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Parametric fluorescence and second-harmonic generation in a planar Fabry-Perot microcavity
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In this work we develop a quantum theory of second-order nonlinear optical processes such as parametric
fluorescence and second-harmonic generation~SHG!, generated by a strong electromagnetic field in an active
medium placed in a microcavity. Fields are quantized and expanded in terms of a suitable set of cavity normal
modes. In the first part of this work we consider a single many-level quantum system~an atom or molecule!,
which interacts with all the radiation field modes~spontaneous emission!. We show how vacuum fluctuations
affect both SHG and parametric processes. For SHG, we demonstrate that the presence of the microcavity
allows the introduction of the concept of coherence length, even for a medium made of a single molecule. In
the second part of this paper we discuss the case of a uniform distribution of emitting dipoles. For this
configuration we calculate the differential extinction coefficient, and discuss the dependence of the emitting
power on the microcavity’s parameters. Finally we suggest the possibility of realizing a micro-optical para-
metric oscillator.@S1050-2947~98!03008-X#

PACS number~s!: 42.55.Sa, 42.65.2k, 42.65.Ky, 42.65.Yj
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I. INTRODUCTION

Since the second half of the 1980s, questions about ca
QED have attracted the interest of many scientists@1#. In
particular, problems regarding the confinement of the e
tromagnetic field in microscopic structures~microcavities!
have turned out to be among the most interesting one
contemporary physics@2#. Matters concerning spontaneou
emission~SpE! from a single atom have been studied exte
sively @3,4# by means of theories that, beginning from a u
dimensional model of the cavity, developed to include
description of the emitted field distribution outside the cav
@5–7#. Moreover, lasers working in microcavities~microlas-
ers!, in which the active medium is made of organic mo
ecules diluted in a proper solvent@8,9#, or of semiconductor
materials@3#, have been subjects of theoretical and expe
mental research. In such a wide research field there are
tively few works regarding nonlinear optical processes in
microcavity@10,11#. With this work we intend to start a sys
tematic investigation of these processes, beginning from
parametric fluorescence and the second-harmonic gener
~SHG!.

Parametric fluorescence and SHG are among the mos
portant nonlinear optical processes which involve three p
tons@12#. Such processes can be divided into two classes
the first class there are those processes in which one ph
is annihilated and two are created~parametric interactions!;
to the second class belong those processes in which two
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tons are annihilated and one is created~SHG!. However, the
quantum state of the nonlinear medium does not chang
either category of processes, and can thus be considere
belonging to a unique class of elastic scattering of light, a
can be described using a homogeneous formalism@13,14#. It
is possible to characterize these processes by their diffe
tial cross sections if we treat scattering events from isola
molecules, or by their differential extinction coefficient if w
consider scattering from a dense medium. Actually both f
mulations end with a calculation of the process scatter
amplitude, which depends on the physical features of
nonlinear medium and on the mode structure of the elec
magnetic field surrounding the scattering system. We sh
how this structure can be modified by the confinement of
field inside a planar microcavity, and how such alteratio
affect the nonlinear processes. This paper is organized
follows. In Sec. II, we first introduce the traveling wav
modes of the cavity, and then the radiation field is quantiz
in terms of these modes. Then we calculate the interac
Hamiltonian in a microcavity and expand it perturbatively.
Sec. III, we calculate the transition probability both for par
metric processes and for SHG. In Sec. IV, we examine
effect of the cavity on vacuum fluctuations; then, in Sec.
we investigate their effects on SHG emission by a sin
molecule, and find a similarity with the emission by a fini
crystal in free space. In Sec. VI, we calculate the differen
extinction coefficient for a dense medium inside a microc
ity. Finally, we summarize our results in Sec. VII.

II. FIELD QUANTIZATION AND THE INTERACTION
HAMILTONIAN

We consider a cavity made of plane parallel mirrors, su
as a Fabry-Perot mirror. For simplicity we assume the m
2446 © 1998 The American Physical Society
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PRA 58 2447PARAMETRIC FLUORESCENCE AND SECOND-HARMONIC . . .
rors to be ideal, i.e., with no thickness and absorption.
also consider infinitely extended mirrors in order to avo
complications arising from diffraction from edges. Seve
authors have found the forms of normal modes in the cav
we adopt the model introduced by De Martiniet al. @15#. The
cavity geometrical arrangement is shown in Fig. 1. The o
gin of the coordinates is midway between the two mirro
which are labeled 1 and 2. The distance between them isLc ,
and thez-axis direction is perpendicular to the external s
face of mirror 2. Details of calculations are reported in Re
@15,16#. Here we use slightly different notations than tho
adopted in Ref.@15#, and we introduce a quantization volum
V.

The cavity optical features are specified by the reflect
and transmission coefficients denoted byr 1s ,t1s and r 2s ,t2s
for mirrors 1 and 2, respectively. The lowest indexs51 and
2 denotes the polarization. For every direction~u,f! and po-
larizations, it is possible to construct two sets of mode fun
tions inside the cavity (2Lc/2<z<1Lc/2) by summing the
geometrical series resulting from the multiple reflections
the mirrors:

LW kWs~xW !5eW kW1s

t1s

Ds
exp~ ikW 1•xW !1eW kW2s

t1sr 2s

Ds

3exp~ ikW 2•xW1 ikLccosu!, ~1!

RW kWs~xW !5eW kW2s

t2s

Ds
exp~ ikW 2•xW !1eW kW1s

t2sr 1s

Ds

3exp~ ikW 1•xW1 ikLccosu!, ~2!

where

Ds[12r 1sr 2sexp~2ikLccosu!. ~3!

FIG. 1. Scheme of the microcavity model, showing the dire

tions of the two kinds of modes of wave vectorskW 1 andkW 2 . Lc is
the distance between mirrors labeled with indexes 1 and 2.
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These mode functions satisfy the following relations of o
tonormality:

E
V
d3xFW kWs~xW !•GW

kW8s8
* ~xW !52pVdFGdkWkW8dss8 , ~4!

where F and G stand forL or R. These mode functions
jointly with other mode functions introduced in Ref.@15#,
form a complete set that couples the interior space with
outside space of the cavity.

Now we consider the interaction of a many-level quantu
system placed inside a microcavity with an electromagn
field. The field can be quantized in the usual way@17#, pro-
vided that the expansion in terms of plane waves, wh
holds in the free space, is replaced by the expansion in te
of the mode functions described previously. It is conveni
to divide the expression of the electromagnetic field into t
parts with opposite parity with respect to thex-y plane:

EŴ cav~xW ,t !5EŴ ~L !~xW ,t !1EŴ ~R!~xW ,t !, ~5!

where we put

EŴ ~F !~xW ,t !5(
kW ,s

i S \ck

2e0VD 1/2

FW kWs~xW !â
kWs

~F !
e2 ickt1H.c.

~F5L,R!. ~6!

The field operatorsâ
kWs

(L)
and â

kWs

(R)
satisfy the usual commuta

tion rules:

@ â
kWs

~F !
, â

kW8s8
~G!†

#5dFGdkWkW8dss8 , ~F5L,R; G5L,R!. ~7!

The total Hamiltonian, free part plus interaction term, is t
same as in Ref.@15#. The nonlinear processes we analy
involve three photons, but the electric dipole interaction o
erator has nonzero matrix elements only for those transiti
where the number of field photons changes by one. Thus
parametric diffusion and other three-photon processes
just present in the third-order perturbation theory. The fi
nonvanishing term can be written as

ÛI
~3!~ t,2`!5S 2 ie

\ D 3E
2`

t

dt1E
2`

t1
dt2E

2`

t2
dt3

3 (
m,n,l ,r

um&^r ueivmnt1eivnlt2eiv lr t3

3@DŴ mn•EŴ cav~ t1!#@DŴ nl•EŴ cav~ t2!#

3@DŴ lr •EŴ cav~ t3!#, ~8!

where\vab[Ea2Eb is the difference between system e

ergy levelsua& and ub&, and DŴ ab[^auDŴ ub& are the matrix

elements of its dipole moment2eDŴ . If we expand expres-
sion ~8!, we obtain four kinds of terms: the first two, whos
forms areâââ and â†â†â†, represent the three-photon a
sorption and emission, respectively. They are forbidden

-
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FIG. 2. Diagrammatic representation of the six contributions to parametric fluorescence in third-order time-dependent per
theory. All six interactions in each diagram occur via an electric-dipole Hamiltonian.
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the energy conservation requirement in the elastic-scatte
events we are studying. Then there are terms such asâ†ââ,
which are responsible for sum frequency generation~SFG!
and SHG processes, and terms such asâ†â†â which generate
parametric processes. In Eq.~8! there are six terms for SFG
and six for parametric fluorescence represented by Feyn
diagrams in Fig. 2. It is worthwhile noting that every di
gram corresponds to a single term in the expression of
coherent scattering tensor that will be introduced in Sec.
This tensor satisfies Kleinman’s conjecture@12#; indeed, the
symmetry-imposed restrictions on the number of indep
dent di jk elements apply when nonlinear polarization is
electronic origin, as in this case.

III. DERIVATION OF TRANSITION PROBABILITY

A. Parametric processes

Let us consider parametric fluorescence processes.
geometrical arrangement is shown in Fig. 3:Lc is the cavity
length, andLx and Ly are the transverse dimensions of t

pump beam; the molecule with dipole moment2eDW is at xW
inside the cavity. The initial state of our system, that is
many-level quantum system~that we assume to be a mo
ecule! and the electromagnetic field, is represented by

uc i&5ug&M ^ ufP&F[ug,fP&, ~9!
ng

an

e
I.

-
f

he

e

where the molecule is in its ground stateug&M , and we as-
sume the radiation field is in a coherent stateufP&F with
wave vectorkW P and polarization directionx̂; so we write

ufP&F5expS 2
1

2
uaPu2D(

NP

aP
NP

ANP!
uNP&F . ~10!

The final molecular state is still the ground state, while t
radiation field can be in four different final states because
the presence of the cavity:

uf1&F5â
kW1s1

~L !†
â

kW2s2

~L !†u0&FuNP21&F,

uf2&F5â
kW1s1

~R!†
â

kW2s2

~R!†u0&FuNP21&F ,

~11!

uf3&F5â
kW1s1

~L !†
â

kW2s2

~R!†u0&FuNP21&F

uf4&F5â
kW1s1

~R!†
â

kW2s2

~L !†u0&FuNP21&F .

We can now calculate the transition rateW @17#,
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W5
u„c f ,ÛI

~3!~ t,2`!c i…u2

T

5
1

T (
f 51

4

(
NP

UexpS 2
1

2
uaPu2D

3
aP

NP

ANP!
^g,f f uÛI

~3!~ t,2`!ug,NP&U2

5(
f 51

4

N̄P

2pv1v2vP

\3 S e2

2e0VD 3

uMf u2d~vP2v12v2!,

~12!

where N̄P5uaPu2 and the scattering amplitudeMf , evalu-
ated for example forf 51, is

M15(
n

(
m

F ~LW P•DŴ gn!~LW 1* •DŴ nm!~LW 2* •DŴ mg!

~vng1v11v2!~vmg1v2!

1
~LW P•DŴ gn!~LW 2* •DŴ nm!~LW 1* •DŴ mg!

~vng1v11v2!~vmg1v1!

1
~LW 1* •DŴ gn!~LW P•DŴ nm!~LW 2* •DŴ mg!

~vng2v1!~vmg1v2!

1
~LW 2* •DŴ gn!~LW P•DŴ nm!~LW 1* •DŴ mg!

~vng2v2!~vmg1v1!

1
~LW 1* •DŴ gn!~LW 2* •DŴ nm!~LW P•DŴ mg!

~vng2v1!~vmg2v12v2!

1
~LW 2* •DŴ gn!~LW 1* •DŴ nm!~LW P•DŴ mg!

~vng2v2!~vmg2v12v2!
G , ~13!

FIG. 3. Geometry of the cavity showing the position of t

dipoleDW and the incident pump beam of the wave vectorkW P . Lc is
the cavity length, andLx andLy are the smallest transverse dime
sions between the mirrors and the pump beam sizes.
whereLW j[LW kW j sj
( j 51,2,P). For clarity, we omitted in Eq.

~13! the usual convergence factorg; it can be restored by
letting vab→vab2 ig. Similarly we obtain the expression o
the other amplitudes from Eqs.~11!–~13!. It is worthwhile
noting that Eq.~13! differs from the one calculated in th
case of free space, because vectorial mode functionsLW kWs(xW )
replace usual polarization vectorseW kWs .

In order to evaluate the parametric scattering cross s
tion, it is convenient to distinguish the radiation field cont
bution to the scattering amplitudesMf from that of the mol-
ecule. Rearranging the indexes in the scalar products in
~13!, we can write

Mf5(
i

(
j

(
k

e f
i jk
•Di jk , ~14!

where

Di jk5(
n

(
m

F ~D̂ i !gn~D̂ j !nm~D̂k!mg

~vng1v11v2!~vmg1v2!

1
~D̂ i !gn~D̂k!nm~D̂ j !mg

~vng1v21v1!~vmg1v1!

1
~D̂ j !gn~D̂ i !nm~D̂k!mg

~vng2v1!~vmg1v2!
1

~D̂k!gn~D̂ i !nm~D̂ j !mg

~vng2v2!~vmg1v1!

1
~D̂ j !gn~D̂k!nm~D̂ i !mg

~vng2v1!~vmg2v12v2!

1
~D̂k!gn~D̂ j !nm~D̂ i !mg

~vng2v2!~vmg2v12v2!
G . ~15!

In the above expression,D̂ j is the j th component of the

vectorial operatorDŴ . So we define the coherent scatterin
tensor of the molecule as@18#

d̃i jk5
e3

2\2 Di jk . ~16!

The presence of the cavity is computed by the quantitiese f
i jk

in Eq. ~14!:

e1
i jk~xW !5@LW kW PsP

~xW !# i@LW
kW1s1

* ~xW !# j@LW
kW2s2

* ~xW !#k,

e2
i jk~xW !5@LW kW PsP

~xW !# i@RW
kW1s1

* ~xW !# j@RW
kW2s2

* ~xW !#k,

e3
i jk~xW !5@LW kW PsP

~xW !# i@LW
kW1s1

* ~xW !# j@RW
kW2s2

* ~xW !#k,

e4
i jk~xW !5@LW kW PsP

~xW !# i@RW
kW1s2

* ~xW !# j@LW
kW2s2

* ~xW !#k.

Now we can write Eq.~12! as

W5N̄P

2p\vPv1v2

~2e0V!3 S (
f 51

4

uDe f~xW !u2D d~vP2v12v2!,

~17!

where
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De f~xW ![2(
i

(
j

(
k

e f
i jk~xW !d̃i jk . ~18!

Multiplying Eq. ~17! by the two-photon final state density o
the electromagnetic field (}d3k1d3k2), we obtain the differ-
ential scattering transition ratedW for a fixed polarization.
We are interested in calculating the differential probabil
for one of the two photons, for example number 1, indep
dently from its polarization; so we integrate ind3k2 and sum
over all final polarization states, obtaining

d2W1~xW !5f̄P

\vP

28p5ce0
3 S vP2v1

c D 3S v1

c D 3

3S E dV2(
pol

(
f 51

4

uDe f~xW !u2D dv1dV1 ,

~19!

where we denote byf̄P5cN̄P /V the pumping photon flux.
We assume the pumping field is not confined by the cav
and that its wavelength is not included in the mirror refle
tivity spectrum; so it is described by a plane wave as in f
space:

LW kW PsP
~xW !5 x̂ exp~ ikW P•xW ! ~20!

Now we sum over all final polarization states, Equation~18!
becomes 2( jkd̃x jke f

x jk because (x̂) i5dx
i . Moreover, many

molecules have just one or two nonvanishing nonlinear
efficients, for example, the 2-methyl-4-nitroaniline~MNA !
molecule@19# has justdxxx[d11 and dxyy[d12 nonzero. If
we consider an oriented molecule, placed atxW inside the
microcavity and with principal axis~pa! of the index ellip-
soid such asdxxxupa→dxxxucav anddxyyupa→dxzzucav, then the
sum argument becomesd̃x j je f

x j j , wherej 5x or z. These two
cases represent a molecular dipole moment orientation
allel and perpendicular to the mirrors’ surfaces respectiv
Then Eq.~19! can be divided in two expressions for paral
~i! and perpendicular~'! orientations: We can write

d2W1
i ,'

dv1dV1
5f̄PS m0

e0
D 3/2 \vP~vP2v1!3v1

3

24p5c4 d̃1~1,2!
2 E dV2

3)
j 51

2 F1

2 (
sj

~ uLW
kW j sj

x,z u21uRW
kW j sj

x,z u2!G
v25vP2v1

.

~21!

Note that the expression of the vacuum fluctuations app
in the product in Eq.~21! because, in the parametric proce
we are considering, we have two frequencies of the fi
confined by the microcavity. We do not discuss Eq.~21!
because its dependence on the microcavity paramete
completely determined by the vacuum fluctuations exami
in Sec. III B.

B. Second-harmonic generation

Now consider sum frequency generation processes.
assume that incident fields with frequenciesv1 and v2 are
-

,
-
e

-

r-
y.

rs

d

is
d

e

not confined by the cavity, and that they are both in a coh
ent state with polarizationx̂ and wave vectorskW1 and kW2 ,
respectively. We also assume that the molecular initial s
is the ground state, and thus the total initial state is:

uc i&5ug&M ^ uf1
inc ,f2

inc&F[ug,f i
inc&. ~22!

The molecular final state is still its ground state, while the
are two different final states for the radiation field:

uf1
f in&F5â

kW3s3

~L !†u0&FuN121,N221&F ,

~23!

uf2
f in&F5â

kW3s3

~R!†u0&FuN121,N221&F .

As for the parametric case, the transition rate for a fix
polarization is

W5N̄1N̄2

2pv1v2v3

\3 S e2

2e0VD 3

~ uM1u21uM2u2!

3d~v32v12v2!, ~24!

whereMf , ( f 51,2) is the same in Eq.~14!, wheree f
i jk are

now

e1
i jk~xW !5@LW kW1s1

~xW !# i@LW kW2s2
~xW !# j@LW

kW3s3

* ~xW !#k,

~25!

e2
i jk~xW !5@LW kW1s1

~xW !# i@LW kW2s2
~xW !# j@RW

kW3s3

* ~xW !#k.

In SFG we only consider the molecular dipole moment p
allel to the mirrors’ surfaces, so multiplying Eq.~24! for the
one-photon final state density (}d3k3) and integrating, we
obtain

dW3
i
~xW !5f̄1f̄2

\v1v2~v11v2!3

~2pc!2 S m0

e0
D 3/2

d̃11
2

3F1

2 (
s3

~ uLW
kW3s3

x u21uRW
kW3s3

x u2!GdV3 , ~26!

wheref̄ j5cN̄j /V, ( j 51,2) is the incident flux. In SHG, we
have

v15v2[v⇒v352v.

Then, introducing the field intensityĪ v5f̄v\v at frequency
v, we can write Eq.~26! as

dWi

dV
~xW !5S m0

e0
D 3/2 2v3d̃11

2

\p2c2 ~ Ī v!2F1

2 (
s

@ uLW 2kWs

x u21uRW
2kWs

x u2#G .
~27!

This expression contains the vacuum field fluctuations
the expression between square parentheses, like Eq.~21!
does. Now in Eq.~27! we have only one field confined by
microcavity, then the vacuum fluctuations appear as sin
term calculated at the angular frequency 2v, rather than the
product we have obtained in Eq.~21!.
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IV. VACUUM FIELD FLUCTUATIONS

The role that vacuum field fluctuations play in the S
process in a microcavity it is well known@3,4#. Now we
investigate their effects on nonlinear processes. We hav
ready seen, in Eqs.~21! and ~27!, how vacuum fluctuations
formally appear in parametric processes and SHG; now
calculate these effects explicitly. Then we consider vacu
field fluctuations in a microcavity. If we use (j 5x,y,z) to
label the electromagnetic field components with respec
the cavity axes, we have

Vj~z![^0u~EŴ cav
j !2u0&5(

kWs
S \ck

2e0VD @ uLW
kWs

j u21uRW
kWs

j u2#

5
\

8p3e0c3 E v3F1

2 (
s

@ uLW
kWs

j u21uRW
kWs

j u2#Gdv dV.

~28!

In Eq. ~28! we converted the summation to an integration
the usual way. In this equation we find expressions alre
seen in Eqs.~21! and~27!; let us study the cases of interest
us, i.e., those forj 5x and j 5z. Now we sum over the
polarization indexs, obtaining for the two cases under e
amination:

Vi~z![^0u~EŴ cav
x !2u0&5

\

8p3e0c3 E v3@~sin2f!N
kW1

1
~z!

1~cos2u!~cos2f!N
kW2

1
~z!#dv dV,

~29!

V'~z![^0u~EŴ cav
z !2u0&

5
\

8p3e0c3 E v3@~sin2u!N
kW2

2
~z!#dv dV,

where

N
kWs

6
~z!5 1

2 @Q
kWs

~L6 !
1Q

kWs

~R6 !
# ~30!

and

Q
kWs

~L6 !
~z!5~12ur 1su2!

u16r 2sexp~2iw2!u2

u12r 1sr 2sexp~2iw !u2
,

~31!

Q
kWs

~R6 !
~z!5~12ur 2su2!

u16r 1sexp~2iw1!u2

u12r 1sr 2sexp~2iw !u2

and

w5kLccosu,
~32!

w6~z!5kS Lc

2
6zD cosu.

Comparing Eqs.~28! and ~29!, we immediately see that th
following relations are strictly valid:
al-

e
m

to

y

1

2 (
s

~ uLW
kWs

x,zu21uRW
kWs

x,zu2!

5S \v3

8p3c0c3D 21 d2Vi ,'

dv dV
~z!

5H ~sin2f!N
kW1

1
1~cos2u!~cos2f!N

kW2

1

~sin2u!N
kW
2

for i

for '.

~33!

Now consider three subcases.

1. Free space

In this caser 1s5r 2s50 so thatN
kWs

6
(z)51, and Eq.~29!

leads to one expression valid for allj and independent o
spatial coordinates:

V0[^0u~EŴ vacuum
j !2u0&5

\

6p2e0c3 E v3dv. ~34!

Equation~34! is the well-known expression for vacuum fie
fluctuations in free space@20#; it can be conveniently written
as

3

4p

dV0

dv
5

\v3

8p3e0c3 . ~35!

Comparing Eqs.~33! and ~35!, we deduce

FIG. 4. Polar graph of vacuum field fluctuations of thex com-
ponent of the electric field~in units of\v3/8p3e0c3! in free space,

as functions of the direction~u,f! of the kW mode.
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1

2 (
s

@ uLW
kWs

x,zu21uRW
kWs

x,zu2#5
4p

3

d2Vi ,'

dV0dV
. ~36!

The usefulness of this expression will be shown below. As
Ref. @5#, we draw in Fig. 4 Eq.~36! as the surface spanne
by a vector whose direction is~u,f!, and whose length give
the vacuum field fluctuations of thex component of the elec
tric field ~in units of \v3/8p3e0c3!.

2. Symmetrical cavity

In this case we put

r 1s5r 2s[r s52ur su, t1s5t2s[ts5 i utsu,

giving

S
kWs

1
~z![N

kWs

1
~z!5

~12ur su!212ur su~sin2w21sin2w1!

12ur su214~ ur su2221!21sin2w
,
~37!

S
kWs

2
~z![N

kWs

2
~z!5

~12ur su!212ur su~cos2w21cos2w1!

12ur su214~ ur su2221!21sin2w
.

If we put Eq.~37! into Eq.~29!, we see that thex fluctuation
becomes anisotropic along thez axis. This anisotropy in-
creases with the reflectivityur su. The coefficientsr s and ts

FIG. 5. Polar graph of vacuum field fluctuations normalized
u50, of the x component of the electric field~in units of
\v3/8p3e0c3!, calculated for a molecule placed at the center o
symmetrical cavity with reflectivityR50.1.
n

depend on angleu, angular frequencyv5ck, and polariza-
tion s @15#. Here we assume, for clarity, that they are ind
pendent ofu and polarization; furthermore we suppose th
the frequencyv in interest fall in the flat part of the reflec
tivity spectrum of the mirrors, so we putur s(v)u2[R safely.
We can draw a polar graph of Eq.~36! for a molecule at the
center of the cavity with its dipole moment parallel to th
mirrors. Furthermore we assumekLc5p; that is, we con-
sider a microcavity whose length is half of the wavelength
the mode with wave vectorkW .

The results are shown in Fig. 5 forR50.1 and in Fig. 6
for R50.3. We see that asR→1, the fluctuations become
narrower along thez axis rather than the other direction. Fo
zÞ0 these effects become smaller@5#.

3. Asymmetrical cavity

In this case we have

r 1s521, t1s50, r 2s52ur su, t2s5 i utsu

so we obtain

N
kWs

1
~z!5 2AkWs sin2w1 ,

~38!

N
kWs

2
~z!52 AkWs cos2w1 ,

t

a

FIG. 6. Polar graph of vacuum field fluctuations, normalized
u50, of the x component of the electric field~in units of
\v3/8p3e0c3!, calculated for a molecule placed at the center o
symmetrical cavity with reflectivityR50.3.
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where we define

AkWs5
11ur su

12ur su14~ ur su2121!21sin2w
. ~39!

This choice will become clear as we discuss bulk parame
fluorescence.

We can now calculate the differential cross-sect
ds(kW1)[ds1 for the spontaneous emission in a parame
scattering process from a single molecule. The cross sec
is defined as the ratio of the emission rate of the proces
the incident pumping photon fluxf̄P . Using Eqs.~21! and
~36!, we can write

ds1
i ,'

dv1
5S m0

e0
D 3/2 \vP~vP2v1!3v1

3

32p3c4 d̃1~1,2!
2 S dV1

i ,'

dV01
D S dV2

i ,'

dV02
D .

~40!
th

on

bu

d

ic

c
on
to

V. PHASE MATCHING IN SHG
FOR A SINGLE MOLECULE

In the case of high-Q cavity, the denominator in Eq.~37!
can be expanded in a series of partial fractions, accordin
the Mittag-Leffler theorem, as

1

~12ur su2!214ur su2sin2w

> (
m50

N
1

4ur su2~w2mp!21~12ur su2!2 , ~41!

where we denote byN the ‘‘cavity order’’ @15#, so that

Lc5N
l0

2
~42!

wherel0 is a reference wavelength. Using Eq.~41!, we can
write Eq. ~37! as
N
kWs

1 > (
m50

N
~12ur su2!@~12ur su2!212ur su~sin2w11sin2w2!#

4ur su2~w2mp!21~12ur su2!2 . ~43!
in

c-

q.
Consider now the case of a single molecule placed in
middle of the cavity, atz50. It is of interest to study SHG
emission on the cavity forward mode; hence in Eq.~43! we
take only the termm5N, obtaining

N
kWs

1 >
p

2ur su
~11ur su222ur sucosw!@LNs~w!#, ~44!

where we denoted byLNs(w) the following Lorentzian func-
tion with the full width at half maximum equal to (1
2ur su2)/ur su.

LNs~w!5
1

p

12ur su2

2ur su

p~w2Np!21S 12ur su2

2ur su
D 2 . ~45!

TheLNs(w) maxima are determined by the resonance c
dition w2Np50. Using Eq.~32!, we can write this condi-
tion as

~kz2kzN!Lc[DkLc50, ~46!

where

kzN[
Np

Lc
. ~47!

By considerations similar to those we made in Sec. IV,
with the difference that now the frequency in interest is 2v,
we put ur s(2v)u2[R. Then we can write the vacuum fiel
part of Eq.~27!, using Eqs.~36! and ~37!, as
e

-

t

1

2 (
s

@ uLW 2kWs

x u21uRW
2kWs

x u2#5GN~u!LN~Dk!
dV0

dV
, ~48!

where

GN~u![
2p2

3

11R22AR cos@2pN~cosu!l0 /l#

AR
~49!

and

LN~Dk!5
1

p

12R

2AR

@~2kz22kzN!Lc#
21F12R

2AR
G 2 . ~50!

If we chooseLc so that the harmonic at frequency 2v is in
resonance, i.e.,l05l/2, we have 2w5pN cosu. Then
GN(u) dependence onu is that shown in Fig. 7 for severalN
and R50.999. ForR>0.99 it is almost independent ofR.
We see that there is resonance on the forward modez
50 only for oddN; the next maxima are (N21)/2. For even
N, vacuum field fluctuations are forbidden along this dire
tion, but they haveN/2 maxima foru5arccos@l/N# and odd
l . Then the angular dependence ofdWi/dV is given by a
Lorentzian centered onu50. The widthu0 of the angular
distribution of the SHG emission can be obtained from E
~46! expanding cosu at u50:
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@2~kz2kzN!Lc#
2>FpNu2

2 G2

. ~51!

Settingu0 equal to the half width at half maximum~HWHM!
of the Lorentzian taken as function ofu2, we obtain

u0>
1

Af N
. ~52!

In the case of forward mode, Eqs.~49! and ~50! become

GN~u!>
2p2

3AR
@12~21!NAR#2>H 0, N even

8p2/3, N odd,
~53!

N
p

2
LN~Dk![LN~u2!5

1

p

1

f N

~u2!21S 1

f ND 2 , ~54!

where f 5pAR/(12R) is the cavity finesse@21#. In this
limit, we rewrite Eq.~27! as

dP2v

d cosu
58S m0

e0
D 3/2 ~2v!4d̃11

2 ~ Ī v!2

3c2

LN~u2!

N
, ~55!

where P2v is the emitted power at angular frequency 2v.
The factor 1/N comes from the fact that, in the approxim
tions we made, the emitted power is equally distribu
among theN resonant modes so that the fraction 1/N goes to
the forward mode. The Lorentzian function diverges asf N
when u→0, but the integration ind cosu gives a factor
d cosu5(sinu)du.u0

251/f N which compensates for the d
vergence and assures the energy conservation.

Physically, the divergence angleu0 can be related to a
finite effective radiusr c of an emitting area parallel to th
mirrors’ surface, since the divergence is determined by
fraction from a finite area@22#. The relation between the

FIG. 7. Plot of 3GN(u)/2p2 vs u for several values ofN.
d

f-

divergence angleu0 and the radiusr c of the emitting area
parallel to the mirrors’ surface can be obtained using diffr
tion theory or the Heisenberg indetermination princip
These two ways are basically equivalent; indeed, all auth
write r c as

r c5al0Af N, ~56!

wherea is an adimensional constant whose value depend
the way followed for the calculation of the formula. Here w
use the Heisenberg principle@23#. We assume that the pho
ton moves along thez axis, and hence the uncertaintyDA
5DxDy on the surface perpendicular to the propagation
rection, in which the photon can be localized during the m
surement, is

DA.
\2

DpxDpy
. ~57!

The uncertaintyDpx on the photon momentum is related
the uncertainty on the corresponding component of the c

ity forward mode wave vectorkW̄ :

Dpx5\D~kW̄ !x[\D k̄x . ~58!

Similar relations hold forDpy and Dpz . Near the forward
mode we can expand atu50, and obtain

D k̄x. k̄ sin u0> k̄u0 , ~59!

so Eq.~57! becomes

DA.S 1

2p2 l0Af ND 2

⇒Dx>Dy>2r c>
1

2p2 l0Af N.

~60!

The uncertaintyDz on the photon longitudinal position i
obtained similarly, noting that

D k̄z>uk̄~12cosu!u> k̄
u0

2

2
, ~61!

from which

Dz.
1

D k̄z

.
4 f

p
Lc . ~62!

It is seen in Eq.~62! that the uncertaintyDz is greater than
the cavity geometrical dimensionLc . We note that 4f /p is
approximately the mean number of photon reflections dur
the photon mean flight timetc.2p/Dv in the cavity and,
therefore, the uncertaintyDz on the photon longitudinal po
sition equals its optical path length inside the cavity. Asp/4f
is also half of the HWHM in Eq.~50! we can introduce the
effective lengthLe[Dz, and write Eq.~50! as:

LN~Dk!5
1

2p

Le

Lc
L̃N~Dk!, ~63!

where we use a pseudo-LorentzianL̃N(Dk) function defined
as
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L̃N~Dk![
1

11~DkLe/2!2 . ~64!

If we denote byAc5pr c
2 the coherence area, and byVc

5AcLe the coherence volume, we can define an effect
nonlinearity coefficientd11 as

d11[
N̄e

Vc
d̃11, ~65!

whereN̄e is the effective mean number of emettitors in t
cavity. Then it can be easily demonstrated that Eq.~55! be-
comes

P̄2v

P̄v
5

1

4
S m0

e0
D 3/2

~v2d11
2 Le

2!S P̄v

Ac
D L̃N~Dk! ~66!

if we write N̄e[ALe /Lc. Equation~66! is surprisingly simi-
lar to the expression of the SHG by a crystal of lengthLe

pumped by a monochromatic beam of intensityĪ v5 P̄v/Ac
@12#. A possible interpretation of such similarity follows. Be
cause of reflections inside the volumeVc there is a mean
numberLe /Lc of images placed along thez axis at distance
Lc between each other. They behave like a crystal of eff
tive lengthLe , section areaAc and densityA(Le /Lc)/Vc ,
and assure the quasiconservation of momentum along tz
direction. But nonlinearityd11 in the expression of the polar
ization of the ‘‘medium’’ created by interference of imag
cannot be proportional toN̄e , because that would mea
counting interference effects twice; hence it must dep
only on the square root of this density, so its square is sim
equal to the sum of the contributions due to each sin
image. In conclusion we have shown that, in the presenc
a cavity, it is possible to introduce an effective length, sim
lar to the crystal coherence length, even for a pointlike ob
like an atom or a molecule.

VI. DIFFERENTIAL EXTINCTION COEFFICIENT

Until now we considered a single quantum system in
cavity both in the case of parametric fluorescence and
SHG. In a realistic experiment we should use a dense
dium in order to have an appreciable radiation emission.
a cavity resonant in the visible or near-infrared part of
electromagnetic spectrum, we have 0.5mm<Lc<50mm,
but the coherence lengthl c of a crystal, i.e., the maximum
crystal length that is useful in producing nonlinear pow
exceeds this value. Indeed, if we take a typical value ol
51 mm and n(2v)2n(v)>1022, we obtain l c>100mm
for no phase-matched processes. So it would be of no
putting a crystal into a microcavity. Greater emission co
be obtained using organic and polymer materials which
hibit very large quadratic optical nonlinearities. For examp
a crystal of 2-methyl-4-nitroaniline~MNA ! @19# is known to
be one of the most efficient organic materials for seco
order nonlinear interaction. The reported value for thed11
component is 500625% times thed11 coefficient of quartz,
viz d11(MNA) 5250662310212 m/V @24#. While in inor-
ganic systems nonlinear phenomena arise from ba
structure effects, in organic and polymer systems nonlin
e

c-

d
ly
le
of
-
ct

a
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e-
or
e

r

se
d
x-
,

-

d-
ar

optical responses originate primarily from thep-electron ex-
citations on individual molecular or polymer chain unit
each unit can be viewed essentially as an independent so
of nonlinear optical response. One can calculate the opt
response of a macroscopic condensed assembly like a
by simply summing these individual responses@25#. Then we
still use the theory developed above in the case of a sin
molecule, with slight changes. For the same reasons a s
factory experiment can be realized putting a diluted solut
(@C#;1023M ) ~@C#5concentration in mol/l5M! of organic
molecules inside a cavity, for example between two el
trodes at an adequate potential, in order to produce
electric-field-induced alignment of dipolar molecules. Ada
ing the theory developed in Sec. III for a single molecule
the case of a diluted solution, we can disregard the local-fi
fluctuations, because in these conditions the number of m
ecules in a unit volume is at least four orders of magnitu
less than in a crystal structure. For example, in a MNA cr
tal there are four molecules for each unit cell, which cor
sponds to a density of;9.23M@1023M .

We denoteVx5LxLyLz the cavity volume occupied by
the solution, andLz5Lc ; Nm /Vx is the number of molecules
per unit volume inside the cavity. We also denote bynj
[n(v j ) the solvent refraction index at frequencyv j . In a
realistic experiment, we measure the power outgoing fr
one side of the cavity, which, therefore, can be suppose
be asymmetric. We now define the nonlinear susceptibi
tensor as:

di jk[
e3Nm /Vx

2\2 Di jk5
Nm

Vx
d̃i jk . ~67!

In order to avoid complications introduced by the asymm
ric boundary conditions~void solvent! on mirror surfaces, we
shall suppose that the cavity is embedded in the same so
present inside the cavity. Then the wave vectorskW 6 have the
same values inside and outside the cavity. Therefore we
apply the theory of Sec. III to calculate the scattering amp
tude. We must sum all such scattering amplitudes over all
medium molecules before squaring and, because the
nonvanishing amplitude for an asymmetric cavity isM2 , we
can write

M25(
i

(
j

(
k

e2
i jk~xW !Di jk

→(
i

(
j

(
k

S (
xW

e2
i jk~xW ! DDi jk[Mx ~68!

and

Nm

Vx
si jk[(

xW
e2

i jk~xW !5
Nm

Vx
E

Vx

d3x c2
i jk~xW !, ~69!

so we have

Mx5
\2

e3 Dex , Dex[2(
i

(
j

(
k

si jkdi jk . ~70!

We must keep in mind that, because of the presence of
medium, it is necessary to substitutee0→e0e r5e0nr

2, where



cie

i

c
e
u

io
s

d a

les

ich

2456 PRA 58ANDREA AIELLO, DANIELE FARGION, AND ELENA CIANCI
nr[n(v r). In the examined case, the terme0
3 in Eq. ~17!

comes from the product of three fields at angular frequen
v1 , v2 , andvP ; then

e0
3→e0

3n1
2n2

2nP
2 . ~71!

Moreover, we assume the following dispersion relation
valid:

vn~v!2ukW uc50. ~72!

So we can write the process probability per unit time as

wx5
2pN̄P\vPv1v2

~2e0V!3nP
2n1

2n2
2 uDexu2d~vP2v12v2!. ~73!

Before going ahead, let us verify that, in the limit of absen
of the cavity, Eq.~73! gives results in agreement with thos
valid in free space. For this purpose we compare our res
with those in Ref.@13#. In the free-space limit, we have

e2
i jk~xW !5~eW kW PsP

! i~eW kW1s1
! j~eW kW2s2

!kexp@ i ~kW P2kW12kW2!xW #

~74!

Then, after integration, we obtain

Dex5~2p!2F4p(
i jk

di jk~eW kW psP
! i~eW kW1s1

! j~eW kW2s2
!kG

3d~kW P2kW12kW2!, ~75!

We compare Eq.~75! with Eq. ~17! in Ref. @13#: noting that
di jk5(4pe0)3/2x i jk

NL , if we put

~eW kW PsP
! i~eW kW1s1

! j~eW kW2s2
!k→ei~ k̂p!oj~ k̂1!ok~ k̂2!, ~76!

we find

Dex5~4pe0!3/2~2p!2De1d~kW P2kW12kW2!, ~77!

whereDe1 is defined in Eq.~17! in Ref. @13#. Furthermore,
in Eq. ~73!, we make the assumptions

nP
2n1

2n2
2→ne

2~kW p!no
2~kW1!no

2~kW2!,
~78!

vPv1v2→vepvo1vo2 .

We have identified the dispersive features of the solut
with those of the crystal in Ref.@13#. Then the process rate i

wx

V
5

N̄P

V

~2p!5

V2

~De1!2\vepvo1vo2

ne
2~kW p!no

2~kW1!no
2~kW2!

d~kW p2kW12kW2!

3d~vep2vo12vo2!. ~79!

The differential extinction coefficientds(kW1) is obtained di-
viding Eq.~79! by the incident pump fluxN̄pC/ne(kW p)V and
s

s

e

lts

n

summing over final states. Since we have considere
monochromatic pump, we can also integrate indkW p after
having definedG(kW p)[d(kW p2kW p8), obtaining

ds~kW s!5E E ~De1!2\vepvosvoiG~kW p!

2pCne~kW p!no
2~kW s!no

2~kW i !
d~kW p2kW i2kW s!

3d~vep2voi2vos!dkW idkW pdkW s , ~80!

where we renamed the indexes 1→s and 2→ i . Equation
~80! is exactly the same as Eq.~24! in Ref. @13#, confirming
that our model is correct. Now we suppose that all molecu
are aligned along thex axis, so in the expression ofDex only
one term is nonzero:

Dex52sxxxdxxx[2s11d11, ~81!

where we used the crystallografic notation@12#.
After volume integration we find

s115VxS )
j 51

2

PkW j sj
eW

kW j sj

x D
3S )

m5x,y

sin@ 1
2 ~kW P2kW12kW2!mLm#

@ 1
2 ~kW P2kW12kW2!mLm#

D Z~kW1 ,kW2!,

~82!

where we introduced the functionZ(kW1 ,kW2):

Z~kW1 ,kW2![S22exp@2 i ~w11w2!#2S12exp~2 iw1!

2S21exp~2 iw2!1S11 ~83!

and

PkW j sj
[

i utsj
u

12ur sj
uexp~22iw j !

. ~84!

We have also defined the following four functions:

S225
sin@ 1

2 ~kW P2kW12kW2!zLz#

@ 1
2 ~kW P2kW12kW2!zLz#

,

S215

1
2 sin@ 1

2 ~kW P2kW11kW2!zLz

@ 1
2 ~kW P2kW11kW2!zLz#

,

~85!

S125
sin@ 1

2 ~kW P1kW12kW2!zLz#

@ 1
2 ~kW P1kW12kW2!zLz#

,

S115
sin@ 1

2 ~kW P1kW11kW2!zLz#

@ 1
2 ~kW P1kW11kW2!zLz#

.

In Eq. ~73!, there is a square absolute value ofDex , and we
also have to sum over the final polarization states wh
appear in Eq.~82! only in the first product; making the
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calculation, we find

(
pol

U)
j 51

2

~PkW j sj
eW

kW j sj

x
!U2

5)
j 51

2

@AkW j1
sin2f j

1AkW j2
cos2u jcos2f j #

[Fc~kW1!Fc~kW2!, ~86!
l-

rm
ts

th

t

in
whereAkW j sj
are defined in Eq.~39!. If we compare Eqs.~86!

and ~33!, we recover the influence of the vacuum field flu
tuations on the process considered. We can now calculate
differential extinction coefficient, multiplying Eq.~73! by the
final state density of the electromagnetic field, then summ
over polarization states and dividing by the incident pum
flux f̄P , and finally dividing by the active volumeVx . So
we find
dsx~kW1!5S m0

e0
D 3/2 \vP~vP2v1!3v1

3n~v1!n~vP2v1!Vxd11
2

26p5c4n~vP!
Fc~kW1!Fc~kW2!

3E dV2uZ~kW1 ,kW2!u2 )
m5x,y

S sin@ 1
2 ~kW P2kW12kW2!mLm#

@ 1
2 ~kW P2kW12kW2!mLm#

D 2

dv1dV1 . ~87!
ion
se

e

im-

ex

ity

ns-
fre-
A straightforward calculation shows the validity of the fo
lowing relation:

uZ~kW1 ,kW2!u2[~S22
2 1S21

2 1S12
2 1S11

2 !

22 cosw1~S11S121S22S21!

22 cosw2~S11S211S22S12!

12 cos~w12w2!S12S21

12 cos~w11w2!S11S22 . ~88!

This expression seems complicated; however, all the te
but the first are almost zero, because they are the produc
sinc functions@sinc denote (sinx)/x# with different argu-
ments. In the case of near degeneration,v1.v2.vP/2, and
for near-collinear phase matching on the forward mode
only nonzero term isS22 . BecauseLx andLy are typically
several thousand optical wavelengths, the sinc’s produc
Eq. ~87! can be well approximated by ad function; that is,
we consider the case of cavity mirrors infinitely extended
the x-y plane. If we denote the wave vectorkW by

kW5~j x̂1h ŷ!1z ẑ[kW i1kW', ~89!

we can rewrite Eq.~87!, after integration indkW2
i , as

dsx~kW1!5
\vPv1

3v2n1Lcd11
2

24c4p3e0
3nP@n~vP2v1!#2

3uZ~kW1 ,kW2!u2Fc~kW1!Fc~kW2!
vP2v1

z̄2

3Fn~vP2v1!

c
G 2

d~z22 z̄2!dz2dv1dV1 ,

~90!

where
s
of

e

in

z̄2[F S vP2v1

c
n~vP2v1! D 2

2
1

c2 ~ ukW P
i u21ukW1

i u222kW P
i
•kW1

i
!G1/2

. ~91!

We are interested in the possibility of a practical realizat
of a parametric oscillator in a microcavity, so we suppo
that the cavity is resonant onkW1 . In this arrangementkW1

i

50W , and Eq.~91! becomes simpler. The condition for th
argument of the root in Eq.~91! to be positive implies, for
kW1

i
50, a limited set of values forv1 as a function ofuP .

Some calculations show that the pump incident angle is l
ited to

0<sin uP<
n~vP2v1!

n~vP! S 12
v1

vP
D . ~92!

Figure 8 showsz̄2 as a function ofuP andv1 ; the plane part
in the graph corresponds to the values forbidden by Eq.~92!.
It is calculated for a generic medium with a refractive ind
following Sellmeir’s formula@26#. We deduce from it, for
example, that the pump incident angle on the microcav
cannot be greater than the value (uP)MAX ..31 if we want to
work in conditions of nearly degeneration, i.e.,v15vP/2.
Assume now, as in Sec. IV, that mirror reflection and tra
mission coefficients are independent of polarization and
quency, so we defineur s(v1)u2[R. If we set

kW̄2[kW P
i
1kW̄2

'5hPŷ1 z̄2ẑ, ~93!

then the differential extinction coefficient becomes

dsx~kW1!5
~\vP!v1

3~vP2v1!2n1Lcd11
2

24p3c3nPz̄2
S m0

e0
D 3/2

3uZ~kW1 ,kW̄2!u2Fc~kW1!Fc~kW̄2!dv1dV1 . ~94!
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This formula is the goal of this section. Now we see how
depends on the microcavity parameters. A calculation sh
that

Fc~kW1!Fc~kW̄2!5
~11AR!2

11R22AR cosS 2pN
z̄2

k1
D . ~95!

As in Sec. V, one can demonstrate that in proximity to
mth resonance~m is an integer or zero!, (z̄2)m5k1m/N, and
for 12R!1, Eq. ~95! is well approximated by

Fc~kW1!Fc~kW̄2!> f

1

4p f

~pNz̄2 /k12mp!21S 1

4 f
D 2 . ~96!

So we can write the energy emitted per unit time in a mic
cavity P(kW1) as

P~kW1!dv1dV1[dsx~kW1!\v1VxfP . ~97!

If we want to calculate the energy emitted in a microcav
during a process, we must be very careful. We must integ
Eq. ~97! over a time interval which depends on the ratio
two parameters: the coherence time of the pumping la
tP51/DnP and the photon mean flight time in microcavi
tc . Indeed, because the energy reservoir of the nonlin
phenomena we considered is the pumping laser itself,
tP /tc,1 we must integrate betweent50 and t5tP , but
for tP /tc.1 the effect of the cavity on the process, that
the validity of Eq. ~97!, persists only during a timetc .
Therefore the integration interval is now 0<t<tc . Typi-
cally tc is of the order of some picoseconds, so the fi
regime is realized only using ultrashort laser pulses.

FIG. 8. Graphical representation of allowed values ofv1 and
uP , for a generic medium with a refractive index that follows t
Sellmeir formula. The plane part of the graph corresponds to
forbidden value.
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Let us briefly discuss the form of Eq.~94!: the first factor
is simply a number dependent on the examined process
containing the constraint~92! via z̄2 . The functionuZu2 is
similar to that of free space@sinc(DkL/2)#2, made more
complicated by the terms due to multiple reflections in t
cavity. However, these terms tend to eliminate each ot
and make a negligible contribution, as we can see in
~88!. We note that in conditions of exact resonance, Eq.~95!
reduces to@(11AR)/(12AR)#2. This factor, increasing
whenR→1, suggests the real possibility of making a micr
scopic parametric oscillator. Indeed, as the energy of the
cess is conserved, the increase of power emitted on the
ward mode must occur at the expense of other loss chan
represented by all the other electromagnetic field mode
the cavity. Then, as happens in a microlaser, we can expe
lower-energy threshold and a gain increase. However,
dynamics of nonlinear processes in microcavities will
treated in a forthcoming work.

VII. SUMMARY

In this work, scattering amplitudes for parametric fluore
cence, and SHG emission from a single molecule insid
microcavity, have been computed. We have explicitly wr
ten out their dependence on vacuum field fluctuations wh
have been calculated for several cavity configurations.
have seen that in general vacuum field fluctuations facto
out for fields at angular frequenciesv1 andv2 . Concerning
SHG from a single molecule, we have shown that in a pla
microcavity it is possible to introduce a parameter prop
tional to the cavity’s finesse and length: the effective len
Le , that is analogous to coherence lengthl c of a crystal. This
is possible because the phase-matching condition, that is
momentum conservation for the electromagnetic field, is
sured by the cavity rather than the crystal. In Sec. VI of t
paper, we have concentrated on parametric fluorescence
a uniform distribution of aligned dipoles into an asymmet
cavity. The differential extinction coefficient has been calc
lated, and its dependence on the cavity’s parameters
cussed; moreover, we have shown that it increases on
forward mode with finesse. This suggests, in analogy w
microlaser devices, the possibility of making a microsco
parametric oscillator. Moreover, parametric fluorescence
microcavity exhibits an interesting behavior with respect t
microlaser. For the parametric fluorescence emission po
on the forward mode described in Eq.~97!, we have found a
‘‘quadratic’’ efficiency @Eq. ~96!# which is larger than the
corresponding ‘‘linear’’ efficiency in microlasers, wher
only a unique field frequency is confined by the microcavi

ACKNOWLEDGMENTS

One of the authors~A.A.! is deeply indebted to Professo
P. Mataloni for helpful and stimulating discussions, and
Dr. G. D’Auria for reading the manuscript.

e



es

ni

ys

i,

ys

.

s.

d

nd

tt.

m.

pl.

PRA 58 2459PARAMETRIC FLUORESCENCE AND SECOND-HARMONIC . . .
@1# S. Haroche and D. Kleppner, Phys. Today1 ~1!, 24 ~1989!.
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