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A renormalization of theD-dimensional Hamiltonian is developed to ensure that the |Brdignit corre-
sponds to a single well at any value of the internuclear dist&CEhis avoids convergence problems caused
by a symmetry-breaking transition that is otherwise expected to occur Rhsrapproximately equal to the
equilibrium bond distanc®.,, with largerR giving a double well. This symmetry breaking has restricted the
applicability of large-order perturbation theory inDLto cases wher® is significantly less thamR.,. The
renormalization greatly extends the rangeRofor which the large-order expansion can be summed. A nu-
merical demonstration is presented fos H. The 1D expansions are summed using P&eel approximants
with modifications that explicitly model known singularity structui§1050-29478)06607-4

PACS numbgs): 31.15.Md, 02.30Lt

I. INTRODUCTION larity structure of the energy functiok(5) [8—10], have
yielded excellent results for a variety of systefg].

In a previous study1] it was demonstrated that large-  Difficulties can arise when the extremum @ corre-
order dimensional perturbation theof®PT) could be used SPonding to the zeroth-order theory is not a unique global
to calculate highly accurate electronic energy eigenvalues fgninimum or when a harmonic frequency of the first-order
H,* within the Born-Oppenheimer approximation. ResultstN€ory approaches zero. For, H at smallR the effective
were presented for internuclear distané®s 0.8, 1.0, and potential has a symmetric global minimum, with the electron

1.2. (We are expressing distances in units of Bohr radii anoequidistant frok;n each nucleléz.l Rincrea_sr?s, the_ syfmmet-
energies in hartree atomic unjtélowever, the method fails ric extremum becomes a saddle point with a pair of unsym-

in practice asR approaches the equilibrium bond length metric minima on either side. Thus Iow—order pgrturpatlon
R..~1.997 due to increasingly poor convergence of the Sum'gheory allows the molecule to gracefully dissociate into a
ed ydrogen atom and a free proton at lafge A number of

mann _approxtl)rlnants. He(rje hwe preksent all tzggg'qued th udies[12—-21 have now shown that the low-order theory
makes It possible to extend that work to valuesRoat and 5 provide a reasonable qualitative, and even semiquanti-

beyondReqand, in principle, to many-electron diatomic mol- e ‘model for diatomic molecules. However, it is difficult to
ecules. _ _ _ o . systematically improve the accuracy of these calculations by
DPT is a semiclassical theof—4], in which differential  going to higher order in the perturbation theory because of
operators in the Schdinger equation disappear at zeroth or- gerious convergence problems. AR approaches the
der. In the usual formulatiof5,6] the perturbation parameter symmetry-breaking value the divergence of Bgincreases
is 6=1/D, where D is the dimensionality of coordinate drastically[22,23. For largerR one could, in principle, com-
space, treated as a continuous variable. In the im#0 the  pute the expansion & about one of the unsymmetric wells,
system becomes localized at the minimum of an effectivébut that would omit subdominant contributions that result
potential W that is the sum of the Coulomb potential and afrom interaction with the degenerate solution at the other
repulsive centrifugal potential. First-order DPT correspondavell. Although the subdominant terms go to zero faster than
to harmonic oscillation about this minimum. Higher ordersany power ofs, they can nevertheless be numerically signifi-
systematically include anharmonic effects. Energy eigenvaleant for §=1/3 [18].
ues are obtained as asymptotic expansions in powe& of  Our approach is to use a dimensional scaling of the pa-
An advantage of this theory is that the energy expansiomameterR that ensures that the symmetric extremunWwbois
coefficientsE, can be efficiently computed to very high a stable global minimum. In effect, we redefine the dimen-
using a recursive linear algebraic algorithif]. The energy  sional continuation of the Schilmger equation so that the
expansions diverge dd, but Padeor PadeBorel approxi- internuclear distance decreases somewhaDamcreases
mants, with modifications that take into account the singu-above 3. Since the Hamiltonian remains corred at3, this
procedure introduces no approximations into the analysis.
We obtain an exact asymptotic expansion of the electronic
*Present address: Sklar & Philips Oil Co., Shreveport, LA 71101 energy within the Born-Oppenheimer approximation.
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Il. THEORY W0=E(0)U+v, (6)
Our theory yields an asymptotic expansion E{r5) about

the infinite-dimensional limit6—0. However, the rate of \which corresponds to a stable, classical configuration of the
convergence of summation approximants for the ground statgarticles. The repulsive centrifugal potential prevents the
can be increased by including information about the oneglectrons from coalescing with nuclei.

dimensional limito— 1. We begin th|5 SeCtion with a I’eVieW Th|S |nf|n|te.D ||m|t is the Zeroth Order Of an asymptotic
of dimensional Scaling and the Computation of |arge'expansion for the scaled energy

dimensional expansions. Then we describe the one-
dimensional solution, present our particular approach to the
dimensional scaling, and discuss summation methods.

M s

E=2 E "2 @)

k

0
A. Analysis at the D— limit

The first step in a larg® analysis is to express the The zeroth-order coefficier, is equal to the minimum of
Hamiltonian in terms of body-fixed coordinates. Then thew,. The first-order coefficient is
dimension dependence will appear only as an explicit param-

eter in a centrifugal potential. Thus the electronic Hamil- N(N+3)/2 1
tonian has the fornp14] E=C+ > N+ 5|, ®
i=1
H=T+D2C(85)U+V, () |

where 6=1/D. V is the physical, three-dimensional Cou- WhereN is the number of electrons, the; are the frequen-
lomb potential. The kinetic-energy operator has been sepaies for harmonic oscillations about the minimumvig§, and
rated into an effective kinetic-energy operafarwhich isa  C; is a zero-point-energy contribution from th® depen-
sum of terms containing partial derivatives, and a centrifugaljence ofC. The n; are harmonic quantum numbers. The

Sg:ﬁ;:{f\‘/le'géoilg'gg élhengr%ie;ﬁtrig’s Vl?\'(t:aa(g(%s) nsoagr?né?én E,-, can be calculated recursively using any of several com-
) poly u : z putational algorithms. With more than one degree of free-

and finite. dom, the matrix method of Dunet al.[7,24] is particularly

It is convenient to scale the electronic coordinatewith ) ~
a dimension-dependent factbfs) convenient. Once thE, are calculated, E(7) can be reex-
’ panded in powers o8,

ri—fri, 2

wheref«D? in the largeD limit but is otherwise arbitraryT E=62), E, 8% 9)
andU are homogeneous operators of degrez with respect k=0
to ther;. Therefore, the scaled Scldinger equation for a

homonuclear diatomic molecule is B. Analysis at the D—1 limit

[ F 1T+C()U+V-E]¥=0, (3) In the limit D— 1 the Coulomb potential becomes a delta
function, according to the relatidr25—27
whereE=fE, C=D2C/f, and D-1
—a(|x)), (10)

r
V=2 ;=22 {[p?+(z—Ri2)? 712

i<j
with the one-dimensional Cartesian coordinateeplacing

+[p?+(z+RI2)?17Y2, (4)  the radial coordinate. Therefore, the dimensional scaling
ri—(D—1)r; leads to the following Schrbinger equation
The rj; are the interelectron distances whilg; (z) is the  for D=1:
radial and axial coordinate, respectively, for iltle electron

in the cylindrical coordinate system about the internuclear 1N g2 N
axis centered at the midpoird. is the nuclear charge and - ‘?_2_ [S8(|x+R/2)+ 8(|x—Ri2)]
210 =1
R=R/f (5) N-1 N (D—1)2
: . . . . + O(|xi—x|) | W=—7—EWV.
is a dimension-scaled internuclear distance. The pararReter =1 j;rl (=) 4

is being treated differently from the coordinateson ac-
count of the Born-Oppenheimer approximation.
Equation(3) is in a form suitable for semiclassical pertur-
bation theony[2,3,5]. In the limit D—« the derivatives dis- If Eq. (11 for a given eigenstate has a nonzero eigenvalue,
appear and the system becomes localized at a minimum afien the energy functiok( ) will have a second-order pole
the function at 6=1 and the residue of the pole will be proportional to the

(11)
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one-dimensional eigenvalue. This pole will be the first termwhere
in a Laurent expansion abodt=1 [28], 5
Co=(DpntB)(Dpr—1). 17
a._2 a_l
(1-6)2 + m+ao+a1(1— o)+ (12) The zeroth-order result for the energy i&,
=Wo(pm,Zm), Where @,z is an extremum of,. For

smallR there is a global minimum corresponding to the sym-

_ metric configuratiorz,,= 0. For largeR, the functionW, is a
According to Eq.(5), we haveR—0 in the limit D — o, double well with equivalent unsymmetric minima corre-

This would imply that our zeroth-order model for an sponding toz= +z,#0 separated by a saddle point with

N-electron molecule would be the same as that for an=0. The condition#®W,/9z>=0 determines the critical

N-electron atom. Frantz and Herschbddl2] have shown valueR=R.,

that a more accurate zeroth-order approximation can be ob-

tained by replacing the functioR(D) with the constant
~R(Dph), whereD , is the physical value of dimensionality.

This treatment ofR amounts to redefining the dimensional .
continuation of the Hamiltonian. It is valid becausere-  for which thez=0 extremum becomes a saddle pdiat].
mains correct aD=D,,. Typically one would choos® !ncreasing,B increas_es the centrifugal potenti@l, which _
=3, although it is possible to obtain energies of three-increases the effective potential energy of the unsymmetric
dimensional excited states by evaluating the ground-state egonfiguration more than it does that of the symmetric con-
ergy at a higher value dD,,, on account of exact interdi- figuration.
mensional degeneraci€29,30.

In Ref. [1] our choice for the scale factor wds=D(D D. Summing the energy expansion

—1)/6, so as to r_1ave the desired t_)ehawor in both Bhe The asymptotic behavior of thé expansion(9) is deter-

—® andD—1 I'"_"ts and, for convenience, to have-1at ined by the singularity structure of the functigigs). The
D=3. Then we simply replacel with the constanR. Here  ground-state energy of a many-electron atom or molecule

we use the choice will in general have a second-order poledt 1, due to the
(D+8)(D—1) divergence of the expectation value of the Coulomb potential

= , (13)  at particle coalescencd®6,27). It is helpful to explicitly
(Dpnt B)(Dpn—1) remove this singularity structure from the energy expansion.

To this end, we reexpand(s) as[32]

E(8)~

C. Dimensional scaling of internuclear distance

~  3V3
RC=EC0. (18)

where 8 is an arbitrary parameter that is independenDof
This gives the desired behavior in both limits and it includes

a free parameter that can be chosen so as to improve the E(6)=6° 8-> + iE’(5) , (19
convergence of the perturbation expansion. (1-92% 1-9¢
We will treat R as a dimension-independent constant, here
with its numerical value set equal to the desired physicaYV
value of internuclear distance Bt=D,. We introduce the o
following notational conventionR refers to the value of the E’(6)=k20 Ex %, (209

internuclear distance & =D, while R refers to the value
of internuclear distance & =3. For example, suppose one
wanted to calculate the energy of the excited statb at3
that is degenerate with tH2=5 ground state. TheR would
be the internuclear distance for the excited state, \Bifh

E(,):Eo_afz, E{(:Ek_Ekfl_afz. (ZOb)

The residuea_, is the eigenvalue of th® =1 §-function
Hamiltonian. Note tha#(|x|) is normalized on the integra-

=5 andR=2(5+ B)R/(3+ B). . tion range[0,«). Therefore,5(|x|)=248(x). It follows that
For H, * the operators in Eq3) can be written a§12] for H, * we have

YN 1, 1 d? - -
T=-3 a2 a2 U=gp " (14 — 5 g2~ LOx—R2)+ 5(x+ R V=€V, (21)
V=—[p?+(z-R12)?] Y2~ [ p?+(z+R/2)*] 2, with
(19
2(1+p) 4

wherep is the radial distance of the electron from the inter- 9= (Dpnt B)(Dpp— 1) aﬂ:?e' (22
nuclear axis andz is the projection onto the axis. The
dimension-dependent factor in E@®) is [31] Equation(21) was solved by Frog83]. The two eigenvalues

can be obtained from the transcendental equation
(1-26)(1-46)~

C(8)=(D—2)(D—4)/f= T (16)

k=g(l+e *R), (23)
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with e=—«?/2. The plus sign corresponds to the ground 10 T T T T —
state, which is symmetric, while the minus sign corresponds
to the excited state, which is antisymmetric. The form of Eg.
(19 ensures thaE’(5) is analytic até6=1.

In general,§ expansions for Coulombic systems will also
have a complicated singularity @&=0, which leads to fac-
torial increase of th&, ask becomes large. This singularity
is closely analogous to the singularity in quantum electrody-
namics at the limite?>—0, wheree is the unit of electric
charge. Thee?>—0 singularity was explained by Dysd84]
as being caused by the instability of Coulombic systems at
unphysical (negativé values of €. Popov and Sergeev
[22,23 used a modified version of Dyson’s analysis to show
that the divergence of dimensional expansions is due to the
instability of the minimum ofW, in complex coordinate 0 D ; , ;
space. They were able to determine the asymptotic behavior 0 5 10 15 20 25 30
of the & expansion for B * by calculating the rate at which
the system can tunnel out of the minimum \&, along a
complex sub-barrier trajectory. The result for @R<R; is FIG. 1. Accuracy of summation approximants vs ordesf the
that perturbation expansion for the ground-state energy of Hvith

R=1 (¢) and R=4 (X). The ordinate is—10g;q(Eapprox
Ev/Ef 1~ 561k’ (24) —Eexac)/Ee_xa_cl, which is a continuc_;us measure of the number of
accurate digits. The curves show fits according to B4).

number of accurate digits

where 8, is a constant that depends &naccording to the
0 P J PL(3) Ry()

equationg35] _ _ 1/2
q Frenmg(9) 0u,(9) + 0 (d) (1-96/69)7 (29
8= {—arctanh{, (25 .
whereP,, Qy, andRy are polynomials of degreds, M,
{=(1-3nY(1—7)t (26) and N, respectively, which can be determined by solving a

set of linear equationgd]. We substitute Eq(29) into Eq.
(28) and use numerical quadrature to obt&ih Substituting

2
(r—1)* _ (Dpnt B)(Dpn—1) 0<7<1/3. (27) this value into Eq(19) yields aDarboux-Borelapproximant,
T 4R ’ ' which we designates; n/uj- In practice we will use the
diagonal staircase approximant sequerBgoo;, Sjo,01]
To better characterize the singularity&t 0, it is conve-  Sj1.017, S1117y Sp1a2» - - - denoting the elements of the
nient to consider the Borel functioR(d) that is related to sequence a$, wheren=L+M+N+1 is the order of the
E’(6) by the transform perturbation expansion.

E,(‘s):f e~'F(st)d. 28 IIl. NUMERICAL DEMONSTRATION
0

We consider two different perturbation theories for the
ground-state electronic energy of ,H. The first uses
single-well configurations at thB — oo limit, with the elec-
tron equidistant from the nuclei. The second uses double-
well configurations, with the electron closer to one nucleus
than to the other.

The asymptotic expansion df is Eff:OFk&k, where F
=E,/k!. The location of the nearest singularity to the origin
in F(J) is given by lim_.Fy_1/F. It follows from Eq.
(24) that this singularity is at the poiné= §,. Numerical
analysis of our calculated values fdE, indicates that
Fr_1/Fi~8o(1+ 2 k1), which is consistent with a square-
root branch point irF() at ;. ) _
Previously[1] we evaluatecE’ by numerical quadrature ~ According to Eq.(18), a large enough choice of the free
of Eq. (28) with Padeapproximants substituted fér. Since  parametep will ensureR<R, for any value of the physical
Padeapproximants are able to use combinations of poles anthternuclear distanc®. Furthermore, we find that the posi-
zeros to model square-root branch cuts, the convergence tbn §, of the dominant singularity in the Borel function
this PadeBorel summation is somewhat better than that ob-steadily moves away from the origin @sincreases and this
tained from evaluatinge’ by direct Padesummation. Here decreases the rate of increase of Bje In practice, how-
we will use an even better method. It follows from Dar- ever, for givenR there is an optimal value fo8 beyond
boux’s theoren{36] that the asymptotic behavior & (5) which the convergence of the summation approximants be-
will be equivalent to that of a function of the form (1 gins to slow. We attribute this to th8 dependence of the
— 681 80)Y2g+h, whereg(8) andh(é) are analytic fors<é8,.  harmonic frequencies.
This suggests that we evaluate using Darboux approxi- Figure 1 shows the convergence of the approximant se-
mants quenceS;, with R=1 and 4 andD,,=3. ForR=1 we use

A. Single-well expansion
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FIG. 2. Summation accuracy and large-dimensional harmonic F!G- 3. Summation accuracy and large-dimensional harmonic
frequencies vs the paramet@r with R=3. The ordinate is¢(30), frequencies vs the paramet@®, with R=1.75. The ordlngte is
according to Eq(31). The value of(30) corresponding to thg «(30), according to Eq.31). The value ofa(30) corresponding to

that gives the maximumm, is indicated by an asterisk. The frequen- the B that gives the maximuno, is indicated by an asterisk. The
cies are in hartree atomic units. frequencies are in hartree atomic units.

B=0 and forR=4 we useB=6.36. In both cases the num- w,=2"12p %(2p5 ~R)YA4p72 +RH) 12 (32
ber of accurate digits as a function of ordeof the pertur-

bation expansion appears to increase according to the rel4ile pm satisfies the equation

tion [e R
i 8pm— Co(p2+R?14)%2=0. (33
lo — Egxacd! Eexadd = a(n), 30
910l (S~ Eexacd/ Eexact = a(n) (30 The conditiondw,/dB=0 implies that
wherea has the form & 128 ~ 5 E30 D (34)
0= R, === Dpn.
a(n)= ag+ agn2 31) (522+30y57)12 ™ Dpp—1 P

Figure 3 shows results faR=1.75, which is just slightly

below R, . Here the expansion fq8=0 does converge, but
the use of a positivg can greatly improve the convergence

The “exact” energies were obtained from FrantzigioN
program[37], which takes advantage of the separability of

4 o X ) .
the H, © Hamiltonian, solving the separated differential rate. As a general rule, we find for arbitraRythat 8= g,

equations using an iterative proced(ig8,39. - |
qln Fig. 2 wegshow the de?)enderll[lce ogthe harmonic freJ'VeS VETY nearly the best convergence, unlfgs<o0, in

guencies and of the summation accuracy on the parareter which casef3 should be set to zero.

AT N The solid curve in Fig. 4 shows(30) as a function oR.
in this case foR=3. As a measure of the accuracy, we use : . .
The curve was calculated using the optimal values3fdie.,

«(30). Using the fitted expression avoids the essentially ran- ; '

dom fluctuations that would result from showing the actual”™ or zerg and in general we determined the parameteys

value of a given approximant. It is the antisymmetric normaland o, by least-squares fitting to the results from. GrAers

mode that becomes unstable, with frequenrgy=0, when 1_30.' However, foR<1 the convergence at very high or-
ders is degraded by roundoff error in tRg, which we cal-

R=R., which in this case correspondsfie=1.6.w, reaches ¢ ated using quadruple-precision floating-point arithmetic.
its maximum value ap~4 and then decreases only very |, the fittings we omitted any points at orders beyond that at
slowly with increasing8. The summation accuracy behaves yich the accuracy of the convergence exceeds the precision

in @ manner that is qualitatively similar to that @f. There ¢ the E, at that order. For example, Bt=0.25 we used only
is a rapid drop ine(30) whenw, approaches zero, but only e results through order 20.

a gradual decline at larg8. This decline at larges is per-
haps due to the decrease dn, and w, canceling out the
beneficial effect of the slower divergence of thg. o
It would seem that a safe choice f@ris the valueg,, For R>R, the largeb limit gives a pair of degenerate
corresponding to the maximum af,. The explicit expres- solutions corresponding to the two minima in the effective
sion for w, is potentialW,. Electron exchange from tunneling between the

B. Double-well expansion
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FIG. 4. Summation convergence vs internuclear dist&cehe 3 3 6 7 8 ¢ 0

solid curve showsy(30), according to Eq(31), using the single-

well expansion with optimal as described in the text. The point  F|G. 5. H, * total energies, in hartree atomic units, for ther},

corresponding to the equilibrium bond distance is indicated by amnd 2po, states. The mean energy of these two states is shown as
asterisk. A dashed curve is used R+ 1 because these results are 5 dashed curve, while the dotted curve is the variational energy for
estimates USing a maximum order of less than 30. The dotted CUrV@ Simp|e two_parameter wave function centered on Only one of the

shows the accuracy of the double-well expansion, definee(8)  nyclei. Points represent converged Darboux-Borel sums for the
with the exact mean energy of the lowest tunneling pair used fogouble-well 1D expansion.

Eexactin EQ. (30).

timates from the I coefficients and we use it here in cal-

minima gives rise to an energy splittingE. Kais, Frantz, culating Darboux-Borel approximants.
and Herschbachl8] used the instanton method to compute ~ The energies obtained from the double-welD léxpan-

AE and derived the expression sion in this manner are shown in Fig. 5, along with the exact
1soy and 2o, energies and their average for comparison. It
AE~27"YAD—-1) Y exf —(D—1)(R—In 2R)/2] is seen that in the large-limit, our results approach the

(35) ~Mean energy quite accurately, but the deviation increases
rapidly asR decreases.
in the largeR limit. In the limit D— it is clear from Eq. This behavior can be understood as follows. Consider a

(35) that AE is subdominant to the asymptotic expansion variational wave function composed of a linear combination
going to zero faster than any power &f "of atomic functions, centered on the two nudeandB [41].

The singularity structure of the energy functi&{ ) is EOIng thisHecuI/arliqgatloE Ieaﬂs to thderalr of elligen}llalues
similar to that for the single-well expansion, consisting firstm?l;“(1 n?gt_rix éIBe)m(erEs ;’rf\élv=(<a,rAe|B)AiAsa':Ee ocgrgre intaemrla;l
of a second-order pole @t=1 whose residue corresponds to b gral

: - . L SinceH,5<<0, the ground state i§, . In the largeR limit,
the sqluu_on of .theD—l 5-func_t|on Hamiltonian. A new the overlap integrab vanishes and the pair of statés are
complication arises, however, in the fact that the ldbge-

imi q he d q symmetrically split abouH,,. However, asA andB move
imit now corresponds to the degenerates} and 200y (joser together an® increases, the excited stae has a
tunneling pair, while foD =1 the 2o, state is unbound for

D1 s be3 - larger separation frorkl 5, than does the ground stafe, .
R®7'<1 (corresponding toR""*<3 for g=0) [33]. In This phenomenon is illustrated in Fig. 5, where we also
practice, it is found that the residue in the numericd 1/ ghow the energy 54 resulting from a simple two-parameter
series correspondapproximately to theD=1 1soy eigen-  variational wave function comprised of hydrogenis and
value for smallR (where the Po, state is unboundand to  2p, orbitals [42]. These energies followbut lie slightly
the mean of the twd® =1 eigenvalues for largR. For in-  above our 1D results; a more complicated variational func-
termediateR, the residue lies somewhere between these twdion (still centered on nucleud) should exhibit even better
theoretical values, but we obtain adequate results by remowagreement.

ing a second-order pole with resid& ~* when the Do, There are thus three sources of error in using the double-
state is unbound ab=1 and residue E>=1+EP=1)/2 well 1/D expansion: the limited convergence of th® I3e-

g u . .. .
when both states are bound. ries for E(6), the limited accuracyapproximately 1-10 %

As in the single-well case, there is also an apparenP _pr.actice of the semiclassical estimates for.the energy
square-root branch point singularity in the Borel function. SPIitting AE, and the complete neglect of the splitting asym-

Popov and Sergee\22] have shown that its locatiod, is metry, which cause&(9) to lie S(_)mewhat below than the
given by[35] mean energy of the tunneling pair.

We find that the Darboux-Borel approximar(sr other
approximants such as PaBerel) usually converge to one to
50:2( 70 —arctanhno) , (36)  four more digits than this splitting asymmetry, i.e., the sum-
1- 7% mation is precisebut notaccurate at least relative to the
average of the doy and 200, energies in Eq(30). For this
where 7, is the spheroidal coordinate for the frozBr— reason a scaling paramet@r=0 is adequate, although in
geometry. This branch point agrees well with numerical espractice it also happens to yield the nearly optimal conver-
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gence. This is because the accumulation of roundoff error isystem dissociates in the conventional la@ydimit and a
the calculation of expansion coefficients is more severe fosimple charge-renormalization procedure gave a stable large-
B<0, while the branch point in the Borel function moves D limit and a summable large-order expansion.
closer to the origin and thus has a greater dominance in the For H, * we have carried out the renormalization through
expansion coefficients for increasing>0. These two ef- a coordinate scalingWe initially attempted to treat this sys-
fects tend to worsen convergence for increagglg(for both  tem using charge renormalization, but found that the conver-
positive and negativg), resulting in the optimal parameter gence was very pogrCoordinate scaling is a popular ap-
lying near3=0. proach for renormalizing perturbation theories in which the
For comparison with the summation accuracy of theHamiltonian consists of operators that are homogeneous with
single-well expansion, we take the difference between thdifferent degreef44—46¢. Within the Born-Oppenheimer ap-
converged Darboux-Borel sum and the average of the exagroximation the electron-nucleus potentials in molecular
1soq and oo, energies. This reflects the error due to theHamiltonians are inhomogeneous and this leads to unphysi-
neglect of the splitting asymmetry, which dominates anycal zeroth-order limits. We avoid this problem by replacing
convergence difficulties. However, it neglects any errors irthe scaled internuclear distance witbandependent param-
the calculation ofAE, which in practice would limit the eter that is numerically equal to the scaled parametdd at
obtainable accuracy even further, to two or three digits at=3. Thus the renormalization of diatomic molecular Hamil-
most using semiclassical expressions developed thus faonians is essentially equivalent to a rescaling of the internu-
[17]. We conclude that the accuracy at laRyés at this point  clear distance.
limited by the accuracy of the available expression Adf Our criterion for setting the renormalization parameser
and not by the convergence of theexpansion. The conver- is different. The usual approadd3,46 has been to use a
gence at 30th order as a function Rfis indicated by the variational principle to determine the optimal parameter
dotted curve in Fig. 4. value. Our choice of3 so as to maximize the antisymmetric
frequencyw, is supported by the striking resemblance be-
tween the plots ofv, and of the summation accuracies ver-
susgB in Figs. 2 and 3.
IV. DISCUSSION Dimensional perturbation theory appears to be a promis-
) ) ing approach for describing many-electron effects such as
When the internuclear distanée becomes equal to the ejectron correlatiori48] and London dispersion forcé49].
critical valueR,, the largeb effective potentiaW, under-  Although we have formulated our theory for diatomic mol-
goes a transition between a single well and a double well. Irecules with an arbitrary number of electrons, we have pre-
the original formulation of the dimensional scalifit?] (cor-  sented results only for the one-electron casg HUntil re-
responding to setting our paramefto zero, ~Rc is equal to ~ cently, large-order D expansions had only been calculated
9/3/8~1.949. It is probably no coincidence that this valuefor problems with at most three degrees of freedom. How-
is very close to th® = 3 equilibrium internuclear distance of €ver, such calculations with at least six degrees of freedom

1.997. Tan and Loesdi4] have noted thaR=R, maxi- are now feasible using the linear algebraic algorithm of Dunn
. . C

mizes the delocalization of electron probability between thee.t al.[7]. Systems with more degrees of freedom can in prin-

nuclei (sinceW, flattens out in the vicinity of the minimum ciple be_'Freated usin_g a related algorithm that incorporates
when W, /3z2~0) and according to an analysis of the separability assumption$0]. Many-electron molecules also

electronic wave function by Feinberg and Ruedenhédfi, undergo a symmgtry-breaking Fransition Bsranges from
such delocalization maximizes the strength of the chemicgf"® Single-well united atom limit to the double-well sepa-
bond. In fact, Tan and Loeser suggested using a dimension ted atom limit. Therefore, we expect that our renormaliza-

scaling essentially equivalent to our E43) in zeroth-order  "O" procedure will still be applicable. It is possible that the
) ~ . most straightforward dimensional continuation of the Hamil-
DPT with 8 chosen to ensure th®=R;. A similar ap-

; : tonian, as developed in Rdfl4], will not be an appropriate
proach was used in a recent study of Hwithout the Born-

. L i starting point for a large-order perturbation expansion for
Oppenhemer approximation within first-order DPA1]. ) molecules with more than two electrons due to the fact that
Here, in contrast, we have shown that farge-orderdi-

. . > i at largeb there are internal coordinates that become redun-
mensional perturbation theory it is best to choose the dimeng,nt atD=3. In that case it would be necessary to use an

- . . 2 . . -
sr:onalhc%r)tmganon S|UCh thatzwolalz IS mdaX|nr1]|zedeven alternative definition for theD-dimensional Hamiltonian
though this gives a less accurate low-order theory. OUr apg;it oyt redundant coordinates to ensure that the energy ex-

proach has much in common with various “renormalized” . <ion converges to the physical solution
large-order perturbation theories that have been developéodgi ¢ Py '

for anharmonic oscillators and for atorfi43—-47. For ex-
ample, Killingbeck[43] showed that a summable large-order
expansion could be obtained by partitioning the potential of a
double-well anharmonic oscillator so that the zeroth-order
limit corresponded to a single-well harmonic oscillator. A This work was supported in part by grants from the Na-
similar approach has been usp#l7] to calculate a large- tional Science Foundation and the Robert A. Welch Founda-
order 1D expansion for the ground-state energy of H'hat  tion.
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