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Collective effects in the collapse-revival phenomenon and squeezing in the Dicke model
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Resonant interaction of a collection of two-level atoms with a single-mode coherent cavity field is consid-
ered in the framework of the Dicke model. We focus on the role of collective atomic effects in the phenomenon
of collapses and revivals of the Rabi oscillations. It is shown that the behavior of the system strongly depends
on the initial atomic state. In the case of the initial half-excited Dicke state we account for a humber of
interesting phenomena. The correlations between the atoms result in a suppression of the revival amplitude,
and the revival time is halved, compared to the uncorrelated fully excited and ground states. The phenomenon
of squeezing of the radiation field in the atom-field interaction is also discussed. For the initial fully excited and
ground atomic states, the field is squeezed on the short-time scale, and squeezing can be enhanced by increas-
ing the number of atoms. Some empirical formulas are found which describe the behavior of the system in
excellent agreement with numerical results. For the half-excited Dicke state, the field can be strongly squeezed
on the long-time scale in the case of two atoms. This kind of squeezing is enhanced by increasing the intensity
of the initial coherent field and is of the same nature as revival-time squeezing in the Jaynes-Cummings model.
The appearance of this long-time squeezing can be explained using the factorization approximation for semi-
classical atomic statefS1050-29478)07309-G

PACS numbg(s): 42.50.Ct, 42.50.Md, 42.50.Dv, 32.86t

[. INTRODUCTION harmonic collective corrections which modify the shape of
the collapses and revivals related to the photon-distribution
Since the pioneering work of DickEl] on cooperative mechanisnj12]. In the present work we study in detail these
spontaneous emission, a great deal of attention has been dmllective effects for different initial atomic states. If atoms
voted to the interaction of the radiation field with a collection are prepared initially in the ground state or in the fully ex-
of two-level atoms located within a distance much smallercited state, then the system behaves rather similarly to the
than the wavelength of the radiation. Such a system is conmsingle-atom case, although collective effects manifest them-
monly referred to as the Dicke modébr a review see, e.g., selves clearly in the length of the revival time. But, the re-
Ref.[2]). A particular case of the Dicke model, when atomssults are different when the atoms are prepared initially in the
interact with a single-mode radiation field inside a cavity, half-excited Dicke state. This state is well known as the su-
was considered by Tavis and Cummingd. The Tavis- perradiant atomic state in the context of collective spontane-
Cummings Hamiltonian is mathematically equivalent to theous emission in open spafg2]. It was also found13] that
trilinear boson Hamiltonian describing various nonlinear op-the half-excited Dicke state strongly modifies the resonance
tical processe$4]. The single-atom version, known as the fluorescence spectrum of the atomic system. However, to the
Jaynes-Cummings modg8], is the simplest and one of the best of our knowledge, this state was rarely considered in the
most popular models of quantum optics. In spite of its sim-context of the Tavis-Cumminggavity) version of the Dicke
plicity, the Jaynes-Cummings model shows a variety of in-model. When the atoms are prepared in the half-excited
teresting nonclassical phenomena such as vacuum-field Rabicke state the system exhibits a number of interesting phe-
oscillations, sub-Poissonian photon statistics, and squeezingmena. In particular, the amplitude of the Rabi oscillations
of the radiation fieldfor reviews see, e.g., RefE5,7]). is strongly suppressed and relative intensities of revivals are
One of the most interesting quantum features of theessentially changed. This suppression of the revival ampli-
Jaynes-Cummings model is the phenomenon of collapseside is similar to the trapping phenomenon occurring in the
and revivals of the Rabi oscillations, which manifests itselfcase of a single atom prepared in the equally weighted su-
in the clearest way when the cavity field is prepared initially perposition of the two levelgl4].
in the coherent state]. The shape of collapses and revivals It has been known for a long tinj@5,16| that the nonlin-
is determined by the initial photon-number distribution. A ear character of the Jaynes-Cummings model leads to
similar behavior can be found also in the many-atom casequeezing in one of the quadratures of an initially coherent
[9-11]. For a sufficiently strong coherent field, the nonlin- cavity field. It was also predicted 7] that strong squeezing
earity in the Rabi frequency is slight and the system exhibit€an be obtained in the Jaynes-Cummings model near the
regular dynamics in the form of collapses and revivals of therevival times for large initial intensities of the field. This
oscillations. However, in the many-atom case there exist anphenomenon of strong revival-time squeezing was explained
in Ref. [18] using the factorization approximation for the
so-called semiclassical atomic staf&9]. Butler and Drum-

*Electronic address: ramon@physics.technion.ac.il mond [20] showed that short-time squeezing can be en-
"Electronic address: costya@physics.technion.ac.il hanced in the Dicke model compared to the single-atom
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Dicke model without the rotating-wave approximation and inerator32:J§+ 2(3,J_+J3_J,). We describe the state of
the presence of losses. Analytical approaches to squeezing {Re atomic system in terms of the &) orthonormal basis

the strong-field limit[22] and in the weak-field limi{23]  |; m), (m=j,j—1 -
. . . . 1 at 1 LR ] [}
were presented. Higher-order squeezing in the Dicke mode{
was studied in Refl24]. For atoms prepared initially in the J,|j,my=mlj,m)y, (2.5
ground state or in the fully excited state, the uncertainty of o o _
the field quadrature rapidly oscillates and squeezing occurs P mya=i(i+ )], m)a (2.6

during short periods of time at the very beginning of the time . o

evolution. On the long-time scale the temporal behavior oifh the conttﬁxt of thet f”‘“’[;‘?"; re;all[za'[llofﬂ.3), the states

the quadrature uncertainty is correlated with times of coI—J'm>at are the symmetric Dicke states.

lapses and revivals of the Rabi oscillations. On the other N\~ 172 p

hand, fqr th_e initial_ ha_tlf-excit_ed Dicke state, the behavior of lj ,m>at:( ) > 1 |+>|kH =), 2.7

squeezing is qualitatively different. The quadrature uncer- p k=1 Il

tainty oscillates on the long-time scale, with a period of the here|+ d|— th dl tat

order of the revival half time, and strong squeezing is ob-' €€ )1 and| ), are the upper an I lower states, respec-
. -gvely, of thelth atom, and the summation is over all possible

tained in the case of two atoms. The value of squeezing i tati N at if onl tric atomic stat
enhanced by the intensity of the initial coherent field. ThisPérmutations ok'-a on‘w‘s. only Symmetric atomic states are
nsidered, then the “cooperative numbgris equal toN/2

phenomenon is of the same nature as revival-time squeezi do— L h ber of ited
in the Jaynes-Cummings model and can be explained usi p=m- ] Is just the number of excited atoms.
The Hilbert spacé+ of the atom-field system can be de-

the factorization approximation for the semiclassical atomic ) _ L : . .
states. In general, squeezing is better and its duration is mu&GPmPOsed into a direct sum of finite-dimensional invariant

longer for the initial two-atom half-excited Dicke state than SUPSPacest, :
for the ground and fully excited states. S
H= & H| . (2.8
Il. THE MODEL AND METHODS OF SOLUTION L=0
We consider the resonant interaction betwierwo-level ~ Each invariant subspack, is spanned by the orthonormal
atoms and the single-mode radiation field inside a losslesgasis|n)¢|j,L —j—n),;, where|n); are the Fock states of the
cavity. In the rotating-wave approximation, the Tavis-radiation field,a'ajn);=n|n);. For L<N, n=0,1,...L
Cummings interaction Hamiltonian reads= 1) and dim(4, )=L+1; for L=N, n=L—N,L—N+1,...L
and dim(H, ) =N+ 1. If the field is initially in the Fock state
H=g(a'J_+aJ,). (2.)  |ng); and the atoms are in the Dicke stétamy) ., the state

) ) ) . . of the system will evolve in the invariant subspdgg with
Here and in the following we use the |nte[ract|on picture. In|_=ny+mq+j. For the field and/or atoms prepared initially
Eq. (2.1) g is the coupling constang anda' are the anni- jn a superposition state, one should take into account contri-

hilation and creation operators of the field mode,andJ_ butions from different subspaces.
are the collective atomic raising and lowering operators. The exact solution of the problem is obtained by the di-
They satisfy the s@) Lie algebra, agonalization of the interaction Hamiltoni&®.1) in each of

the invariant subspaceX, involved [3]. It is known [3,4]
that in the basi$n);|j,L—j—n), the Hamiltonian is given
. L . by a tridiagonal matrix with symmetric eigenvalues and the
wherelJ, is the operator of atomic inversion. In terms of the ; L .
corresponding characteristic equation can be reduced to an

standard Pauli matrices, describing each two-level atom, Onglgebraic equation of ordédim(#,)/2]. Therefore an ana-

[‘J+1‘Jf]:2‘J21 [JZin]:i‘Jty (22)

obtains : S . . i
lytical solution is possible when only invariant subspaces
1 N 1 N with dim(#,)<9 are involved. However, already for
Jo==> ol 3,=2> o, (2.3  dim(H_)>3, analytical solutions are rather complicated
I 2{=1 [26—29. Note that for dim{{,)=4 the eigenvalues are not

) o _ equidistant, so the time evolution is not periodic even within
If the Schwinger realization of the §P) generators is used, 3 single subspace. Semiclassical approximate solutions were
the Hamiltonian(2.1) becomes the trilinear boson Hamil- proposed29—31 which give the time evolution of systems
tonian describing nonlinear optical processes such as pargoverned by a trilinear Hamiltonian of tyg2.1) in terms of
metric conversion and Raman and Brillouin scatterid§)  gliptical functions. A perturbative analytical approach to the
An interesting physical realization of the Hamiltonigh1) problem with weak fields was developed by Kozierowski
is given by the coupling of the internal levels of atoms orand co-worker§27,28,32,33 In the present work we use the
ions to a mode of their quantized oscillatory motion in aexact solution based on the numerical diagonalization of the
harmonic trag 25]. interaction Hamiltoniar(2.1).

The total excitation operator

i I1l. COLLAPSES AND REVIVALS
L=a'a+J,+N/2 (2.9

We study the temporal behavior of the atom-field system
commutes with the Hamiltoniaf2.1) and is an integral of in the Dicke model for the cavity field prepared initially in
motion. Another integral of motion is the $2) Casimir op-  the coherent statey); :



2508 G. RAMON, C. BRIF, AND A. MANN PRA 58

L L L L L
0 20 40 60 80 100 120 140 160 180 200 25 30 35 40 45 50

5 T T T T
C 2r C 1
o} 4
_50 20 40 60 80 100 120 140 1é0 180 200 25 30 35 40 45 50
T T
FIG. 1. The atomic inversioqJ,) versus the scaled time FIG. 2. The atomic inversiofJ,) versus the scaled time
=gt for the initial coherent field state with=236 interacting with ~ =9t for the initial coherent field state with= 36 interacting with

(a) one excited atonithe Jaynes-Cummings mogleind with ten  ten atoms prepared ite) the fully excited statdj,j)x, (b) the

atoms prepared irfb) the fully excited statdj,j), and (c) the  half-excited Dicke stat¢j,0)., and(c) the ground statéj, |}z
P The region of the first revival is shown, demonstrating the depen-
ground statej,—j)a:-

dence of the revival time on the initial atomic state.
* n
la)=e 1o \7—_|n>f. (3.)  revival time s can be estimated using the conditi®34
n=0 /n!

TRy 1m— Qqym) =27, (3.4

Without loss of generality we consider only real valuesrof
The initial atomic state is supposed to be one of the Dickevhich givesrg=2m7\n+m+1/2.
states|j,m), (recall thatj=N/2). Two possibilities which One should expect a similar behavior also for the Dicke
are frequently considered in the literature are the fully ex-mogel in the strong-field domain>N [9—12. Of course,
cited statdj,j)o and the ground statg, —j)o. We are also  the collapses and revivals related to the photon-number dis-
interested in the half-excited Dicke stdfeO)a. tribution would be modified by the collective atomic effects

Since the coherent field state is a superposition of manye to the fact that the eigenvalues of the interaction Hamil-
Fock stategn),, the invariant subspaces, with different tonian are not equidistant. In the strong-field limit-N the

values ofl =ntm+] contn_bu;e to the evc_)lutlgn. The tem- anharmonic corrections to the eigenvalues become small,
poral behavior of the atomic mversm(rjz) is given by the nd one should expect a quite regular behavior similar to that
sum of the appropriately weighted atomic responses 1o acly he resonant Jaynes-Cummings model. However, we wil
F(.)Ck state.(Thg mean photon numbga'a) is connefted see that there exist reasons for an irregular behavior that are
with the atomic inversion by the fact thal)=(a'a)  ,ch more important than just the anharmonicity of the ei-
+(J)+N/2 is a constant. In the resonant Jaynes- gonyajyes. In fact, the initial atomic state determines how
Cummings  model N=1) with initially unexcited jyorant various factors leading to irregularities in the be-

(m=—3) or excited fn=3) atom, one obtaingg] havior of the system will be.
o We first consider the cases with the atoms prepared ini-
(‘Jz>:m2 P,cosQ, o7, (3.2) tially in the fully excited and ground states. The temporal
n=0 ' behavior of the atomic inversiofd,) is shown in Figs. (b)

and Xc) for the case oN=10 andn= 36, with atoms pre-
pared in(b) the fully-excited statéj,j), and(c) the ground

N e state|j,—j)a. The first feature to note is the dependence of
Qnm=2yn+m+1/2 @3 the revival time on the initial atomic state. Similarly to the
oaynes-Cummings model, we can estimate the revival time
for the initial atomic statej,m), as

wherer=gt is the scaled time,

is the scaled Rabi frequency corresponding to each subspa
andP,, is the photon-number distribution. For the initial co-
herent stateP,,= exp(—n)n"/n! is the Poissonian distribution
andn=|a|? is the initial mean photon number. Then, due to
the property of this distribution, the most regular dynamicsyhere we use the strong-field limit expression for the Rabi
occurs for large values of the initial mean photon number frequency(i.e., neglect the anharmonic corrections to the ei-
Contributions corresponding to differemts interfere in such  genvalues Formula(3.5) is in a good agreement with our

a manner that they initially go out of phase, after that acquirewumerical results, as demonstrated in Fig. 2. The difference
a common phase, and this process is repeated, resulting inb&tween the revival times for the fully excited state and the
series of collapses and revivals, as shown in F{@.IThe ground state is particularly obvious whahis not too small

TR=2m\Vn+m+1/2, (3.5
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TABLE I. The ratio fg;=hg/h,, that represents the anharmo- 0 ' ' ' ' ' ' ' ' 2
nicity of the Hamiltonian eigenvalues, for=36, N=10,20,30, and 0005k
-001f 7
N m f51 '0'0150 2'0 4‘0 6I0 slo 160 1éo 1AItO 1éo 1éo 200
10 5.0219
20 i 5.0184
30 5.0159
10 5.0382
20 | 5.0638
30 5.1852
10 5.0283
20 0 5.0309 ; : ' : ' . ; . .
20 40 60 80 100 120 140 160 180 200
30 5.0360

T

—_ . FIG. 3. The atomic inversioqJ,) versus the scaled time
compared ta. The second feature is that the spread of the:gt for the initial coherent field state with= 36 interacting with

revivals is determined only by the photon statistics of they atoms prepared in the half-excited sthit@)..: (@ N=2, (b) N
initial field state[34] and does not depend on the valuenf  —g () N=10.
These two observations may explain why the temporal be-

havior loses its regularity for the initial ground state notably  Now we turn to the case when the atoms are prepared in
faster than for the initial fully excited state. Indeed, we see inhe half-excited Dicke statlj,0),, (for even values oN).

Fig. 1(b) four regular revivals fom=j, while in Fig. I(c) for  The temporal behavior of the atomic inversiah) is shown

m= —j the behavior starts to be irregular already at the enqin Fig. 3 forn=36 andN=2,6,10. Here we see a number of

of Fhe th|rd revwal._Th_e reason 1S that _the sp_read of th%nteresting phenomena. First of all, the amplitude of the Rabi
revivals increases with time and neighboring revivals start to —

overlap, which leads to the loss of regularity. Since fior 0Scillations is significantly suppressed. For 36, asN in-
— —j the revival time is shorter than fan=j, the overlap- creases from 2 to 16, the relative amplitullg (the differ-

ping of the revivals and the corresponding irregularity occurS"ce Petween the maximum and minimum valuegJof in
earlier. the very beginning of the evolution, divided ) increases

Another factor that leads to differences between the belinéarly from 0.006 to 0.027, according to the empirical for-
havior of the system in the cases=j andm=—j is the Mula
dependence of the anharmonic corrections to the eigenvalues
on the value om. In order to give a representative example,

we considered the eigenvalubs of the interaction Hamil- g, comparisonA, is about 0.9 fom=j and about 0.95 for
tonian for the subspaces withb=n+m+j for n=36, N m=—j, being almost independent bF.

=10,20,30 andn=*,0. The ratiofs;=hs/h; of the fith another important feature is the appearance of half-time
and first eigenvalues was chosen as a parameter representigivals. i.e.. form=0 the revival time is actuallyr=/2. In

the anharmonicityfor equidistant eigenvaluefs, is exactly  a¢¢ tiny half-time revivals appear also for= = j, but their

5). The numerical results are listed in Table I. We see thagmjitudes are much smaller than the amplitudes of the first
for given N the value offs, increases with decrease bf,  (qyivals atry. As N increases from 2 to 16, the relative
i.e., irregular effects related to the anharmonicity are mos&mplitudeAl,z (the difference between the maximum and

important form=—j. Form=j the value offs, decreases inimym values ofJ,) in the half-time revival, divided by
slightly with increase oN, but the overall contribution of the N) increases monotonically from 0.0018 to 0.0171 for
anharmonic corrections increases wiNhjust because there = and from 0.0019 to 0.0354 fan= — j. The ratioA, ,/A,

are more eigenvalues. For=—j the value off,; increases  jncreases in the same rangeNoffrom 0.0033 to 0.0424 for
with N, so the importance of the anharmonic corrections hertlen:j and from 0.0035 to 0.1677 fan=—]. On the other
increases witlN much faster than fom=j. In particular, we  hanq, form=0 the half-time revival and the first revival are,

see that the amplitude of the revivals for=—j is smaller 4 small values oN, of the same order of magnitude. For
than form=j, and this effect becomes more pronounced a2 we even findA,;,/A;>1. In contradistinction to the

N increases. Fon=36, asN increases from 2 to 16, the casesm==j, for m=0 the ratioA;,/A,; decreases from
relative amplitudeA; (the difference between the maximum 1.3427 to 0.0473 abl increases from 2 to 16. In this range
and minimum values ofJ,) in the first revival, divided by of N the relative amplitude\,;, of the half-time revival in-
N) decreases from 0.5459 to 0.4039 for=j and from creases slightly from 0.0037 to 0.0052, while the relative
0.5362 to 0.2112 fom= —j. This effect occurs because the amplitudeA; of the first revival increases much faster: from
anharmonic corrections partially destroy the interference 00.0028 to 0.1093. Starting frolN=4 the amplitude of the
the oscillating terms. Of course, as the initial mean photorjirst revival exceeds that of the initial oscillations. The ratio
numbern increases, the behavior of the system become#/Aq increases almost linearly from 0.4555 to 4.0476Nas
more regular. increases from 2 to 16. The val(&,)c of the atomic inver-

Ao=0.0015N+2). (3.6



2510 G. RAMON, C. BRIF, AND A. MANN PRA 58

sion during the collapse is always positive far= = ). As N P,/n has the double frequency, leading to the half-time re-
increases from 2 to 16¢J,)c increases from 0.0036 to vivals. This explains why fom= =*j the half-time revival is
0.3569 form=j and from 0.0035 to 0.5195 fan=—j. On  much smaller than the first revival while for=0 both types
the other hand, fom=0 the value ofJ,)c is always nega- of revivals are of the same order of magnitude. The more
tive and decreases from 0.0070 to—0.2433 in the same irregular dynamics in the case=0 can be explained by two
range ofN. We found that fom=0 the value ofJ,)c can  reasons. First, the nonlinearity of the Rabi frequency

be well approximated by the empirical formula (~+/n) is less important for larger values af so the dy-
o) namics is more regular when the main contribution comes
_ N from largern’s. For m=*j the prefactors of the leading
<JZ>C__ K.a—k ’ . . — .
16— Ky terms are Poissonian, so for large enouglthe main con-

3.7 tribution will come from the high-frequency terms, resulting
z(a) =ks—exfd —(ksa+ks)], in a regular behavior. However, fon=0 the prefactors are

" ) : i i

Where ky=7.45, ky=11.16, ky=1.773, ky=0.328, ks P./(4n+2), so lower frequencies also contribute, which re

— 1681 We al hat lthe d os in th sults in a less regular behavior. The second reason is that the
=1.681. We also see that in general the dynamics in the casgyiya|s start to overlap much earlier if the revival time is
m=0 is much more irregular than fan=*j. All these

. alved. The same reason also leads to an additional irregu-
observations show that the structure of the phenomenon 9 fity in the casem=—j when the number of atoms is rela-
collapses and revivals is essentially different for the half—t

; . ; ; ively large and the half-time revivals are not too small.
excited Dicke state relative to the fully excited state or the " 1o suppression of the revival amplitude for the half-

excited Dicke state is similar to the trapping phenomenon

Xwhich f ingle at d in th I
plain this principal difference. As expected, the behavior be; IC OcCUrs Tor & sing'e atoln prepared in 'he equaly

lar with i ‘ th h weighted superposition state” 2%(|+)+|—)) (see Ref.
comes more regular with increase of the mean photon r““Tl4]). In the latter case the population inversion is given by

bern. For odd numbers of atoms the half-excited Dicke state
|j,0), does not exist. However, for sufficiently large odd i

n 1
values ofN the Dicke statdj,%),, exhibits properties very (Jz)= 52 Pn| cOS(yn+17)+ msinz(\/n+ 1n|-3.
similar to those of the half-excited state. n=o (3.11)

In order to explain the peculiar phenomena discussed
above, we consider the exactly solvable chise2. For the

fully excited state fn=1) we find For Iarge n, the Poissonian distribution is sharply peaked

aroundn, and the two terms in the sum almost add up to 1.

0 2 The remaining oscillating term has the prefactor of the order

(3)=2> PnQ_4[(n+ 3)—(n+1)cog2Q,7)+8(n+1) P, /n, so the amplitude of the Rabi oscillations is reduced by
n=0

nl the factor of the order b/ As explained above, in such a
X(n+2)cogQ,17)]. (3.8  Situation the dynamics is less regular than for the case of an

’ initially unexcited or fully excited atom. However, the re-

Analogously, we obtain for the ground statm£ —1) vival time is not halved for the single atom in the equally
weighted superposition state. In the single-atom case the
” 2 population trapping occurs due to the destructive interference

(I)=2 PnQ4—[(n_2)_n cog2Q0y, —17) between the contributions of the two levels, while for the
n=0 n-1 two-atom half-excited Dicke state this phenomenon can be
—8n(n—1)cogQ, ;7] (3.9  explained by the destructive interference between the contri-

butions of the two correlated atoms.
and for the half-excited Dicke statenE0)
IV. SQUEEZING OF THE RADIATION FIELD

- 1
()=~ Z PnQ—Z[l—COS(ZQn,oT)]- (3.10 The coherent radiation field interacting with atoms can
n=0 n,o0 acquire interesting nonclassical properties such as sub-

(foissonian photon statistics and squeezing. In the present
o ) aper we focus on the important quantum phenomenon of
for m=0. Here both the constant and oscillatory terms haVés)queezing. The initially coherent cavity field can be squeezed

the prefactorP,,/(4n+2), while for m= = in addition to o : : :
the constant and oscillatory terms with prefactors of the or-When it interacts with a single atofll5,16}, and squeezing

der P,/n there exists an oscillatory term with a prefactor of In the revival-ime regime can be very strong for large inten-

n i o sities of the field 17,18. Butler and Drummond discovered
the orderP,,. Forn=36 the suppression is by two orders of [20] that in the Dicke model collective atomic effects can
magnitude. Fom=0 the oscillatory term has the frequency jmprove squeezing obtained for short interaction times, com-
20,0=4(n+1/2)"2 and the effective revival time isz/2  pared to the single-atom case. Squeezing in the Dicke model
=m(n+1/2)*2. On the other hand, fom=*| the leading was also considered recently in a number of wdes-23.
oscillatory term with the prefactor of the ord®; has the Here we present a detailed study of squeezing of the initially
frequency(),, . ;, associated with the revival time;, while  coherent cavity field, comparing between the ground, fully
the smaller oscillatory term with the prefactor of the orderexcited, and half-excited initial atomic states.

Now it is clear why the oscillations are strongly suppresse
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FIG. 4. The squeezing parametérversus the scaled time FIG. 5. The squeezing parametérversus the scaled time
=gt for the initial coherent field state with=36 interacting with =gt for the initial coherent field state with= 236 interacting with
N atoms (N=2,5,10) prepared iifa) the fully excited statej,j),, N atoms prepared in the fully excited state) N=2,5,10,(b) N
and(b) the ground statéj, — ). =10,60,100.

The field quadraturesg=(a'+a)/y2 and p=i(a’ of the oscillations and the irregularity occur earlier, as the
—a)/\/2, satisfy the canonical commutation relatips,p]  revival time is shorter and the overlaps of revivals begin
=i. Then their uncertainties satisfy the Heisenberg relationgarlier. Also, form=—j the decay rate of the squeezing
AgAp=1/2, where (q)?=(g?)—{(q)? and similarly for oscillations increases rapidly witd, while for m=j the de-
(Ap)2. For the coherent field statén particular, for the pendence of the decay rate binis less pronounced. Inspect-
vacuum state the uncertainties are equalAgy=Ap, ing the minima of¢ in Fig. 4, we clearly see that their period
=1/\/2, and an equality is achieved in the Heisenberg uncefecomes longer fom=j and shorter form=—j asN in-
tainty relation. A field state is called squeezed if the uncercreases, in full accordance with the formu5) for the
tainty of one of the quadratures is below the vacuum levelrevival time.

i.e., Aq<1/\2 or Ap<1/\/2. Here we consider the squeez- Form==j, the minima of¢ on the long-time scale are
ing parameter above the vacuum level, i.e§>1. However, squeezing is

achieved at short times, soon after the beginning of the in-
Aq teraction. In this region the squeezing parameter exhibits fast
&= Ao \/EAq, (4.1 oscillations, with¢ falling below 1. Therefore fom= = j we
o will focus on the behavior of squeezing on the short-time
cale.
and search fo€E<1 that manifests field squeezing. S

2. Squeezing on the short-time scale: The fully excited state

A. Squeezing for the fully excited and ground states . . _ .
a g Y 9 We first consider the case of the initial fully excited

1. The long-time behavior atomic state 1fn=j). Squeezing is achieved far<2 and

We first consider the temporal behavior of the squeezingiPP€ars at shorter times for larger values\ofin Fig. 5 we
parameter¢ on the long-time scale, for the atoms preparedS€€ the short-time behavior of the squeezing parangefer
initially in the fully excited and ground statesn&= +j). As  n=236 and various values ®f. For relatively small values of
demonstrated in Fig. 4, this long-time behavior is fully cor-N (N=<10), £ exhibits quite regular oscillations whose am-
related with the collapses and revivals of the Rabi oscillaplitude increases witlN. However, forN~n and larger, the
tions. For even values df, the squeezing parametéros-  oscillations ofé become irregular. In Fig. 6 the short-time
C|Ilat.es achieving its minima at integer multiples of and  ponavior of¢ is shown forN=14 and various values of.
maxima at half-odd multiples ofz. On the other hand, for - —.

- The oscillations of become more regular asincreases.
odd values olN, we see that has minima at both half-odd o . : . -
It is interesting to investigate how the minimum val§lg

and integer multiples ofz. This difference between even (i.e., the maximum of squeezipgachieved during the time

and odd values dfl can be explained by the fact that squeez- ) — i i
ing depends on two-photon transitions, when a pair of pho_evolutlon, depends oN andn. We first consider the depen-

tons is simultaneously absorbed or emitted by a pair of atdence ofé;,, on a= \/ﬁfor givenN. As shown in Fig. 7&,
oms. The oscillations of decay with time and abandon their has a minimum as a function af, i.e., for givenN there
regular form. This decay is correlated with the loss of regu-exists a valuex,y for which the minimum valué ,\ of the
larity in the behavior of the atomic inversion, caused by thesqueezing parameter is achieved. Figure 8 showsdhat
overlaps of neighboring revivals. The behavioréak rather  increases and,,\ decreasegsqueezing improvesasN in-
similar form=j andm= —j, but in the latter case the decay creases. We found that the dependencef andé,,y onN
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FIG. 6. The squeezing parametérversus the scaled time

=gt for the initial coherent field state with=10,15,20 interacting
with 14 atoms prepared in the fully excited state.

FIG. 8. (a) The valuea,,y of the coherent amplitude, for which
the squeezing parameter is minimized, versusiumerical results
(circles and empirical fitting of Eq(4.2) (line); (b) the correspond-
ing value ¢, of the squeezing parameter verddisnumerical re-
at the considered range can be well approximated by theults(circles and empirical fitting of Eq(4.3) (line).
following empirical formulas:

where a=2.30, b=1.216, ¢=0.743, r=1.159, s=0.490.
Note that the relation§4.2) and(4.4) are not the inverse of
each other. This fact can be easily understood, if one imag-
ines ¢, as a two-dimensional function df and «. When
taking a section of,, along thea axis(i.e., for a givenN),

one will find the minimum for a certain value ef. However,
when fixing this value ofx and going along thé&l axis, a

—cN

apn=a—be ", (4.2

Enn=IN"3, 4.3
wherea=6.21,b=4.03,c=0.0471,r =0.909,s=0.156.
We next consider the dependencegfon N for given a.
As shown in Fig. 9£,, has a minimum as a function of, L . . ;
i.e., for givena there exists a valul,,, for which the mini- minimum will be founc_j, in general, for a d'ﬁefe'“_‘-
mum value¢,,, of the squeezing parameter is achieved. Fig- . Finally, we would I'kef to compare our nu.merlcal results
ure 10 showrgath al__ increases and,, decrease &quee.z— with approximate analytical expressions derived by Retamal
ing improves as w increases. We  found again that the et al.[22]in the strong-field limin>N. They found22] the
dependence oN,,, and &, on « at the considered range following expression for the minimum of the squeezing pa-

can be well approximated by the following empirical formu- F@meter, achieved during the time evolution:

las:
2\ 112
Ny, = —a+be’?, 4.4 N N
ma (4.4 En=l1-a—+b—| , (4.6
o 8a?
— —S
Ema=ra >, (4.5
0.75 T
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FIG. 7. The minimum valué&,, of the squeezing parameter ver-
sus the coherent amplitude for various values oN.

FIG. 9. The minimum valué&,, of the squeezing parameter ver-
susN for various values oftr.
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FIG. 10. (a) The valueN,,, of the number of atoms, for which
the squeezing parameter is minimized, verausiumerical results
(circles and empirical fitting of Eq(4.4) (line); (b) the correspond-
ing value ¢, of the squeezing parameter versusnumerical re-
sults (circles and empirical fitting of Eq(4.5) (line).

wherea= 1/\/e~0.606 anch=1+a—a%—a*~1.103. Then,
for given «, the squeezing parameter will be minimized by

4a
Nma=?a~2.2a. (4.7

In Fig. 11 we compare our numerical results &y with
the approximate formul#4.6) for «a=6 (n=36). A good
agreement is found only for very small valuesNf while

the values of\,,,, are absolutely differentN,,~ 100 for our
numerical calculations andll,,,,~13 for the analytical ap-

E%‘ﬁféﬁAAAAAAff“Aﬁ
3

T

FIG. 12. The squeezing parametéwersus the scaled time
=gt for the initial coherent field state witth=30 interacting with
N atoms (N=2,6,16) prepared in the ground state.

Nmalﬁwz.Z/a<1. This means that Eq4.7) gives a true

value of N, only for n~10* or more. According to Eq.
(4.6), the absolute minimum of the squeezing parameter that

can be achieved in the strong-field limit §=0.58. Forn

=36 (the maximumn we considerey the best value of
squeezing i£~0.49 and it is achieved fax,,~100.

3. Squeezing on the short-time scale: The ground state
We next consider the case when the initial atomic state is
the ground statenj=—j). In this case we can distinguish
three different regimes: the strong-field regirrr_9>(N), the
weak-field regime 1§<N), and the intermediate regime (

proximation. This discrepancy can be explained by the fact~N).

that the numerical values clNIma_shown in Fig. 10 do not
satisfy the strong-field condition>N. For the considered
range ofn (=<36), the approximate solutiofd.6) is not

valid. From Eq.(4.7) one can see that the strong-field con-

dition will be satisfied for the optimal valu&l,, when

095
0.9
085t

0.8

L L
50 100 150

FIG. 11. The minimum valu€,, of the squeezing parameter
versusN for a=6: (a) numerical result(b) approximate analytical
formula (4.6).

The short-time behavior of the squeezing paramétar
the strong-field regime is shown in Fig. 1®r «=30 and
N=2,6,16). We see tha exhibits fast regular oscillations,
whose frequency is almost independent\bfthis is just the

strong-field Rabi frequencs)l(f)_j =2+n—N/2+1/2, and the

dependence oN is very weak because is very large, but

the amplitude increases witN. Therefore the minimum
value ¢, of the squeezing parameter decreasedNam-
creases. A similar behavior is found also for the aasej in

the strong-field regime. An interesting feature of this regime
is that the minimum of is achieved after a relatively large
number of oscillationgthe same time for different values of
N), while in the intermediate regime the minimum &fis
achieved, as a rule, in the first or second oscillation. As can
be seen from Fig. 13, in the strong-field regime the decrease
of &, is linear and can be well approximated by the empiri-
cal formula

Em=—T(a)N+K, (4.9

where the slopé(«) is a monotonically decreasing function
of a and the free ternk~1 is independent of.

It is well known [27,28,32,33 that in the weak-field re-
gime the behavior of the system is very regulaote that for
the case of the fully excited initial state the weak-field re-
gime actually does not exjstin Fig. 14 we see the evolution
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FIG. 13. The minimum valug,, of the squeezing parameter FIG. 15. The minimum valug,, of the squeezing parameter
versusN for various values ofx: numerical result<circles and  versusN for various values ofr.
linear fitting of Eq.(4.8) (line). The fitting is good in the strong-
field regimensN. then saturates for large’s at an almost constant value. The
region of linear decrease, occurring in the strong-field re-
of the squeezing parametérfor relatively short timegfor ~ gime, appears only for=4. This leads to an additional
a=1 andN=10,20,30,40). The oscillations &f are quite minimum at small values dfl, but it is less pronounced than
regular and their frequency increases withthis is just the the main minimum at largeN’s.
weak-field Rabi frequencﬂ%vll;z N—n/2+ 1/2), while The valueN,,, , whic_:h givgs_ optimal squeezing for given
' £ and the corresponding minimum valég, of the squeez-
ing parameter are shown in Fig. 16 as functionsxofAs «
jncreases, squeezing improves,( decreasgsand the mini-
mum occurs at largeM,,,, . The dependence &f,,, and&,,,
on « at the considered range can be well approximated by
the following empirical formulas:

the amplitude does not change significantly. The value o
squeezing achieved in this limit is rather modest a rule ¢

does not decrease below 0.85). A perturbative analytical a
proach to the Dicke model dynamics in the weak-field re-
gime was developed by Kozierowski and co-workers
[27,28,32,33 and used for the study of squeezing in Ref.

[23]. _ _ o N, =ka?, (4.9
We focus our attention on properties of squeezing in the
intermediate regime, where no analytical approximation can Ena=X+ye 2, (4.10

be used. We study the minimum valgg, achieved by the
squeezing parameter during the time evolution,Nom the  where k=1.382, y=1.639,x=0.476,y=0.420, z=0.259.
range between 2 and 40 and ferbetween 1.0 and 6.5. The The largest value o& we considered is 6.5. If we assume
results are presented in Fig. 15, whéfeis plotted versud\

for various values ofr. The typical behavior for givem is

as follows. Initially, &, decreases slowly witiN, but then
steeply sinks down and acquires a minimum at a certain

value of N. After the minimum,&,, slightly oscillates and ™t
13 13
a b
12 12
11 141
1 1
0.9 09
E_, 08g 2 4 [ 0%y 2 4 3
13 13
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09 09

08 0.4
0

FIG. 16. (a) The valueN,,, of the number of atoms, for which
FIG. 14. The squeezing parametersus the scaled time the squeezing parameter is minimized, verausiumerical results
=gt for the initial coherent field state with=1 interacting withN (circles and empirical fitting of Eq(4.9) (line); (b) the correspond-
atoms prepared in the ground stata N=10, (b) N=20, (c) N ing value ¢,,, of the squeezing parameter versusnumerical re-
=30, (d) N=40. sults(circles and empirical fitting of Eq(4.10 (line).
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FIG. 17. The squeezing parametgwersus the scaled time FIG. 18. The squeezing paramei@ersus the scaled time
=gt for the initial coherent field state interacting withh atoms =gt for the initial coherent field state with=6,10,16,30 interact-
prepared in the half-excited Dicke state) n=36, N=2,4,10,(b) ing with two atoms prepared in the half-excited Dicke state: nu-
=900 N=246.10. merical results(solid line and the factorization approximation
’ T (dashed ling

that Eq.(4.10 remains valid for arbitrarily larger, then the

absolute minimum of squeezing achievable with unexcitedM=*1]), where squeezing can be achieved for ahjwith
atoms is¢~0.476. a proper choice oft) and is, moreover, enhanced by increas-

ing N. However, just two atoms prepared in the half-excited
Dicke state can produce quite strong squeezing.
B. Squeezing for the half-excited state In Fig. 18 we see the temporal behaviorédor N=2 and
and the factorization approximation «=6,10,16,30. The minima of, which occur at times be-

Finally, we discuss the case when the initial atomic statdCre integer multiples of/2, become deepéke., squeezing
is the half-excited Dicke staten(=0). The temporal behav- improvesg asn increases. It is very important to note that
ior of the squeezing parametéron the long-time scale is here squeezing is achieved at minima of the oscillations on
shown in Fig. 17. We see that there is a strong correlatioihe long-time scale(Fast oscillations o on the short-time
between the collapses and revivals of the atomic inversiogcale, which produce squeezing for=* j, are negligible

and the behavior of squeezing. for the casem=0.) Consequently, fom=0 the duration of
Forn=36 andN=2,4, we see in Fig. 1@ that & oscil-  Sdueezing is essentially longer than fo=*j.
lates with a period of orderg/2 (recall that form=0 we find Actually, this kind of squeezing on the long-time scale

relatively strong half-time revivals However, after a num- obtained for two atoms in the half-excited Dicke state has the

ber of periods, the amplitude of the oscillations decayséand Same physical origin as revival-time squeezing in the Jaynes-
becomes nearly constant. This decay is correlated with th&Ummings mode[17,18. This long-time squeezing can be
loss of regularity in the behavior of the atomic inversion that€xPlained by means of the factorization approximation for
happens when neighboring revivals overlap. For larger numthe Sémiclassical atomic statgs9]. This approximation is
bers of atoms, the behavior of the atomic inversion is ver)ya“d for a strong initial coherent field and for times short
irregular, and so is the behavior of squeezing. In particulargompared withry~n.

for N=10, the oscillations of decay already afterg/2. The In a semiclassical treatment, one replaces the boson op-
phenomenon of the collapses and revivals is quite regular fogrators of the field in the interaction Hamiltonian with
very large values ofi. We see in Fig. 1(b) that for n c-numbers. The agen_stath;)atof this semiclassical Hamil-
=900 the squeezing parameter also behaves very regu|ar|§pn|an(called the semiclassical statese just the eigenstates
The structure of the oscillations @fbecomes more compli- ©Of the operator, +J_=2J, with the eigenvalues.,=N

cated(but keeps the regularinasN increases. For all values 2P (P=0.1,...N). An atomic stateand, in particular, a
of N, the squeezing parameter reaches deep minima at tim&ycke statg can be expanded in the basis of the semiclassical

just before integer multiples ofs/2. The larger the value of states. The factoriz'at'ic'm approximat_ion means that if the at-

N, the closer is the minimum of to /2. (For N=6, we oms are prepar_ed initially in a semiclassical state, then t_he

also find additional minima of, but they are not so deép. total wave function Qf th_e system can _be approximately writ-
The phenomenon of field squeezing for the half-excited®n @S @ product of its field and atomic pet9,11:

Dicke state is drastically different from what we found for ~

the fully excited and gr)c/)und states. In the former case ( Y p(0) = Ap()a® | Pp(0)s 4.13

=0), for moderate values af (< 30), the minima of¢

decrease below 1i.e., squeezing occuronly for N=2. Using the factorization approximation, one can analyti-

This behavior is in contrast to the situation in the latter caseally estimate mean values of the field operators correspond-
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+ t2 . . FIG. 19. The minimum valu€,, of the squeezing parameter
Also, (a'), and(a'%), are given by complex conjugates of yersus the coherent amplitude for two atoms prepared in the
(a), and(a?),, respectively, whilga'a),=n can be taken half-excited Dicke state: numerical resuitsrcles and the factor-
constant. Then an approximate expression for the squeezirigation approximatiortline).
Firam;g‘zrﬁcri;‘ S[bzez]eas"y obtained. For the semiclassical Stalg i the same squeezing behaviaiithin the validity of
P/at: the factorization approximation These considerations ex-
plain the appearance of significant squeezing in the strong-
zﬁ(efTﬁ/B_ efT,§/16) field regime of the Jaynes-Cummings model for times near
integer multiples of the revival timeg.
In the case of the Dicke model with two atoms, there are
T -T%116 -8 ApT three semiclassical states; two of these stawth A,=
+—(e 'pP°—4e ') |coy —= ; . . P
16 N *2) lead to squeezing, while for the third stateith X,
=0) no squeezing is foundéf=1 is constant The half-
Tp\/ﬁ 2y e (N7 excited Dicke stat¢1,0) is a superposition of the two semi-
5> (2e To8— e~ Ty/1®)gin| —= classical states with,==2, while the fully excited and
\/ﬁ ground states also include the third semiclassical state with

+

_ 2 Ap=0. Consequently, the squeezing behavior of the half-
+2n(1—e To'9), (4.149  excited Dicke state is very close to the behavior of a semi-
_ classical state withh y|=2, while for the fully excited and
whereT,=\,7/n. It can be seen that squeezing is achievedground states squeezing is spoiled by the influence of the
for any semiclassical state, except for those witk-0 (then  semiclassical state with,=0. These considerations explain
£,=1 is constant as long as the factorization approximatiorwhy squeezing on the long-time scale can be achieved only
is valid). ForA,#0, the oscillations of the squeezing param-for the half-excited Dicke statgl,0). The factorization ap-

eter achieve minima for times proximation also explains the appearance of the minima of

the squeezing parameter at times close to integer multiples of
T~0.97P,1.9549, ..., (4.19  7x/2, whose depth increases withFrom Fig. 18 we see that

the factorization approximation describes very well the

where the revival time for the staip), is given by squeezing behavior of the two-atom half-excited Dicke state
for large values ofn. As shown in Fig. 19, the minimum

(p)_ZW\/ﬁN TR (4.16 value &, of the squeezing parameter decreases monotoni-
R INpl Nl ' cally with «. Forn> 10, the factorization approximation is in

excellent agreement with the numerical results. Similar re-

The minima of¢;, become deepdi.e., squeezing improves sults are also obtained in the strong-field regime of the
asn increases. Jaynes-Cummings model. Far= 38 (the maximum value of

Using formulas(4.12) and (4.13, one can calculate an « we considereq the best value of the squeezing parameter
approximate expression for the squeezing parameter for a@s 0.3285. This is much better than the optimal values of
initial atomic state which is a superposition of the semiclas-squeezing which are obtained for the fully excited or unex-
sical states. In particular, we will be interested in approxi-cited atoms when one takés~ 107,
mate results for squeezing behavior of the Dicke states. First, For atom numbersl=3, any Dicke state will be a super-
note that in the Jaynes-Cummings modiI=1) there are position of the semiclassical states with different values of
just two semiclassical states with,= + 1, whose squeezing |)\p|. Since the minima of the squeezing parameétgpccur
behavior is the same, for a good degree of accuracy. Consat different times for different)\p|, squeezing on the long-
quently, any initial atomic state in the Jaynes-Cumminggime scale will be spoiled for the Dicke states of three and
model(and, in particular, the ground and excited stated more atoms. It can be showW@2] that for a Dicke state of
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N-atom system the condition for the existence of squeezinghe coherent state with a sufficiently large mean photon num-
in the revival regime isT>(2N)4. Of course, the two-atom bPer, the dynamics of the system is quite regular, and the Rabi
half-excited Dicke state is an exception to this rule, as ifoscillations of the atomic inversion exhibit an interesting
involves only two semiclassical states with the same value ofiuantum phenomenon of collapses and revivals. We studied
I\p|. However, the above condition is in good agreemenfow this phenomenon is influenced by collective atomic ef-
with our numerical results foN=3. fects. The main conclusion is that the role of the collective
As we see, the factorization approximation can be veryeffects is dete_rmiqed by the initial_ atomic state. ‘We fqund
useful for explaining many features of the field-atom inter-that by preparing just two atoms in the half-excited Dicke
action in the Dicke model. However, this approximation fails State one can cause greater effect on the behavior of the
to predict some interesting phenomena found by using nusystem than by collecting tens or even hundreds of excited or
merical calculations. In particular, squeezing on the shortunexcited atoms. In the phenomenon of the collapses and
time scale, which clearly dominates for the fully excited andrévivals, the half-excited Dicke state causes two basic ef-
ground atomic stateéespecially, for large values df), is fects: the revival gmplltude is strongly suppres$adalq—
not predicted by the factorization approximation. We alsodously to the trapping phenomenon for a single atom in the
observe that the suppression of the revival amplitude for th€dually weighted superposition stagnd the revival time is
half-excited Dicke state cannot be described within this aphalved. The two-atom half-excited Dicke state also leads to
proximation. This can be readily understood by recalling theV€ry interesting squeezing behavior. Itis the only Dicke state
exact expressiofB.10 describing the evolution of the popu- for N=2 which exhibits strong squeezing on the long-time
lation inversion for the half-excited staté,0). The ampli- scale, similarly to the behavior found in the strong-field re-

tude of the Rabi oscillations here is of the order of,1/ gime of the Jaynes-Cummings model.
which is neglected in the factorization approximation.
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