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Spectral properties of an injected laser
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The theory in which the laser is interpreted as a nonlinear amplifier and filter is applied to the calculation of
its spectral density in the case of a homogeneous medium. The method is extended to an injected laser in which
the source term includes both the spontaneous emission and the injected signal. Linewidth narrowing or
widening, spectral amplification or attenuation are described, using simple semiclassical formulas.
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[. INTRODUCTION stimulated emission and the resonance effect of the Fabry-
Paot interferometer. A practical application was developed
Up to now, the laser has essentially been understood asia the case of an inhomogeneous He-Ne gas laser in order to
quantum oscillator and studies of laser linewidths have alsgemonstrate that it was able to quantitatively describe the
essentially been done in the frame of quantum ogtless|. laser linewidth, below or above threshold. In this theory, the
A common feature of the traditional models is the use oflaser is again considered as a narrow-band amplifier of noise,
Lamb’s approximation of distributed losses together with thebut this time also above threshold. In this study the source of
slowly varying envelope approximatiofSVEA). The most hoise was the spontaneous emission only: field, population or
popular methods that are used in theoretical studies on ling2ump noises were discarded. The associated spectral density
widths are based on Fokker-Planf&] or Langevin[7,1]  of the spontaneous emission is flat inside the spectral domain
equations and the use of Wiener-Kintchine’s theorem, whictof the laser line. Thus an idea to test the predictability capa-
connects the time to the frequency domain. In R&f, for  bilities of the laser Airy function is to change this source by
instance, Langevin forces represent the different sources dfjecting an external signal into the laser, i.e., by controlling
noise in time-dependent equations of motion for the field, théhe source. This external signal, being also a laser light, has
population difference, and the polarization of the medium.a strong spectral variation. It is the aim of this paper to use
These methods lead to a very small width of the laser(ime the Airy function to describe how a master laser imposes its
fact a & Dirac distribution and it is generally admitted that spectral lineshape onto a slave, mode-locked laser. We have
its measurable limit stems from quantum effects due to th@reviously proposed a method to study the response of in-
phase diffusion of randomly emitted spontaneous photongected lasers in the frame of the SVEA and we have experi-
To these studies are linked those on noise eff@jtsphoton ~ mentally verified its predictions in the case of a gas laser
statistics[9,8,5), or squeezed lighf10]. It should be noted [14]. It has been known for a long timé5] that a master
that the formalism of quantum optics is not always used,; folaser can decrease the linewidth of the slave. Again the prob-
instance, the work done by Henf§1] brought a significant lem of line shapes in the case of injection locking has been
understanding of semiconductor laser linewidths by taking dreated in the litterature using essentially quantum theories
more precise expression for the medium polarization thafl16,17] together with Lamb’s model of distributed losses and
that obtained by using a simple adiabatic approximationWithin the SVEA. One result brought by the Airy function is
This method improved the formula previously established byits ability to describe in a simple way this spectral transfer,
Schawlow and Townes in 19582] in their study of the and how it varies with the laser parameters. In the following
laser considered below threshold as a narrow band amplifiske will first develop the theory of the Airy function for a
of noise. single mode homogeneous laser. Then we will consider two
We have recently givefL3] a semiclassical theory of the identical lasers: the first plays the role of the master and the
laser transition across the threshold that does not use tt&gcond is the slave. A very simple and practical method is
SVEA: the frequency domain is split into intervals small described, which allows one to see the transfer of spectral
compared to the laser linewidth; a classical representation dfm)purity from the master onto the slave.
the fields is used and the losses are localized onto the mir-
rors. This method allowed us to generalize the usual optical
Airy function to the laser: this function was shown to be able
to describe the spectral densityv) of the laser as well as its
intensity Y, which is the integral of/(v) over the frequency In Ref. [13], the laser Airy function was obtained and
domain. The formula explicitly displays the three basicapplied to the case of an inhomogeneous medium. In this
physical effects inside a laser, i.e., the spontaneous and thgaper, we would like to concentrate on the simpler case of a
homogeneous, two-energy-level-medium. Discussions on
optical properties of this active medium are thus suppressed.
*Electronic address: stephan@enssat.fr The same fundamental approximations as in R&8] are
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taken: for instance, the field is classical and represents thigequency noise is discarded. As the saturated indep-
cavity mean value, but here the source term is not explicitlypears inside an anglene hasp=2mv2nd/c, whered is the
calculated and is left as a parameter directly linked to thegeometrical length of the lageione should take its variation
experiment. into account. Equatiorf2.2) imposes alwayg<L by con-

The generalized Airy function for the lasgt3] describes trast to the commonly admitteg=L in the stationary re-
the responsef,,, Of the systent‘cavity +active medium” to  gime. It shows that the laser can be interpreted as a nonlinear
its excitation by the spontaneous emissidh, in the fre- filter and amplifier acting on the sour&
guency domain. This response gives the complex optical Let us first consider the simple model of a single-mode,

Airy function: solitary laser with a two-level, homogeneous medium whose
linewidth is 2y,,. This medium is characterized by a mean
Esp complex polarizabilitya, which is written as
5cav:m' 23 w? LD 0—w
a= 020 Oyil. 2.3
fl’)/m l+£qu Yu

This expression links the spectral mean field denSity
inside the cavity to the spectral mean-field dengiycorre- ) ) )
sponding to the spontaneous emission inside the geometrical Here £, is the normalized Lorentzian:
mode for each frequenay. It can be demonstrated from first ;
principles using Maxwell equations together with boundary r Yiu
conditions on the mirrors in the frequency domain. If a fre-
guency slice narrow enough arounds considered¢,,, and

gsp can represent fields instead of field densities. This is USUC_DO is the central angu|ar frequency of the emission line of

ally the case when passive interferometers are probed usinfle active mediumay is the central laser frequency: here
fields whose spectral widths are narrow as compared to thgq:w0 and£, =1.D, is the population difference and

width of their Airy function. In Eq.(2.1), ¢=¢(v) is the
cumulated round-trip phase. The key in choosing the widt
of the frequency slice is the possibility of defining a mean-|
ingful value for ¢. One should note that the fundamental -
property of a Fabry-Ret interferometer, i.e., the dependence o o
of ¢ upon frequency is simply lost in the SVEA. In Eq. g=—2d-—,
(2.1, g=g(») is the saturated gain and losses are repre- ¢

H — L
sented byl (one writest yr,=€ * wherer, andr are the 0 o 1o superscriptstands for the imaginary part @f.

reflectances on the mirrgtsWe will not discuss here the . . .
properties linked to the phase of the field: Taking the modu-one can normalize the gain at threshold, which corresponds

lus square of Eq(2.1), one obtains the power spectral den-t0 _ttr:e value oD, such ad. =g. This normalized gain is thus
sity. Together with the intensity, this density describes one ofT1Hen as

the most important properties of light, its Fourier transform r

being the second-order correlation function. One should be g=rL ——. (2.6)
aware that the complex Airy function contains also the phys- 1+Y

ics associated to the random phase appeariggyiar in &,

and the transformation of light statistics by the laser. Wefor the small signal gain at threshold=1 wheng=L for

leave this subject to another study. - o : . !
The laser spectral density looks like that which is usuaIIyY_0 andw= . The cumulated round-rip phase is defined

; ) ; . for each frequency (or angular frequencw). It depends
written for a Fabry-Pet interferometer : upon the saturated indax(or the real parte" of the polar-

izability) of the medium and is written as

w:—(w—wo)2+7|2u. (2.9

the dipolar moment of the transitioly.is the laser intensity
one hasY= [ydv) normalized by the saturating intensity
The round-trip saturated mean gain is written as

(2.9

We have adopted the traditional notation whergtands

S
[1-e 192+ 4e L 9sir?(p/2)

y= (2.2 r
R —
260

w— W

Yiu

w w

w
= —2d+
C

Here y=y(v) and S=S(v) stand respectively for the
spectral densities of the geometrical mean intensity of the As already stated above, the laser line is very narrow in
internal laser light and of the sourc8.andy are both nor- comparison to the emission line and the variations of the
malized by the saturating intensity, which characterizes gain, as well as the spontaneous emission, can be neglected
the medium divided byg/2d, the cavity F.S.R. In the case of inside its frequency range. In this case, the saturated gain is
an empty cavity, the gaig=0 and the sourc& correspond given byg=g,/(1+Y), wheregy=rL is the small signal
to the externally launched field. In the following we will gain. As the source term is proportional to the population of
consider a single-mode laser resonancécantra) angular  the upper level, one can write=Kr/(1+Y) whereK is a
frequencyw, (one uses the usual relatian=27v). The constant that contains the geometrical and spectroscopic
laser line is very narrow as compared to the spontaneoysroperties of the spontaneous emission inside the laser mode
emission line. In the vicinity ofw,, it is thus legitimate to  [13].
neglect the variation of the source spectral denSignd of Let us consider now Ed2.2) and let us write the phase
the gaing, which become frequency independant when low-variation when the frequency varies aroungd One writes



PRA 58 SPECTRAL PROPERTIES OF AN INJECTED LASER 2469

b—2qm= 2 20q 4 L0 2.8 Y=y + 7S 2.17
=" Yiu d ' b (r=1) goA '

whereq is an integer that is the order of the lasing mode.and

Introducing the normalized frequency detunixg Xo=[ (w

—wp)/c]2d and the phase-amplitude coupling factor 1 7S (2.18

+gc/2dy,, ,one obtains the simple expression I'= A2y,
L

$=2qm=A(X=Xo). (2.9 In these equations, the intensity that appears iand S is
Around the laser resonancess, the phase variation remains YL - AS already remarked in Reff13] the expressiori2.18
very small; one writes for I' is more precise but has the same structure as that
previously given by Shawlow and Towng$2]. The varia-
sin ¢/2— qm]= ¢/2—qr, (2.10 tions of the intensityY and the linewidth versus give the
laser characteristic curves: we will use them in Figs. 1 and 3
and thus whenr varies between 0 and 4. When drawn in logarithmic
units, these curves clearly show the thresholds for amplifica-
4 sin? ¢/2=A%(x—Xo)*. (21D  tion (atr=0) and for laser actiofatr =1). One notes that

the Airy function, Eq.(2.2), can also be used whenr<0. It
would describe the spectral density associated to an absorb-
ing source(a candle, for instangenside a Fabry-Pet inter-

The spectral density of this laser is thus described by

y= S ferometer.
[1—e -T9/(1+ V)24 o= L+do/ (1Y) A2y — )2
(2.12 lll. THE INJECTED LASER
y becomes essentially Lorentzian shaped: Let us now consider a second laser injected by a master
[14]. For simplicity we assume both lasers to be identical and
S 1 tuned to the central frequenay. We prefer to focus on a

y=-—"

oL+ 90 (LHVIAZ [24 (x—x0)2' (213 typical well-defined case: The generalization is obvious. In-

side the injected laser, the source term includes both the
spontaneous emission as before and the injected field whose
spectral density igy; where » is a given constant. Again

we insist on the fact that we do not consider any other source
1—e-L+/(1+Y) of noise than the spontaneous emission. We obtain the equa-
(2.14  tion for the spectral density,:

whereT" is the half width at half maximum in the angular
frequency domain, normalized loy2d:

I'= Ad-L+go/(I+V))2 °

Integrati i tion fo: __MtS : (3.1)
ntegratingy over x gives an equation fo: Yo Lrol1 Yy F§+(x—x0)2' .
Y= ; 7 (2.15 In this equation indices 1 and 2 respectively refer to the first

AZeLtoo/(V) ' (mastey and secondslave laser with the same meaning for

) ) ) the symbols as given befof@owever,I', is no longer the
This equation can be numerically solved and the resultgpectral width ofy,, it stands for an abreviation analogous to

given below have been obtained using the proper Newtoftq (2.14)]. Integratingy, in Eq. (3.1) overx gives an equa-
method adapted to the different cases: belomhere Y  ion for the total intensityy,:

~0), around(where Y<1), or above(where Y~r—1)

threshold. However, it is interesting to have an approximate 1 1 n

analytical expression for above threshold. Such an approxi- Yo=—— Too 1TV, T [WSZ-F T T (3.2

mate expression can be used to initiate the Newton loop in Aze 2750 Zh2 1Th2

numerical calculations. It will be interesting to compare with )

the usual Shawlow-Townes formula. Equatlons(2._12 and(2.15 as well as(3.1) and (3.2 repre-
Above threshold (>1), the sourceS becomes a very Sentthe basic laser properties. . _

small quantity as compared ¥and the physically accept-  Eguation(3.2) can be numerically solvetlising again a

able solution forY is certainly very close to the usual solu- Newton methogland expressiori3.1) for y, can be used to
tion Y, given by the equatiog=L (gain=losses, i.e., Y, draw spectral profiles and to deduce the spectral width of the

=r—1. One can thus write a first-order development in théniected laser. Below we give two examples where both la-
small termsY such as sers are identical but have a different gain: The characteristic
curves for each laser alone are first computed with losses
Y=Y_+38Y (2.16 corresponding td. =In[1/rr,] with r,r,=0.81. The source
constanK in Scan be quantitatively computgd3] but here
and develop Eq(2.19 in Y aroundY, . One finds at first K is simply taken to give &on-normalizedlinewidth cor-
order inS responding to 20 kHz for=4; the free spectral range is 1.5
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FIG. 3. Same as Fig. 1 with the roles of master and slave lasers

FIG. 1. Laser characteristic curves as computed from Egsinverted. Here the master has a gain2 and the slave=4. Again
(2.12 and (2.195 and data given in text. Full line: normalized in- the total intensity of the slave does not change very much under
tensity; dashed line: half width at half maximum. Note the In scale,injection while its HWHM increases up to the value of that of the
which allows the representation of the variations of intensity andslave.

HWHM over several orders of magnitude when the gain varies

from 0 to 4. Working points of the master laser correspond to this range. This decrease has been experimentally observed

=4. Working points of the slave laser correspond te2 and are  [17]. In the second case, the roles of both lasers are inverted:

shown with and without injection. One observes only a small in-The master has a gain=2, a linewidthI’;=1.25x 10>,

crease of the intensity of the laser under injection but a large deand an intensityy;=1. This signal is again divided by 10

crease of its HWHM down to that of the master. and injected into the slave whose gainris4. Figure 3
shows the working points of both lasers together with the

GHz. Here we deliberately take the case where the injectedame characteristic curves as in Fig. 1. Under injection the

signal is much bigger=100 time$ than the natural source HWHM of the slave increases from 420°¢ to

term. 1.25x10°° and its intensity from 3 to 3.11. Figure 4 dis-

In the first case, the master has a gain4, a half- plays the spectral profiles of the solitary and injected laser.
linewidth (HWHM) T';=4.2x10° and an intensityY;  The situation is the converse of the preceding case: here the
=3.I'; is expressed in rad/s normalized &2d. This signal  solitary laser is much more intense in the central region be-
is divided by 16 and injected into the slave whose gain is tweenA andB. This result shows that injection locking of a
r=2. Figure 1 shows the working points of both lasers onlaser onto another means far more than a simple slaving fre-
their characteristic curves. Under injection the HWHM of thequency effect, i.e., a slaving onto the spectral properties of
slave decreases fromi,=1.25<107° down toI'; and its  the master, this includes the line widening effects.
intensity Y, increases from 1 to 1.16. The spectral densities

of the solitary and_ injected I_aser are displayed on Fig. 2. IV. CONCLUSION
Together with the line narrowing, one observes a spectacular
increase of the signal between the points nétexhdB. This The conclusion that can be drawn from these results is

increase is obtained at the expense of a decrease outsidetbft the master laser imposes its spectral distribution to the
slaved lasef18]. The laser alone works with a very small

10 10* source termterm Sin Eq. (2.12] and the intensity adjusts
gl injected laser 24 40
- 2L
6 20

solitary laser solitary laser

injected laser

Normalized spectral density

0 . I 1 I I 1 1 5
15 100 -05 0.0 05 1.0 1510

-3 2 a0 2 310°

FIG. 2. Spectral lines of the laser workingrat 2 in Fig. 1. As normalized angular frequency detuning
seen in Fig. 1, the total intensity does not change very much when
the laser is injected or not. However, its spectral distribution is FIG. 4. Spectral lines of the laser workingrat 4 as shown in
completely modified by injection: it considerably increases insideFig. 3. Here the spectral distribution considerably decreases under
the range betweeA andB and decreases outside. injection in the range betweeh andB and increases outside.

normalized spectral density
=

Normalized angular frequency
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itself for the gain tcalmostcompensate for the losses, which width, without having any frequency locking. An experiment
almost cancels the denominator in E¢R.12. This is no  has been made in our laboratory in order to verify this point
longer realized in the injected laser whose properties are esf view [19].
sentially fixed by those of the source. This result is not sur- The Airy function is more precise than the slowly varying
prising and we acknowledge the fact that many physicistenvelope approximation and can be used to study various
having studied the subject have already intuitively underphenomena such as line shapes asymmetries, bistabilities in
stood what happens if one injection locks a single-mode lasgpjection-locking domains, or an analysis of a given laser
onto a noisy signal. _ _ _lineshape using another laser. It bridges also the gap with the
The results presented here reinforce the interpretation Qegcription of optical passive dispersion or absorption bista-

the laser as a nonlinear amplifier and filter whose Airy func'bilities. The effects of an amplitude classical noise can then

tion is fundamental to explain basic properties. It should beeasily be added into the expression of the source and the

not_ed that this interpretation is not opposite to the usual OnGCOmpIex gain. The transformation of the phase probability
which states that the laser linewidth results from the Wanderaistribution function of the source by the complex Airv func-
ing of the phase, which finds no reference to lock on. The y P y

Airy function thus fixes only a rate to this wandering. WhentIon for the field can be done: It gives a complementary

the laser is locked, a phase reference together with a rate 8pysical interpretation to the transformation of Gaussian into
change(i.e., a Iinev(/idth is given to it. One should note that Poisson statistics associated to the electromagnetic field. Fi-

a frequency locking is always accompanied by a phase locKaally this semiclas;ical stud'y gives also a good basis for a
ing but one can have a phase locking, or a transfer of spectrfiirther understanding of optical quantum phenomi@.
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