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Large-order dimensional perturbation theory for diatomic molecules
within the Born-Oppenheimer approximation
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A renormalization of theD-dimensional Hamiltonian is developed to ensure that the large-D limit corre-
sponds to a single well at any value of the internuclear distanceR. This avoids convergence problems caused
by a symmetry-breaking transition that is otherwise expected to occur whenR is approximately equal to the
equilibrium bond distanceReq, with largerR giving a double well. This symmetry breaking has restricted the
applicability of large-order perturbation theory in 1/D to cases whereR is significantly less thanReq. The
renormalization greatly extends the range ofR for which the large-order expansion can be summed. A nu-
merical demonstration is presented for H2

1 . The 1/D expansions are summed using Pade´-Borel approximants
with modifications that explicitly model known singularity structure.@S1050-2947~98!06607-4#

PACS number~s!: 31.15.Md, 02.30Lt
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I. INTRODUCTION

In a previous study@1# it was demonstrated that large
order dimensional perturbation theory~DPT! could be used
to calculate highly accurate electronic energy eigenvalues
H 2

1 within the Born-Oppenheimer approximation. Resu
were presented for internuclear distancesR50.8, 1.0, and
1.2. ~We are expressing distances in units of Bohr radii a
energies in hartree atomic units.! However, the method fails
in practice asR approaches the equilibrium bond leng
Req'1.997 due to increasingly poor convergence of the su
mation approximants. Here we present a technique
makes it possible to extend that work to values ofR at and
beyondReq and, in principle, to many-electron diatomic mo
ecules.

DPT is a semiclassical theory@2–4#, in which differential
operators in the Schro¨dinger equation disappear at zeroth o
der. In the usual formulation@5,6# the perturbation paramete
is d51/D, where D is the dimensionality of coordinat
space, treated as a continuous variable. In the limitd→0 the
system becomes localized at the minimum of an effec
potentialW that is the sum of the Coulomb potential and
repulsive centrifugal potential. First-order DPT correspon
to harmonic oscillation about this minimum. Higher orde
systematically include anharmonic effects. Energy eigen
ues are obtained as asymptotic expansions in powers od.
An advantage of this theory is that the energy expans
coefficientsEk can be efficiently computed to very highk
using a recursive linear algebraic algorithm@7#. The energy
expansions diverge ask!, but Pade´ or Pade´-Borel approxi-
mants, with modifications that take into account the sin
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larity structure of the energy functionE(d) @8–10#, have
yielded excellent results for a variety of systems@11#.

Difficulties can arise when the extremum ofW corre-
sponding to the zeroth-order theory is not a unique glo
minimum or when a harmonic frequency of the first-ord
theory approaches zero. For H2

1 at small R the effective
potential has a symmetric global minimum, with the electr
equidistant from each nucleus. AsR increases, the symmet
ric extremum becomes a saddle point with a pair of unsy
metric minima on either side. Thus low-order perturbati
theory allows the molecule to gracefully dissociate into
hydrogen atom and a free proton at largeR. A number of
studies@12–21# have now shown that the low-order theo
can provide a reasonable qualitative, and even semiqua
tive, model for diatomic molecules. However, it is difficult t
systematically improve the accuracy of these calculations
going to higher order in the perturbation theory because
serious convergence problems. AsR approaches the
symmetry-breaking value the divergence of theEk increases
drastically@22,23#. For largerR one could, in principle, com-
pute the expansion ofW about one of the unsymmetric wells
but that would omit subdominant contributions that res
from interaction with the degenerate solution at the ot
well. Although the subdominant terms go to zero faster th
any power ofd, they can nevertheless be numerically sign
cant ford51/3 @18#.

Our approach is to use a dimensional scaling of the
rameterR that ensures that the symmetric extremum ofW is
a stable global minimum. In effect, we redefine the dime
sional continuation of the Schro¨dinger equation so that th
internuclear distance decreases somewhat asD increases
above 3. Since the Hamiltonian remains correct atD53, this
procedure introduces no approximations into the analy
We obtain an exact asymptotic expansion of the electro
energy within the Born-Oppenheimer approximation..
250 © 1998 The American Physical Society
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II. THEORY

Our theory yields an asymptotic expansion forE(d) about
the infinite-dimensional limitd→0. However, the rate o
convergence of summation approximants for the ground s
can be increased by including information about the o
dimensional limitd→1. We begin this section with a review
of dimensional scaling and the computation of larg
dimensional expansions. Then we describe the o
dimensional solution, present our particular approach to
dimensional scaling, and discuss summation methods.

A. Analysis at the D˜` limit

The first step in a large-D analysis is to express th
Hamiltonian in terms of body-fixed coordinates. Then t
dimension dependence will appear only as an explicit par
eter in a centrifugal potential. Thus the electronic Ham
tonian has the form@14#

H5T1D2C~d!U1V, ~1!

where d51/D. V is the physical, three-dimensional Co
lomb potential. The kinetic-energy operator has been se
rated into an effective kinetic-energy operatorT, which is a
sum of terms containing partial derivatives, and a centrifu
potential involving the operatorU, which does not contain
derivatives.C is a polynomial ind such thatC(0) is nonzero
and finite.

It is convenient to scale the electronic coordinatesr i with
a dimension-dependent factorf (d),

r i→ f r i , ~2!

wheref }D2 in the large-D limit but is otherwise arbitrary.T
andU are homogeneous operators of degree22 with respect
to the r i . Therefore, the scaled Schro¨dinger equation for a
homonuclear diatomic molecule is

@ f 21T1C̃~d!U1Ṽ2Ẽ#C50, ~3!

whereẼ5 f E, C̃5D2C/ f , and

Ṽ5(
i , j

r i j
212Z(

i
$@r i

21~zi2R̃/2!2#21/2

1@r i
21~zi1R̃/2!2#21/2%. ~4!

The r i j are the interelectron distances while (r i ,zi) is the
radial and axial coordinate, respectively, for thei th electron
in the cylindrical coordinate system about the internucl
axis centered at the midpoint.Z is the nuclear charge and

R̃5R/ f ~5!

is a dimension-scaled internuclear distance. The parametR
is being treated differently from the coordinatesr i on ac-
count of the Born-Oppenheimer approximation.

Equation~3! is in a form suitable for semiclassical pertu
bation theory@2,3,5#. In the limit D→` the derivatives dis-
appear and the system becomes localized at a minimum
the function
te
-

-
e-
e

-
-

a-

l

r

r

of

W05C̃~0!U1Ṽ, ~6!

which corresponds to a stable, classical configuration of
particles. The repulsive centrifugal potential prevents
electrons from coalescing with nuclei.

This infinite-D limit is the zeroth order of an asymptoti
expansion for the scaled energy

Ẽ5 (
k50

`

Ẽk f 2k/2. ~7!

The zeroth-order coefficientẼ0 is equal to the minimum of
W0. The first-order coefficient is

Ẽ15C̃11 (
i 51

N~N13!/2 S ni1
1

2Dv i , ~8!

whereN is the number of electrons, thev i are the frequen-
cies for harmonic oscillations about the minimum ofW0, and
C̃1 is a zero-point-energy contribution from thed depen-
dence ofC̃. The ni are harmonic quantum numbers. Th
Ẽk.1 can be calculated recursively using any of several co
putational algorithms. With more than one degree of fre
dom, the matrix method of Dunnet al. @7,24# is particularly
convenient. Once theẼk are calculated, Eq.~7! can be reex-
panded in powers ofd,

E5d 2(
k50

`

Ek d k. ~9!

B. Analysis at theD˜1 limit

In the limit D→1 the Coulomb potential becomes a de
function, according to the relation@25–27#

D21

r
→d~ uxu!, ~10!

with the one-dimensional Cartesian coordinatex replacing
the radial coordinater . Therefore, the dimensional scalin
r i→(D21)r i leads to the following Schro¨dinger equation
for D51:

H 2
1

2 (
i 51

N
]2

]xi
2 2(

i 51

N

@d~ uxi1R̃/2u!1d~ uxi2R̃/2u!#

1 (
i 51

N21

(
j 5 i 11

N

d~ uxi2xj u!J C5
~D21!2

4
EC.

~11!

If Eq. ~11! for a given eigenstate has a nonzero eigenva
then the energy functionE(d) will have a second-order pole
at d51 and the residue of the pole will be proportional to t
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252 PRA 58HUANG, GOODSON, LÓPEZ-CABRERA, AND GERMANN
one-dimensional eigenvalue. This pole will be the first te
in a Laurent expansion aboutd51 @28#,

E~d!;
a22

~12d!2
1

a21

12d
1a01a1~12d!1•••. ~12!

C. Dimensional scaling of internuclear distance

According to Eq.~5!, we haveR̃→0 in the limit D→`.
This would imply that our zeroth-order model for a
N-electron molecule would be the same as that for
N-electron atom. Frantz and Herschbach@12# have shown
that a more accurate zeroth-order approximation can be
tained by replacing the functionR̃(D) with the constant
R̃(Dph), whereDph is the physical value of dimensionality
This treatment ofR̃ amounts to redefining the dimension
continuation of the Hamiltonian. It is valid becauseH re-
mains correct atD5Dph. Typically one would chooseDph
53, although it is possible to obtain energies of thre
dimensional excited states by evaluating the ground-state
ergy at a higher value ofDph, on account of exact interdi
mensional degeneracies@29,30#.

In Ref. @1# our choice for the scale factor wasf 5D(D
21)/6, so as to have the desired behavior in both theD
→` andD→1 limits and, for convenience, to havef 51 at
D53. Then we simply replacedR̃ with the constantR. Here
we use the choice

f 5
~D1b!~D21!

~Dph1b!~Dph21!
, ~13!

whereb is an arbitrary parameter that is independent ofD.
This gives the desired behavior in both limits and it includ
a free parameter that can be chosen so as to improve
convergence of the perturbation expansion.

We will treat R̃ as a dimension-independent consta
with its numerical value set equal to the desired phys
value of internuclear distance atD5Dph. We introduce the
following notational convention:R̃ refers to the value of the
internuclear distance atD5Dph while R refers to the value
of internuclear distance atD53. For example, suppose on
wanted to calculate the energy of the excited state atD53
that is degenerate with theD55 ground state. ThenR would
be the internuclear distance for the excited state, withDph

55 andR̃52(51b)R/(31b).
For H2

1 the operators in Eq.~3! can be written as@12#

T52
1

2 S ]2

]r2 1
]2

]z2D , U5
1

8
r22, ~14!

Ṽ52@r21~z2R̃/2!2#21/22@r21~z1R̃/2!2#21/2,
~15!

wherer is the radial distance of the electron from the inte
nuclear axis andz is the projection onto the axis. Th
dimension-dependent factor in Eq.~3! is @31#

C̃~d!5~D22!~D24!/ f 5
~122d!~124d!

~11bd!~12d!
C̃0 , ~16!
n

b-

-
n-

s
he

,
l

-

where

C̃05~Dph1b!~Dph21!. ~17!

The zeroth-order result for the energy isẼ0
5W0(rm ,zm), where (rm ,zm) is an extremum ofW0. For
smallR̃ there is a global minimum corresponding to the sy
metric configurationzm50. For largeR̃, the functionW0 is a
double well with equivalent unsymmetric minima corr
sponding toz56zmÞ0 separated by a saddle point withz
50. The condition]2W0 /]z250 determines the critica
value R̃5R̃c ,

R̃c5
3A3

16
C̃0 . ~18!

for which thez50 extremum becomes a saddle point@31#.
Increasingb increases the centrifugal potentialC̃U, which
increases the effective potential energy of the unsymme
configuration more than it does that of the symmetric co
figuration.

D. Summing the energy expansion

The asymptotic behavior of thed expansion~9! is deter-
mined by the singularity structure of the functionE(d). The
ground-state energy of a many-electron atom or molec
will in general have a second-order pole atd51, due to the
divergence of the expectation value of the Coulomb poten
at particle coalescences@26,27#. It is helpful to explicitly
remove this singularity structure from the energy expansi
To this end, we reexpandE(d) as @32#

E~d!5d2F a22

~12d!2
1

1

12d
E8~d!G , ~19!

where

E8~d!5 (
k50

`

Ek8d
k, ~20a!

E085E02a22 , Ek85Ek2Ek212a22 . ~20b!

The residuea22 is the eigenvalue of theD51 d-function
Hamiltonian. Note thatd(uxu) is normalized on the integra
tion range@0,̀ !. Therefore,d(uxu)52d(x). It follows that
for H 2

1 we have

H 2
1

2

d2

dx2 2g@d~x2R̃/2!1d~x1R̃/2!#J C5eC, ~21!

with

g5
2~11b!

~Dph1b!~Dph21!
, a225

4

g2 e. ~22!

Equation~21! was solved by Frost@33#. The two eigenvalues
can be obtained from the transcendental equation

k5g~16e2kR̃!, ~23!
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with e52k2/2. The plus sign corresponds to the grou
state, which is symmetric, while the minus sign correspo
to the excited state, which is antisymmetric. The form of E
~19! ensures thatE8(d) is analytic atd51.

In general,d expansions for Coulombic systems will als
have a complicated singularity atd50, which leads to fac-
torial increase of theEk ask becomes large. This singularit
is closely analogous to the singularity in quantum electro
namics at the limite2→0, wheree is the unit of electric
charge. Thee2→0 singularity was explained by Dyson@34#
as being caused by the instability of Coulombic systems
unphysical ~negative! values of e2. Popov and Sergee
@22,23# used a modified version of Dyson’s analysis to sh
that the divergence of dimensional expansions is due to
instability of the minimum ofW0 in complex coordinate
space. They were able to determine the asymptotic beha
of thed expansion for H2

1 by calculating the rate at which
the system can tunnel out of the minimum ofW0 along a
complex sub-barrier trajectory. The result for 0.2,R̃,R̃c is
that

Ek /Ek21;d0
21k, ~24!

whered0 is a constant that depends onR̃ according to the
equations@35#

d05z2arctanhz, ~25!

z5~123t!1/2~12t!21, ~26!

~t21!4

t
5F ~Dph1b!~Dph21!

4R̃
G 2

, 0,t,1/3. ~27!

To better characterize the singularity atd50, it is conve-
nient to consider the Borel functionF(d) that is related to
E8(d) by the transform

E8~d!5E
0

`

e2tF~dt !dt. ~28!

The asymptotic expansion ofF is (k50
` Fkd

k, where Fk

5Ek /k!. The location of the nearest singularity to the orig
in F(d) is given by limk→`Fk21 /Fk . It follows from Eq.
~24! that this singularity is at the pointd5d0. Numerical
analysis of our calculated values forEk indicates that

Fk21 /Fk;d0(11 3
2 k21), which is consistent with a square

root branch point inF(d) at d0.
Previously@1# we evaluatedE8 by numerical quadrature

of Eq. ~28! with Padéapproximants substituted forF. Since
Padéapproximants are able to use combinations of poles
zeros to model square-root branch cuts, the convergenc
this Pade´-Borel summation is somewhat better than that o
tained from evaluatingE8 by direct Pade´ summation. Here
we will use an even better method. It follows from Da
boux’s theorem@36# that the asymptotic behavior ofF(d)
will be equivalent to that of a function of the form (
2d/d0)1/2g1h, whereg(d) andh(d) are analytic ford<d0.
This suggests that we evaluateF using Darboux approxi-
mants
s
.

-

at

e

ior

d
of
-

F [L,N/M ]~d!5
PL~d!

QM~d!
1

RN~d!

QM~d!
~12d/d0!1/2, ~29!

wherePL , QM , andRN are polynomials of degreesL, M ,
and N, respectively, which can be determined by solving
set of linear equations@9#. We substitute Eq.~29! into Eq.
~28! and use numerical quadrature to obtainE8. Substituting
this value into Eq.~19! yields aDarboux-Borelapproximant,
which we designateS[L,N/M ] . In practice we will use the
diagonal staircase approximant sequenceS[0,0/0] , S[0,0/1] ,
S[1,0/1] , S[1,1/1] , S[1,1/2] , . . . , denoting the elements of th
sequence asSn wheren5L1M1N11 is the order of the
perturbation expansion.

III. NUMERICAL DEMONSTRATION

We consider two different perturbation theories for t
ground-state electronic energy of H2

1 . The first uses
single-well configurations at theD→` limit, with the elec-
tron equidistant from the nuclei. The second uses dou
well configurations, with the electron closer to one nucle
than to the other.

A. Single-well expansion

According to Eq.~18!, a large enough choice of the fre
parameterb will ensureR̃,R̃c for any value of the physica
internuclear distanceR. Furthermore, we find that the pos
tion d0 of the dominant singularity in the Borel functio
steadily moves away from the origin asb increases and this
decreases the rate of increase of theEk . In practice, how-
ever, for givenR there is an optimal value forb beyond
which the convergence of the summation approximants
gins to slow. We attribute this to theb dependence of the
harmonic frequencies.

Figure 1 shows the convergence of the approximant
quenceSn with R51 and 4 andDph53. For R51 we use

FIG. 1. Accuracy of summation approximants vs ordern of the
perturbation expansion for the ground-state energy of H2

1 with
R51 (L) and R54 (3). The ordinate is 2 log10u(Eapprox

2Eexact)/Eexactu, which is a continuous measure of the number
accurate digits. The curves show fits according to Eq.~31!.
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b50 and forR54 we useb56.36. In both cases the num
ber of accurate digits as a function of ordern of the pertur-
bation expansion appears to increase according to the
tion

log10u~Sn2Eexact!/Eexactu'a~n!, ~30!

wherea has the form

a~n!5a01a1n1/2. ~31!

The ‘‘exact’’ energies were obtained from Frantz’sH2ION

program@37#, which takes advantage of the separability
the H2

1 Hamiltonian, solving the separated differenti
equations using an iterative procedure@38,39#.

In Fig. 2 we show the dependence of the harmonic f
quencies and of the summation accuracy on the parametb,
in this case forR53. As a measure of the accuracy, we u
a(30). Using the fitted expression avoids the essentially r
dom fluctuations that would result from showing the act
value of a given approximant. It is the antisymmetric norm
mode that becomes unstable, with frequencyvz50, when
R̃5R̃c , which in this case corresponds tob'1.6.vz reaches
its maximum value atb'4 and then decreases only ve
slowly with increasingb. The summation accuracy behav
in a manner that is qualitatively similar to that ofvz . There
is a rapid drop ina(30) whenvz approaches zero, but onl
a gradual decline at largeb. This decline at largeb is per-
haps due to the decrease invz and vr canceling out the
beneficial effect of the slower divergence of theEk .

It would seem that a safe choice forb is the valuebm
corresponding to the maximum ofvz . The explicit expres-
sion for vz is

FIG. 2. Summation accuracy and large-dimensional harmo
frequencies vs the parameterb, with R53. The ordinate isa(30),
according to Eq.~31!. The value ofa(30) corresponding to theb
that gives the maximumvz is indicated by an asterisk. The freque
cies are in hartree atomic units.
la-

f

-

n-
l
l

vz5221/2rm
22~2rm

2 2R̃2!1/2~4rm
2 1R̃2!21/2, ~32!

while rm satisfies the equation

8rm
4 2C̃0~rm

2 1R̃2/4!3/250. ~33!

The condition]vz /]b50 implies that

C̃05
128

~522130A57!1/2
R̃, bm5

C̃0

Dph21
2Dph. ~34!

Figure 3 shows results forR51.75, which is just slightly
below R̃c . Here the expansion forb50 does converge, bu
the use of a positiveb can greatly improve the convergenc
rate. As a general rule, we find for arbitraryR that b5bm
gives very nearly the best convergence, unlessbm,0, in
which caseb should be set to zero.

The solid curve in Fig. 4 showsa(30) as a function ofR.
The curve was calculated using the optimal values forb ~i.e.,
bm or zero! and in general we determined the parametersa0
and a2 by least-squares fitting to the results from orde
1–30. However, forR,1 the convergence at very high o
ders is degraded by roundoff error in theEk , which we cal-
culated using quadruple-precision floating-point arithme
In the fittings we omitted any points at orders beyond tha
which the accuracy of the convergence exceeds the prec
of theEk at that order. For example, atR50.25 we used only
the results through order 20.

B. Double-well expansion

For R̃.R̃c the large-D limit gives a pair of degenerate
solutions corresponding to the two minima in the effecti
potentialW0. Electron exchange from tunneling between t

ic FIG. 3. Summation accuracy and large-dimensional harmo
frequencies vs the parameterb, with R51.75. The ordinate is
a(30), according to Eq.~31!. The value ofa(30) corresponding to
the b that gives the maximumvz is indicated by an asterisk. Th
frequencies are in hartree atomic units.
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minima gives rise to an energy splittingDE. Kais, Frantz,
and Herschbach@18# used the instanton method to compu
DE and derived the expression

DE;2p21/2~D21!21/2 exp@2~D21!~R̃2 ln 2R̃!/2#
~35!

in the large-R̃ limit. In the limit D→` it is clear from Eq.
~35! that DE is subdominant to the asymptotic expansio
going to zero faster than any power ofd.

The singularity structure of the energy functionE(d) is
similar to that for the single-well expansion, consisting fi
of a second-order pole atd51 whose residue corresponds
the solution of theD51 d-function Hamiltonian. A new
complication arises, however, in the fact that the largeD
limit now corresponds to the degenerate 1ssg and 2psu
tunneling pair, while forD51 the 2psu state is unbound for
RD51<1 ~corresponding toRD53<3 for b50) @33#. In
practice, it is found that the residue in the numerical 1D
series corresponds~approximately! to theD51 1ssg eigen-
value for smallR ~where the 2psu state is unbound! and to
the mean of the twoD51 eigenvalues for largeR. For in-
termediateR, the residue lies somewhere between these
theoretical values, but we obtain adequate results by rem
ing a second-order pole with residueEg

D51 when the 2psu

state is unbound atD51 and residue (Eg
D511Eu

D51)/2
when both states are bound.

As in the single-well case, there is also an appar
square-root branch point singularity in the Borel functio
Popov and Sergeev@22# have shown that its locationd0 is
given by @35#

d052S h0

12h0
2

2arctanhh0D , ~36!

whereh0 is the spheroidal coordinate for the frozenD→`
geometry. This branch point agrees well with numerical

FIG. 4. Summation convergence vs internuclear distanceR. The
solid curve showsa(30), according to Eq.~31!, using the single-
well expansion with optimalb as described in the text. The poin
corresponding to the equilibrium bond distance is indicated by
asterisk. A dashed curve is used forR,1 because these results a
estimates using a maximum order of less than 30. The dotted c
shows the accuracy of the double-well expansion, defined asa(30)
with the exact mean energy of the lowest tunneling pair used
Eexact in Eq. ~30!.
,

t

o
v-

t
.

-

timates from the 1/D coefficients and we use it here in ca
culating Darboux-Borel approximants.

The energies obtained from the double-well 1/D expan-
sion in this manner are shown in Fig. 5, along with the ex
1ssg and 2psu energies and their average for comparison
is seen that in the large-R limit, our results approach the
mean energy quite accurately, but the deviation increa
rapidly asR decreases.

This behavior can be understood as follows. Conside
variational wave function composed of a linear combinat
of atomic functions, centered on the two nucleiA andB @41#.
Solving the secular equation leads to the pair of eigenva
E65(HAA6HAB)/(16S), whereHAA andHAB are Hamil-
tonian matrix elements andS5^AuB& is the overlap integral.
SinceHAB,0, the ground state isE1 . In the large-R limit,
the overlap integralS vanishes and the pair of statesE6 are
symmetrically split aboutHAA . However, asA andB move
closer together andS increases, the excited stateE2 has a
larger separation fromHAA than does the ground stateE1 .

This phenomenon is illustrated in Fig. 5, where we a
show the energyHAA resulting from a simple two-paramete
variational wave function comprised of hydrogenic 1s and
2pz orbitals @42#. These energies follow~but lie slightly
above! our 1/D results; a more complicated variational fun
tion ~still centered on nucleusA! should exhibit even bette
agreement.

There are thus three sources of error in using the dou
well 1/D expansion: the limited convergence of the 1/D se-
ries for E(d), the limited accuracy~approximately 1–10 %
in practice! of the semiclassical estimates for the ener
splitting DE, and the complete neglect of the splitting asym
metry, which causesE(d) to lie somewhat below than th
mean energy of the tunneling pair.

We find that the Darboux-Borel approximants~or other
approximants such as Pade´-Borel! usually converge to one to
four more digits than this splitting asymmetry, i.e., the su
mation is precisebut not accurate, at least relative to the
average of the 1ssg and 2psu energies in Eq.~30!. For this
reason a scaling parameterb50 is adequate, although in
practice it also happens to yield the nearly optimal conv

n

ve

r

FIG. 5. H2
1 total energies, in hartree atomic units, for the 1ssg

and 2psu states. The mean energy of these two states is show
a dashed curve, while the dotted curve is the variational energy
a simple two-parameter wave function centered on only one of
nuclei. Points represent converged Darboux-Borel sums for
double-well 1/D expansion.
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gence. This is because the accumulation of roundoff erro
the calculation of expansion coefficients is more severe
b,0, while the branch point in the Borel function move
closer to the origin and thus has a greater dominance in
expansion coefficients for increasingb.0. These two ef-
fects tend to worsen convergence for increasingubu ~for both
positive and negativeb), resulting in the optimal paramete
lying nearb50.

For comparison with the summation accuracy of t
single-well expansion, we take the difference between
converged Darboux-Borel sum and the average of the e
1ssg and 2psu energies. This reflects the error due to t
neglect of the splitting asymmetry, which dominates a
convergence difficulties. However, it neglects any errors
the calculation ofDE, which in practice would limit the
obtainable accuracy even further, to two or three digits
most using semiclassical expressions developed thus
@17#. We conclude that the accuracy at largeR is at this point
limited by the accuracy of the available expression forDE
and not by the convergence of thed expansion. The conver
gence at 30th order as a function ofR is indicated by the
dotted curve in Fig. 4.

IV. DISCUSSION

When the internuclear distanceR becomes equal to th
critical valueR̃c , the large-D effective potentialW0 under-
goes a transition between a single well and a double wel
the original formulation of the dimensional scaling@12# ~cor-
responding to setting our parameterb to zero!, R̃c is equal to
9A3/8'1.949. It is probably no coincidence that this val
is very close to theD53 equilibrium internuclear distance o
1.997. Tan and Loeser@14# have noted thatR5R̃c maxi-
mizes the delocalization of electron probability between
nuclei ~sinceW0 flattens out in the vicinity of the minimum
when ]2W0 /]z2'0) and according to an analysis of th
electronic wave function by Feinberg and Ruedenberg@40#,
such delocalization maximizes the strength of the chem
bond. In fact, Tan and Loeser suggested using a dimensi
scaling essentially equivalent to our Eq.~13! in zeroth-order
DPT with b chosen to ensure thatR̃5R̃c . A similar ap-
proach was used in a recent study of H2

1 without the Born-
Oppenheimer approximation within first-order DPT@21#.

Here, in contrast, we have shown that forlarge-orderdi-
mensional perturbation theory it is best to choose the dim
sional continuation such that]2W0 /]z2 is maximized, even
though this gives a less accurate low-order theory. Our
proach has much in common with various ‘‘renormalize
large-order perturbation theories that have been develo
for anharmonic oscillators and for atoms@43–47#. For ex-
ample, Killingbeck@43# showed that a summable large-ord
expansion could be obtained by partitioning the potential o
double-well anharmonic oscillator so that the zeroth-or
limit corresponded to a single-well harmonic oscillator.
similar approach has been used@47# to calculate a large-
order 1/D expansion for the ground-state energy of H2. That
in
r

he

e
ct

y
n

t
far

In

e

al
al

n-

p-

ed

a
r

system dissociates in the conventional large-D limit and a
simple charge-renormalization procedure gave a stable la
D limit and a summable large-order expansion.

For H2
1 we have carried out the renormalization throu

a coordinate scaling.~We initially attempted to treat this sys
tem using charge renormalization, but found that the conv
gence was very poor.! Coordinate scaling is a popular ap
proach for renormalizing perturbation theories in which t
Hamiltonian consists of operators that are homogeneous
different degrees@44–46#. Within the Born-Oppenheimer ap
proximation the electron-nucleus potentials in molecu
Hamiltonians are inhomogeneous and this leads to unph
cal zeroth-order limits. We avoid this problem by replaci
the scaled internuclear distance with aD-independent param
eter that is numerically equal to the scaled parameter aD
53. Thus the renormalization of diatomic molecular Ham
tonians is essentially equivalent to a rescaling of the inter
clear distance.

Our criterion for setting the renormalization parameterb
is different. The usual approach@43,46# has been to use a
variational principle to determine the optimal parame
value. Our choice ofb so as to maximize the antisymmetr
frequencyvz is supported by the striking resemblance b
tween the plots ofvz and of the summation accuracies ve
susb in Figs. 2 and 3.

Dimensional perturbation theory appears to be a prom
ing approach for describing many-electron effects such
electron correlation@48# and London dispersion forces@49#.
Although we have formulated our theory for diatomic mo
ecules with an arbitrary number of electrons, we have p
sented results only for the one-electron case H2

1. Until re-
cently, large-order 1/D expansions had only been calculat
for problems with at most three degrees of freedom. Ho
ever, such calculations with at least six degrees of freed
are now feasible using the linear algebraic algorithm of Du
et al. @7#. Systems with more degrees of freedom can in pr
ciple be treated using a related algorithm that incorpora
separability assumptions@50#. Many-electron molecules als
undergo a symmetry-breaking transition asR ranges from
the single-well united atom limit to the double-well sep
rated atom limit. Therefore, we expect that our renormali
tion procedure will still be applicable. It is possible that th
most straightforward dimensional continuation of the Ham
tonian, as developed in Ref.@14#, will not be an appropriate
starting point for a large-order perturbation expansion
molecules with more than two electrons due to the fact t
at large-D there are internal coordinates that become red
dant atD53. In that case it would be necessary to use
alternative definition for theD-dimensional Hamiltonian
without redundant coordinates to ensure that the energy
pansion converges to the physical solution.
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~1991!; E. J. Weniger, J. Cˇ ı́žek, and F. Vinette,ibid. 34, 571
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