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Spectral properties of an injected laser
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Laboratoire d’Optronique associe´ au Centre National de la Recherche Scientifique (URA 6082),

Ecole Nationale des Sciences Applique´es et de Technologies, 6 rue de Ke´rampont, 22305 Lannion, France
~Received 21 January 1998!

The theory in which the laser is interpreted as a nonlinear amplifier and filter is applied to the calculation of
its spectral density in the case of a homogeneous medium. The method is extended to an injected laser in which
the source term includes both the spontaneous emission and the injected signal. Linewidth narrowing or
widening, spectral amplification or attenuation are described, using simple semiclassical formulas.
@S1050-2947~98!02609-2#

PACS number~s!: 42.55.Ah, 42.55.Lt, 42.60.Da
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I. INTRODUCTION

Up to now, the laser has essentially been understood
quantum oscillator and studies of laser linewidths have a
essentially been done in the frame of quantum optics@1–5#.
A common feature of the traditional models is the use
Lamb’s approximation of distributed losses together with
slowly varying envelope approximation~SVEA!. The most
popular methods that are used in theoretical studies on
widths are based on Fokker-Planck@6# or Langevin @7,1#
equations and the use of Wiener-Kintchine’s theorem, wh
connects the time to the frequency domain. In Ref.@7#, for
instance, Langevin forces represent the different source
noise in time-dependent equations of motion for the field,
population difference, and the polarization of the mediu
These methods lead to a very small width of the laser line~in
fact ad Dirac distribution! and it is generally admitted tha
its measurable limit stems from quantum effects due to
phase diffusion of randomly emitted spontaneous photo
To these studies are linked those on noise effects@9#, photon
statistics@9,8,5#, or squeezed light@10#. It should be noted
that the formalism of quantum optics is not always used;
instance, the work done by Henry@11# brought a significant
understanding of semiconductor laser linewidths by takin
more precise expression for the medium polarization t
that obtained by using a simple adiabatic approximati
This method improved the formula previously established
Schawlow and Townes in 1958@12# in their study of the
laser considered below threshold as a narrow band amp
of noise.

We have recently given@13# a semiclassical theory of th
laser transition across the threshold that does not use
SVEA: the frequency domain is split into intervals sm
compared to the laser linewidth; a classical representatio
the fields is used and the losses are localized onto the
rors. This method allowed us to generalize the usual opt
Airy function to the laser: this function was shown to be ab
to describe the spectral densityy(n) of the laser as well as its
intensityY, which is the integral ofy(n) over the frequency
domain. The formula explicitly displays the three bas
physical effects inside a laser, i.e., the spontaneous and

*Electronic address: stephan@enssat.fr
PRA 581050-2947/98/58~3!/2467~5!/$15.00
a
o

f
e

e-

h

of
e
.

e
s.

r

a
n
.
y

er

he

of
ir-
al

he

stimulated emission and the resonance effect of the Fa
Pérot interferometer. A practical application was develop
in the case of an inhomogeneous He-Ne gas laser in ord
demonstrate that it was able to quantitatively describe
laser linewidth, below or above threshold. In this theory, t
laser is again considered as a narrow-band amplifier of no
but this time also above threshold. In this study the source
noise was the spontaneous emission only: field, populatio
pump noises were discarded. The associated spectral de
of the spontaneous emission is flat inside the spectral dom
of the laser line. Thus an idea to test the predictability ca
bilities of the laser Airy function is to change this source
injecting an external signal into the laser, i.e., by controlli
the source. This external signal, being also a laser light,
a strong spectral variation. It is the aim of this paper to u
the Airy function to describe how a master laser imposes
spectral lineshape onto a slave, mode-locked laser. We h
previously proposed a method to study the response of
jected lasers in the frame of the SVEA and we have exp
mentally verified its predictions in the case of a gas la
@14#. It has been known for a long time@15# that a master
laser can decrease the linewidth of the slave. Again the p
lem of line shapes in the case of injection locking has be
treated in the litterature using essentially quantum theo
@16,17# together with Lamb’s model of distributed losses a
within the SVEA. One result brought by the Airy function
its ability to describe in a simple way this spectral transf
and how it varies with the laser parameters. In the followi
we will first develop the theory of the Airy function for a
single mode homogeneous laser. Then we will consider
identical lasers: the first plays the role of the master and
second is the slave. A very simple and practical method
described, which allows one to see the transfer of spec
~im!purity from the master onto the slave.

II. THE AIRY FUNCTION FOR A HOMOGENEOUS,
SINGLE-MODE LASER

In Ref. @13#, the laser Airy function was obtained an
applied to the case of an inhomogeneous medium. In
paper, we would like to concentrate on the simpler case
homogeneous, two-energy-level-medium. Discussions
optical properties of this active medium are thus suppres
The same fundamental approximations as in Ref.@13# are
2467 © 1998 The American Physical Society
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2468 PRA 58G. M. STÉPHAN
taken: for instance, the field is classical and represents
cavity mean value, but here the source term is not explic
calculated and is left as a parameter directly linked to
experiment.

The generalized Airy function for the laser@13# describes
the responseEcav of the system‘‘cavity1active medium’’ to
its excitation by the spontaneous emissionEsp in the fre-
quency domain. This response gives the complex opt
Airy function:

Ecav5
Esp

12e2L1g2 if
. ~2.1!

This expression links the spectral mean field densityEcav
inside the cavity to the spectral mean-field densityEsp corre-
sponding to the spontaneous emission inside the geome
mode for each frequencyn. It can be demonstrated from firs
principles using Maxwell equations together with bounda
conditions on the mirrors in the frequency domain. If a fr
quency slice narrow enough aroundn is considered,Ecav and
Esp can represent fields instead of field densities. This is u
ally the case when passive interferometers are probed u
fields whose spectral widths are narrow as compared to
width of their Airy function. In Eq.~2.1!, f5f(n) is the
cumulated round-trip phase. The key in choosing the wi
of the frequency slice is the possibility of defining a mea
ingful value for f. One should note that the fundamen
property of a Fabry-Pe´rot interferometer, i.e., the dependen
of f upon frequency is simply lost in the SVEA. In Eq
~2.1!, g5g(n) is the saturated gain and losses are rep
sented byL ~one writesr 1r 25e2L wherer 1 and r 2 are the
reflectances on the mirrors!. We will not discuss here the
properties linked to the phase of the field: Taking the mo
lus square of Eq.~2.1!, one obtains the power spectral de
sity. Together with the intensity, this density describes one
the most important properties of light, its Fourier transfo
being the second-order correlation function. One should
aware that the complex Airy function contains also the ph
ics associated to the random phase appearing inEsp or in Ecav
and the transformation of light statistics by the laser. W
leave this subject to another study.

The laser spectral density looks like that which is usua
written for a Fabry-Pe´rot interferometer :

y5
S

@12e2L1g#214e2L1gsin2~f/2!
. ~2.2!

Here y5y(n) and S5S(n) stand respectively for the
spectral densities of the geometrical mean intensity of
internal laser light and of the source.S and y are both nor-
malized by the saturating intensityI s , which characterizes
the medium divided byc/2d, the cavity F.S.R. In the case o
an empty cavity, the gaing50 and the sourceS correspond
to the externally launched field. In the following we wi
consider a single-mode laser resonance at~central! angular
frequencyv0 ~one uses the usual relationv52pn). The
laser line is very narrow as compared to the spontane
emission line. In the vicinity ofv0, it is thus legitimate to
neglect the variation of the source spectral densityS and of
the gaing, which become frequency independant when lo
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frequency noise is discarded. As the saturated indexn ap-
pears inside an angle~one hasf52pn2nd/c, whered is the
geometrical length of the laser!, one should take its variation
into account. Equation~2.2! imposes alwaysg,L by con-
trast to the commonly admittedg5L in the stationary re-
gime. It shows that the laser can be interpreted as a nonli
filter and amplifier acting on the sourceS.

Let us first consider the simple model of a single-mod
solitary laser with a two-level, homogeneous medium who
linewidth is 2g lu . This medium is characterized by a mea
complex polarizabilitya, which is written as

a5
m2

\g lu

LvD0

11Lvq
Y Fv2v0

g lu
1 i G . ~2.3!

HereLv is the normalized Lorentzian:

Lv5
g lu

2

~v2v0!21g lu
2

. ~2.4!

v0 is the central angular frequency of the emission line
the active medium.vq is the central laser frequency: he
vq5v0 andLvq

51. D0 is the population difference andm
the dipolar moment of the transition.Y is the laser intensity
~one hasY5*ydn) normalized by the saturating intensit
I s . The round-trip saturated mean gain is written as

g5
v

c
2d

a i

2e0
, ~2.5!

where the superscripti stands for the imaginary part ofa.
One can normalize the gain at threshold, which correspo
to the value ofD0 such asL5g. This normalized gain is thus
written as

g5rL
Lv

11Y
. ~2.6!

We have adopted the traditional notation wherer stands
for the small signal gain at threshold:r 51 wheng5L for
Y50 andv5v0. The cumulated round-trip phase is defin
for each frequencyn ~or angular frequencyv). It depends
upon the saturated indexn ~or the real parta r of the polar-
izability! of the medium and is written as

f5
v

c
2dn5

v

c
2d F11

a r

2e0
G5

v

c
2d1

v2v0

g lu
g. ~2.7!

As already stated above, the laser line is very narrow
comparison to the emission line and the variations of
gain, as well as the spontaneous emission, can be negle
inside its frequency range. In this case, the saturated ga
given by g5g0 /(11Y), whereg05rL is the small signal
gain. As the source term is proportional to the population
the upper level, one can writeS5Kr /(11Y) whereK is a
constant that contains the geometrical and spectrosc
properties of the spontaneous emission inside the laser m
@13#.

Let us consider now Eq.~2.2! and let us write the phas
variation when the frequency varies aroundn0. One writes
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f22qp5
v2v0

c
2d1

v2v0

g lu
g, ~2.8!

whereq is an integer that is the order of the lasing mod
Introducing the normalized frequency detuningx2x05@(v
2v0)/c#2d and the phase-amplitude coupling factorA51
1gc/2dg lu ,one obtains the simple expression

f22qp5A~x2x0!. ~2.9!

Around the laser resonance atn0, the phase variation remain
very small; one writes

sin@f/22qp#.f/22qp, ~2.10!

and thus

4 sin2 f/2.A2~x2x0!2. ~2.11!

The spectral density of this laser is thus described by

y5
S

@12e2L1g0 /~11Y!#21e2L1g0 /~11Y!A2~x2x0!2
.

~2.12!

y becomes essentially Lorentzian shaped:

y5
S

e2L1g0 /~11Y!A2

1

G21~x2x0!2
, ~2.13!

whereG is the half width at half maximum in the angula
frequency domain, normalized byc/2d:

G5
12e2L1g0 /~11Y!

Ae[ 2L1g0 /~11Y!]/2
. ~2.14!

Integratingy over x gives an equation forY:

Y5
S

A2e2L1g0 /~11Y!

p

G
. ~2.15!

This equation can be numerically solved and the res
given below have been obtained using the proper New
method adapted to the different cases: below~where Y
;0), around ~where Y!1), or above~where Y;r 21)
threshold. However, it is interesting to have an approxim
analytical expression forY above threshold. Such an approx
mate expression can be used to initiate the Newton loo
numerical calculations. It will be interesting to compare w
the usual Shawlow-Townes formula.

Above threshold (r .1), the sourceS becomes a very
small quantity as compared toY and the physically accept
able solution forY is certainly very close to the usual solu
tion YL given by the equationg5L ~gain5losses!, i.e., YL
5r 21. One can thus write a first-order development in
small termdY such as

Y5YL1dY ~2.16!

and develop Eq.~2.15! in Y aroundYL . One finds at first
order inS:
.

ts
n

e

in

e

Y5YL1
r 2

~r 21!

pS

g0A
~2.17!

and

G5
pS

A2YL

. ~2.18!

In these equations, the intensity that appears inA and S is
YL . As already remarked in Ref.@13# the expression~2.18!
for G is more precise but has the same structure as
previously given by Shawlow and Townes@12#. The varia-
tions of the intensityY and the linewidth versusr give the
laser characteristic curves: we will use them in Figs. 1 an
when r varies between 0 and 4. When drawn in logarithm
units, these curves clearly show the thresholds for amplifi
tion ~at r 50) and for laser action~at r 51). One notes that
the Airy function, Eq.~2.2!, can also be used whenr ,0. It
would describe the spectral density associated to an abs
ing source~a candle, for instance! inside a Fabry-Pe´rot inter-
ferometer.

III. THE INJECTED LASER

Let us now consider a second laser injected by a ma
@14#. For simplicity we assume both lasers to be identical a
tuned to the central frequencyn0. We prefer to focus on a
typical well-defined case: The generalization is obvious.
side the injected laser, the source term includes both
spontaneous emission as before and the injected field w
spectral density ishy1 whereh is a given constant. Again
we insist on the fact that we do not consider any other sou
of noise than the spontaneous emission. We obtain the e
tion for the spectral densityy2:

y25
hy11S2

e2L1g0 /~11Y2!

1

G2
21~x2x0!2

. ~3.1!

In this equation indices 1 and 2 respectively refer to the fi
~master! and second~slave! laser with the same meaning fo
the symbols as given before@however,G2 is no longer the
spectral width ofy2, it stands for an abreviation analogous
Eq. ~2.14!#. Integratingy2 in Eq. ~3.1! overx gives an equa-
tion for the total intensityY2:

Y25
1

A2
2e2L21g0 /~11Y2!

1

G2
FpS21

hY1

G11G2
G . ~3.2!

Equations~2.12! and ~2.15! as well as~3.1! and ~3.2! repre-
sent the basic laser properties.

Equation~3.2! can be numerically solved~using again a
Newton method! and expression~3.1! for y2 can be used to
draw spectral profiles and to deduce the spectral width of
injected laser. Below we give two examples where both
sers are identical but have a different gain: The character
curves for each laser alone are first computed with los
corresponding toL5 ln@1/r 1r 2# with r 1r 250.81. The source
constantK in Scan be quantitatively computed@13# but here
K is simply taken to give a~non-normalized! linewidth cor-
responding to 20 kHz forr 54; the free spectral range is 1.
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2470 PRA 58G. M. STÉPHAN
GHz. Here we deliberately take the case where the injec
signal is much bigger (.100 times! than the natural sourc
term.

In the first case, the master has a gainr 54, a half-
linewidth ~HWHM! G154.231026 and an intensityY1
.3.G1 is expressed in rad/s normalized byc/2d. This signal
is divided by 104 and injected into the slave whose gain
r 52. Figure 1 shows the working points of both lasers
their characteristic curves. Under injection the HWHM of t
slave decreases fromG251.2531025 down to G1 and its
intensityY2 increases from 1 to 1.16. The spectral densit
of the solitary and injected laser are displayed on Fig.
Together with the line narrowing, one observes a spectac
increase of the signal between the points notedA andB. This
increase is obtained at the expense of a decrease outsi

FIG. 1. Laser characteristic curves as computed from E
~2.12! and ~2.15! and data given in text. Full line: normalized in
tensity; dashed line: half width at half maximum. Note the ln sca
which allows the representation of the variations of intensity a
HWHM over several orders of magnitude when the gain var
from 0 to 4. Working points of the master laser correspond tr
54. Working points of the slave laser correspond tor 52 and are
shown with and without injection. One observes only a small
crease of the intensity of the laser under injection but a large
crease of its HWHM down to that of the master.

FIG. 2. Spectral lines of the laser working atr 52 in Fig. 1. As
seen in Fig. 1, the total intensity does not change very much w
the laser is injected or not. However, its spectral distribution
completely modified by injection: it considerably increases ins
the range betweenA andB and decreases outside.
d

n

s
.

lar

of

this range. This decrease has been experimentally obse
@17#. In the second case, the roles of both lasers are inver
The master has a gainr 52, a linewidthG151.2531025,
and an intensityY1.1. This signal is again divided by 104

and injected into the slave whose gain isr 54. Figure 3
shows the working points of both lasers together with
same characteristic curves as in Fig. 1. Under injection
HWHM of the slave increases from 4.231026 to
1.2531025 and its intensity from 3 to 3.11. Figure 4 dis
plays the spectral profiles of the solitary and injected las
The situation is the converse of the preceding case: here
solitary laser is much more intense in the central region
tweenA andB. This result shows that injection locking of
laser onto another means far more than a simple slaving
quency effect, i.e., a slaving onto the spectral properties
the master, this includes the line widening effects.

IV. CONCLUSION

The conclusion that can be drawn from these results
that the master laser imposes its spectral distribution to
slaved laser@18#. The laser alone works with a very sma
source term@term S in Eq. ~2.12!# and the intensity adjusts

s.

,
d
s

-
e-

n
s
e

FIG. 3. Same as Fig. 1 with the roles of master and slave la
inverted. Here the master has a gainr 52 and the slaver 54. Again
the total intensity of the slave does not change very much un
injection while its HWHM increases up to the value of that of t
slave.

FIG. 4. Spectral lines of the laser working atr 54 as shown in
Fig. 3. Here the spectral distribution considerably decreases u
injection in the range betweenA andB and increases outside.
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itself for the gain toalmostcompensate for the losses, whic
almost cancels the denominator in Eq.~2.12!. This is no
longer realized in the injected laser whose properties are
sentially fixed by those of the source. This result is not s
prising and we acknowledge the fact that many physic
having studied the subject have already intuitively und
stood what happens if one injection locks a single-mode la
onto a noisy signal.

The results presented here reinforce the interpretatio
the laser as a nonlinear amplifier and filter whose Airy fun
tion is fundamental to explain basic properties. It should
noted that this interpretation is not opposite to the usual o
which states that the laser linewidth results from the wand
ing of the phase, which finds no reference to lock on. T
Airy function thus fixes only a rate to this wandering. Wh
the laser is locked, a phase reference together with a ra
change~i.e., a linewidth! is given to it. One should note tha
a frequency locking is always accompanied by a phase lo
ing but one can have a phase locking, or a transfer of spe
. A

-

e,
s-
r-
ts
-
er

of
-
e
e,
r-
e

of

k-
ral

width, without having any frequency locking. An experime
has been made in our laboratory in order to verify this po
of view @19#.

The Airy function is more precise than the slowly varyin
envelope approximation and can be used to study var
phenomena such as line shapes asymmetries, bistabilitie
injection-locking domains, or an analysis of a given las
lineshape using another laser. It bridges also the gap with
description of optical passive dispersion or absorption bis
bilities. The effects of an amplitude classical noise can th
easily be added into the expression of the source and
complex gain. The transformation of the phase probabi
distribution function of the source by the complex Airy fun
tion for the field can be done: It gives a complementa
physical interpretation to the transformation of Gaussian i
Poisson statistics associated to the electromagnetic field
nally this semiclassical study gives also a good basis fo
further understanding of optical quantum phenomena@20#.
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