm2!. The
cavity detuning parameteru can be chosen of order unity
corresponding to a mistuningDl'1 nm or less, between th
driving wavelengthl0 and the Fabry-Pe´rot resonance peak
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III. HOMOGENEOUS SOLUTION AND LINEAR
STABILITY ANALYSIS

The homogeneous solution (ES ,NS) of Eqs.~8a! and~8b!
is obtained by setting equal to zero the time derivatives
neglecting the Laplacian in the two equations. We obtain

uEI u25uESu2$@11h22C Im~Q!~NS21!#2

1@u12C Re~Q!~NS21!#2%, ~12a!

NS52
11uESu2

2b
1

A~11uESu2!214b~ uESu21I !

2b
,

~12b!

For appropriate choices of the parameters the curve ofuESu
as a function ofuEI u is S shaped.

The linear stability of the homogeneous solution is a
lyzed by studying the response of the system to small fl
tuations around the steady state. We set

F dE~x,y;t !
dE* ~x,y;t !
dN~x,y;t !

G5e@lt1 i ~Kxx1Kyy!#F dE0

dE0*
dN0

G , ~13!

assuming that the fluctuations grow~or decay! exponentially
in time and that they are modulated with transverse w
vector (Kx ,Ky). The set of equations obtained linearizin
Eq. ~8a!, its complex conjugate, and Eq.~8b! around the
homogeneous stationary solution~12a! and~12b!, and intro-
ducing the ansatz~13! admits nontrivial solutions only if the
eigenvaluel satisfies the cubic equation

l31a2l21a1l1a050, ~14!

where the coefficientsai ( i 50,1,2) depend on the syste
parametersh, b, g, Q, u, d, C, I , andEI and the modulus
squareK2 of the transverse wave vector

a252A11g~A41dK2!, ~15a!

a15A1
21~A21K2!21g@2A1~A41dK2!1A3 Im~Q!#,

~15b!

a05g$@A1
21~A21K2!2#~A41dK2!

2A3@~A21K2!Re~Q!2A1 Im~Q!#%, ~15c!

with

A1511h22C Im~Q!~NS21!, ~16a!

A25u12C Re~Q!~NS21!, ~16b!

A354CuESu2~NS21!, ~16c!

A4511uESu212bNS . ~16d!

Equation~14! has usually one real and two complex con
gate roots. The two complex eigenvalues might in princi
give rise to a Hopf instability, but a very simple argume
shows that sinceg!1, the real part of the complex conjuga
eigenvalues is always negative, so that there is no instab
related to the complex eigenvalues. The instability associa
d

-
-

e

e
t

ty
ed

with the real eigenvalue is called a Turing or stationary
stability because it brings the system to a new station
state, different from the homogeneous one. The sys
passes from the stable to the unstable domain when the
eigenvalue changes its sign from negative to positive. The
fore, the stability boundary is assigned by the conditionl
50, which is in turn equivalent toa050. The latter condi-
tion leads to the following cubic equation inK2:

d~K2!31~A412dA2!~K2!2

1@d~A1
21A2

2!12A2A42Re~Q!A3#K2

1A4~A1
21A2

2!2A3@Re~Q!A22Im~Q!A1#50. ~17!

We fix all the parameters except the homogeneous inten
uESu2 or, equivalently, the input intensityuEI u2 and we find,
for every value ofuESu2, the corresponding interval of un
stable wave vectors. The Turing instability domain can th
be drawn in the plane (uESu,K), where we can determine th
unstable portion of the homogeneous solution and the crit
wave vectorKC , which first destabilizes the homogeneo
solution @see Figs. 1~b!, 3~b!, 4~b!, 5~b!, 8~b!, and 9~b!#.

IV. NUMERICAL ANALYSIS

A. Method of integration

The dynamical equations were integrated numerically
ing a split-step method with periodic boundary condition
This method consists in separating the algebraic and the
placian terms on the right-hand part of the equations;
algebraic term is integrated using a Runge-Kutta algorith
while for the Laplacian operator a two-dimensional~2D! fast
Fourier transform is adopted. This implies that the numbe
points for each side of the grid must be a power of 2 and
mostly assumed a 64364 grid. In order to ensure prope
stability and convergence of the algorithm, we chose a ti
stepdt'1022 and a space stepds varying from 0.3 to 0.6.

For the typical values of the recombination timet r and
the cavity decay ratek given in Sec. II the values of the
parameterg5(kt r)

21 are of order 1022– 1023. However,
in our simulations we adopt a much larger~up tog51! value
for g because we observed that the only effect of decrea
g is to make the transient regime longer; the structure of
final pattern does not depend ong1 as expected, since Eq
~17! does not bear a dependency on time rates in determi
the instabilities’ character. After having substantiated t
claim with careful sample simulations, we decided to redu
the CPU time requirements by adopting high values ofg in
further runs.

The technique used to switch on a SS consists in su
imposing to the homogeneous background of the input fi
EI

(h) ~which we assume real and positive without loss
generality! a Gaussian pulse, centered at the point (x0 ,y0)
where we want to create the spatial soliton@18#. The injected
field is then

EI~x,y;t !5EI
~h!1heiw expF2

~x2x0!21~y2y0!2

2s2 G f ~ t !,

~18!

with



ia

w
S

te
ia
li-

b
er
un
pl

du
e
ud
ut

rs

io
n

is

e

e
a

of

ic

n
ity

en
s is

with
the

be-
eas-
he
fila-

is
ase

con-
soli-
F.

-
ent
ym-

case

-

2546 PRA 58L. SPINELLI et al.
f ~ t !5H 1, 0<t< t̄

0, t. t̄ ,
~19!

whereh andw are the amplitude and phase of the Gauss
beam,s is its width, andt̄ is the pulse duration. We setw
50, which means that the Gaussian beam is in phase
the background. A similar procedure is used to erase an
To this aim we create a dark hole in the homogeneous in
sity of the injected field by setting the phase of the Gauss
pulse tow5p @obviously, in this case the Gaussian amp
tudeh in Eq. ~18! must not exceedEI

(h)#.
In order to investigate the effects on SSs that arise

using more realistic configurations of the input field, we p
formed numerical simulations also considering a backgro
input field with a broad Gaussian profile rather than a sim
homogeneous one. In this case we assume

EI~x,y!5EI
~h! expS 2

x21y2

2S2 D ~20!

in the absence of a switching pulse.
The pinning effect exerted on solitons by a phase mo

lation of the input field@7# is simulated by considering in th
transverse plane two orthogonal standing waves of amplit
z superimposed on the homogeneous background and o
phase with respect to the latter byp/2. Hence the input field
takes the form

EI~x,y!5EI
~h!@11 i e~coskx1cosky!#, ~21!

wheree52z/EI
(h) . Providede is sufficiently small,EI ac-

quires essentially only a phase modulation: In fact, at fi
order ine,

EI~x,y!'EI
~h! exp@ i e~coskx1cosky!#, ~22!

while the correction to the intensity is only of ordere2.
The pinning effect can also be analyzed in connect

with the contemporary presence of a Gaussian modulatio
the amplitude of the injected field. From expressions~20!
and ~21! the natural choice for the input field in this case

EI~x,y!5EI
~h!FexpS 2

x21y2

2S2 D1 i e~coskx1cosky!G .
~23!

Finally, in order to verify the effect of noise on the SSs, w
included in our model the noise due to the driving fieldEI
and the injected currentI . Thus we introduced white-nois
terms, in the form of Gaussian processes with zero mean
d correlated in space and time, to both Eq.~8a! for the field
E and Eq.~8b! for the carrier densityN.

B. Passive configuration

In the following we will analyze three particular cases
the passive configuration, relative to a resonant (D50), fo-
cusing (D,0), and defocusing (D.0) medium. In all three
cases we setI 50, h50.25, b51.6, andd50.2. The values
of these parameters are directly derived from the phys
quantities listed at the end of Sec. II.
n

ith
S:
n-
n

y
-
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-

e
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n
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1. Resonant case„D50…

The values for the remaining parameters are choseu
523 andC530. The steady-state curve and the instabil
domain are shown in Fig. 1. In Fig. 1~a! we indicate with
various symbols the results of numerical simulations wh
they produce some transverse pattern. The branch of SS
represented by closed circles. Note that the SSs coexist
the lower branch of the homogeneous steady state. To
left of the stability domain the SSs are no longer stable
cause they progressively increase their radius while decr
ing the peak intensity until they disappear. To the right of t
stability domain new structures arise spontaneously and
ments appear, emerging from the background@see Fig. 2~a!#.
Another situation that leads to the formation of filaments
when two SSs are excited too close to each other: In this c
the structures repel each other and filaments are formed
necting the SSs. Filaments can be regarded as stripelike
tons and will be analyzed more extensively in Sec. IV

FIG. 1. Passive resonant case.~a! Steady-state curve of the ho
mogeneous solution and results of numerical simulations. Differ
patterns are indicated by different symbols; the ordinate of the s
bol corresponds to the maximum intensity in the pattern.~b! Turing
instability domain. The parameters areC530, u523, D50, I
50, d50.2, h50.25, andb51.6.

FIG. 2. Examples of patterns found in the passive resonant
~see Fig. 1!. The three 2D gray scale plots~white represents the
maximum of intensity! correspond to a square of 1403140 mm2 in
the cross-section of the beam:~a! dynamical coexistence of fila
ments and SS (uEI u544), ~b! rolls (uEI u539), and~c! honeycomb
(uEI u548).
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Other stable structures are the roll pattern@see Fig. 2~b!# and
the honeycomb pattern@see Fig. 2~c!#, represented in Fig
1~a! by open squares and crosses, respectively. The pictu
qualitatively very similar to the case of purely absorpti
system, described in@30#, the only relevant difference bein
that here we do not find stable positive hexagonal lattices
the parameter ranges examined in our simulations.

2. Focusing case„D<0…

This is the situation where spatial solitons are most
vored, since the focusing action of the medium coopera
with saturation to counteract diffraction. We consider in p
ticular the caseD521, u523, and C540. The steady-
state curve with branches of different patterns and the in
bility domain are shown in Fig. 3.

An important feature of our device is the possibility
erasing a SS once it has been created. It can thus work
memory, where a bit of information can be stored as wel
wiped out. We have already mentioned at the beginning
this section which technique we use to erase an SS. In
particular case we checked the validity of this technique
two situations slightly different from the ideal one, name
~a! when the center of the Gaussian beam is a bit displa
from the center of the SS and~b! when the Gaussian beam
not exactly in opposition of phase with respect to ba
ground. In both cases we fixed the amplitude and width
the Gaussian injected peak toh510 and s50.9, respec-
tively, while the background homogeneous input field
EI

(h)527 @see Eq.~18!#. Moreover, we set the darkening tim

around a typical value oft̄ 5300, which corresponds to
about 3.5 ns. Our simulations showed that in case~a! the SS
can be erased when the separation between the Gaussia
the SS is smaller than 1.2~5.27 mm!, which approximately
coincides with the size of a SS; for larger distances the

FIG. 3. Passive focusing case.~a! Steady-state curve of the ho
mogeneous solution and results of numerical simulations.~b! Tur-
ing instability domain. The parameters areC540, u523, D5
21, I 50, d50.2, h50.25, andb51.6.
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simply moves a bit apart and decreases its peak intensity
it survives. In case~b! we observe that, as expected, the b
result is obtained atw5p, but the SS can be erased qui
fast for every value ofw between 2p/3 and 4p/3.

3. Defocusing case„D>0…

This is a less favorable case for the formation of S
because now both diffraction and self-defocusing act in
same direction. However, we were able to find several
amples of robust SSs also in this situation. The parame
adopted for this case areD51, u522, andC540 andD
51.5, u522, andC520. The steady-state curves and t
stability domains are shown in Figs. 4 and 5, respective
We note that in the first case the homogeneous steady-
curve shows bistability@Fig. 4~a!#, while in the latter case the
curve is monostable@Fig. 5~a!#. Branches of the various spa
tial patterns are also indicated with the usual symbols: T
scenario is similar to what we obtained in the resonant
focusing case, with the only difference being that in t
monostable case we found multistability among the low
branch of the homogeneous solution, SSs, and the hexag
lattice, indicated by open triangles. This pattern is shown
Fig. 6, where the presence of several defects is evident.

From the Turing domain in Fig. 4~b! we find that the
wave vector that destabilizes first the homogeneous solu
is KC51.43, which corresponds to a critical waveleng
lC[2p/KC54.39. On the other hand, from the measure
the cell lengthl of the honeycomb pattern emerging at t
instability threshold foruEI u538 we obtainedl54.56: The
two valuesl andlC are in very good agreement.

Next we performed a detailed study of the behavior of
SSs when the integration parameters, i.e., the time step
the space step, are varied. In the bistable case~D51, u
522, andC540!, we fixed the homogeneous input field

FIG. 4. Passive defocusing case.~a! Bistable steady-state curv
of the homogeneous solution and results of numerical simulatio
~b! Turing instability domain. The parameters areC540, u522,
D51, I 50, d50.2, h50.25, andb51.6.
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EI
(h)535 and observed the changes in the peak intensity

in the diameter of the SS as the space step and the time
vary in a large range of values. We found that the SS pers
for a space step as large as 0.8, when the typical value o
diameter is around 3. Moreover, the diameter and peak
tensity vary little as the integration parameters are chang
These results indicate that the integration method is q
reliable.

In view of possible applications it is interesting to kno
what the minimum allowable distance is between two S
because this is a measure of the density of information
can be stored in the system. Then we performed nume
simulations to investigate the interaction properties of SS
the bistable case. We observed that two SSs of diamete
behave as distinct entities when their center-to-center
tance is larger than 4.2, while they merge~i.e., they fuse into
one soliton, with height, width, etc., identical to those of t
two original solitons! as their distance goes below 3.6.
between, SSs repel each other until their distance reache
noninteraction value 4.2. Obviously, these figures depend
the specific choice of the system parameters, but we

FIG. 5. Passive defocusing case.~a! Monostable steady-stat
curve of the homogeneous solution and results of numerical si
lations.~b! Turing instability domain. Note the multistability amon
the lower homogeneous branch, SS, and hexagonal lattice. Th
rameters areC520, u522, D51.5, I 50, d50.2, h50.25, and
b51.6.

FIG. 6. Positive hexagonal pattern with defects found in
passive monostable defocusing case~see Fig. 5!. The cross section
is 1693169 mm2 wide; uEI u519.1.
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point out that this picture remains unchanged for the reson
and focusing cases and it is basically the same observed
saturable absorber@18#. Moreover, we note that the interac
tion distance is very close to the critical lengthlC calculated
above from the Turing domain. From this fact we can arg
that the interaction properties of SSs are strictly related to
MI affecting the system. The merging and repulsion actio
between two SSs can be seen as the way adopted by S
self-accommodate according to a underlying spatial patte

4. Variation of parameters

After seeing the three case studies, let us now discuss
key point of the parametric dependence of the results.
bistability parameterC must be large enough so that th
input-output curve of the homogeneous stationary solutio
bistable or close to bistable. The extension of the range
input intensities, for which SSs are found, becomes lar
whenC is increased. In our calculations, we variedC from
10 to 50; these values are accessible experimentally@26–28#.
The parameteru, which measures the detuning of the inp
frequency from the nearest longitudinal cavity mode in un
of the cavity halfwidth, must be negative and typicallyuuu
must be on the order of 2 at least for the value ofD consid-
ered in our calculations. As for the parameterD, for our
choice of the parameters it results that in the self-defocus
caseD must be about 2 or less; the existence of an up
limit in D is related to the fact that self-defocusing, which
unfavorable for SSs, increases withD. Our calculations per-
formed after the publication of@21# have shown that, in the
self-focusing case, also forD,21 it is possible to generate
single SSs and not only groups of solitons.

As already discussed, the value of the ratiog of the non-
radiative recombination rate to the cavity damping rate tu
out to be irrelevant. In a sense this is obvious because
solutions that correspond to SSs are stationary andg governs
only the transient stage. However, it must be kept in m
that g may, a priori, influence strongly the stability of SSs
but in our calculations we found that a SS stable forg
50.1 remains stable up to the realistic valueg50.002.

As for the parameterb that governs radiative recombina
tion, we considered two values,b50 and 1.6. The picture is
qualitatively the same in both cases; we saw only that, w
b51.6, the steady-state hysteresis cycle of the homogen
stationary state corresponds to larger values of the inpu
tensity, while SSs can resist to a stronger diffusion proc
~especially in the self-defocusing case!.

The last parameter to be discussed isd, which governs the
carrier diffusion. In Fig. 7 we show an example of Turin
instability domains for different values of the diffusion coe
ficient d. We note that the instability domain shrinks as t
diffusion parameter increases. Nevertheless, while the
boundary of the Turing domain is affected by diffusion, t
right one is left almost unchanged by the increase of dif
sion; both these features are positive for the existence of
in the presence of diffusion: In fact, the stability of the low
branch of the homogeneous solution together with an
tended MI in the upper branch is a necessary condition
SSs to be stable. As a matter of fact, diffusion tends to
bilize the homogeneous solution. As for the effect of diff
sion on SSs, we can note that whend is increased, the SS
becomes lower and wider, and beyond a certain maxim

u-

pa-

e
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value dmax it does not exist anymore. In the self-focusin
case diffusion is not at all a problem: We found stable S
even whend was as large as 1.5~typical values ofd are on
the order of 1021!. For D50 it is basically the same andd
can be safely raised to 0.75. As it may be expected,
self-defocusing case is more sensitive to the presence of
fusion. However, the robustness of SSs to carrier diffus
increases with their height and when this is large enough
found thatd can be raised to 0.55 forC'20– 40, even in the
presence of self-defocusing.

C. Active configuration

In this case the device is supplied by an injected curreĨ

greater than the transparency valueĨ 0 in such a way thatI
.1. In this configuration the microresonator becomes a v
tical cavity surface-emitting amplifier or laser with an i
jected fieldEI , according to whether or not the system
above laser threshold. In our study we always keep the
tem below lasing threshold in order to avoid the appeara
of dynamical instabilities typical of the VCSEL abov
threshold.

In order to determine the threshold valueI th and the laser
frequency in the absence of the injected field~the free-
running regime! we must setEI50 in the stationary equa
tions of the model and consider the point for which the no
trivial stationary solutions givesuESu50. To this aim, we
start from Eq.~12a!. By settingEI50, dividing byuESu2, and
settingQ5a1 i we obtain the two equations

11h22C~NS21!50, ~24a!

u12Ca~NS21!50. ~24b!

On the other hand, from Eq.~12b! with uESu50 andI 5I th
we obtain

NS5
211A114bI th

2b
. ~25!

From Eqs.~24a! and ~24b! we obtain the condition that de
termines the laser frequency

u1a~11h!50 ~26!

and the stationary carrier density at threshold

FIG. 7. Turing instability domains plotted for different values
d in the passive configuration. The other parameters areC540, u
522, D51, I 50, h50.25, andb51.6.
s
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NS511
11h

2C
, ~27!

which, by inserting Eq.~25!, yields the condition forI th ,

I th511
11h

2C
1bS 11

11h

2C D 2

. ~28!

In the following we consider values 0,I ,I th .
As we did in the passive configuration, we analyze t

focusing (a.0) and defocusing (a,0) media separately
For the parameters of the active system, as in the pas
case, we adopt numerical values derived from the phys
quantities listed at the end of Sec. II. In particular, for
diffusion lengthl D51 mm, the diffusion parameterd takes
the value 0.052. Moreover, for the sake of simplicity, w
neglect the linear absorption term and the quadratic rec
bination term choosingh50 and b50. In this case Eqs
~26! and ~28! simplify, becoming u52a and I th51
11/2C, respectively. As for the bistability parameter we
C50.45, leading to a threshold currentI th52.11. We
chooseI 52 in order to keep the device just below thresho
We have also investigated the case in which the cross sec
of the active region is smaller than the integration window
verify the robustness of spatial solitons against the remo
of periodic boundary conditions adopted to perform the n
merical integration.

1. Focusing case„a>0…

In this case we considered the parametersa55 and u
522. In Fig. 8 we show theS-shaped curve of the homo
geneous steady state and the Turing instability dom

FIG. 8. Active focusing case.~a! Steady-state curve of the ho
mogeneous solution and results of numerical simulations.~b! Tur-
ing instability domain. The parameters areC50.45, u522, a
55, I 52, d50.052,h50, andb50.
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Where the homogeneous solution is unstable, we found
stationary modulated patterns whose branches are indic
with the usual symbols.

We started our search just below the right-hand instab
threshold. Here the system easily develops a perfect ho
comb pattern. Then we constructed the branch of the hon
comb pattern following its evolution for adiabatic variatio
of the input amplitudeEI . It turns out that the instability of
the upper homogeneous solution is slightly subcritical:
fact, there is a superposition between a stable portion of
homogeneous curve and the honeycomb branch. By fur
decreasing the input amplitudeEI we observed the transitio
from the honeycomb pattern to rolls. We found both perf
and imperfect structures, depending on the initial conditio
For values ofEI just below the right-hand turning point o
the S-shaped curve, we observed the presence of SSs. T
are stable forEI larger than about 0.74. Below this value,
fact, they disappear and the system evolves to the lo
branch of the homogeneous stationary solution. Between
SSs and roll branches the system displays a dynamica
havior, in which we observed spontaneous creation and
nihilation of spatial solitons and filaments in different loc
tions of the transverse profile of the field and no sta
configuration was found even for very long times.

Once we demonstrated the existence of a sizable bra
of stable SSs, we studied the dependence of the switc
and erasing procedures on the injection parameters, nam
the heighth, the widths, and the phasew of the Gaussian
beam superimposed on the homogeneous background
the lighting timet̄ . The amplitude of the homogeneous bac
ground in these simulations isEI

(h)50.75. First we setw
50 and determined, for different values of the lighting tim
t̄ and of the widths, the minimum value of the amplitud
hmin necessary to excite an SS@see Eq.~18!#. In Table I we
summarized our results for two choices of the lighting tim
t̄ 586 and 258 in unitk21, which corresponds to 1 and 3 n
respectively. Then we repeated the above simulations for
erasing casew5p. We determined~see Table II! the mini-
mum valuehmin of the Gaussian amplitude sufficient to a
nihilate the SS for different choices of the widths and of the
darkening timet̄ . From our results it arises that for value
hmin of the same order of magnitude, the darkening ti
necessary to switch off an SS is 10 times smaller than
lighting time for which the Gaussian pulse must be kept

TABLE I. Minimum value of the amplitudehmin necessary to

excite a SS, for different values of the lighting timet̄ and of the
width s, @see Eq.~18!#. We setEI

(h)50.75 andw50.

s hmin

t̄586
2 0.69
3 0.53
4 0.46

t̄5258
2 0.36
3 0.27
4 0.23
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order to switch on the SS. Moreover, we note that for
different values ofs considered, the value ofhmin decreases
by a factor 2 whent̄ is increased by a factor 3.

Next we considered the switching problem when t
phasew of the Gaussian beam is not exactly equal to 0. W
fixed s53 and a lighting time equal to 86 and then w
determined, as before, the minimum amplitudehmin needed
to excite a SS for variousw. The results are summarized i
Table III. If we further increase the modulus ofw, that is, if
we put the homogeneous background and the Gaussian p
more and more out of phase, the process of exciting a
becomes less and less efficient, up to the point that we
not able to switch on the SS: Heuristically, this can be u
derstood by considering that whenuwu becomes greater tha
p/2, we enter a regime where the Gaussian pulse acts to
a dark spot in the homogeneous background rather tha
create a peak of intensity. Nevertheless, Table III dem

TABLE II. Minimum value of the amplitudehmin sufficient to
annihilate the SS, for different choices of the widths and of the

darkening timet̄ @see Eq.~18!#. We setEI
(h)50.75 andw5p.

s hmin

t̄58.6
2 0.40
3 0.34
4 0.31

t̄525.8
2 0.21
3 0.17
4 0.16

TABLE III. Minimum value of the amplitudehmin necessary to
excite a SS, for different values of the phasew @see Eq.~18!#. We

setEI
(h)50.75, s53, and t̄ 586.

w hmin

2
p

3

0.82

2
2

9
p

0.65

2
p

9

0.56

2
p

18

0.54

0 0.53

p

18

0.52

p

9

0.53

2

9
p

0.57

p

3

0.67
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strates that the choice of the phasew is not critical: There is
a wide range forw ~at least going from2p/3 to p/3! in
which the excitation of a SS is reliable. Furthermore, we n
a small difference inhmin for positive and negativew. In
particular, the excitation of a SS is more efficient if th
Gaussian pulse is slightly dephased with respect to the
mogeneous background: In fact, we found the minimum
the amplitudehmin whenw5p/18.

2. Defocusing case„a<0…

As we did for the passive configuration, we have analyz
the defocusing case, even if it is unusual to have a nega
linewidth enhancement factor in VCSELs. Nevertheless,
seta525 and kept for the others parameter the values u
in the focusing case. In particular, we note that in this c
the homogeneous steady-state curve is monostable@Fig.
9~a!#. As a consequence, there are only modulational in
bilities because the homogeneous solution is stable with
spect to plane-wave perturbations@see Fig. 9~b!#.

In Fig. 9~a! we show also the branches of the differe
spatial patterns. We note that the homogeneous solutio
unstable for values of the input fielduEI u between 1.53 and
5.28. In correspondence, a variety of spatial patterns
velop. In contrast to the focusing case, we have the pres
of a branch of positive hexagons~see Fig. 10!. However, we
did not find the formation of SSs: As a matter of fact, a
attempt to excite a SS similarly to what we did for the f
cusing case was not successful. This is due to the fact
there is no coexistence between the hexagonal pattern a
stable portion of the homogeneous branch.

Then we measured the cell length of the patterns aris
from the destabilization of the homogeneous solution at b
extremes of the Turing instability and compared it with t
characteristic length one would expect, given by the inve

FIG. 9. Active defocusing case.~a! Steady-state curve of th
homogeneous solution and results of numerical simulations.~b!
Turing instability domain. The parameters areC50.45, u522,
a525, I 52, d50.052,h50, andb50.
e

o-
r

d
ve
e
d
e

a-
e-

t
is

e-
ce

at
d a

g
th

e

of the critical wave vectorKC . For the hexagonal pattern i
Fig. 10 corresponding touEI u51.55 ~the leftmost extremum
of the Turing domain!, we obtained a cell length of 2.9
against a critical lengthlC[2p/KC52.55. Moreover, the
honeycomb pattern arising at the other extremum of the T
ing instability, whenuEI u55.25, has a cell length of 4.70 t
be compared withlC8 [2p/KC8 54.05.

3. Variation of parameters

Here we briefly describe what happens when some of
main parameters of the model in the active configuration
changed, with particular attention to SSs. First, let us c
sider the variation of the diffusion parameterd. As in the
passive case, an increase of diffusion reduces the portio
the homogeneous steady-state curve that is unstable aga
modulated perturbation~see Fig. 11!. However, the left
boundary of the Turing domain is only slightly affected b
diffusion and again this feature is positive for the existen
of SSs in the presence of diffusion. The reduction of t
unstable portion of the homogeneous solution has the co
quence of shrinking and sometimes destroying the branc
of the different spatial patterns in both the self-focusing a
self-defocusing cases. Moreover, in the self-focusing cas
increase of diffusion has practically no effect on the SS: T
extension of the SS branch remains unperturbed even if
diffusion parameterd becomes as large as 1.

In the self-focusing casea.0, we observed that a de
crease in the bistability parameterC has greater conse
quences on the branch of SSs. In fact, the reduction of
bistable portion in the homogeneous steady-state cu
caused by the approaching ofC to the bistability threshold,
limits the extension of the input field region where the S
exist. On the other hand, the features of the remaining sp
patterns result practically unchanged. Next we observed
also a decrease of the linewidth enhancement factora from 5

FIG. 10. Positive hexagonal pattern found in the active defoc
ing case~see Fig. 9!. The cross section is 1103110 mm2 wide;
uEI u51.55.

FIG. 11. Turing instability domains plotted for different value
of d in the active configuration. The other parameters areC
50.45, u522, a55, I 52, h50, andb50.
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to about 3.5 leads to the disappearance of SSs. Neverthe
this effect can be sometimes counteracted by a respe
increment ofuuu ~for example, SSs exist also fora53.5 and
u522.5 atuEI u'0.128!.

The most important differences we met analyzing the s
defocusing case (a525) with respect to the self-focusin
one is the absence of stable spatial solitonic solutions and
appearance of the hexagonal pattern. Then we reverted
sign of the cavity-detuning parameteru by fixing u52, re-
storing in this way a bistable homogeneous steady-s
curve. In general, in fact, one can observe that the homo
neous solution given by Eqs.~12a! and ~12b! is symmetric
with respect to the simultaneous change in sign ofa andu.
In this case the MI is located in the lower branch of t
bistable steady-state curve. From this instability we obser
the supercritical bifurcation of stable hexagonal spatial p
terns. Again, no stable SSs could be obtained.

4. Spatially confined injected current

Up to now, in our simulations, we have assumed that
injected currentI , which pumps the microresonator in th
active configuration, is homogeneous in the transverse pl
In actual devices, however, the active area has always a
ited extension with a cross section that can take differ
shapes. It is important to include this feature in our model
order to show that SSs are independent of the perio
boundary conditions used in the simulations. Furthermore
is well known that boundaries strongly affect transverse s
tial structures in different systems@31–33#. We are mainly
interested in understanding whether boundary effects can
fect SSs. It is worth noting that usually a limited profile
the driving field is assumed, while here we consider a limi
profile in the pump current.

To this aim we considered a square active region with
size of the previous integration window for the active ca
surrounded by a region without injected current, such t

FIG. 12. Limited injected current.~a! Spatial profile of the cur-
rent I . ~b! Five stable SSs~3D plot!. The parameters are the same
in Fig. 8. Spatial coordinatesx andy are expressed in units ofAa.
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now the integration window has double the size. This w
performed by increasing the number of grid points to 1
3128. Outside the active region the system behaves like
absorber~i.e., there is no population inversion!. The profile
of the pump parameterI is shown in Fig. 12~a!. We found
that SSs are still stable also very close to the boundary of
active region; in Fig. 12~b! we give an example of five stabl
SSs. The suspicion that the SSs are an artifact of the num
cal simulations, due to the imposition of periodic bounda
conditions, is definitely eliminated.

D. Modulated driving field

Here we investigate, in both the passive and active c
figurations, what happens to SSs when the input fieldEI is
not homogeneous in the transverse plane but has some
of spatial dependence. As anticipated in Sec. IV A, we a
lyzed first the effect of an injected field with a Gaussi
profile. Figure 13~a! shows the input field with this kind o
spatial modulation. In the passive case it turns out that
SSs are totally insensitive to intensity gradients, in the se
that SSs remain stable at locations where they have b
created. In the active case, on the contrary, we observ
movement of SSs towards the maximum of the Gauss
profile. If we start with a certain number of SSs located
various points of the transverse plane, they begin to conve
towards the center of the Gaussian profile, merging toge
when they are too close to remain independent. This proc
ends when there is only one SS located at the Gaussian p

FIG. 13. Active focusing case.~a! Three-dimensional plot of the
modulus of the driving fieldEI with the Gaussian profile as given i
Eq. ~20!: EI

(h)50.75 andS5100. Spatial coordinatesx andy in ~a!
are expressed in units ofAa. ~b! Sequence of four frames describ
ing the converging effect due to the Gaussian profile shown ab
The time interval between two frames is 1296~in units of k21!,
while their cross section is 1403140 mm2 wide. The other param-
eters are the same as in Fig. 8.
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FIG. 14. Active focusing case.~a! Three-dimensional plot of the modulus of the driving fieldEI with the Gaussian profile and phas
modulation as given in Eq.~23!: EI

(h)50.75,S5100, ande50.05. ~b! Three-dimensional plot of the phase of the driving fieldEI . ~c! Same
as in~b!, but in on a 2D gray scale plot.~d! Sequence of four frames showing the pinning effect due to the input field given above: Th
move towards the maxima of the phase ofEI shown in~c!. The time interval between two frames is 60~in units of k21!, while the spatial
coordinatesx andy in ~a! and~b! are expressed in units ofAa. The cross section of the 2D plots in~c! and~d! is 1403140 mm2 wide. The
other parameters are the same as in Fig. 8.
ow
S
u
th

an
an

th

eld
th
ry
es
th
t o

re
nd

or
on
sia
ion
n

e

th
rv
he

ei

is
dy

ount
to

ion
ally
fact,
walk
t of

SS
e-

del,

ide

h.
ng
the
the
heir
ther
es

ich
lly

-
heir

for-
s, in
the

e

In Fig. 13~b! we report a sequence of four frames to sh
this behavior: The numerical simulation begins with five S
in different positions of the transverse plane and, after a s
able amount of time, only one SS remains in the center of
integration window~i.e., the center of the Gaussian profile!.
Obviously, this is an unwanted effect that can destroy
kind of information one would encode in the transverse pl
by SSs.

We also studied the case of the phase modulation in
input field described in Sec. IV A. From@7#, in fact, we
know that a modulation in the phase of the injected fi
causes a drift of SSs towards the maxima of the function
describes the phase itself. This pinning effect is necessa
a soliton array memory to cancel possible errors in addr
ing solitons. As we expected, in both the passive and
active case a weak modulation produces a very fast drif
SS towards the nearest local maxima of the phase.

In the active case we analyzed the combined action
these two effects, that is, we consider the simultaneous p
ence of a Gaussian amplitude modulation, as before, a
phase modulation in the input field, as described in Eq.~23!.
We devoted particular attention to verify the possibility f
the pinning action due to the phase modulation to be str
enough to overcome the converging effect of the Gaus
profile. We observed that it is possible, with a modulat
amplitude e50.05, to eliminate the converging motio
caused by the input field as in Fig. 13~a!. In Fig. 14~a! we
report the profile ofuEI u with both Gaussian and phas
modulation, while in Figs. 14~b! and 14~c! the phase ofEI is
reported in both 3D and 2D plots. Finally, in Fig. 14~d!, four
frames are shown describing the motion of SSs towards
maxima of the phase modulation even if a Gaussian cu
ture of the input field is present; the initial condition is t
same we adopted in Fig. 13. Though from Fig. 14~a! it is
evident that our choice of the phase modulation~see Sec.
IV A ! produces also a modulation in the intensity ofEI , the
maxima of intensity are completely ignored by SSs in th
motion.
s
it-
e

y
e

e

at
in
s-
e
f

of
s-
a

g
n

e
a-

r

E. Action of noise

We analyzed the behavior of SSs when some noise
present in our model. This is an important feature to stu
because in practical devices a more or less important am
of noise is always present; for this reason it is interesting
observe what happens to SSs in such a case.

We already know that we can excite a SS in any posit
of the transverse plane so that every point results margin
stable with respect to the presence of a SS. Due to this
one expects that the presence of noise causes a random
of the SS in the transverse plane. Moreover, if the amoun
noise becomes too large, one could also expect that an
does not persist stably as an individual entity, but it is d
stroyed by random fluctuations.

To test these features, we inserted noise in our mo
adding to the equations for the fieldE and the carrier density
N white-noise terms. Precisely, we add to the right-hand s
of Eqs. ~8a! and ~8b! two terms of the formgEdj1(x,y;t)
and gNdj2(x,y;t), respectively, wheredj i ( i 51,2) are
Gaussian variables with zero mean andd correlated in both
space and time, whilegE andgN measure the noise strengt

First, we performed a numerical simulation consideri
only the presence of noise and no spatial modulation in
input field. As we expected, SSs wander around until
distance between two of them becomes shorter than t
interacting range, so that, eventually, the two merge toge
in a single SS. In Fig. 15 we show a sequence of fram
taken at constant intervals during the time evolution, wh
shows the random walk experienced by the five SSs initia
present~the initial condition is the same as in Fig. 13!. In this
simulation we setgE5gN50.03. Note that, even in the pres
ence of this quantity of noise, SSs are stable, apart from t
interaction.

The random walk that SSs undergo can destroy any in
mation encoded in the transverse plane by means of SS
the same way as the presence of a Gaussian profile in
driving field EI does. As before, we thought to exploit th
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pinning effect exerted by the presence of a small ph
modulation in the driving field in order to guide SSs towar
the desired locations of the array.

To verify if this procedure is reliable, we carried out
numerical simulation with the same amount of noise as
Fig. 15, but this time with a slight phase modulation@e
50.05 in Eq.~21!# added to the driving field. In Fig. 16 w
show four frames taken at different times during the tim
evolution of the system. We can see that the added ph
modulation is strong enough to overcome the random w
due to the noise and to pin down the SSs at the maxim
phase, arranging them in the positions of a 333 array. The
only remaining effect of noise on SSs is a small rand
deformation of the peaks and a very short random displa
ment around their equilibrium positions.

F. Formation of stripelike solitons

The SSs described henceforth are two dimensional in
sense that they are self-confined in the (x,y) transverse

FIG. 15. Active focusing case. Sequence of four frames desc
ing the random walk of SSs under the effect of noise, for a unifo
input field;gE5gN50.03. The time interval between two frames
7440 ~in units of k21!, while their cross section is 1403140 mm2

wide. The gray scale has been changed with respect to prev
figures in order to emphasize the presence of noise. The othe
rameters are the same as in Fig. 8.

FIG. 16. Active focusing case. Sequence of four frames show
the pinning effect due to a driving field with a phase modulation
presence of noise;e50.05 andgE5gN50.03. The other param
eters are the same as in Fig. 8. The time interval between
frames is 92~in units of k21!, while their cross section is 140
3140 mm2 wide and the gray scale is the same as in Fig. 15.
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plane. On the other hand, they can be regarded as z
dimensional structures from the geometrical point of vie
because they can be assimilated to a single point in
plane, where they are completely defined by their location
our simulations we encountered also what appear to be
dimensional solitons in the sense that they are stripe
structures, each of which behaves independently; we
briefly report on them here since their behavior has not b
thoroughly investigated yet.

As it appears in Fig. 4, there exists an interval of valu
for EI where the honeycomb pattern coexists with the r
pattern and the SSs are not stable anymore. As one ca
tuitively expect, a competition between the two sorts
structures occurs, but it does not result in one overcom
the other; on the contrary, at the regime one meets a
scenario. Suppose that a single SS is excited in this inte
by means of a beam pulse; at the regime one observes
the structure does not remain self-confined, but starts e
gating and eventually becomes a wandering, writhing str
whose length increases, while its width remains on the s
of the soliton diameter. The initial orientation of the stripe
random, but can be controlled by a slight ovalization of t
addressing pulse, the stripe emerging along the larger ell
axis.

Elementary features of the interaction among stripel
structures have been evidenced by simulations; gene
speaking, they tend to merge with each other wheneve
collision between two stripe edges occurs, but it is also e
dent that adjacent stripes can mutually influence the lo
curvature radius. We could compare these results to pr
ous, unpublished results concerning atomic saturable abs
ers, where stripelike solitons had been observed; we in
that the carrier dynamics and possibly diffusion play a role
extending the stripe interaction range. This makes the con
of the stripe location and curvature by means of exter
pulses more difficult. In Fig. 17 we report the evolution
three SSs created in the self-defocusing bistable case foEI
538. In Fig. 17~a! the initial condition of the simulation is
shown: SSs are at a distance slightly larger than their in
action range~see Sec. IV B 3!. The SSs start elongating a
described above and become stripes that strongly inte
and mutually merge@see Fig. 17~b!#, giving rise to a compli-
cated structure, reported in Fig. 17~c!.

The character of the interaction is not univocal in t
sense that two stripe fronts approaching each other can e
merge or cause the deflection of the stripes and we hav
evidence so far of a quantitative factor distinguishing b
tween the two instances. Figure 18 shows the long-term e

b-

us
a-

g

o

FIG. 17. Passive defocusing case. Sequence of three fra
showing the formation of stripelike solitons from three SSs. We
uEI u538, while the other parameters are the same as in Fig. 4.
time interval between two frames is 16~in units ofk21!, while their
cross section is 2803280 mm2 wide.
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lution of the previous case. Comparing Figs. 18~a! and 18~b!,
the front in the upper left quadrant has been deflected by
existing stripe towards the upper left corner. On the ot
side, a comparison between Figs. 18~b! and 18~c! shows that
the front coming from the lower right corner, impinging o
the lower part of the central structure, has collided a
merged with it. All figures are separated by an interval ot
516 time units.

The question of whether these structures are stationar
restlessly dynamical is still under investigation. To our b
comprehension it appears that the role of the boundarie
decisive in this respect: In our simulations, whenever a w
dering stripe connects its two ends across the perio
boundary, it becomes stationary and particularly stable
preliminary simulations with diffraction limited beams, w
analyzed the behavior of the stripes in proximity of the
jected field profile boundary. Although stripes stem from
competition with rolls, they do not connect orthogonally
the boundary@31#. Rather, they seem repelled thence a
fold over to connect their ends in a figure that genera
reflects the boundary symmetry and becomes stable. In
19~c! we plot the stationary pattern at the regime using
super-Gaussian~rather than plane-wave! holding beam, the

FIG. 18. Passive defocusing case. Sequence of three fra
showing the long-term evolution of the case described in Fig.
Again, uEI u538 and the other parameters are the same as in Fi
The time interval between two frames is 16~in units ofk21!, while
their cross section is 2803280 mm2 wide.

FIG. 19. Passive defocusing case.~a! Three-dimensional plot of
the modulus of the driving fieldEI with the super-Gaussian profil
used for this numerical simulation.~b! Initial condition.~b! Station-
ary pattern of the regime. The width of the super-Gaussian profi
99 mm, while the cross section of the two frames is 1
3140 mm2 wide. The parameters are the same as in Fig. 4.
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profile of which is shown in Fig. 19~a!; the initial condition
with three SSs reported in Fig. 19~b! is the same used in Fig
17, here magnified.

As for the interest associated with such structures, we
note that exactly as a line carries a higher semantic cont
associated with its shape, length, local curvature, etc., th
stripes may encode a larger information density, acting
elements of an alphabet. Of course, robust and unartifa
techniques must be designed to control them, a goal that
beyond the scope of this paper.

V. SHOOTING METHOD

The radial integration method described in@7# can be suc-
cessfully employed also in our model, in both the pass
and active cases, to check the validity of the dynamical sim
lations. The idea is to find directly the radial stationary pr
file of SSs, bypassing the transient regime. This is done
performing a spatial integration of the stationary equatio
and assuming a cylindrically symmetric SS located at
center of the window. We describe here in details the te
nique adopted.

With respect to@7#, here we have to cope with the majo
difficulty represented by the presence of one more equa
for the carrier densityN. For this reason we adopted
slightly different method in which the radial integration
performed outward from the origin and matching with t
homogeneous solution is required at larger . This method
has the advantage that it does not require us to express
trial solution as a combination of suitable Bessel functions
in @7# and therefore we do not need to calculate the eig
values of the coefficient matrix~which is now 333! of the
linear system. We simply look for those initial values~at r

50! of the electric fieldĒ and carrier densityN̄ for which
the solution integrated up to a fixed and large valuer 1 of the
radial coordinate is as close as possible to the homogen
solution.

Let „E(r ;Ē,N̄),(r ;Ē,N̄)… be the solution obtained startin
from the initial conditions

E~0!5Ē,
dE

dr
~0!50,

~29!

N~0!5N̄,
dN

dr
~0!50

and (ES ,NS) the homogeneous solution. We define the fun
tion

f ~Ē,N̄!5
1

M (
m50

M21

@ uE~r 12mDr ;Ē,N̄!2ESu2

1uN~r 12mDr ;Ē,N̄!2NSu2#, ~30!

which measures the mean distance between the calcu
solution and the homogeneous one, along the lastM integra-
tion stepsDr . The problem now is that of finding the minim
of f in the 3D space of the parametersĒ ~complex! and N
~real!. For this reason the method is also calledshooting,
because oneshootsstarting from an initial condition in the

es
.
4.

is
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FIG. 20. Comparison between the radial integration~solid line! and the dynamical solution:~a! passive focusing configuration with th
parameters set asC530, u523, D521, I 50, d50.2, h50.25, b51.6, anduEI u525 and~b! active focusing configuration with the
parameters set asC50.45, u522, a55, I 52, d51, h50, b50, anduEI u50.75.
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3D space (Ē,N̄) aiming at the particular points for which th
function f is minimum. Usually we takeM as one-tenth of
the total number of steps; this ensures thatf is small only for
solutions that indeed tend to approach the homogeneous
excluding those that accidentally cross the homogeneou
r 5r 1 . E(r ) and N(r ) are solutions of the stationary equ
tions

EI5~11h1 iu!E12CiQ~N21!E2 i¹'
2 E, ~31a!

05N1bN22I 1uEu2~N21!2d¹'
2 N, ~31b!

with the initial conditions~29!. Therefore, one must integrat
the set of ordinary differential equations

dE

dr
5Er , ~32a!

dEr

dr
5 iEI1@u2 i ~11h!#E12CQ~N21!E2

Er

r
,

~32b!

dN

dr
5Nr , ~32c!

dNr

dr
5

1

d
@N1bN22I 1uEu2~N21!#2

Nr

r
~32d!

to calculateE andN at everyr up tor 1 and then the function
f (Ē,N̄).

However, in almost all cases we found that the small d
fusion parameterd in the denominator in Eq.~32d! makes
the solution diverge before the pointr 1 is reached. To cir-
ne,
at

-

cumvent this problem we adopted a perturbative method
which we take advantage of the smallness ofd to expressN
in a power series ofd itself

N5N~0!1dN~1!1O~d2!. ~33!

By inserting this expansion into the stationary equatio
~31a! and ~31b! and neglecting terms of orderd2 or higher,
we find

N~0!5@2~11uEu2!1AA#/2b, ~34a!

N~1!52„4~ I 212b!@Re~ErE* !#2/A2~N~0!21!

3$@u12C~N~0!21!Re~Q!#uEu2

1EI Im~E!1uEr u2%…/A, ~34b!

whereA5(11uEu2)214b(I 1uEu2). In this way, at every
r , N is given to first order ind as a function ofE and the set
of equations reduces to

dE

dr
5Er , ~35a!

dEr

dr
5 iEI1@u2 i ~11h!#E

12CQE~N~0!1dN~1!21!2
Er

r
. ~35b!

Of course this approximate method is reliable only f
small values ofd, becoming exact ford50; however, we
found that it works well even for values of the diffusio
coefficientd as large as 0.2, as shown in Fig. 20~a!, where
the results are compared with those of the split-step inte
tion. For values ofd as large as 1 the shooting method can
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applied without an approximation@see Fig. 20~b!#. The
shooting method, in its perturbative form, has been explo
also to find branches of SSs. In Fig. 21 we reconstructed
a radial integration of the stationary equations, the branc
SSs previously obtained by means of the split-step met
@see Fig. 8~a!#: We note that the agreement between the
sults of two methods is very good. Furthermore, the shoo
method allows us to construct also the unstable portion of
branch of SSs~the dashed line in Fig. 21!, which cannot be
determined via the split-step method. In this cased50.052,
so that the perturbative treatment of the carrier diffusion te
is fully justified.

VI. CONCLUSIONS

We formulated and analyzed a model describing a se
conductor MQW vertical cavity in both the passive~no
population inversion! and the active~VCSEL below thresh-
old! cases. The numerical calculations were carried out
following two radically different approaches:~i! numerical
integration in time and space of the partial differential eq
tions and~ii ! direct numerical calculation of the stationa
SS profile, obtained by spatial integration of two ordina
differential equations. Whenever it was possible to use a
the second approach, the results were in very good ag
ment with those of the time integration, which makes us fu
confident that the data obtained from the first method
reliable in general.

Because the number of parameters in play is large and
same is true for the CPU time required by each simulation
PDEs, we could explore only rather limited but select
ranges of the parameters. These were suggested by our
vious experience with modeling semiconductor optical s
tems and from experiments that are familiar to us; for
ample, the parametric values for the passive case w
mainly suggested by experiments on excitonic optical bis
bility in GaAs MQWs, carried out by Sfezet al. in the past
@26–28#.

Despite this limitation, we were able to collect a signi
cant set of numerical data, which led us to a clearcut pict
for the appearance of SSs and their control. As a gen
rule, the region where one can readily find stable SSs co
sponds to the leftmost extremum of the bifurcated bra
arising from the modulational instability. This branch
shifted towards the left turning point of the bistable inpu

FIG. 21. Branch of SSs obtained by the shooting method in
perturbative approximation~solid line!, valid for smalld, compared
with that derived by the split-step method~d!, for the active case;
the dashed line represents the unstable portion of the branch o
~shooting method!. The homogeneous solution is also shown. T
parameters are the same as in Fig. 8.
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output curve of the homogeneous stationary solution or
wards the inflection point when the curve is close to bistab
This rule of thumb applies equally well in the passive a
active cases.

Also true in both cases is the following.~i! The para-
metric domains, where SSs exist, are sizably extended
accessible to the experimental realization.~ii ! An increase of
the parameterC ~which is the bistability parameter! in-
creases the extension of the interval of input field intensi
where one meets stable SSs.~iii ! SS are found for negative
values of the cavity detuning parameter, i.e., the frequenc
the relevant longitudinal cavity mode must be redshift
with respect to the frequency of the driving field. This do
not hold in general, but is true when the detuning parame
D ~in the passive case! or the linewidth enhancement facto
~in the active case! is not large, as it is the case in our ca
culations in semiconductor systems. The requirement thu
be negative arises from the compensation between cavity
tuning and the Laplacian contribution, described in@7,30# for
the purely absorptive case. This compensation makes
cavity resonant with the field in correspondence to the s
tonic peaks; forDÞ0, the resonance is with the cavity fre
quency shifted by the refractive index of the medium.

For the other parameters, let us discuss the two ca
separately.

(i) Passive systems.We found stable SSs when the mod
lus of the detuning parameterD ~which measures the detun
ing of the input frequency from the excitonic line, in units
the excitonic half-width! is on the order of or smaller tha
unity; i.e., one must operate in a neighborhood of the exci
resonance. The self-focusing case (D,0) is in principle the
most favorable for SS formation; in this case it is necess
to substantiate our results by further investigations based
a more complete model that includes also the free car
continuum that lies on the self-focusing side of the excit
peak. Quite interesting and encouraging is that robust
have been found also in the case of self-defocusing mate
(D.0), which is easiest to operate and for which our mo
should work best. The natural physical interpretation of t
result is that the guiding effect provided by saturation@the
guidance arising from the~negative! loss profile# is still able
to overcome the antiguiding action of self-defocusing. C
rier diffusion is evidently also an effect that tends to dam
SSs and represents an aspect that must be taken into ac
especially in the case of self-defocusing. However, the
sults indicate that for realistic values of the parameterd in
Eq. ~8b!, carrier diffusion does not constitute a limitation
practice.

(ii) Active systems.Even though, as explained in the in
troduction, the VCSEL is kept below threshold, in order
obtain SSs the injected current must be such that the sys
is close enough to threshold~typically 5% below the lasing
threshold!. SSs were found when the linewidth enhancem
factor is positive, which is the standard case. In our calcu
tions we seta55; a drastic reduction ofa leads to the
disappearance of SSs, but this effect can be counteracte
increasinguuu. In recent experiments by Tredicce@34#, which
demonstrated the existence of standard optical bistability
VCSELs below threshold, the value ofu was small, but in
order to obtain SSs it is necessary to increaseuuu to the order
of some units. Carrier diffusion tends to limit the domain

e
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coexistence of SSs, but, since we are here in the context
self-focusing system, it should not represent a problem.
analysis of the self-defocusing case, performed by settina
525, led us to a variety of spatial patterns~roll, honey-
comb, and hexagonal structures! with no appearance of SSs
With respect to the defocusing case in the passive confi
ration, this may be due to the value of the parametera: uau
55 against the value of detuning parameterD51 in the
passive case.

Furthermore, in order to make the modeling closer to r
devices, we analyzed the effect induced by spatial mod
tion in the holding beam and in the pump current. The int
duction of a Gaussian modulation in the amplitude profile
the holding beam causes different effects for the two c
figurations considered here: Precisely, in the passive ca
seems not to affect SSs, which remain stable and un
turbed at their locations; on the contrary, in the active c
figuration SSs undergo a slow drift motion towards the po
of the transverse plane where the maximum of the Gaus
profile of the input field is located. Therefore, starting w
many SSs in different positions of the transverse plane, t
merge all together and we are left with only one SS.

On the other hand, if we consider a spatial modulation
the phase of the holding beam, the behavior of SSs in the
configurations is the same: The SSs drift towards the clo
local maximum of the phase. It is the same effect observe
a two-level saturable absorber@7# and it can be exploited to
pin the SSs at precise positions in the transverse plane.
find that in the case of active configuration, the presence
both an amplitude Gaussian profile and a phase modula
in the holding beam causes a competition between the
and the result depends on the relative amplitudes of the
modulations. For appropriate choices of the two modu
tions, the pinning effect due to phase modulation overcom
the merging effect of the Gaussian profile of the holdi
beam and is also robust with respect to noise.

The consideration of a pump current with a limited cro
section is very important in order to approach experimen
realizations of this kind of devices. The persistence of S
even in this environment is a significant signal of robustn
of these structures. In fact, it means that SSs are comple
independent of the periodic boundary conditions adopted
the integration.

In the paraxial approximation used in our models, the s
of the SSs scales as (lL/T)1/2, wherel is the wavelength,L
is the length of the resonant cavity, andT is the transmissiv-
ity coefficient of the mirrors. In the case of standard m
croresonators,L is on the order of some wavelengths andT
is very small, so that an increase inT would be beneficial to
decrease the size of the SSs.

We analyzed also the process of writing and erasing
by means of narrow laser pulses; the picture remains b
cally that described in@18#. Here we want to give some
examples of the real power and energy we must suppl
semiconductor devices analyzed in this paper to excite
SS. From Eqs.~9!–~11! we can calculate the numerical valu
of the rescaling factor of the intracavity fieldF, indicated in
Eq. ~6!. Nevertheless, the most relevant physical quantity
the energy fluxw outside the cavity, which is related to th
adimensional intracavity fieldE by the relation
f a
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Im~Q!C
, ~36!

wherew05\v0LAÑ0/4nt r and takes the value 0.17 kW/cm2

in both the passive and active cases. Let us consider
passive resonant case: The values of the physical power
obviously dependent on the system parameters, especial
b. For this reason we chose to make our simulations w
b50 and other parameters set as in Sec. IV B 1: It res
that, in order to write a SS atuEI u525, it is necessary to us
a Gaussian pulse of the form~18! with h529, s50.9, and

t̄ 56 ns. Correspondingly, we have a pulse power of
mW, which means a switching energy of 14 pJ, while t
power of the holding beam, in the case of a cross sectioS
55000mm2, is 0.18 W. In the active case, from paramete
established in Table I for the Gaussian pulse necessar
write a SS, we can calculate an addressing power of 0
mW ~corresponding to 0.36 pJ switching energy! and a hold-
ing power~for a cross sectionS55000mm2! of 11 mW. We
note that the figures just stated are in reasonable agree
with the powers available and used in modern experime
with semiconductor devices that can be described by
model introduced in this paper. Further, we showed that a
can be erased even when the address pulse is not a
exactly, i.e., the system is able to self-accommodate so
errors in the position of the address pulse with respect to
of the SS to be wiped out. The time scale is set by
slowest of the time constants in play that, in the case
semiconductors, correspond to the carrier recombina
time t r .

The results of our theoretical and numerical calculatio
lead us to conclude that the realization of an array of spa
solitons using semiconductor materials is feasible. By app
priate selection of the operative conditions, both the act
and passive cases present promising perspectives to r
this objective.

The formation of SSs in photorefractively pumped rin
resonators@35# and in active cavities with a saturable a
sorber@36,37# has been reported. Also the possibility of ha
ing SSs with quadratic nonlinear media has been predic
recently@38,39#.

After completion of the calculations reported in this p
per, we were informed about an article of Michaelis, Pesch
and Lederer@40# that analyzes a numerical model identical
Eqs.~8a! and~8b! in the passive case, but without linear an
nonlinear absorptive terms. The authors predict the form
tion of stable SSs under conditions of large detuningD, i.e.,
for strong self-defocusing. This result has been obtained
values ofC substantially larger than those considered in o
paper. Under conditions of largeD the nonlinearity has a
strongly antiguiding role; because both field diffraction a
carrier diffusion have a spreading effect, the mechanism
forms these cavity solitons is quite different from the usu
one that holds for standard SSs, i.e., the balance betwe
spreading mechanism and the confining effect of a non
earity. These points, as well as the connection with the
sults presented here, must be clarified and this is left
future work.
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