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Three-dimensional quantum solitons with parametric coupling
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We consider the quantum field theory of two bosonic fields interacting via both parar(ethic) and
guartic couplings. In the case of photonic fields in a nonlinear optical medium, this corresponds to the process
of second-harmonic generati¢via xy® nonlinearity modified by they® nonlinearity. The quantum solitons
or energy eigenstatébound-state solutionsre obtained exactly in the simplest case of two-particle binding,
in one, two, and three space dimensions. We also investigate three-particle binding in one space dimension.
The results indicate that the exact quantum solitons of this field theory have a singular, pointlike structure in
two and three dimensions—even though the corresponding classical theory is nonsingular. To estimate the
physically accessible radii and binding energies of the bound states, we impose a momentum cutoff on the
nonlinear couplings. In the case of nonlinear optical interactions, the resulting radii and binding energies of
these photonic particlelike excitations in highly nonlinear parametric media appear to be close to physically
observable value$S1050-294{08)05109-9

PACS numbg(s): 42.50—p, 03.65.Ge, 11.10.St, 42.65.Tg

I. INTRODUCTION The most elementary interaction of this type is the cubic
coupling between two creation operators and an annihilation
Quantum solitons were defined in Lee’s early work onoperator(and vice versa, on grounds of HermitigityCubic
nonlinear quantum field theory as the bound states of a quarouplings are, of course, basic to QED and QCD, where they
tum field[1]. Thus they are generalizations of the nonlinearinvolve both fermionic and bosonic fields. These theories do
solitonic solutions of classical wave theory, to include quanot appear to have exactly known solutions in four-
tum fields. In this sense, there are a wide variety of quantundimensional space-time, and are usually treated by various
fields capable of being analyzed. Since quantum field theorgpproximations. The most prominent of these is the Feynman
is generic to many areas of physics, we can expect thesdiagram method or perturbation theory, which is generally
entities to be universally significant, in all areas where thereonjectured to be nonconvergent.
are nonlinear interactions involving quantum fields. It would be useful to have a cubic interaction theory
It is possible to treat ordinary nonrelativistic quantum me-which was exactly soluble, to give some guide as to the
chanics as a quantum field, so this definition includes theossible variety of behavior in this class of widely used
ordinary two-particle bound states of quantum mechanics aguantum field theories. In particular, one would like to in-
an exactly soluble case. Other exactly soluble cases includeestigate whether the resulting quantum solitons have any
the many-body bound states of bosons interacting &ia differences resulting from dimensionality, or from the pres-
function interactions in one space dimension. This modeknce of interactions that change particle number. Surpris-
(often called the nonlinear Schitimger model was solved ingly, the simplest cubic interaction involving two boson
by Lieb and Liniger, McGuire, and Yari@]. Recently it was fields—the parametric interaction of the fori#'®?—has
predicted that this soluble model could lead to experimennot been analyzed for bound states in higher dimensions,
tally observable quantum effects including quantum squeezeven though the corresponding classical parametric theory
ing in optical fiber solitong3,4]. This prediction is now has stable higher-dimensional soliton solutiph§].
verified experimentally5]. In this paper we consider this problem of bound states in
Other examples of exactly soluble models like the Hub-parametric quantum field theory, and find some exactly
bard model [6] are generally restricted to one spacesoluble cases with unusual and previously unexpected prop-
dimension—except for Laughlin’s highly innovative theory erties. The model is a traveling-wave analog of the quantum
of an idealized model of two-dimensional electron gas in artheory used to describe squeezed states in quantum optics
external magnetic fielfi7]. This was able to explain the phe- [11,12, and more recently molecular dissociation in atom
nomenon of the fractional quantum Hall eff¢&. optics[13]. The problem is all the more interesting because
Each of these soluble cases has led to substantial intechnical advances in nonlinear optics and laser physics are
provements in our understanding of quantum theory, tonow reaching the point that this type of bound state could
gether with new and interesting physical consequencefecome experimentally accessible in the relatively near fu-
However, there are few exact solutions in two or three spacture. In addition, we mention that the model may be applied
dimensions, except for physically inaccessible models likgo the physics of ultracold atoms and Bose-Einstein conden-
the quantum Davey-Stewartson moff@)]. This is especially sates, as describing nontrivial excitations in hybrid atomic-
true if we look for nonlinear quantum field theories which molecular system§l14]. This application, however, will be
include the most fundamental property that distinguishe®xplored in a greater detail elsewhere.
guantum mechanics from quantum field theory—that is, the Our results have a number of unexpected features. The
ability to create and destroy particles. most surprising is that while the simplest parametric theory
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has bound states in one space dimension, it is unsthkée  energy, or two particles of lower energy. The three-particle
the nonlinear Schadinger model with an attractive problem is considered in Sec. IV. There is no exact solution
&function potential in higher dimensions. However, unlike here, but the binding energy in the one-dimensional case can
the nonlinear Schidinger model, this instability shows no be estimated variationally. In Sec. V, we analyze the cutoff-
trace at the classical levgl0]. We note that in the case of dependent Hamiltonian which corresponds to a restricted
the nonlinear Schidinger model, the higher-dimensional in- fange of relative momenta of the interacting fields, and
stability has a classical analog; the self-focusing singularityPresent exact finite-size solutions. In Sec. VI, we present
For a stable parametric quantum field theory the Hamiltoniarffumerical estimates for the binding energies and radii of the
must therefore be modified. solutions in the case of nonlinear optical parametric interac-

We next investigate the effects of modifying the nonlinear®": and S_hO.W that effects treateg hgre could resu'lt in ob-
interaction by adding quartic terms to the Hamiltonian. Quar_serv_able binding energies and radii. Finally, we provide con-
tic coupling corresponds to a nonlinear refractive index inCIUdIng remarks in Sec. VII.
the corresponding optical medium, resulting in self- and
cross-phase modulation terms. It is also found as a short- Il. HAMILTONIAN
range interatomic potential in atom-atom interactions. With a The quantum effective Hamiltonian we consider has the
positive quartic interaction, a rigorous lower bound to thefo lowing f .
. ) g forms[3,12]:

energy does exist, and we demonstrate the existence of exac{
two-particle bound-state solutions in higher dimensions. H=Hg+H 1)
These new types of quantum solitons have a unique charac-
ter: the solution has a finite binding energy, but the corre-
sponding two-particle wave function has a zero radius. The Ho:ﬁf d®)x
point-like structure of these bound states can be termed a
“quantum singularity.” No analogous behavior exists in the )
corresponding classical theory, which is kno\t0,15 to
possess stable, finite-size classical soliton solutions. H. :ﬁf d(@x

The reason for this unexpected behavior is that the funda- nt
mental structure of the new solution is inherently nonclassi-
cal, being a quantum superposition of two states, with one of + 0| 0|22+ D \ytag2
them having a singlé¥-type) boson and the other having 2
two (d-type) bosons present. This is a bosonic analog of the . .
quark model of mesons, with thk-type bosons behaving as Here ® and ¥ are two complex Bose fields which we term
“quarks,” and theW-type boson taking the role of “gluon.” Subharmonic and second-harmonic fields, respectively, in
However, unlike the usual meson, the system has a finit@halogy with the nonlinear optical process of frequency con-

i|Vc1>|2+ i|V\P|2+p‘PT\I’
2m 2M '

K
Xz—D(q>2xlfT+<I>T211f)+7DcpT2q>2

. 3

probability of having no “quark” present at all. version. Their commutation relations are given by

An alternative way of modifying the Hamiltoniaftfor oo fron )
higher-dimensional solitonss to impose a momentum cut- [P ), @ (x")]=[W(x), W (X")]= 8(x=x"),
off on the nonlinear couplings. In this case exact two-particle o , (4)
bound states are shown to acquire finite radii in higher di- [P(x), P (X")]=[DP(x),¥(x")]=0.

mensions. Moreover, finite-size multidimensional bound N ] ]
states occur even without the stabilizing quartic term, that isin @ddition,mandM are corresponding effective masses, and
in the simplest version of the theory—pure parametric inter iS the phase mismatch, whilg, and«p, 7p, op are the
action. coupling constants responsible for the parametric interaction

We also investigate the three-particle problem in onelthree-wave mixing or frequency conversjoand higher-
space dimension. While no exact solution is found in thisorder (quartiq interactions, respectively, i (D=1,2,3)
case, the existence of a three-particle bound state or gPatial dimensions. _ .
“bosonic hadron” is shown using a variational approach. ~ TO construct the general candidate for the eigenstate to
pendence on dimensionality, giving rise to the appearance dfansforms pairs of subharmonic quanta into single second-
quantum singularities with zero radigsnless there is a cut- harmonic quanta, and vice versa. That is, the Hamiltonian
off), and a finite binding energy, in more than one spatialfjoes not conserve correqunding particle numbers. However,
dimensions. With a cutoff included, the corresponding boundt does conserve a generalized particle number, or Manley-
states have finite radii and binding energies, even without thEowe invariant, equal to
stabilizing quartic term. Compared to other models of two-

hoton bound states in nonlinear optfd$)], the parametric _ _ (D) 2 2

gystem has the advantage of hig?ler bindinz energy and N=No+2Ny f a1+ 2], ®
greater stability.

The paper is Organized as follows. In Sec. ||’ we consider In addition, since the Hamiltonian is translation inVariant,
the Hamiltonian and discuss its general symmetry propertie must have a momentum conservation law Ryrwhere
and possible eigenstates. In Sec. Ill, we show that there are _
exact solutions for the tqu—particlg problem, which havc_a the p—_ ff dOX BT (VD) + ¥ (VW) +He  (6)
character of a superposition of either one particle of higher 2
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We therefore search for states that are eigenstateis®f  ~(242/m)[d(®)x|Vg(x)|?, appearing by integration by
andN. These must have the form of a superposition state: parts, we reduce the calculations to a chain of algebraic in-
(N/2] equalities, and finally obtain that i,>0 and
(N)y — D)y....q(Dd) )
)= 2, f f a0 h(xp)?>2Akp, ©)
NI K where A=—#2K?/(4m)+#2K?/(2M)+%p and K=|K],
xgg\lN)j(xl, ce XN ) exp(i N_Jl) then the lower bound, can be defined by
<1 N—
. _ 2K2 F(v)? @] o2
i N—j E = +hip— (XD) $<‘P 2| |‘Pz > (10)
<1 whx) 11 @"(x)[0), ) 2M 20 (¢@]e'?)
=1 15741
whereK =P/# is the total center-of-mass wave-vectdy/2] A. Variational analysis
is the integer part oN/2, j denotes the number oF field To evaluate an upper bound to the lowest-energy eigen-

operators present in each term, and the func@jﬁﬁj only  value of our Hamiltonian, we use a variational approach. In
depends on the relative coordinates. We note, however, théte one-dimensional cas® & 1) we choose, following the
unlessM =2m, the Hamiltonian is not Galilean invariant structure of the known exact solution for the pure parametric
(under velocity boosts the Hamiltonian changes its form interaction[17], a trial functiong(r) in the form
and it is certainly not Lorenz invariant. In the case of non-
linear optical interactionésee Sec. V| this is related to the g(r)=goexp(—|r|/R), (11
fact that the group velocity for the two optical fields in the -
nonlinear medium will usually only match at one preferredWherer:Xl_Xz’ andR can be regarded as a Chal’aCtEI’IStIC
pair of frequencies, called the group-velocity matching fre-Size parameter. Calculating the variational energy
guencies. =(¢@H[e®)/(eP)]?)) gives

For simplicity, we focus on the nontrivial cases of two-

ar}d three—partiplel‘qzz andN=3) _l:)o‘l‘md-state”solutions in_ E= h2K? + 1 [Z_ﬁz g_§+2hklg(2)+ 2fix100+A|.
this paper, which we term bosonic “mesons” and bosonic im 14 ZgSR[ m R

“hadrons,” in analogy to the well-known quark model. It (12)
should be pointed out that in these particular cases the quar-

tic self-interaction term £ op) for the ¥ field in Eq.(3) has We then minimizeE with respect to the parametegg

no effect on the solutions, since the two- and three-particle,;yr As a result we obtain that the variational enefgy

eigenstates have no more than one s_econd-harmonic quanéﬁbject to localized bound state formatidR>0), is mini-
Therefore this term can simply be omitted through the rest ofi-e( at

the paper. As to the quartic cross-interaction teravyg), it

may only affect the three-particle results given in Sec. IV, X1 2171
and therefore will be omitted elsewhere. We also note that, at Y L = (13
the classical level, the interplay between cubic and quartic
interactions in nonlinear optical solitons was studied in Refang at the optimun® value determined from
[15]. To provide closer comparison between quantum and
classical results, we would need to proceed with general mul- i (x1)? 25 A 72k, 243
tiparticle quantum solutions, which, however, are not studied Aky— > }R3+ m R?+ m R+—=0.
here. m
(14
lll. TWO-PARTICLE EIGENSTATES: BOSONIC MESONS Analysis of this cubic equation shows that there always

We first consider the two-particle problem. In this case weSXists one positive solution fdR if condition (9) is met. The

may rewrite the two-particle eigenstate candidate in the folfinal result for the minimal value d&, which corresponds to

lowing explicit and symmetric form: the exact eigenvaluk in this one-dimensional case, is
h?K?  R?
(2)y= fd(D)xe““X‘I'T X +f fd(D)x d®x E= -—. (15)
Lot { (X) 1 2 am  mR

|0y, (8  Thus a finite-size two-particle quantum soliton or a bosonic
meson is shown to exist in our model in one dimension.

In the cases of two and three dimension® (
=2 and 3), we use the trial function

X g(Xg—Xp) e X2 T (%) D T(xy)

Whereg(xl—xz)zg(zz)(xl ,X») is the two-particle wave func-
tion, andg{?(x;)=1.

To prove a lower bound on the Hamiltonian energy, g(r)=geexd —(|r|/R)%], (16)
we apply Eqg. (3) to the ansatz|¢®) and use the
symmetry property of the two_partide wave function: wherer=x;—X, and s=0. Calculating the variational en-
g(x)=g(—x). Then neglecting the positive term ergyE we obtain
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= 2-D/2 D\ , o] 1 xo
E=|14+22"P2x(D-1)I' 5 geRP =g7+KDg(0) . (24)
2?2
% hK +hip+2hxpdo+ 2h KpT2 Here£2u? can be interpreted as the binding energy of the
2M solution with momentunK, and x+/m is an inverse scale
- length; the solution is boun@gainst two particle decayf u
- i 2pD _ is real and positive.
+m(D 1)F( S)ZD/Sm goR™+m(D—1) Equations(21) and(22) can be easily analyzed using the
Fourier transform method. In this approach we seek for a
D-2 K2 S, solution to Eq.(21) in the form
X(D+s—=2)T 1+T MQOR ,
1
17 g(r)= Df d®k G(k)exp(ik-r), (25)
(27)

where D=2 and 3, andI'(z) is the gamma function.
Analysis of this expression shows that as a function of wherer =|r|.
parameterR}, s, andgo, approaches its minimal value in  Expanding thes function into a Fourier integral, we then

the limitsR®>—0 and s—0, and at find
9o= —xp/(2kp). (18 _
B q D) explik-r)
Again, condition(9) is assumed to be fulfilled to provide 9(r)=- (2P d k,u2+k2/m’ (26)

localized bound statedR(>0). The final result foE,,;, takes
the form of the expression fd, [see Eq(10)]. This implies

that the value of ,;,, evaluated by variational calculus rep-
resents the exact lowest-energy eigenvalue

h2K?2 fi(xp)? q (= expikr)  gym
E=—y Hhip— . (19 g(nN=-5_- deﬂhkz/m_— o exp( — u\m|r|).
(27)

wherek=|K]|.
In the one-dimensional cas® & 1) the integration gives

2KD

Returning to the form of the trial functiog(r) at the

optimum values of parameteRss andgo, we conclude that Using this result at =0 and the definition of, we solve

g(r)=go if r=0, for g(0) and find

-1

N=0 if r+0, 20 __Xxf o 2k
o) 20 00 == 5 mat = 29)
i.e., the two-particle solutions in two and three dimensions
have a singular pointlike structure, with a finite energy. Correspondingly, the energy eigenvalue then becomes
-1
B. Exact solutions _ S _ ﬁ(Xl)Z[ 2h _ﬁsz 22 2
E= oM +hp 5 K1t 7 hou
To understand in more detail how these singular solutions { \/ﬁ m

appear in our model, we now analyze our eigenvalue prob- (29)
lem H|¢®)=E| () directly. Applying our Hamiltonian to
the ansatz¢(®), one can obtain that the eigenvalue problem
is equivalent to the following simultaneous equations:

Hereu must be positive for a localized bound state. We note
that if we introduce the characteristic size parameter
R=1/(u\/m), this equation with respect & can be rewrit-

1 ten in the form of the cubic equatidi4). Hence, if condi-
—V2g(r)— u2g(r)=qé(r), (21)  tion (9) is met, there always exists one positive solution for
m . This proves the existence of a one-dimensional bosonic

72K2 20,2 meson of a finite size.

E= +ho+h 0)= B2, 29 The two- and three-dimensional results are qualitatively
2M p+1x09(0) 4m @2 different. In these cases we obtain, from E26),
wherer =x; —x,,K=|K|, and we have defined q B D-1
0 =——f dk———, (D=2,3), (30
2 9(0) 27P7 1o u?+k3m ( ). {
, K E
W= (23 _ .
dm 4 where we have transformed to poldor D=2) and spheri-

cal (for D= 3) coordinates. Using the definition gfwe next
and solve forg(0), andobtain
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-1

o
fo(u)

XD

0)= ﬁvq>2+ﬁvqf2
g(0)= > %| | m| |

: (31 HR:H—ﬁf d®)x

KD+

where we have defined
~tim | a0

. kDfl

fo(p)= fdk .
ol =5 571, 2+ Kk2m

32 =ﬁf d®x

p W+ %(@WH@”«P)

This integral diverges fob=2 and 3. Hence we find that Ko
g9(0)=—xp/(2«p), and the energ¥ is given by Eq.(19). + 7¢T2®2}sH. (33
With this result forg(0) it follows also thag=0, and hence
[see Eq.(26)] g(r)=0 if r+#0. That is, the exact solution  This can be easily applied to the ansgtt®) [Eq. (7)],
coincides with the variational result and confirms that theand if xp>0 andﬁp—ﬁ(XD)Z/(zKD)<o the lower bound
bound states in two and three dimensions have singulatan be defined by
(zero-radius structure. ) 3 3

Thus the results of this section show that our model E<3)=ﬁp—ﬁ(XD) $<‘P IH[¢™) (34)
Hamiltonian provides quantum solitons or two-particle ! 2kp (@] ) '
eigenstates in one and more spatial dimensions. They are ) o ) )
superpositions of a second harmonic and two subharmonithere we label the energies by upper indices to differentiate
quanta. We may regard them as the bosonic analog of twdhe two- and three—par(t;)cle.results. _
quark states in the well-known quark model of mesons: the NOW we compareE[™ with the lowest possible energy
sub-harmonic quanta behave likgosonig¢ quarks, while the elgenyalue of the two-particle _proble_m in two and three di-
second-harmonic quanta take a role of gluons. mensmns%q. (1?)]- The latter is realized a =0, and we

An important difference between the one dimensional ang€®€ thats;™ = E®(K=0). This implies that the extra sub-
multidimensional solutions is in their structure and depen'@monic quantum does not contribute to three-particle bind-
dence on the additional quartic interaction. In one dimensioff’d @nd remains free. Hence our model does not provide
the bound state has a finite characteristic size, and is availl'¢€-Particle bound states in two and three dimensions. This
able even without a quartic term in the Hamiltonian. In two conclusion may be modified if there is a cutoff in the relative

and three dimensions the bound states have a singular poi 10menta of interacting fields, but we do not treat this case
_ 1 SIS I 2 Rere.

like structure. The corresponding binding energy is finite if o : . .

and only if kp>0. If, however,xp=0 we obtain[see Eq. . The_ situation s ‘_"ﬁere”&) h‘(’;’)ve"i“ inthe one-
(19]] an energy collapseE . Thus, while the addi- dimensional case. In this caf”<E()(K =0), e once
tional quartic interaction prevents an energy collapse an§"® ma;gs)expegg)t thé(‘;) the true lowest eigenv will
makes the multidimensional quantum solitons available irsatisfy Ef’<E™<E'W(K=0). This will imply the exis-

this simple model, it does not prevent singularities in spacel€nce of a three-particle eigenstate or a bosonic hadron in one
unless a momentum cutoff is introduced into the Hamil-dimension. Alternatively, a one-dimensional hadron can be

tonian (see Sec. Y. proved to exist by variational calculus. In this approach we
evaluate a variational ener@®) such that its minimal value
IV. THREE-PARTICLE PROBLEM: BOSONIC HADRONS E®) — an upper bound to the lowest energy eigenvai(i@

Now let us turn to the three-particleNE3) problem, '—vl/iILsatisfy E(S)sE§?n<E(2)(K:O?. To ch(.eck tf;e inequal-
assuming thatpp=0. In this case a lower bound to our Ity EEni)n<E(2)(K:O), we choose trial funchong(2 )(Xq,X2)
Hamiltonian energy can be proved by considering the reand g(33)(x1,x2,x3) in the eigenstatée®)) in the following

duced Hamiltonian forms:
957 (X1, X2) = exXpl — [ X1 =Xyl /1), (35
957 (X1, X2, X3) = GoXP — [ X3 — Xa|/1 5= | Xo = X3| /1 3= [ X1 — X3 1 3). (36)

It is important to notice that this choice of the trial func- this case the resulting energy must be equal to the energy for
tions for the three-particle eigenstate incorporates the twothe two-particle bound state. If, however, the extra subhar-
particle bound-state problefwith K=0) as a limiting case monic quantum participates in three-particle binding, then
of I3/1,—% andl;/l;—2. In other words, the structure of the resulting energy must be lower. Correspondingly, the
the three-particle trial functions allows for the situation whenvariational energyE(® should be minimized at values of
the two particles form a bound state while the exttard)  parameters$,,l,, andl; different from the above mentioned
subharmonic quantum remains free, at a large distance. limits.
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Calculating  the  variational energy E® -1.0x107° : : :
=(o®H| e/ e®)] ), with use of the trial functions 1
(35) and(36), we obtain ]
. -1.5x10 1
o1 A ]
E(3)=N(61+52+53+€4), (37 = :
£ 2.0x10° 1
E ﬁZ(m+M)+h | (38 B
1= "5 Pl 1 3
2mMly -2.5x10° ] -
120315 41,(233+ 300l 3+ 1113) oo
”= — 3 > >3 | (39 0 20000 40000 60000
m [l 91341820 ,+71,12+13
K, (m/s)
Il 21415l 3
E3=4h X190 21, Tt s’ (40) FIG. 1. Three-particle variational ener@f), (broken ling vs

k1 (71=2k1), for p=0, M/Im=2, y;=7.39x10"\Jm/s, and#/m
=0.1 nf/s. The full line represents the corresponding result for the

o+ I
IMatls 8l, +hmy,, (41)  two-particle energy eigenvalg?.

2(1,+13)  3l,+13

64=2hxlgélg[

linearities, such as for silica optical fibers, can only giue
~10%-10 °m/s. With these realistic values of;, the
E® value and optimum characteristic size parameters are:
42 E® ~_24x10°5 eV, 1,=4.2 um, 1,=1.8 um, and s
=9.4 um. For comparison, the exact energy eigenvalue
E and the effective radiuR in the two-particle problem in
one dimension, with the same values of parameters, are
E@=-1.75<10"° eV andR=1.94 um.
Thus the results of this section prove the existence of a

Lalj2h [ 1 8l,

N=1+200 =115 [2(|2+|3)+(3|2+|3)2

It is easy to check that if we take the limitg/l ,— >~ and

l3/1,—2 and then optimiz&®) with respect to the remain-
ing two free parameters andg,, we will reproduce(with
I, being replaced byr) the variational results obtained for

the two-particle problen{,Eqs.(l_Z) and(15)] for K=0. three-particle bound state or a bosonic hadron solution in our
In the general case of treatlﬁg,lz,lg,, andgo as free 1 4el'in one dimension, provided that the quartic couplings

variational parameters we minimiZ£®) numerically. In the  are not extremely strong. An obvious difference of this three-

case of zero quartic couplings{=0, 7,=0) we find that  particle soliton, compared to other known solutigssch as

E® is minimized at some finite values bf ,3andgy, and in the ordinary nonlinear Schdinger model(NLS) [2] or a

that the above-mentioned limit of two bound particles plus aperturbed NLS mod€]18]], is in its structure which repre-

third free particle (3/1,—o andl;/l;—2) is not the opti- sents a superposition or entangled state, involving two dif-

mum. Correspondingly, th&®) value turns out to be less ferent interacting fields.

than the two-particle energy eigenvalE&)(K =0), imply- As applied to the nonlinear optical case, there is also an
ing three-particle binding. advantage of higher binding energies and accessible radii of
Inclusion of the quartic couplings, which are assumed tdh€ parametric quantum solitons. This is due to the stronger

" : : ic medi (
be positive here, will obviously increase tB&) value(de- X nonlinear effects in parametric media, compareg {3

: - effects in nonlinear optical fibers. For example, in the ordi-
crease its absolute value or the binding ener@e results . . ;
; . - _ nary nonlinear Schinger model the three-particle bound-
of our numerical analysis for the casgs=2«, andp=0 are

o = (3) state solutiorf2], available with an attractivé-function in-
represented in Fig. 1, Wh((azr)e we p|.5¢nin versusxy FOr  teraction(corresponding to a self-focusing nonlinear optical
comparison, the curve foE'*/(K=0) is also plotted. The material, with x;<0 in our notations has the following

results are given for the choice of the relevant parameters asergy eigenvaluén the case of zero momentyrand char-
applied to the case of optical interactions in a nonlinear maxcteristic radius:

terial (see Sec. \JI wherey; and k,; are proportional to the

second- and third-order nonlinear susceptibilitigé?{ and N(N2—1)

x®)), respectively. With a characteristic value pf=7.39 ENSY= —m(Kl)ZT =—m(ky)?, (43
x10'\m/s, M/m=2, and #/m=0.1 n?/s, our analysis N=3

shows thatE®) <E@ over a wide range ok, values, and

correspondingly the optimum values lgf,l,,15, andg, are R 2h (44)
different from the limit of forming a two-particle soliton plus NS m| k|

a free third particle. Approaching this limit &) —E®

occurs through developing ésecond local minimum (at With the choice ofi/m=0.1 n?/s and a silica fiber char-
|,/13,—0 andl;/I;—2), which becomes the absolute mini- acteristic value ofk;~5x10"°® m/s, this results irEf\ﬁ_)S
mum at large values of; (k;~4x10" m/s in the case of =-1.6x10"%° eV and Ry.s~40 km. Comparison of

Fig. 1). We note, however, that realistic values of cubic non-these values with the earlier estimates for the optical para-
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metric interaction clearly illustrates the advantages of theencountered in measuring atomic cross sections. It is opti-

parametric quantum solitons to be accessible. cally possible to measure the nonlinearities in strong coher-
ent fields, and also to operate under different types of veloc-
V. CUTOFF DEPENDENT RESULTS ity and phase-matching conditions to those assumed here.

Now let us turn to the analysis of the singular behavior of To resolve the paradox in the optical parametric interac-
Y g fion case, we note that the origins of the theory involve the

the two-particle quantum solitons in two and three Spatiarotatin -wave and paraxial approximations, and neglect the
dimensions. We note that these singularities represent a 9 P PP ' 9

rather unusual situation, since the classical counterpart of th |ghe|gqrdt|ardd|s;¥er5|on. Thlerefore, n hllgredr.fglme'nsm')fnshwe
theory has well-behaved and widely used multidimensionafould include, for example, nonparaxial difiraction if the

nonlinear-optical soliton solutions. Since we expect thecharacteristic size of the solutions becomes less than the field

quantum theory to be correct, this leads to the “paradox” ofc&rTier wavelengths. Alternatively, we may modify our inter-
how a singular quantum field theory can describe real physi@ction Hamiltonian in a way that will not result in singular
cal processes. We note that a related paradox is known in tHéructures, consistent with the paraxial approximation.
theory of a Bose gas with a repulsivfunction interaction A possible way is to incorporate the fact that parametric
[19], which is commonly used to model Bose-Einstein con-couplings of the type found in E¢3) are usually restricted
densation. In the atomic interaction case, either a momentur® a finite range of relative momenta or wave numbers. To
cutoff or other regularization procedurf20] are needed to represent this we can introduce a cutoff| lat=kyy in the
provide a physical interpretation for the three-dimensionarelative momenta of the interacting fields. We choéiggy
S&-function interaction potential. ~2m/\y, where\, is the carrier wavelength of the subhar-

Provided the cutoff is chosen correctly, it should not bemonic field ®. The interaction part of the Hamiltonia(3)
necessary to renormalize the values of the observed nonlirgan then be expressed in termsagk) andb(k), the Fourier
ear parameters, if optically measured nonlinearities are ineomponent of® and ¥, so that its cutoff dependence is
volved. This is because nonlinear optical parameters are opmplemented through the limits of the corresponding inte-
erationally measurable under different conditions to thosegrals:

D
Hmﬁ@f d(D)K[XDJlkmaXd(D)k[aT(kQaT(k)b(K)+H.c.]

kmax
+KDJ Jlk ) Od(D)k1d<D)k2aT(k1+)aT(kl,)a(k2+)a(k27) _ (45)
PE

Herek-=K/2*Kk, the commutation relations fa(k) wherek= k|, and we have used the same notationsfand
and b(k) are given by [a(k),a’(k’)]=[b(k),b(k")] g as in Egs(23) and(24). The above equations are Fourier
=8(k—k")/(2m)P, and other quartic terms have been omit- transform equivalents of Eq&1) and(22), except that now
ted since they have no effect on the two-particle solutions. they are valid fork| <Kkmay-

We can now analyze the eigenvalue probléhhe(?)) In order to evaluate the binding energy and the effective
= E|(p(2)> directly, in Fourier space, by introducing a cutoff- radius, we must next solve f@(0). After a little algebra,
dependent Fourier transform g{r), so that we find

XD h }1
Kmax 0O)=———|kpt7—F7—7<| , 49
0= ——5 | ™ dPkeexikn, 49 ] KA S 49
(2m)PJik=0

where the cutoff structure functions
This implies that, due to the cutoff in the nonlinearities, we

need only investigate eigenstates for whigtk) vanishes if 1 Kmax kPt
|K|>Kmax- This leads the following simultaneous equations foluKmad = S5 070 f dk———
H ’ . 2 T 0 uotka/m
or an eigenstate:
2 (D=1,2,9
_+/~L2 G(k): —q, . . . .
m (with [x/2] being the integer part of/2) are given by
2K2 2K 2 \/a kmax
- - — 52,2 fi(,Kma) = —tan ! :
E= Sy Hhethxo9(0)= 4 ——h%u?  (48) 1(#,Kmax) p— m
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: (50

m
fo( i, Kmax) = E'”( 1+ ,U«Z_m

kmax

pm

m
fa(u,Kmax) = 2_772{ Kmax— :U/\/atan_ !
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The effective radii of the solitons are defined &,
=1/(u+/m), since this define the characteristic distance over
which the two-particle wave function can decay.

VI. APPLICATION TO NONLINEAR OPTICAL
INTERACTION

As an application of our resul{én the two-particle cage

This result clearly shows the difference caused by theg 3 realistic physical system, we consider the nonlinear op-

dimensionality of the space. In one dimensidn(w,Kma)
approaches a constant valuekif,,,—«, while in two and
three dimension$p(u,kmad has a logarithmic or linear di-
vergence, respectively.

tical process of frequency conversigecond-harmonic gen-
eration. In this case the actual Hamiltonidty, is asymmet-

ric with respect to longitudinal and transverse coordinates,
and is given by10,17]

The effect of this divergence depends on whether or not

the additional quartic interaction is present. If it is present
(with xp>0), there are exact solutions without cutoff, and

g(0)=—xp/(2«p), so that the energy eigenvallietakes
the form of Eq.(19), andg(r)=0 if |[r|>0. In other words,

the solutions in two and three dimensions have a finite en- +
ergy (unlike the energy divergence in the nonlinear Sehro

dinger model with an attractivéfunction potentigl but zero
radius in the limit ofk,—«. If, however, kp=0 (or is
negative, as in the case of attractive nonlinear Stinger

52 72
= Dy [ — 2 2
Ho fd X (2m||vq>| + o] )
2 2

2
o VY o

|V, w2 +ﬁp\IfT\I’}.
(56)

Here® andWV represent two optical fieldsubharmonic and

mode), we must impose a finite cutoff on the couplings to second harmonjcwith carrier wave numberk,; and k,
prevent an energy divergence. Simultaneously, a finite cutof- 2k, . The corresponding frequencies asg= w(k;), i

prevents singularities in space.

=1,2. The quantityp is now identified as a phase mismatch

With a finite cutoff, the general result for the energy ei- term, given byp=w,—2w,. We choose, for definiteness,

genvalueE is given by

K2 Ao T
ST am T T O k)
h2K?
_ _ 32,2
7, (51)

the x axis in the direction of propagation, so that the coordi-
natex is defined here in a moving frame with=x, —vt,
where x_ is the laboratory frame coordinate and
=dw;/dk is the group velocity which is assumed equal at
both frequencies. The transverse coordinatey anmed (y,z)
in two and three dimensions, respectively, so fiats de-
fined asV=d/dx, while V, is given byV, =4d/dy in two
dimensions, or has the vector componenisdy,d/dz) in

whereu must be positive for a localized bound state. Analy-three dimensions. The effective longitudinal masses

sis of this equation with respect t@ shows that under a
certain condition a positive solution fqr is always avail-

=hlw] andM=%/w; are caused by the group-velocity dis-
persion, wherew! = 9°w; / 9k? is the dispersion coefficient in

able. This condition, in the cases of one and two dimensionshe ith frequency band. The lower-frequency dispersion co-

can be written in the form of Eq9), while in the three-
dimensional case it is modified to

2 Wzﬁ)
MKnax/

In the simplest case ofp=0 andA=0, and in the limit

fi(x3)*>2A

K3 + (52)

Kmax>i+/M ONe can write simple approximate results for the

binding energie€E=7%%u? in one, two, and three dimen-
sions 0=1,2,3):

(Xl)z\/m
Ey=h2u?= i (53
(X2)2m Kimax

Ef=h%u?~-"—1n : 54

2

m
Eg:ﬁzﬂzzw_ (55)

T

efficient w7 is assumed to have a positive value. The trans-
verse masses, =% w,/v? andM | =fiw,/v? are caused by
diffraction, and the corresponding termhty is relevant only

in the case of two and threeDE2,3) spatial dimensions.
The coupling constantgp and kp are proportional to the
second- and third-order nonlinear susceptibilitig§?{ and
x®) of the nonlinear medium, respectively.

As we can see this modification in the Hamiltonian does
not affect the one-dimensional results of the previous sec-
tions, with the effective massesandM being interpreted as
the dispersive onesn=m; and M=M,. However, it does
affect the two- and three-dimensional results, so that they
need to be slightly modified.

The modifications are not of qualitative character, and the
final form of solutions obtained as in Sec. Il B for the two-
particle bound states can be reproduced by some formal re-
placements. In particular, the relatio$/m andk?/m must
be replaced by

2
K

m,

K2 KZ K% k2
AN I T

m m m’' m

k?

m,’
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and similarly for the case of mas4é instead ofm. Equations 2.m2h
(21) and(22) are now rewritten in the following forms: h(x3)?>2A K3+ ,
M, Kpa(1—Inym, /my)

1 1
(HVZWL e Vf)g(r)—,uzg(r)zqé(r), (58 where the above replacemefi. (57)], are included in the
[ L definition of A.

(65

22/ K2 K2 We notice that the phase mismatghas a strong effect
Sl i B +hp+h 0 on the solutions, changing both the characteristic radius and
ALY, p+fixpg(0) = SC _ : _
I L the binding energy. In the three-dimensional case, if the
22(K2 K2 guartic interaction terme; is absent, then Eq65) implies
SR i —#h2u2 59 that p cannot have a large positive value. On the other hand
=7 m + m, U (59 p gep . '

if p is large and negative then the effective radius is very
small. Thus it is optimal to chooge<0, although in one and

. . 2 - .
whereq is given by Eq.(24), andp™ is now defined as two dimensions this does not appear essentiahi=0 [see

1/ K2 Ki E Eqg. (9)].
ul= _(_” +—=]-—, (60) In the casex,=0 andA =0, Egs.(61) and(63) and(64)
Amp om g lead to the following simple results for the soliton binding

. . . energies in two and three dimensions:
so that, as in Sec. Il B, we can again arrive at the same

conclusions on the pointlike structure of the multidimen- 2
) . ; ymm 2k
sional bound-state solutions without cutoffs. Eb=#2,2= O)"vmymy - 2Knax , (66)
The cutoff dependent results of Sec. V are modified in the 4 ,U«\/HH
following way. The form of Eq.(51) (with the above-
mentioned replacementsrepresenting our main result, re- b .2 2 (x3)?M, Kma fm;
mains unchanged. That is, the energy eigenva&lug given Es=h"u :—4772 1-In F\I . (67)
by
2/ 12 2 2 -1 The binding energyE?=#%242 and the corresponding
=—| —+—|+hp— Kp+ value in the one-dimensional case is determined from Eq.
2\M My 2 [ fo (e Kmax) (29), with m=m . The effective radius in one dimension is
72(K2 K2 defined asR;=1/(u\/m)), while in two and three dimen-
:Z<H+ m—L> —h2u?. (61)  sions we should introduce two characteristic size parameters
I L

[scaled as 1j¢m)) and 1/(um,)] corresponding to the
The only relevant quantitative effect of adopting the longitudinal and transverse dir_ections. It is clear that_ once

asymmetric form of the Hamiltoniahl, is related to the the transv_ers(alongnudma) SIZze 1S gyaluated and the ratio ,Of

cutoff structure functiorfp(u,kma), D=2 and 3. Now it the effective masses, /m is specified, then the longitudi-

becomes dependent on the two massesandm, , and is nal (transversg size can be obtained as well. In the case
defined as ’ ym, /m;<1 considered here, the transverse size is larger

than the longitudinal one, and our numerical estimates in two

Knax 1 and three dimensions will be given for the transverse char-
fo(t,Kma) = f d®k : acteristic radii defined aR, 5= 1/(u\m,).
D(M max) (27T)D |k|=0 /1,2+kﬁ/m”+kJ2_/mJ_ 2,3 (lu’ J_)

To give numerical estimates for the binding enerdis
62 _,2 2 o _
=h“p” and radii Ry 3= 1/(uymy(,), we note that the
We see that the integrations here cannot be carried out &9hlinear couplinggp and«p (D=1,2,3) are defined here
easily as in the symmetric case of Sec. V in poR(2) or ~ as[11,17
spherical D=3) coordinates. Instead, in the case of arbi-

2
trary values ofm; andm, , the integrals and resulting bind- _ X(B>w1/ﬁwz V21 69)
ing energies can be evaluated numerically. If, however, Xp™ n3 \ 289 g@B-DN2’
Jm, /my<1 and Kma/(uy/my)>1 we can obtain approxi-
mate expressions for the cutoff structure functions: 371)(?33)(0%02 hnzwfvz
Kp= 23-D 3-D ' (69)
o Kor) vmymy In 2K max 63 4eced cd
2 1“’1 = [}
m 2 ,U«\/FH

where x{2) and x&) are the Bloembergef21] second- and
third-order nonlinear susceptibilitiggn S.I. unitg, n is the
Fal k)= mlkma,‘( 1-1n [my 64) refractive indexn, is the nonlinear refractive index, ands
3t Kma 272 m, the effective modalwaveguide diameter.
With the above definition foryp, we may rewrite

With these functions the condition of having a positive the binding energies in one- and three-dimensional cases
solution for u [such thatkmaxl(,u\/ﬁn)>1] in Eqg. (61) re-  in an explicit form, as expressed in terms of relevant mater-
mains unchangef.e., in the form of Eq(9)] in two dimen- ial constants. In the one-dimensional case, the binding
sions, while in three dimensions it becomes energy E? is given by Eg. (53, with m=m; and u
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=[(xo)*/m/(4%%)]** being the corresponding solutions. In g
addition, we substitute explicit expressions for the effective x10¢]  (a) L
massesn|, m; andv=c/n for the group velocity, and trans- q
form to the wavelengths\; ,=2mc/w;,. In the cutoff- 6] i
dependent three-dimensional cd&es. (67)], we choose the < 3x10 ] :
cutoff atkn=27/\, thus arriving at the following expres- 2 ] 5 _
sions: 2o 2x10° g
AT [P a
Eb= , (70) 1x107° 1 _
(480d2)2/3(w;,_)1/3 I"IA)\E ] 3 [
2 " 0 —r r r 1 ‘1t ‘t ‘1t ‘1t [ Tt Tt Tt T T
ES(Kmax=27/\1)= (2m)**h? Lxs )ﬂl—ln —anzwl . 0 1x10° 2x10° 3x10°
e €9 n“\3 | CAy 1
(71 Kmax (M)

These results explicitly demonstrate the dependence of ] _———
the binding energies on the nonlinearity, dispersion, refrac- 20xi0®] (0 L
tive index, and subharmonic field wavelength. We also ] .
recall that the most important requirements for quantum soli- ] 5x10‘6-: ! -
ton formation were a positive dispersion coefficierjtat the % ' ] r
subharmonic wavelength, and group-velocity matching. ~— ] 5 [
Clearly, the lower the dispersion the larger the effective mass > 1.0x10° 1 N
my, and hence higher the binding energy the smaller the
soliton size. Large nonlinearities also enhance the binding 0.5x107 - -
energy. In addition, we stress the strong dependence of the ] 3
binding energy(especially in the higher-dimensional case N
on the subharmonic wavelength. Other factors that may have 0 1x108 25106 3x106
practical significance, but were omitted here for simplicity,
include higher-order linear dispersion, nonlinear dispersion, Kmax (m™

tensorial(direction-dependenproperties of the medium, ab-

sorption, and thermal phonon effects due to Raman scatter- FIG. 2. Soliton binding energieg3 , in two (a) and three(b)

ing (see, e.g., Ref.22]). dimensions as a function of the cutoff momentlm, for A=0 and
Ideally, the soliton binding energy should be greater tharin. /m=9.42x10"%. (&) x,=1.65x10° m/s andk;=0 (1), «;

any thermal phonon energies, and clearly the soliton radius2 /s (2), andx,=20 nf/s (3). (b) xs=369.5 n?¥s and

should be within available geometrical sizes of the nonlineara=0 (1) k3=2X10"° m%/s (2) and k3=2x10"*m*/s (3).

material. Another important parameter is the characteristic ] .

interaction (formation  length, which scales as constagtsi(z&g can be evaluated using reIatuQﬁS), so that

~c/[(Ry)2w!] in one dimension, and which should be lessxo=d® ™% (D=2,3). As a result, the magnitudes of the

than an absorption length. binding energyE® and the soliton radiu®, in one space
. . b _
With a value ofy@)~10"11 m/V characteristic for con- dimension  become Ej=1.75<10° eV and R;
ventionaly(® nonlinear crystal§such as LiNb@) the bind- ~ =1.94 um. In Figs. 2 and 3 we plot the binding energies

ing energies, withh;~1 um, are low compared to thermal Eg,s and radiiR, 3 in two and three dimensions as a function
phonon energies. In addition, it may be difficult in practice toOf Kmax, for different values of cubic nonlinearitiegp
satisfy the other above-mentioned requirements, such asx& . These are chosen arbitrarilnuch greater than real-
positive dispersion at shorter wavelengths, together withstic value$ in order to demonstrate explicitly the stabilizing
group-velocity matching. However, recent experiments oreffect of the quartic interaction term. As we see, with a
second harmonic generatigwith \;~9 um) demonstrate choice of the cutoff aky,=27/\; (with \;=2 um), the
that three to four orders of magnitude greater nonlinearitiesesulting solutions have binding energiesES&4.43
can be obtained in semiconductor devices, such as GaAg10 ¢ eV andES=2.25x10°¢ eV for K2 3=0) and radii
asymmetric quantum wells and related systdi28]. This (R,=39.7 um, andR;=55.6 um) comparable to the re-
also has an advantage that the actual optical properties glilts for a one-dimensional parametric waveguide. In fact,
such devices can be fabricated over a rather wide range gfe find thatR;<R,<R; and EP>E5> Eg for the above
parameter values. Other promising devices, with fabricablgalues of parameters. This indicates that we expect the
material properties, include Bragg-grating structUi. higher dimensional solitons to be less strongly bound and of
In order to give numerical estimates we choose the folarger radius than their one-dimensional counterparts.
lowing values of parametersy’=10"" m/V, n=3, o}
=0.1 nf/s, and d=5 um, and take the subharmonic
wavelength A\, =2 um. These give the ratiom, /m,
=0.4x10% and the coupling constanty;=7.39 In summary, we have presented quantum soliton or bound
x10’\m/s, while in higher dimensions the coupling state solutions to the parametric quantum field theory. Exact

VIl. SUMMARY
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FIG. 3. Soliton radiiR, 3 in two (a) and thregb) dimensions as
a function of the cutoff momenturk,,,, for the same values of

parameters as in Fig. 2.
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the stabilizing quartic interaction While the cutoff-
dependent results require a knowledge of the precise mecha-
nism that reduces the coupling at large relative momentum,
we can estimatéin the case of nonlinear optical parametric
interaction that the nonlinear couplings should extend no
higher than 2r/\ ;.

A similar procedure was employed by Bethe, in using an
estimated cutoff ok, =MC/% in the first Lamb shift calcu-
lation[25]. Just as in the Lamb shift, this can be improved by
more careful treatment of the theory at large relative mo-
menta. Such an improved treatment would especially be ap-
propriate in the three-dimensional case, where we obtain a
linear divergence with,,,—°, in contrast to more accept-
able logarithmic divergences usually encountered in quan-
tum field theory and statistical physics.

With a finite cutoff ofk,,,,=27/\;, we have estimated the
binding energies and radii of the solutions in the case of the
nonlinear optical process of second-harmonic generation.
The estimated energies appear to be achievable—either by
using cryogenic means, to reduce the energy of competing
thermal processes, or else by means of transient experiments
on time and length scales shorter than those of thermal Ra-
man processes and absorption.

The physical interpretation of these bound states is that
they are a superposition of a second-harmonic photon and
two subharmonic photons, which can propagate without ei-
ther down-conversion of the higher-frequency photon, or dis-
persive spreading of the subharmonic photons. In practical
terms, of course, most photon pairs created by down-
conversion are in unboun@ontinuun) states, which are not
treated in detail here. The possibility of creating bound states
that are immune to further down-conversion does not seem
to have been treated in earlier theories of this process, al-

two-particle solutions are obtained in one, two, and threghough earlier nondispersive theories predicted nonclassical
space dimensions, while three-particle binding in one spacspatial oscillation$26]. Most significantly, the solitons form
dimension is analyzed variationally. The results have the rein physically testable regimes, with the required experimen-
markable character that the theory, while having a welltal environment being nearly accessible with currently avail-
behaved(and widely usejl classical counterpart, has quan- able technology.

tum singularities in the eigenstates in more than one space It is not impossible that this parametric quantum theory,
dimensions, corresponding to zero-radius structures. The reas well as being theoretically interesting, could result in the
son for this behavior is the inherently nonclassical structurdirst experimental test of multidimensional quantum soliton
of the bound state, which is a quantum superposition statéheory for Bose fields. Thus, complementary to high-energy
To resolve this paradox, we impose an appropriate momerphysics and particle accelerators, investigation of particlelike
tum cutoff on the nonlinear couplings, which results in aquantum structures may become available in a larger variety
finite radius of the two-particle bound state, even in the sim-of physical systems, including nonlinear optics and laser

plest case of pure parametric interacti@®., even without
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