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Collective effects in the collapse-revival phenomenon and squeezing in the Dicke model

G. Ramon,* C. Brif,† and A. Mann‡

Department of Physics, Technion, Israel Institute of Technology, Haifa 32000, Israel
~Received 24 September 1997!

Resonant interaction of a collection of two-level atoms with a single-mode coherent cavity field is consid-
ered in the framework of the Dicke model. We focus on the role of collective atomic effects in the phenomenon
of collapses and revivals of the Rabi oscillations. It is shown that the behavior of the system strongly depends
on the initial atomic state. In the case of the initial half-excited Dicke state we account for a number of
interesting phenomena. The correlations between the atoms result in a suppression of the revival amplitude,
and the revival time is halved, compared to the uncorrelated fully excited and ground states. The phenomenon
of squeezing of the radiation field in the atom-field interaction is also discussed. For the initial fully excited and
ground atomic states, the field is squeezed on the short-time scale, and squeezing can be enhanced by increas-
ing the number of atoms. Some empirical formulas are found which describe the behavior of the system in
excellent agreement with numerical results. For the half-excited Dicke state, the field can be strongly squeezed
on the long-time scale in the case of two atoms. This kind of squeezing is enhanced by increasing the intensity
of the initial coherent field and is of the same nature as revival-time squeezing in the Jaynes-Cummings model.
The appearance of this long-time squeezing can be explained using the factorization approximation for semi-
classical atomic states.@S1050-2947~98!07309-0#

PACS number~s!: 42.50.Ct, 42.50.Md, 42.50.Dv, 32.80.2t
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I. INTRODUCTION

Since the pioneering work of Dicke@1# on cooperative
spontaneous emission, a great deal of attention has bee
voted to the interaction of the radiation field with a collecti
of two-level atoms located within a distance much sma
than the wavelength of the radiation. Such a system is c
monly referred to as the Dicke model~for a review see, e.g.
Ref. @2#!. A particular case of the Dicke model, when atom
interact with a single-mode radiation field inside a cavi
was considered by Tavis and Cummings@3#. The Tavis-
Cummings Hamiltonian is mathematically equivalent to t
trilinear boson Hamiltonian describing various nonlinear o
tical processes@4#. The single-atom version, known as th
Jaynes-Cummings model@5#, is the simplest and one of th
most popular models of quantum optics. In spite of its si
plicity, the Jaynes-Cummings model shows a variety of
teresting nonclassical phenomena such as vacuum-field
oscillations, sub-Poissonian photon statistics, and squee
of the radiation field~for reviews see, e.g., Refs.@6,7#!.

One of the most interesting quantum features of
Jaynes-Cummings model is the phenomenon of collap
and revivals of the Rabi oscillations, which manifests its
in the clearest way when the cavity field is prepared initia
in the coherent state@8#. The shape of collapses and reviva
is determined by the initial photon-number distribution.
similar behavior can be found also in the many-atom c
@9–11#. For a sufficiently strong coherent field, the nonli
earity in the Rabi frequency is slight and the system exhi
regular dynamics in the form of collapses and revivals of
oscillations. However, in the many-atom case there exist
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harmonic collective corrections which modify the shape
the collapses and revivals related to the photon-distribu
mechanism@12#. In the present work we study in detail thes
collective effects for different initial atomic states. If atom
are prepared initially in the ground state or in the fully e
cited state, then the system behaves rather similarly to
single-atom case, although collective effects manifest the
selves clearly in the length of the revival time. But, the r
sults are different when the atoms are prepared initially in
half-excited Dicke state. This state is well known as the
perradiant atomic state in the context of collective sponta
ous emission in open space@1,2#. It was also found@13# that
the half-excited Dicke state strongly modifies the resona
fluorescence spectrum of the atomic system. However, to
best of our knowledge, this state was rarely considered in
context of the Tavis-Cummings~cavity! version of the Dicke
model. When the atoms are prepared in the half-exc
Dicke state the system exhibits a number of interesting p
nomena. In particular, the amplitude of the Rabi oscillatio
is strongly suppressed and relative intensities of revivals
essentially changed. This suppression of the revival am
tude is similar to the trapping phenomenon occurring in
case of a single atom prepared in the equally weighted
perposition of the two levels@14#.

It has been known for a long time@15,16# that the nonlin-
ear character of the Jaynes-Cummings model leads
squeezing in one of the quadratures of an initially coher
cavity field. It was also predicted@17# that strong squeezing
can be obtained in the Jaynes-Cummings model near
revival times for large initial intensities of the field. Thi
phenomenon of strong revival-time squeezing was explai
in Ref. @18# using the factorization approximation for th
so-called semiclassical atomic states@19#. Butler and Drum-
mond @20# showed that short-time squeezing can be
hanced in the Dicke model compared to the single-at
case. Seke@21# considered field and atomic squeezing in t
2506 © 1998 The American Physical Society
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Dicke model without the rotating-wave approximation and
the presence of losses. Analytical approaches to squeezi
the strong-field limit@22# and in the weak-field limit@23#
were presented. Higher-order squeezing in the Dicke mo
was studied in Ref.@24#. For atoms prepared initially in the
ground state or in the fully excited state, the uncertainty
the field quadrature rapidly oscillates and squeezing oc
during short periods of time at the very beginning of the tim
evolution. On the long-time scale the temporal behavior
the quadrature uncertainty is correlated with times of c
lapses and revivals of the Rabi oscillations. On the ot
hand, for the initial half-excited Dicke state, the behavior
squeezing is qualitatively different. The quadrature unc
tainty oscillates on the long-time scale, with a period of t
order of the revival half time, and strong squeezing is o
tained in the case of two atoms. The value of squeezin
enhanced by the intensity of the initial coherent field. T
phenomenon is of the same nature as revival-time squee
in the Jaynes-Cummings model and can be explained u
the factorization approximation for the semiclassical atom
states. In general, squeezing is better and its duration is m
longer for the initial two-atom half-excited Dicke state th
for the ground and fully excited states.

II. THE MODEL AND METHODS OF SOLUTION

We consider the resonant interaction betweenN two-level
atoms and the single-mode radiation field inside a loss
cavity. In the rotating-wave approximation, the Tav
Cummings interaction Hamiltonian reads (\51)

H5g~a†J21aJ1!. ~2.1!

Here and in the following we use the interaction picture.
Eq. ~2.1! g is the coupling constant,a anda† are the anni-
hilation and creation operators of the field mode,J1 andJ2

are the collective atomic raising and lowering operato
They satisfy the su~2! Lie algebra,

@J1 ,J2#52Jz , @Jz ,J6#56J6 , ~2.2!

whereJz is the operator of atomic inversion. In terms of th
standard Pauli matrices, describing each two-level atom,
obtains

J65
1

2(i 51

N

s6
~ i ! , Jz5

1

2(i 51

N

sz
~ i ! . ~2.3!

If the Schwinger realization of the SU~2! generators is used
the Hamiltonian~2.1! becomes the trilinear boson Hami
tonian describing nonlinear optical processes such as p
metric conversion and Raman and Brillouin scattering@4#.
An interesting physical realization of the Hamiltonian~2.1!
is given by the coupling of the internal levels of atoms
ions to a mode of their quantized oscillatory motion in
harmonic trap@25#.

The total excitation operator

L5a†a1Jz1N/2 ~2.4!

commutes with the Hamiltonian~2.1! and is an integral of
motion. Another integral of motion is the SU~2! Casimir op-
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erator J25Jz
21 1

2 (J1J21J2J1). We describe the state o
the atomic system in terms of the SU~2! orthonormal basis
u j ,m&at (m5 j , j 21, . . . ,2 j ),

Jzu j ,m&at5mu j ,m&at, ~2.5!

J2u j ,m&at5 j ~ j 11!u j ,m&at. ~2.6!

In the context of the atomic realization~2.3!, the states
u j ,m&at are the symmetric Dicke states:

u j ,m&at5S N

p D 21/2

( )
k51

p

u1& l k)lÞ l k

u2& l , ~2.7!

whereu1& l and u2& l are the upper and lower states, respe
tively, of thel th atom, and the summation is over all possib
permutations ofN atoms. If only symmetric atomic states a
considered, then the ‘‘cooperative number’’j is equal toN/2
andp5m1 j is just the number of excited atoms.

The Hilbert spaceH of the atom-field system can be de
composed into a direct sum of finite-dimensional invaria
subspacesHL :

H5 %
L50

`

HL . ~2.8!

Each invariant subspaceHL is spanned by the orthonorma
basisun& f u j ,L2 j 2n&at, whereun& f are the Fock states of th
radiation field, a†aun& f5nun& f . For L,N, n50,1, . . . ,L
and dim(HL)5L11; for L>N, n5L2N,L2N11, . . . ,L
and dim(HL)5N11. If the field is initially in the Fock state
un0& f and the atoms are in the Dicke stateu j ,m0&at, the state
of the system will evolve in the invariant subspaceHL with
L5n01m01 j . For the field and/or atoms prepared initial
in a superposition state, one should take into account co
butions from different subspaces.

The exact solution of the problem is obtained by the
agonalization of the interaction Hamiltonian~2.1! in each of
the invariant subspacesHL involved @3#. It is known @3,4#
that in the basisun& f u j ,L2 j 2n&at the Hamiltonian is given
by a tridiagonal matrix with symmetric eigenvalues and t
corresponding characteristic equation can be reduced to
algebraic equation of order@dim(HL)/2#. Therefore an ana-
lytical solution is possible when only invariant subspac
with dim(HL)<9 are involved. However, already fo
dim(HL).3, analytical solutions are rather complicate
@26–28#. Note that for dim(HL)>4 the eigenvalues are no
equidistant, so the time evolution is not periodic even with
a single subspace. Semiclassical approximate solutions w
proposed@29–31# which give the time evolution of system
governed by a trilinear Hamiltonian of type~2.1! in terms of
elliptical functions. A perturbative analytical approach to t
problem with weak fields was developed by Kozierows
and co-workers@27,28,32,33#. In the present work we use th
exact solution based on the numerical diagonalization of
interaction Hamiltonian~2.1!.

III. COLLAPSES AND REVIVALS

We study the temporal behavior of the atom-field syst
in the Dicke model for the cavity field prepared initially i
the coherent stateua& f :
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ua& f5e2uau2/2(
n50

`
an

An!
un& f . ~3.1!

Without loss of generality we consider only real values ofa.
The initial atomic state is supposed to be one of the Di
statesu j ,m&at ~recall that j 5N/2). Two possibilities which
are frequently considered in the literature are the fully
cited stateu j , j &at and the ground stateu j ,2 j &at. We are also
interested in the half-excited Dicke stateu j ,0&at.

Since the coherent field state is a superposition of m
Fock statesun& f , the invariant subspacesHL with different
values ofL5n1m1 j contribute to the evolution. The tem
poral behavior of the atomic inversion̂Jz& is given by the
sum of the appropriately weighted atomic responses to e
Fock state.~The mean photon number^a†a& is connected
with the atomic inversion by the fact that̂L&5^a†a&
1^Jz&1N/2 is a constant.! In the resonant Jaynes
Cummings model (N51) with initially unexcited
(m52 1

2 ) or excited (m5 1
2 ) atom, one obtains@8#

^Jz&5m(
n50

`

PncosVn,mt, ~3.2!

wheret5gt is the scaled time,

Vn,m52An1m11/2 ~3.3!

is the scaled Rabi frequency corresponding to each subsp
andPn is the photon-number distribution. For the initial c
herent state,Pn5exp(2n̄)n̄n/n! is the Poissonian distribution
andn̄5uau2 is the initial mean photon number. Then, due
the property of this distribution, the most regular dynam
occurs for large values of the initial mean photon numbern̄.
Contributions corresponding to differentn’s interfere in such
a manner that they initially go out of phase, after that acqu
a common phase, and this process is repeated, resulting
series of collapses and revivals, as shown in Fig. 1~a!. The

FIG. 1. The atomic inversion̂Jz& versus the scaled timet

5gt for the initial coherent field state withn̄536 interacting with
~a! one excited atom~the Jaynes-Cummings model! and with ten
atoms prepared in~b! the fully excited stateu j , j &at and ~c! the
ground stateu j ,2 j &at .
e

-
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ch
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revival timetR can be estimated using the condition@8,34#

tR~V n̄11,m2V n̄,m!52p, ~3.4!

which givestR52pAn̄1m11/2.
One should expect a similar behavior also for the Dic

model in the strong-field domainn̄.N @9–12#. Of course,
the collapses and revivals related to the photon-number
tribution would be modified by the collective atomic effec
due to the fact that the eigenvalues of the interaction Ham
tonian are not equidistant. In the strong-field limitn̄@N the
anharmonic corrections to the eigenvalues become sm
and one should expect a quite regular behavior similar to
of the resonant Jaynes-Cummings model. However, we
see that there exist reasons for an irregular behavior tha
much more important than just the anharmonicity of the
genvalues. In fact, the initial atomic state determines h
important various factors leading to irregularities in the b
havior of the system will be.

We first consider the cases with the atoms prepared
tially in the fully excited and ground states. The tempo
behavior of the atomic inversion̂Jz& is shown in Figs. 1~b!

and 1~c! for the case ofN510 andn̄536, with atoms pre-
pared in~b! the fully-excited stateu j , j &at and ~c! the ground
stateu j ,2 j &at. The first feature to note is the dependence
the revival time on the initial atomic state. Similarly to th
Jaynes-Cummings model, we can estimate the revival t
for the initial atomic stateu j ,m&at as

tR52pAn̄1m11/2, ~3.5!

where we use the strong-field limit expression for the R
frequency~i.e., neglect the anharmonic corrections to the
genvalues!. Formula~3.5! is in a good agreement with ou
numerical results, as demonstrated in Fig. 2. The differe
between the revival times for the fully excited state and
ground state is particularly obvious whenN is not too small

FIG. 2. The atomic inversion̂Jz& versus the scaled timet

5gt for the initial coherent field state withn̄536 interacting with
ten atoms prepared in~a! the fully excited stateu j , j &at , ~b! the
half-excited Dicke stateu j ,0&at , and ~c! the ground stateu j ,2 j &at .
The region of the first revival is shown, demonstrating the dep
dence of the revival time on the initial atomic state.
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compared ton̄. The second feature is that the spread of
revivals is determined only by the photon statistics of
initial field state@34# and does not depend on the value ofm.
These two observations may explain why the temporal
havior loses its regularity for the initial ground state notab
faster than for the initial fully excited state. Indeed, we see
Fig. 1~b! four regular revivals form5 j , while in Fig. 1~c! for
m52 j the behavior starts to be irregular already at the e
of the third revival. The reason is that the spread of
revivals increases with time and neighboring revivals star
overlap, which leads to the loss of regularity. Since form
52 j the revival time is shorter than form5 j , the overlap-
ping of the revivals and the corresponding irregularity oc
earlier.

Another factor that leads to differences between the
havior of the system in the casesm5 j and m52 j is the
dependence of the anharmonic corrections to the eigenva
on the value ofm. In order to give a representative examp
we considered the eigenvalueshi of the interaction Hamil-
tonian for the subspaces withL5n1m1 j for n536, N
510,20,30 andm56 j ,0. The ratiof 515h5 /h1 of the fifth
and first eigenvalues was chosen as a parameter represe
the anharmonicity~for equidistant eigenvaluesf 51 is exactly
5). The numerical results are listed in Table I. We see t
for given N the value off 51 increases with decrease ofm,
i.e., irregular effects related to the anharmonicity are m
important form52 j . For m5 j the value off 51 decreases
slightly with increase ofN, but the overall contribution of the
anharmonic corrections increases withN just because there
are more eigenvalues. Form52 j the value off 51 increases
with N, so the importance of the anharmonic corrections h
increases withN much faster than form5 j . In particular, we
see that the amplitude of the revivals form52 j is smaller
than form5 j , and this effect becomes more pronounced
N increases. Forn̄536, asN increases from 2 to 16, th
relative amplitudeA1 ~the difference between the maximu
and minimum values of̂Jz& in the first revival, divided by
N) decreases from 0.5459 to 0.4039 form5 j and from
0.5362 to 0.2112 form52 j . This effect occurs because th
anharmonic corrections partially destroy the interference
the oscillating terms. Of course, as the initial mean pho
number n̄ increases, the behavior of the system becom
more regular.

TABLE I. The ratio f 515h5 /h1, that represents the anharm
nicity of the Hamiltonian eigenvalues, forn536, N510,20,30, and
m56 j ,0.

N m f51

10 5.0219
20 j 5.0184
30 5.0159

10 5.0382
20 2 j 5.0638
30 5.1852

10 5.0283
20 0 5.0309
30 5.0360
e
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Now we turn to the case when the atoms are prepare
the half-excited Dicke stateu j ,0&at ~for even values ofN).
The temporal behavior of the atomic inversion^Jz& is shown
in Fig. 3 for n̄536 andN52,6,10. Here we see a number
interesting phenomena. First of all, the amplitude of the R
oscillations is significantly suppressed. Forn̄536, asN in-
creases from 2 to 16, the relative amplitudeA0 ~the differ-
ence between the maximum and minimum values of^Jz& in
the very beginning of the evolution, divided byN) increases
linearly from 0.006 to 0.027, according to the empirical fo
mula

A050.0015~N12!. ~3.6!

For comparison,A0 is about 0.9 form5 j and about 0.95 for
m52 j , being almost independent ofN.

Another important feature is the appearance of half-ti
revivals, i.e., form50 the revival time is actuallytR/2. In
fact, tiny half-time revivals appear also form56 j , but their
amplitudes are much smaller than the amplitudes of the
revivals attR . As N increases from 2 to 16, the relativ
amplitude A1/2 ~the difference between the maximum an
minimum values of̂ Jz& in the half-time revival, divided by
N) increases monotonically from 0.0018 to 0.0171 form
5 j and from 0.0019 to 0.0354 form52 j . The ratioA1/2/A1
increases in the same range ofN from 0.0033 to 0.0424 for
m5 j and from 0.0035 to 0.1677 form52 j . On the other
hand, form50 the half-time revival and the first revival are
for small values ofN, of the same order of magnitude. Fo
N52 we even findA1/2/A1.1. In contradistinction to the
casesm56 j , for m50 the ratioA1/2/A1 decreases from
1.3427 to 0.0473 asN increases from 2 to 16. In this rang
of N the relative amplitudeA1/2 of the half-time revival in-
creases slightly from 0.0037 to 0.0052, while the relat
amplitudeA1 of the first revival increases much faster: fro
0.0028 to 0.1093. Starting fromN54 the amplitude of the
first revival exceeds that of the initial oscillations. The ra
A1 /A0 increases almost linearly from 0.4555 to 4.0476 asN
increases from 2 to 16. The value^Jz&C of the atomic inver-

FIG. 3. The atomic inversion̂Jz& versus the scaled timet

5gt for the initial coherent field state withn̄536 interacting with
N atoms prepared in the half-excited stateu j ,0&at : ~a! N52, ~b! N
56, ~c! N510.
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2510 PRA 58G. RAMON, C. BRIF, AND A. MANN
sion during the collapse is always positive form56 j . As N
increases from 2 to 16,̂Jz&C increases from 0.0036 to
0.3569 form5 j and from 0.0035 to 0.5195 form52 j . On
the other hand, form50 the value of̂ Jz&C is always nega-
tive and decreases from20.0070 to20.2433 in the same
range ofN. We found that form50 the value of̂ Jz&C can
be well approximated by the empirical formula

^Jz&C52S N

k1a2k2
D z~a!

,
~3.7!

z~a!5k32exp@2~k4a1k5!#,

where k157.45, k2511.16, k351.773, k450.328, k5
51.681. We also see that in general the dynamics in the
m50 is much more irregular than form56 j . All these
observations show that the structure of the phenomeno
collapses and revivals is essentially different for the ha
excited Dicke state relative to the fully excited state or
ground state. Inspecting the eigenvalues~see Table I!, we see
that the influence of the anharmonic corrections cannot
plain this principal difference. As expected, the behavior
comes more regular with increase of the mean photon n
ber n̄. For odd numbers of atoms the half-excited Dicke st
u j ,0&at does not exist. However, for sufficiently large od

values ofN the Dicke stateu j , 1
2 &at exhibits properties very

similar to those of the half-excited state.
In order to explain the peculiar phenomena discus

above, we consider the exactly solvable caseN52. For the
fully excited state (m51) we find

^Jz&5 (
n50

`

Pn

2

Vn,1
4 @~n13!2~n11!cos~2Vn,1t!18~n11!

3~n12!cos~Vn,1t!#. ~3.8!

Analogously, we obtain for the ground state (m521)

^Jz&5 (
n50

`

Pn

2

Vn,21
4 @~n22!2n cos~2Vn,21t!

28n~n21!cos~Vn,21t!#, ~3.9!

and for the half-excited Dicke state (m50)

^Jz&52 (
n50

`

Pn

1

Vn,0
2 @12cos~2Vn,0t!#. ~3.10!

Now it is clear why the oscillations are strongly suppress
for m50. Here both the constant and oscillatory terms ha
the prefactorPn /(4n12), while for m56 j in addition to
the constant and oscillatory terms with prefactors of the
der Pn /n there exists an oscillatory term with a prefactor
the orderPn . For n̄536 the suppression is by two orders
magnitude. Form50 the oscillatory term has the frequenc
2Vn,054(n11/2)1/2, and the effective revival time istR/2
5p(n̄11/2)1/2. On the other hand, form56 j the leading
oscillatory term with the prefactor of the orderPn has the
frequencyVn,61, associated with the revival timetR , while
the smaller oscillatory term with the prefactor of the ord
se

of
-
e

x-
-
-

e

d

d
e

r-

r

Pn /n has the double frequency, leading to the half-time
vivals. This explains why form56 j the half-time revival is
much smaller than the first revival while form50 both types
of revivals are of the same order of magnitude. The m
irregular dynamics in the casem50 can be explained by two
reasons. First, the nonlinearity of the Rabi frequen
(;An) is less important for larger values ofn, so the dy-
namics is more regular when the main contribution com
from larger n’s. For m56 j the prefactors of the leading
terms are Poissonian, so for large enoughn̄, the main con-
tribution will come from the high-frequency terms, resultin
in a regular behavior. However, form50 the prefactors are
Pn /(4n12), so lower frequencies also contribute, which r
sults in a less regular behavior. The second reason is tha
revivals start to overlap much earlier if the revival time
halved. The same reason also leads to an additional irre
larity in the casem52 j when the number of atoms is rela
tively large and the half-time revivals are not too small.

The suppression of the revival amplitude for the ha
excited Dicke state is similar to the trapping phenomen
which occurs for a single atom prepared in the equa
weighted superposition state 221/2(u1&6u2&) ~see Ref.
@14#!. In the latter case the population inversion is given

^Jz&5
1

2(
n50

`

PnS cos2~An11t!1
n̄

n11
sin2~An11t! D 2

1

2
.

~3.11!

For large n̄, the Poissonian distribution is sharply peak
aroundn̄, and the two terms in the sum almost add up to
The remaining oscillating term has the prefactor of the or
Pn /n, so the amplitude of the Rabi oscillations is reduced
the factor of the order 1/n̄. As explained above, in such
situation the dynamics is less regular than for the case o
initially unexcited or fully excited atom. However, the re
vival time is not halved for the single atom in the equa
weighted superposition state. In the single-atom case
population trapping occurs due to the destructive interfere
between the contributions of the two levels, while for t
two-atom half-excited Dicke state this phenomenon can
explained by the destructive interference between the co
butions of the two correlated atoms.

IV. SQUEEZING OF THE RADIATION FIELD

The coherent radiation field interacting with atoms c
acquire interesting nonclassical properties such as s
Poissonian photon statistics and squeezing. In the pre
paper we focus on the important quantum phenomenon
squeezing. The initially coherent cavity field can be squee
when it interacts with a single atom@15,16#, and squeezing
in the revival-time regime can be very strong for large inte
sities of the field@17,18#. Butler and Drummond discovere
@20# that in the Dicke model collective atomic effects ca
improve squeezing obtained for short interaction times, co
pared to the single-atom case. Squeezing in the Dicke m
was also considered recently in a number of works@21–23#.
Here we present a detailed study of squeezing of the initi
coherent cavity field, comparing between the ground, fu
excited, and half-excited initial atomic states.
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The field quadratures,q5(a†1a)/A2 and p5 i (a†

2a)/A2, satisfy the canonical commutation relation@q,p#
5 i . Then their uncertainties satisfy the Heisenberg relati
DqDp>1/2, where (Dq)25^q2&2^q&2 and similarly for
(Dp)2. For the coherent field state~in particular, for the
vacuum state! the uncertainties are equal,Dq05Dp0

51/A2, and an equality is achieved in the Heisenberg unc
tainty relation. A field state is called squeezed if the unc
tainty of one of the quadratures is below the vacuum lev
i.e., Dq,1/A2 or Dp,1/A2. Here we consider the squee
ing parameter

j5
Dq

Dq0
5A2Dq, ~4.1!

and search forj,1 that manifests field squeezing.

A. Squeezing for the fully excited and ground states

1. The long-time behavior

We first consider the temporal behavior of the squeez
parameterj on the long-time scale, for the atoms prepar
initially in the fully excited and ground states (m56 j ). As
demonstrated in Fig. 4, this long-time behavior is fully co
related with the collapses and revivals of the Rabi osci
tions. For even values ofN, the squeezing parameterj os-
cillates achieving its minima at integer multiples oftR and
maxima at half-odd multiples oftR . On the other hand, fo
odd values ofN, we see thatj has minima at both half-odd
and integer multiples oftR . This difference between eve
and odd values ofN can be explained by the fact that squee
ing depends on two-photon transitions, when a pair of p
tons is simultaneously absorbed or emitted by a pair of
oms. The oscillations ofj decay with time and abandon the
regular form. This decay is correlated with the loss of reg
larity in the behavior of the atomic inversion, caused by
overlaps of neighboring revivals. The behavior ofj is rather
similar for m5 j andm52 j , but in the latter case the deca

FIG. 4. The squeezing parameterj versus the scaled timet

5gt for the initial coherent field state withn̄536 interacting with
N atoms (N52,5,10) prepared in~a! the fully excited stateu j , j &at

and ~b! the ground stateu j ,2 j &at .
:

r-
r-
l,

g
d

-

-
-
t-

-
e

of the oscillations and the irregularity occur earlier, as t
revival time is shorter and the overlaps of revivals beg
earlier. Also, for m52 j the decay rate of the squeezin
oscillations increases rapidly withN, while for m5 j the de-
pendence of the decay rate onN is less pronounced. Inspec
ing the minima ofj in Fig. 4, we clearly see that their perio
becomes longer form5 j and shorter form52 j as N in-
creases, in full accordance with the formula~3.5! for the
revival time.

For m56 j , the minima ofj on the long-time scale are
above the vacuum level, i.e.,j.1. However, squeezing is
achieved at short times, soon after the beginning of the
teraction. In this region the squeezing parameter exhibits
oscillations, withj falling below 1. Therefore form56 j we
will focus on the behavior of squeezing on the short-tim
scale.

2. Squeezing on the short-time scale: The fully excited state

We first consider the case of the initial fully excite
atomic state (m5 j ). Squeezing is achieved fort,2 and
appears at shorter times for larger values ofN. In Fig. 5 we
see the short-time behavior of the squeezing parameterj for
n̄536 and various values ofN. For relatively small values of
N (N<10), j exhibits quite regular oscillations whose am
plitude increases withN. However, forN;n̄ and larger, the
oscillations ofj become irregular. In Fig. 6 the short-tim
behavior ofj is shown forN514 and various values ofn̄.
The oscillations ofj become more regular asn̄ increases.

It is interesting to investigate how the minimum valuejm
~i.e., the maximum of squeezing!, achieved during the time
evolution, depends onN andn̄. We first consider the depen

dence ofjm on a5An̄ for given N. As shown in Fig. 7,jm
has a minimum as a function ofa, i.e., for givenN there
exists a valueamN for which the minimum valuejmN of the
squeezing parameter is achieved. Figure 8 shows thatamN
increases andjmN decreases~squeezing improves! as N in-
creases. We found that the dependence ofamN andjmN on N

FIG. 5. The squeezing parameterj versus the scaled timet

5gt for the initial coherent field state withn̄536 interacting with
N atoms prepared in the fully excited state:~a! N52,5,10,~b! N
510,60,100.
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2512 PRA 58G. RAMON, C. BRIF, AND A. MANN
at the considered range can be well approximated by
following empirical formulas:

amN5a2be2cN, ~4.2!

jmN5rN2s, ~4.3!

wherea56.21,b54.03,c50.0471,r 50.909,s50.156.
We next consider the dependence ofjm on N for givena.

As shown in Fig. 9,jm has a minimum as a function ofN,
i.e., for givena there exists a valueNma for which the mini-
mum valuejma of the squeezing parameter is achieved. F
ure 10 shows thatNma increases andjma decreases~squeez-
ing improves! as a increases. We found again that th
dependence ofNma and jma on a at the considered rang
can be well approximated by the following empirical form
las:

Nma52a1beca, ~4.4!

jma5ra2s, ~4.5!

FIG. 6. The squeezing parameterj versus the scaled timet

5gt for the initial coherent field state withn̄510,15,20 interacting
with 14 atoms prepared in the fully excited state.

FIG. 7. The minimum valuejm of the squeezing parameter ve
sus the coherent amplitudea for various values ofN.
e

-

where a52.30, b51.216, c50.743, r 51.159, s50.490.
Note that the relations~4.2! and ~4.4! are not the inverse o
each other. This fact can be easily understood, if one im
ines jm as a two-dimensional function ofN and a. When
taking a section ofjm along thea axis ~i.e., for a givenN),
one will find the minimum for a certain value ofa. However,
when fixing this value ofa and going along theN axis, a
minimum will be found, in general, for a differentN.

Finally, we would like to compare our numerical resu
with approximate analytical expressions derived by Reta
et al. @22# in the strong-field limitn̄@N. They found@22# the
following expression for the minimum of the squeezing p
rameter, achieved during the time evolution:

jm5S 12a
N

a
1b

N2

8a2D 1/2

, ~4.6!

FIG. 8. ~a! The valueamN of the coherent amplitude, for which
the squeezing parameter is minimized, versusN: numerical results
~circles! and empirical fitting of Eq.~4.2! ~line!; ~b! the correspond-
ing valuejmN of the squeezing parameter versusN: numerical re-
sults ~circles! and empirical fitting of Eq.~4.3! ~line!.

FIG. 9. The minimum valuejm of the squeezing parameter ve
susN for various values ofa.
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wherea51/Ae'0.606 andb511a2a22a4'1.103. Then,
for given a, the squeezing parameter will be minimized b

Nma5
4a

b
a'2.2a. ~4.7!

In Fig. 11 we compare our numerical results forjm with
the approximate formula~4.6! for a56 (n̄536). A good
agreement is found only for very small values ofN, while
the values ofNma are absolutely different (Nma'100 for our
numerical calculations andNma'13 for the analytical ap-
proximation!. This discrepancy can be explained by the fa
that the numerical values ofNma shown in Fig. 10 do not
satisfy the strong-field conditionn̄@N. For the considered
range of n̄ (<36), the approximate solution~4.6! is not
valid. From Eq.~4.7! one can see that the strong-field co
dition will be satisfied for the optimal valueNma when

FIG. 10. ~a! The valueNma of the number of atoms, for which
the squeezing parameter is minimized, versusa: numerical results
~circles! and empirical fitting of Eq.~4.4! ~line!; ~b! the correspond-
ing valuejma of the squeezing parameter versusa: numerical re-
sults ~circles! and empirical fitting of Eq.~4.5! ~line!.

FIG. 11. The minimum valuejm of the squeezing paramete
versusN for a56: ~a! numerical result,~b! approximate analytica
formula ~4.6!.
t

Nma /n̄'2.2/a!1. This means that Eq.~4.7! gives a true
value of Nma only for n̄;104 or more. According to Eq.
~4.6!, the absolute minimum of the squeezing parameter
can be achieved in the strong-field limit isj'0.58. Forn̄
536 ~the maximumn̄ we considered!, the best value of
squeezing isj'0.49 and it is achieved forNma'100.

3. Squeezing on the short-time scale: The ground state

We next consider the case when the initial atomic stat
the ground state (m52 j ). In this case we can distinguis
three different regimes: the strong-field regime (n̄@N), the
weak-field regime (n̄!N), and the intermediate regime (n̄
;N).

The short-time behavior of the squeezing parameterj in
the strong-field regime is shown in Fig. 12~for a530 and
N52,6,16). We see thatj exhibits fast regular oscillations
whose frequency is almost independent ofN ~this is just the

strong-field Rabi frequencyV n̄,2 j
(s)

52An̄2N/211/2, and the

dependence onN is very weak becausen̄ is very large!, but
the amplitude increases withN. Therefore the minimum
value jm of the squeezing parameter decreases asN in-
creases. A similar behavior is found also for the casem5 j in
the strong-field regime. An interesting feature of this regim
is that the minimum ofj is achieved after a relatively larg
number of oscillations~the same time for different values o
N), while in the intermediate regime the minimum ofj is
achieved, as a rule, in the first or second oscillation. As
be seen from Fig. 13, in the strong-field regime the decre
of jm is linear and can be well approximated by the emp
cal formula

jm52 f ~a!N1k, ~4.8!

where the slopef (a) is a monotonically decreasing functio
of a and the free termk'1 is independent ofa.

It is well known @27,28,32,33# that in the weak-field re-
gime the behavior of the system is very regular~note that for
the case of the fully excited initial state the weak-field r
gime actually does not exist!. In Fig. 14 we see the evolution

FIG. 12. The squeezing parameterj versus the scaled timet
5gt for the initial coherent field state witha530 interacting with
N atoms (N52,6,16) prepared in the ground state.
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2514 PRA 58G. RAMON, C. BRIF, AND A. MANN
of the squeezing parameterj for relatively short times~for
a51 andN510,20,30,40). The oscillations ofj are quite
regular and their frequency increases withN ~this is just the

weak-field Rabi frequencyV n̄,2 j
(w)

52AN2n̄/211/2 ), while
the amplitude does not change significantly. The value
squeezing achieved in this limit is rather modest~as a rule,j
does not decrease below 0.85). A perturbative analytical
proach to the Dicke model dynamics in the weak-field
gime was developed by Kozierowski and co-worke
@27,28,32,33# and used for the study of squeezing in R
@23#.

We focus our attention on properties of squeezing in
intermediate regime, where no analytical approximation
be used. We study the minimum valuejm , achieved by the
squeezing parameter during the time evolution, forN in the
range between 2 and 40 and fora between 1.0 and 6.5. Th
results are presented in Fig. 15, wherejm is plotted versusN
for various values ofa. The typical behavior for givena is
as follows. Initially, jm decreases slowly withN, but then
steeply sinks down and acquires a minimum at a cer
value of N. After the minimum,jm slightly oscillates and

FIG. 13. The minimum valuejm of the squeezing paramete
versusN for various values ofa: numerical results~circles! and
linear fitting of Eq.~4.8! ~line!. The fitting is good in the strong

field regimen̄@N.

FIG. 14. The squeezing parameterj versus the scaled timet
5gt for the initial coherent field state witha51 interacting withN
atoms prepared in the ground state:~a! N510, ~b! N520, ~c! N
530, ~d! N540.
f

p-
-

.

e
n

in

then saturates for largeN’s at an almost constant value. Th
region of linear decrease, occurring in the strong-field
gime, appears only fora>4. This leads to an additiona
minimum at small values ofN, but it is less pronounced tha
the main minimum at largerN’s.

The valueNma , which gives optimal squeezing for give
a, and the corresponding minimum valuejma of the squeez-
ing parameter are shown in Fig. 16 as functions ofa. As a
increases, squeezing improves (jma decreases! and the mini-
mum occurs at largerNma . The dependence ofNma andjma
on a at the considered range can be well approximated
the following empirical formulas:

Nma5kag, ~4.9!

jma5x1ye2za, ~4.10!

where k51.382, g51.639, x50.476, y50.420, z50.259.
The largest value ofa we considered is 6.5. If we assum

FIG. 15. The minimum valuejm of the squeezing paramete
versusN for various values ofa.

FIG. 16. ~a! The valueNma of the number of atoms, for which
the squeezing parameter is minimized, versusa: numerical results
~circles! and empirical fitting of Eq.~4.9! ~line!; ~b! the correspond-
ing valuejma of the squeezing parameter versusa: numerical re-
sults ~circles! and empirical fitting of Eq.~4.10! ~line!.
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that Eq.~4.10! remains valid for arbitrarily largea, then the
absolute minimum of squeezing achievable with unexci
atoms isj'0.476.

B. Squeezing for the half-excited state
and the factorization approximation

Finally, we discuss the case when the initial atomic st
is the half-excited Dicke state (m50). The temporal behav
ior of the squeezing parameterj on the long-time scale is
shown in Fig. 17. We see that there is a strong correla
between the collapses and revivals of the atomic invers
and the behavior of squeezing.

For n̄536 andN52,4, we see in Fig. 17~a! that j oscil-
lates with a period of ordertR/2 ~recall that form50 we find
relatively strong half-time revivals!. However, after a num-
ber of periods, the amplitude of the oscillations decays anj
becomes nearly constant. This decay is correlated with
loss of regularity in the behavior of the atomic inversion th
happens when neighboring revivals overlap. For larger nu
bers of atoms, the behavior of the atomic inversion is v
irregular, and so is the behavior of squeezing. In particu
for N510, the oscillations ofj decay already aftertR/2. The
phenomenon of the collapses and revivals is quite regula
very large values ofn̄. We see in Fig. 17~b! that for n̄
5900 the squeezing parameter also behaves very regul
The structure of the oscillations ofj becomes more compli
cated~but keeps the regularity! asN increases. For all value
of N, the squeezing parameter reaches deep minima at t
just before integer multiples oftR/2. The larger the value o
N, the closer is the minimum ofj to tR/2. ~For N>6, we
also find additional minima ofj, but they are not so deep.!

The phenomenon of field squeezing for the half-exci
Dicke state is drastically different from what we found f
the fully excited and ground states. In the former casem

50), for moderate values ofn̄ (a,30), the minima ofj
decrease below 1~i.e., squeezing occurs! only for N52.
This behavior is in contrast to the situation in the latter c

FIG. 17. The squeezing parameterj versus the scaled timet
5gt for the initial coherent field state interacting withN atoms

prepared in the half-excited Dicke state:~a! n̄536, N52,4,10,~b!

n̄5900,N52,4,6,10.
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(m56 j ), where squeezing can be achieved for anyN ~with
a proper choice ofa) and is, moreover, enhanced by increa
ing N. However, just two atoms prepared in the half-excit
Dicke state can produce quite strong squeezing.

In Fig. 18 we see the temporal behavior ofj for N52 and
a56,10,16,30. The minima ofj, which occur at times be-
fore integer multiples oftR/2, become deeper~i.e., squeezing
improves! as n̄ increases. It is very important to note th
here squeezing is achieved at minima of the oscillations
the long-time scale.~Fast oscillations ofj on the short-time
scale, which produce squeezing form56 j , are negligible
for the casem50.! Consequently, form50 the duration of
squeezing is essentially longer than form56 j .

Actually, this kind of squeezing on the long-time sca
obtained for two atoms in the half-excited Dicke state has
same physical origin as revival-time squeezing in the Jayn
Cummings model@17,18#. This long-time squeezing can b
explained by means of the factorization approximation
the semiclassical atomic states@19#. This approximation is
valid for a strong initial coherent field and for times sho
compared witht0;n̄.

In a semiclassical treatment, one replaces the boson
erators of the field in the interaction Hamiltonian wi
c-numbers. The eigenstatesup&at of this semiclassical Hamil-
tonian~called the semiclassical states! are just the eigenstate
of the operatorJ11J252Jx with the eigenvalueslp5N
22p (p50,1, . . . ,N). An atomic state~and, in particular, a
Dicke state! can be expanded in the basis of the semiclass
states. The factorization approximation means that if the
oms are prepared initially in a semiclassical state, then
total wave function of the system can be approximately w
ten as a product of its field and atomic parts@19,11#:

uCp~ t !&'uAp~ t !&at^ uFp~ t !& f . ~4.11!

Using the factorization approximation, one can analy
cally estimate mean values of the field operators correspo

FIG. 18. The squeezing parameterj versus the scaled timet
5gt for the initial coherent field state witha56,10,16,30 interact-
ing with two atoms prepared in the half-excited Dicke state: n
merical results~solid line! and the factorization approximatio
~dashed line!.
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2516 PRA 58G. RAMON, C. BRIF, AND A. MANN
ing to a specific initial semiclassical atomic stateup&at. In

particular, one obtains~as usual, we assume thata5An̄ is
real!

^a&p5a expF2
ilpt

2a S 12
1

4a2D G
3expH a2Feilpt/4a3

212
ilpt

4a3 G J , ~4.12!

^a2&p5a2expF2
ilpt

2a S 22
1

a2D G
3expH a2Feilpt/2a3

212
ilpt

2a3 G J . ~4.13!

Also, ^a†&p and ^a†2&p are given by complex conjugates o

^a&p and^a2&p , respectively, whilê a†a&p5n̄ can be taken
constant. Then an approximate expression for the squee
parameter can be easily obtained. For the semiclassical
up&at, one finds@22#

jp
2511F2n̄~e2Tp

2/82e2Tp
2/16!

1
Tp

2

16
~e2Tp

2/1624e2Tp
2/8!GcosS lpt

An̄
D

1
TpAn̄

2
~2e2Tp

2/82e2Tp
2/16!sinS lpt

An̄
D

12n̄~12e2Tp
2/16!, ~4.14!

whereTp5lpt/n̄. It can be seen that squeezing is achiev
for any semiclassical state, except for those withlp50 ~then
jp51 is constant as long as the factorization approximat
is valid!. ForlpÞ0, the oscillations of the squeezing param
eter achieve minima for times

tsq
~p!'0.9tR

~p! ,1.95tR
~p! , . . . , ~4.15!

where the revival time for the stateup&at is given by

tR
~p!5

2pAn̄

ulpu
'

tR

ulpu
. ~4.16!

The minima ofjp become deeper~i.e., squeezing improves!

as n̄ increases.
Using formulas~4.12! and ~4.13!, one can calculate an

approximate expression for the squeezing parameter fo
initial atomic state which is a superposition of the semicl
sical states. In particular, we will be interested in appro
mate results for squeezing behavior of the Dicke states. F
note that in the Jaynes-Cummings model (N51) there are
just two semiclassical states withlp561, whose squeezing
behavior is the same, for a good degree of accuracy. Co
quently, any initial atomic state in the Jaynes-Cummin
model~and, in particular, the ground and excited states! will
ing
ate

d

n
-

an
-
-
st,

e-
s

exhibit the same squeezing behavior~within the validity of
the factorization approximation!. These considerations ex
plain the appearance of significant squeezing in the stro
field regime of the Jaynes-Cummings model for times n
integer multiples of the revival timetR .

In the case of the Dicke model with two atoms, there a
three semiclassical states; two of these states~with lp5
62) lead to squeezing, while for the third state~with lp
50) no squeezing is found (jp51 is constant!. The half-
excited Dicke stateu1,0& is a superposition of the two sem
classical states withlp562, while the fully excited and
ground states also include the third semiclassical state
lp50. Consequently, the squeezing behavior of the h
excited Dicke state is very close to the behavior of a se
classical state withulpu52, while for the fully excited and
ground states squeezing is spoiled by the influence of
semiclassical state withlp50. These considerations expla
why squeezing on the long-time scale can be achieved o
for the half-excited Dicke stateu1,0&. The factorization ap-
proximation also explains the appearance of the minima
the squeezing parameter at times close to integer multiple
tR/2, whose depth increases withn̄. From Fig. 18 we see tha
the factorization approximation describes very well t
squeezing behavior of the two-atom half-excited Dicke st
for large values ofn̄. As shown in Fig. 19, the minimum
value jm of the squeezing parameter decreases monot
cally with a. For n̄.10, the factorization approximation is i
excellent agreement with the numerical results. Similar
sults are also obtained in the strong-field regime of
Jaynes-Cummings model. Fora538 ~the maximum value of
a we considered!, the best value of the squeezing parame
is 0.3285. This is much better than the optimal values
squeezing which are obtained for the fully excited or une
cited atoms when one takesN;102.

For atom numbersN>3, any Dicke state will be a super
position of the semiclassical states with different values
ulpu. Since the minima of the squeezing parameterjp occur
at different times for differentulpu, squeezing on the long
time scale will be spoiled for the Dicke states of three a
more atoms. It can be shown@22# that for a Dicke state of

FIG. 19. The minimum valuejm of the squeezing paramete
versus the coherent amplitudea for two atoms prepared in the
half-excited Dicke state: numerical results~circles! and the factor-
ization approximation~line!.



in

e
en

er
er
ils
n
or
nd

ls
th
ap
th
-

/

th
e

m-
abi

ng
died
ef-
ive
nd
ke
the

d or
and
ef-

the

to
ate
e

e-

p-
for
ion

PRA 58 2517COLLECTIVE EFFECTS IN THE COLLAPSE-REVIVAL . . .
N-atom system the condition for the existence of squeez
in the revival regime isn̄.(2N)4. Of course, the two-atom
half-excited Dicke state is an exception to this rule, as
involves only two semiclassical states with the same valu
ulpu. However, the above condition is in good agreem
with our numerical results forN>3.

As we see, the factorization approximation can be v
useful for explaining many features of the field-atom int
action in the Dicke model. However, this approximation fa
to predict some interesting phenomena found by using
merical calculations. In particular, squeezing on the sh
time scale, which clearly dominates for the fully excited a
ground atomic states~especially, for large values ofN), is
not predicted by the factorization approximation. We a
observe that the suppression of the revival amplitude for
half-excited Dicke state cannot be described within this
proximation. This can be readily understood by recalling
exact expression~3.10! describing the evolution of the popu
lation inversion for the half-excited stateu1,0&. The ampli-
tude of the Rabi oscillations here is of the order of 1n̄,
which is neglected in the factorization approximation.

V. CONCLUSIONS

In this paper we considered in detail properties of
system ofN two-level atoms interacting with a single-mod
cavity field ~the Dicke model!. When the field is initially in
ic
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e
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e

e

the coherent state with a sufficiently large mean photon nu
ber, the dynamics of the system is quite regular, and the R
oscillations of the atomic inversion exhibit an interesti
quantum phenomenon of collapses and revivals. We stu
how this phenomenon is influenced by collective atomic
fects. The main conclusion is that the role of the collect
effects is determined by the initial atomic state. We fou
that by preparing just two atoms in the half-excited Dic
state one can cause greater effect on the behavior of
system than by collecting tens or even hundreds of excite
unexcited atoms. In the phenomenon of the collapses
revivals, the half-excited Dicke state causes two basic
fects: the revival amplitude is strongly suppressed~analo-
gously to the trapping phenomenon for a single atom in
equally weighted superposition state! and the revival time is
halved. The two-atom half-excited Dicke state also leads
very interesting squeezing behavior. It is the only Dicke st
for N>2 which exhibits strong squeezing on the long-tim
scale, similarly to the behavior found in the strong-field r
gime of the Jaynes-Cummings model.
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