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Parametric fluorescence and second-harmonic generation in a planar Fabry-Perot microcavity
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In this work we develop a quantum theory of second-order nonlinear optical processes such as parametric
fluorescence and second-harmonic generd®G), generated by a strong electromagnetic field in an active
medium placed in a microcavity. Fields are quantized and expanded in terms of a suitable set of cavity normal
modes. In the first part of this work we consider a single many-level quantum syateatom or molecu)e
which interacts with all the radiation field modéspontaneous emissipniVe show how vacuum fluctuations
affect both SHG and parametric processes. For SHG, we demonstrate that the presence of the microcavity
allows the introduction of the concept of coherence length, even for a medium made of a single molecule. In
the second part of this paper we discuss the case of a uniform distribution of emitting dipoles. For this
configuration we calculate the differential extinction coefficient, and discuss the dependence of the emitting
power on the microcavity’s parameters. Finally we suggest the possibility of realizing a micro-optical para-
metric oscillator[S1050-2947®8)03008-X]

PACS numbgs): 42.55.Sa, 42.65:k, 42.65.Ky, 42.65.Y]

I. INTRODUCTION tons are annihilated and one is creat8tiG). However, the

. _ _&uantum state of the nonlinear medium does not change in
Since the second half of the 1980s, questions about cavit¥ither category of processes, and can thus be considered as

QED have attracted the interest of many scientids In  pelonging to a unique class of elastic scattering of light, and
particular, problems regarding the confinement of the eleccan be described using a homogeneous formdiksv 4. It
tromagnetic field in microscopic structurémicrocavitie$  is possible to characterize these processes by their differen-
have turned out to be among the most interesting ones itial cross sections if we treat scattering events from isolated
contemporary physicE2]. Matters concerning spontaneous molecules, or by their differential extinction coefficient if we
emission(SpB from a single atom have been studied exten-consider scattering from a dense medium. Actually both for-
sively [3,4] by means of theories that, beginning from a uni-mulations end with a calculation of the process scattering
dimensional model of the cavity, developed to include thedmplitude, which depends on the physical features of the
description of the emitted field distribution outside the cavitynonlinear medium and on the mode structure of the electro-
[5—7]. Moreover, lasers working in microcavitiémicrolas- ~magnetic field surrounding the scattering system. We show
ers, in which the active medium is made of organic mol- NOW this structure can be modified by the confinement of the
ecules diluted in a proper solvef&,d], or of semiconductor field inside a p_lanar microcavity, ar_ld how SL_Jch alter_atlons
materials[3], have been subjects of theoretical and experi2ff€ct the nonlinear processes. This paper is organized as
mental research. In such a wide research field there are relf2lows. In Sec. !I' we first mtroducg t.he 'grave_lmg wave
tively few works regarding nonlinear optical processes in odes of the cavity, and then the radiation field is .quant|z_ed
microcavity[10,11. With this work we intend to start a sys- n teFmS .Of t_hese modes._ Then we calcylate the mteractlon
tematic investigation of these processes, beginning from th amiltonian in a microcavity and expand it perturbatively. In

parametric fluorescence and the second-harmonic generati c._III, we calculate the transition probability both for_para-
(SHO) metric processes and for SHG. In Sec. IV, we examine the
Parametric fluorescence and SHG are among the most in’?—ffe.Ct of the cavity on vacuum quctuatlon§; t_hen, in Sec. V,
portant nonlinear optical processes which involve three phoWe Investigate 'the|r e_ffepts_ on .SHG emission by a s'|n.gle
tons[12]. Such processes can be divided into two classes: iWOIeCUFe' and find a similarity with the emission by a f'mt.e
the first class there are those processes in which one phot(9rt|y_3tal_In free space. In Sec. VI, we cglcul_ate_ the dn‘f_erennal
is annihilated and two are creatégarametric interactions extinction coefficient for a dense medium inside a microcav-

to the second class belong those processes in which two phtY- Finally, we summarize our results in Sec. VII.

Il. FIELD QUANTIZATION AND THE INTERACTION

. . . . HAMILTONIAN
*Electronic address: andrea.aiello@romal.infn.it
"Electronic address: daniele.fargion@romadl.infn.it We consider a cavity made of plane parallel mirrors, such
*Electronic address: cianci@amaldi.fis.uniroma3.it as a Fabry-Perot mirror. For simplicity we assume the mir-
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X These mode functions satisfy the following relations of or-
T tonormality:
: fvd3xﬁas<x*>-é;f,s,<>z>=2wv5mémssr )

whereF and G stand forL or R. These mode functions,
jointly with other mode functions introduced in Réfl5],
Kk form a complete set that couples the interior space with the
- b 4 1+ — — N outside space of the cavity.
0 Now we consider the interaction of a many-level quantum

' system placed inside a microcavity with an electromagnetic
field. The field can be quantized in the usual Way], pro-

' vided that the expansion in terms of plane waves, which

l holds in the free space, is replaced by the expansion in terms

| of the mode functions described previously. It is convenient

1 5 to divide the expression of the electromagnetic field into two
. | parts with opposite parity with respect to they plane:
L, - - -
Ecad X, ) =EL(X,1) +ER(X 1), (5)

FIG. 1. Scheme of the microcavity model, showing the direc-

tions of the two kinds of modes of wave vectdrs andk_ . L is where we put
the distance between mirrors labeled with indexes 1 and 2.

rors to be ideal, i.e., with no thickness and absorption. We
also consider infinitely extended mirrors in order to avoid
complications arising from diffraction from edges. Several (F=L,R). (6)
authors have found the forms of nhormal modes in the cavity;

we adopt the model introduced by De Martatial.[15]. The  The field operatoré(}
cavity geometrical arrangement is shown in Fig. 1. The ori-t ks
gin of the coordinates is midway between the two mirrors,

which are labeled 1 and 2. The distance between thérp,is [agF) 51
and thez-axis direction is perpendicular to the external sur- ks ' k'S’

face of mirror 2. Details of calculations are reported in Refs — . . .
b The total Hamiltonian, free part plus interaction term, is the

[15,16. Here we use slightly different notations than thoseSame as in Ref[15]. The nonlinear processes we analyze

3dopted In Reft15], and we introduce a quantization volume involve three photons, but the electric dipole interaction op-

' The cavity optical features are specified by the reﬂectionerator has nonzero matrix elements only for those transitions

and transmission coefficients denotedriy, ty, andr .ty where the_z nu_mbe_r of field photons changes by one. Thus the
for mirrors 1 and 2, respectively. The lowest index1 and parametric d.lfoSIOI’] gnd other three—photon processes are
2 denotes the polarization. For every directiong) and po- just present in the thwd-order perturbation theory. The first
larizations, it is possible to construct two sets of mode func- nonvanishing term can be written as

tions inside the cavity € L /2<z<+L./2) by summing the R —ie\3 [t 4 t)

geometrical series resulting from the multiple reflections at U§3)(t,—oo)=(7) f dtlf dtzf dtg

the mirrors: - - -

) andég:) satisfy the usual commuta-
ion rules:

1= 8rcdiidss, (F=L,R; G=L,R). (7)

N t)s o N t1dl s xm% r |m><r|ei“’mntlei“’nltzei“’lrt3
Lks(x)_€k+sD_exq|k+'x)+€k_s D nen
S S — - - -
XeXF(iE_-)_()-f—ikLCCOS 0), (D) X[Dmn' Ecalt1) I[Dni- Ecalt2)]
t tool ><I:Dlr : Eca\“s)]r (8)
Res(0) = &_s = explik_- %)+ & s ——
° ~*Ds +* Dg wherefw,,=E,—E, is the difference between system en-
X exp(ik . - X+iKL.Ccos 6), (2)  ergy levels|a) and |b), and I5abz<a|l5|b> are the matrix

elements of its dipole momenteD. If we expand expres-

sion (8), we obtain four kinds of terms: the first two, whose

forms areaaa anda'a’a’, represent the three-photon ab-
D=1-r4>eXp2ikL.COS 6). (3)  sorption and emission, respectively. They are forbidden by

where
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FIG. 2. Diagrammatic representation of the six contributions to parametric fluorescence in third-order time-dependent perturbation
theory. All six interactions in each diagram occur via an electric-dipole Hamiltonian.

the energy conservation requirement in the elastic-scatteringhere the molecule is in its ground stdgy , and we as-
events we are studying. Then there are terms sud @, sume the radiation field is in a coherent sti#e)r with
which are responsible for sum frequency generatttRG  wave vectork, and polarization directio; so we write
and SHG processes, and terms such'@ a which generate
parametric processes. In E®) there are six terms for SFG
and six for parametric fluorescence represented by Feynman 1 ap
diagrams in Fig. 2. It is worthwhile noting that every dia- |¢P>F:eXF< 3 |C¥P|2)E —=|Np)e. (10
gram corresponds to a single term in the expression of the Ne \/N_P!

coherent scattering tensor that will be introduced in Sec. Ill. . o .

This tensor satisfies Kleinman’s conject(ife?]; indeed, the TheT f|_nal r_nolecular st_ate is st_lll the gr_ound state, while the
symmetry-imposed restrictions on the number of indepen[adlatlon field can be in _four different final states because of
dentd;, elements apply when nonlinear polarization is of the presence of the cavity:

electronic origin, as in this case.

Np

A(L)Ta(L)T
=a; _a; . |0)g|Np—1)p,
I1l. DERIVATION OF TRANSITION PROBABILITY |¢1>F kysy k252| >F| P >F

A. Parametric processes ~(R)t~(R)T
. . |p2)e=a; . a; [0)e[Np—1)F,
Let us consider parametric fluorescence processes. The 171 f2%2
geometrical arrangement is shown in Fig.L3:is the cavity (13)
length, andL, andL, are the transverse dimensions of the A(LTA(RIT

N =a; . a 0)e|Np—1
pump beam; the molecule with dipole momeneD is atX |ba)e K1Sy "232| JelNe=1)e

inside the cavity. The initial state of our system, that is the
many-level quantum systeifthat we assume to be a mol- lpaye=a "2 10) e INp— 1) .
ecule and the electromagnetic field, is represented by kisy kS

) =19)m® | dp)e=|d, dp), (99  We can now calculate the transition rate[17],
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where I:jzlfgjsj (j=1,2P). For clarity, we omitted in Eq.
(13) the usual convergence factgf it can be restored by
letting w,p— wap—17y. Similarly we obtain the expression of
the other amplitudes from Eg§l1)—(13). It is worthwhile
noting that Eq.(13) differs from the one calculated in the
L case of free space, because vectorial mode functhg(s?)
replace usual polarization vectogg .
In order to evaluate the parametric scattering cross sec-

z z=+L,/2
tion, it is convenient to distinguish the radiation field contri-
) ecule. Rearranging the indexes in the scalar products in Eq.
/ (13), we can write
L)’

bution to the scattering amplitudes(; from that of the mol-
MFZ 2 Ek Eifjk'Dijka (14

\ L

c

FIG. 3. Geometry of the cavity showing the position of the

) - o - i where
dipole D and the incident pump beam of the wave vedter L is

the cavity length, andl, andL, are the smallest transverse dimen- (6,) ([j) (6k)
sions between the mirrors and the pump beam sizes. Dijkzz 2 i L m9
n m (wng+w1+w2)(wmg+ w3)
e @ 0 ) 2 o (B)gr(Bonf(D))mg
T (wng+ C’)2""C’)1)((J’)mg+ w1)
4 - . - -~ R A
:l 2 E exr{ _ E |a |2) n (Dj)gn(Di)nm(Dk)mg n (Dk)gn(Di)nm(Dj)mg
TN 2P (wng_ wl)(wmg+ w3) (wng_ w2)(wmg+ w1)

EP 2 + (f)j)gn(ﬁk)nm(f)i)mg

(wng_ wl)(wmg_ 01— wy)

4 2TWI W0 e2 3 (Dk)gn(Dj)nm(Di)mg
_ 1Wowp ) + _ (15)
_Zl Np ﬁ3 260\/ |Mf| 5(wp—w1—w2), (wng_ wZ)(wmg_wl_wz)

a

X\/N_pl <gv¢f|ol(3)(tv_m)|ngP>

(12 In the above expressioﬂﬁi is the jth component of the

— ) _ vectorial operatorﬁ. So we define the coherent scattering
whereNp=|ap|? and the scattering amplitudét;, evalu-  tensor of the molecule 448]

ated for example fof =1, is .

~ e
(Cp-Dgn) (L1 Do) (I3 -Bpng o (16)
P Ygn 1°"Ynm 2 'Ymg .
M — . . e
1 ; % (@ngT @17 @) (@mgt @) _The prese.nce of the cavity is computed by the quantﬂj’és
in Eq. (14):
(Lp-Dgn)(L3 -Dpm)(LT -Dpyg) eyk(z)z[E,;Psp(z)]i[E’kflsl(i)]i[tjfzsz(z)]k,

(0ngt @1+ 02)(Omgt ©1)

(LF Dgn)(Lp- D) (L3 - Ding)

(@ng~ @1)(0mg* w2) M (0 =[Lis(OTL L (OVIRE (X,

V)

6gk(i) =[ I:lzpsp(i)]i[ﬁslsl(i)]j[ﬁszsz(i)]k'

(L3 Dgn)(Lp- D) (LY - Ding)

(wng_ wz)(wmg+ 1)

€4 (0 =[Lis,(OITRE  (RPILL ()]
(E’lk : 6gn)(|:§ : |5nm)(I:P' ISmg)

4

(0ng= @1)(Ong— 01— ) _— 27hwpw 0, (2 o
W_NP—(ZGOV)3 f21|A'5f(><)| d(wp— w1~ wy),

(E’ZC'Dgn)(EI’Dnm)(I:P'Dmg) (17)

, (13

(wng_w2)(wmg_w1_w2) where

Now we can write Eq(12) as
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R o not confined by the cavity, and that they are both in a coher-
AEf(X)EZZ EJ: zk: e (X)dijk - (18 ent state with polarizatioi and wave vector&; and Ky,
respectively. We also assume that the molecular initial state
Multiplying Eq. (17) by the two-photon final state density of is the ground state, and thus the total initial state is:
the electromagnetic fielo{(d>k,dk,), we obtain the differ- e, gie inc
ential scattering transition ra@dW for a fixed polarization. [y =19)m®[$1°, 67 =|9,4™). (22)
We are interested in calculating the differential probability
for one of the two photons, for example number 1, indepen-
dently from its polarization; so we integratedrik, and sum
over all final polarization states, obtaining

The molecular final state is still its ground state, while there
are two different final states for the radiation field:

L)t
| 1" —a( : |0>F|Nl IN;—1)g,

3 3
d?Wy(X) = ¢p :“UP op M (ﬂ) R)T (23
Pregl ¢ e |65MF=4 s [0)EIN1~ LN, ~ 1)
f d0,> > |A6f(i)|2)dw1d91, As for the parametric case, the transition rate for a fixed
pol T=1 polarization is
(19
- — — 27wiwymy [ €2 \3 ) ’
where we denote byp=cNp/V the pumping photon flux. W=N;N, 73 (26 V) (| M|+ M;|?)
We assume the pumping field is not confined by the cavity, 0
and that its wavelength is not included in the mirror reflec- X 6(wz— w1~ wy), (24
tivity spectrum; so it is described by a plane wave as in free B
space: where M;, (f=1,2) is the same in Eq14), wheree/* are
R R now
Lk s, (X) =% exp(ikp:X) (20)

, o X (1) =[Li s, (O] [Lis,(OVIL (9]
Now we sum over aII final polarization states, Equatit8) 573
becomes Z,kdxjkef because X)'= ' Moreover, many ik o T . «
molecules have just one or two nonvamshing nonlinear co- €2 (%)=L, D TLiys,(O IR o (T

efficients, for example, the 2-methyl-4-nitroanilii®INA)

molecule[19] has justd,,,=d;; andd,,,=d;, nonzero. If  In SFG we only consider the molecular dipole moment par-
we consider an oriented molecule, placedxainside the allel to the mirrors’ surfaces, so multiplying E4) for the
microcavity and with principal axigpa) of the index ellip-  one-photon final state density<@%k;) and integrating, we
s0id such asly,| pa— Ayl cav @NAdyyy) pa— dyzd cavs then the  obtain
sum argument becomeg;; ;! , wherej =x or z. These two . "
cases represent a molecular dipole moment orientation par- AW (R) = ¢ ¢ howiwy(w1+w;) (@) 32
allel and perpendicular to the mirrors’ surfaces respectively. 3 172 (2mc)? €
Then Eq.(19) can be divided in two expressions for parallel

(25

(I) and perpendiculafl ) orientations: We can write 5¢ } E (|I:)5 |2+|F?5 12)|dQ (26)
24/, L /. 275 k%3 kaSs >
d Wl’ - (@)Szﬁa)P(o)P (,01) (,01 d2 de o .
dwdQ; "l e 2475c? 112 2 whereg;=cN;/V, (j=1,2) is the incident flux. In SHG, we

have

2
1 =X,z =X,z
% - %2124 |IRYE |2
J'Hl |:2§] (|Lkisj| |Rkisi| ) _ 01~ W= 0= w3=20.
wszp wl
(2)  Then, introducing the field intensi@=gwhw at frequency

w, we can write Eq(26) as
Note that the expression of the vacuum fluctuations appears

in the product in Eq(21) because, in the parametric process o 32 2 w¥d2.
we are considering, we have two frequencies of the fleld—( X)= ( 0) %(I“’) [ 2 [ 12]].

dQ € hmTeC 2ks 2ks
confined by the microcavity. We do not discuss Egl) 0
because its dependence on the microcavity parameters is (27
completely determined by the vacuum fluctuations examined
in Sec. IIIB. This expression contains the vacuum field fluctuations via

the expression between square parentheses, like(Hjg.
does. Now in Eq(27) we have only one field confined by a
microcavity, then the vacuum fluctuations appear as single

Now consider sum frequency generation processes. Wierm calculated at the angular frequeney, 2ather than the
assume that incident fields with frequencies and w, are  product we have obtained in E@1).

B. Second-harmonic generation



PRA 58 PARAMETRIC FLUORESCENCE AND SECOND-HARMONMI. . . 2451

IV. VACUUM FIELD FLUCTUATIONS

The role that vacuum field fluctuations play in the SpE
process in a microcavity it is well knowfB,4]. Now we
investigate their effects on nonlinear processes. We have al-
ready seen, in Eq$21) and (27), how vacuum fluctuations
formally appear in parametric processes and SHG; now we
calculate these effects explicitly. Then we consider vacuum
field fluctuations in a microcavity. If we usg €x,y,2) to
label the electromagnetic field components with respect to
the cavity axes, we have

j 2i hck\ i N
Ma=OlET0=2 (2eov)[|LJ|zs|2+|szs|2
h 1 : ,
= —a— 3 = "2 312
8meyC® f @12 Es [ILe*+ IR [*]|do dQ.
(28)

In Eqg. (28) we converted the summation to an integration in
the usual way. In this equation we find expressions already
seen in Eqs(21) and(27); let us study the cases of interest to
us, i.e., those foj=x and j=z. Now we sum over the
polarization indexs, obtaining for the two cases under ex-
amination: FIG. 4. Polar graph of vacuum field fluctuations of theom-
ponent of the electric fieldin units of# w3/87€,c®) in free space,
as functions of the directiofw,¢) of the K mode.

= h ¥
V'(z)z<o|(E§av)2|o>=m f [ (Sir’ $)N(2)

1 - -
+(co26)(co )N, (2)]dw dQ, 5 2 (LIRS
(29)
~ B ﬁw3 -1 dZV\,J_
V' (2)=(0|(E.)?|0) “\87%c,c?) dwan P
i _ .
=mfw3[(sin20)NE2(z)]dw dQ, [ (SiP@ING, +(coS0) (coS$ING,  for |
° | (sirro)N; for L.
where
(33
N> (2)=Ltro%") + oR®) 30 .
W(2=32[Q +Q ] (300 Now consider three subcases.
and 1. Free space
. |12 1 peexp(2iw )2 In this caser,5=r,;=0 so thatNEs(z)=1, and Eq.(29)
) 2)=(1—|ryq? . , leads to one expression valid for glland independent of
Qs (D= 1) |1—r4r eexp(2iw)|?
157 25EX spatial coordinates:
(31
(~Ri)(z)=(l—|r 2) |1=rexp2iw,)|? ~ 4
2 ) [ e 2iw) P Vo= (Ol Elaeunt 100~ g2z3 [ @’do. (38
0
and
Equation(34) is the well-known expression for vacuum field
_ fluctuations in free spad0]; it can be conveniently written
w=KkL.Cos 6, as
(32
W+(z)=k(btz)cose. 3 dy, hows
- 2 (35

47 do  8moec’
Comparing Eqs(28) and (29), we immediately see that the
following relations are strictly valid: Comparing Eqgs(33) and(35), we deduce
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FIG. 5. Polar graph of vacuum field fluctuations normalized at  FIG. 6. Polar graph of vacuum field fluctuations, normalized at
6=0, of the x component of the electric fieldin units of  §=0, of the x component of the electric fieldin units of
hw3/8m€yc?), calculated for a molecule placed at the center of a% »3/873€,c®), calculated for a molecule placed at the center of a

symmetrical cavity with reflectivityR=0.1. symmetrical cavity with reflectivityR=0.3.
1 w2y mxzps AT RAVES depend on angl®, angular frequencw=ck, and polariza-
> ZS (LT + IR = 3 dvdn (36)  tion s [15]. Here we assume, for clarity, that they are inde-

pendent ofg and polarization; furthermore we suppose that

The usefulness of this expression will be shown below. As iffn€ frequencyw in interest fall in the flat partzof the reflec-
Ref. [5], we draw in Fig. 4 Eq(36) as the surface spanned tIVity spectrum of the mirrors, so we piity(w)|*=R safely.
by a vector whose direction #,¢), and whose length gives W€ can draw a polar graph of E€86) for a molecule at the
the vacuum field fluctuations of thecomponent of the elec- Center of the cavity with its dipole moment parallel to the

tric field (in units of 7 w3/8m3e,cd). mirrors. Furthermore we assunkd..=7; that is, we con-
sider a microcavity whose length is half of the wavelength of
2. Symmetrical cavity the mode with wave vectdx.

The results are shown in Fig. 5 f&=0.1 and in Fig. 6
for R=0.3. We see that aB— 1, the fluctuations become
) narrower along the axis rather than the other direction. For
r1s=ras=rs=—Ird, tis=ta=ts=ilty, z#0 these effects become small&i.

In this case we put

giving 3. Asymmetrical cavity

In this case we have
(1—|rg)2+2|r | (sifw_+sirfw,)

1—|rg?+4(rd ?—1) sirw ’

Fo ot o
Slzs( 7)= les( 2)= .
(37) rs=—1, t35=0, r252_|rsla tZs:||ts|

(1—|rg)?+2|rg|(codw_ +codw,) so we obtain
1—|rg?+4(|rd 2—1) Isirfw

S D=N(2)=
NES(Z)I 2ALsirfw,
If we put Eq.(37) into Eq.(29), we see that th& fluctuation (38)

becomes anisotropic along tteaxis. This anisotropy in- - o
creases with the reflectivityr|. The coefficients ¢ and t, Nio(2) =2 Agscosw,
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where we define V. PHASE MATCHING IN SHG
FOR A SINGLE MOLECULE
Ais= 1+ : _ (39) In the case of higl cavity, the denominator in Eq37)
S 1=|rd +4(|rd Tt=1) " tsirfw can be expanded in a series of partial fractions, according to

the Mittag-Leffler theorem, as
This choice will become clear as we discuss bulk parametric

fluorescence. - 1 —
We can now calculate the differential cross-section (1=[rg%)*+4]r | sirw
do(lzl)zdal for the spontaneous emission in a parametric N 1
scattering process from a single molecule. The cross section = > 5 >, (41)
is defined as the ratio of the emission rate of the process to m=0 4[rg*(W—mm)*+(1—|ry%)

the incident pumping photon flug, . Using Egs.(21) and

(36), we can write where we denote bi{ the “cavity order” [15], so that

IlL 3
do1™ (o 3/2ﬁwp(wp_w1)3w1~2
= 32..3c3 112

(dV'l’l) ( de) Le=N % (42)

do; 6_0 dVor )\ dVo,
where\, is a reference wavelength. Using Ed1), we can

(400  write Eq.(37) as

NES D (1—|rgd®H[(1—]|rg??+2|rd|(sirfw, +sirfw_)]

Em=o 4|r ]2 (w—mm)?+(1—]rg?)? (43

Consider now the case of a single molecule placed in the 1 a1 dV,
middle of the cavity, az=0. It is of interest to study SHG > 2 [0 2H IR |21=Gn(0) Ln(AK) a0 “9
emission on the cavity forward mode; hence in EB) we s

take only the terrm=N, obtaining

where
NG= o (L+|rg2=2lrJeosw)[ Luw)],  (44)
s 2|ry| Gu(8) 272 1+ R— 2R cog 27N(cos )\ g/\]
NO)=——
where we denoted bgy4(w) the following Lorentzian func- 3 VR
tion with the full width at half maximum equal to (1 (49
_|rs|2)/|rs|-
and
1_|rs|2
1 2|ry _
ENS(W):; : 1-|I’ |2 2 (45) %
w—N7)2+ > ) 1 2VR
TN Lu(Ak)=— ;. (60

[(Zkz_ ZkzN)Lc]2+

The Lys(w) maxima are determined by the resonance con- 2R
dition w—N7=0. Using Eq.(32), we can write this condi-
flon as If we choosel . so that the harmonic at frequencw s in
(k;—kyn)Lec=AKL.=0, (46)  resonance, i.e.\o=\/2, we have %==N cosé. Then
Gn(6) dependence odis that shown in Fig. 7 for several
where and R=0.999. ForR=0.99 it is almost independent &.
We see that there is resonance on the forward mode in
N =0 only for oddN; the next maxima areN—1)/2. For even
Kon= Lo (47) N, vacuum field fluctuations are forbidden along this direc-

tion, but they haveN/2 maxima for#=arcco$l/N] and odd
By considerations similar to those we made in Sec. IV, bul. Then the angular dependence dV'/dQ) is given by a
with the difference that now the frequency in interestis 2 Lorentzian centered o8=0. The width 6, of the angular
we put|rg(2w)|>=R. Then we can write the vacuum field distribution of the SHG emission can be obtained from Eq.
part of Eq.(27), using Eqs(36) and(37), as (46) expanding co® at §=0:
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divergence angl®, and the radius . of the emitting area
parallel to the mirrors’ surface can be obtained using diffrac-
tion theory or the Heisenberg indetermination principle.
These two ways are basically equivalent; indeed, all authors
write r. as

3G, (0)/2n
o L N W L

3G2(0)/2n°
o = (8] w 'y

re=aroVfN, (56)

2

Q

3Ga(0)/2m
(=] Lt D (] -
3G (0)) 20
T S

ton moves along the axis, and hence the uncertainhA
=AxAy on the surface perpendicular to the propagation di-
rection, in which the photon can be localized during the mea-
surement, is

3G5(0)/2m?
(=] 1= N W B

0.5 1 1.5
wherea is an adimensional constant whose value depends on
the way followed for the calculation of the formula. Here we
use the Heisenberg princip]@3]. We assume that the pho-
0 0.5 1 1.5

3G5(0)/2n
o - N w s

hZ

) 0.5 1 1.5 0 0.5 1 1.5 AA:Aprpy. ®)
0 (rad) 0(rad)

FIG. 7. Plot of Bou(8)/222 vs 8 f | values o The uncertaintyA p, on the photon momentum is related to
- 1. Plot of 33y(6)/2m* vs ¢ for several values oK. the uncertainty on the corresponding component of the cav-

N#?|? ity forward mode wave vectok:

(51)

2 aa
[Z(kz_kzN)Lc] =
) ) ) Ap, ﬁA(k)x ﬁAk (58
Settingd, equal to the half width at half maximuthlWHM)
of the Lorentzian taken as function 6f, we obtain Similar relations hold forAp, and Ap,. Near the forward

mode we can expand &t=0, and obtain
1 _ _
bo= TN (52 Ak =k sin ,=k#, (59)

In the case of forward mode, Eq&l9) and (50) become S0 Eq.(57) becomes

1 2 1
0, N even AA:(ﬁ xo\/m) zszAyEZrczﬁ)\o\/m.
8m2/3, N odd, (60)
(53

2

2
Gu()= 7 1= —1)“@22[

The uncertaintyAz on the photon longitudinal position is
obtained similarly, noting that

T 1 f 2
NECN(AK)ZﬁNwZ):Wﬁ' (54 Ak=[k(1—cos 0)| =k =, (61)
Rt
from which
where f=7R/(1-R) is the cavity finess¢21]. In this
limit, we rewrite Eq.(27) as 1 4f
Az=—=—1L,. (62)

Ak, =

dP? (?)3’%2@“8&(?’)2 LG R—
0

dcos6 3c? N It is seen in Eq(62) that the uncertainty\z is greater than
the cavity geometrical dimensidn,. We note that 4/ is
where P?¢ is the emitted power at angular frequency. 2 approximately the mean number of photon reflections during
The factor 1IN comes from the fact that, in the approxima- the photon mean flight time.=2#/Aw in the cavity and,
tions we made, the emitted power is equally distributectherefore, the uncertaintiz on the photon longitudinal po-
among theN resonant modes so that the fractioh oes to  sition equals its optical path length inside the cavity.Agf
the forward mode. The Lorentzian function divergesfBls s also half of the HWHM in Eq(50) we can introduce the
when #—0, but the integration ird cosé gives a factor effective lengthL.=Az, and write Eq.(50) as:
d cosé=(sin 0)d020(2)=1/fN which compensates for the di-
vergence and assures the energy conservation.
Physically, the divergence angl® can be related to a
finite effective radius. of an emitting area parallel to the
mirrors’ surface, since the divergence is determined by difwhere we use a pseudo- Lorentznén(Ak) function defined
fraction from a finite ared22]. The relation between the as

1 Le~
Ln(AK) =5 7 Ln(AK), (63)
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optical responses originate primarily from theelectron ex-
m- (64) citations_ on indiviglual moleculgr or polymer chain units;

each unit can be viewed essentially as an independent source
If we denote byA,=mr2 the coherence area, and by  Of nonlinear optical response. One can calculate the optical
=AL, the coherence volume, we can define an effectivd®SPONse of a macroscopic condensed assembly like a solid

nonlinearity coefficientd,; as by simply summing these individual respon§2S|. Then we
still use the theory developed above in the case of a single

5 molecule, with slight changes. For the same reasons a satis-
dqq, (65  factory experiment can be realized putting a diluted solution
¢ ([C]~103M) ([C]=concentration in mal~M) of organic
molecules inside a cavity, for example between two elec-
trodes at an adequate potential, in order to produce an
electric-field-induced alignment of dipolar molecules. Adapt-

Ln(Ak)=

| &1

di =

<

Whereﬁe is the effective mean number of emettitors in the
cavity. Then it can be easily demonstrated that (5&) be-

comes ing the theory developed in Sec. Il for a single molecule to
p2o 1 312 po the case of a diluted solution, we can disregard the local-field
M alc (wzdfle)(—> Ln(AK) (66) fluctuations, because in these conditions the number of mol-
P® 4\ € 1A ecules in a unit volume is at least four orders of magnitude

_ less than in a crystal structure. For example, in a MNA crys-
if we write No=+/L./L.. Equation(66) is surprisingly simi- tal there are four molecules for each unit cell, which corre-
lar to the expression of the SHG by a crystal of length  sponds to a density of 9.23V1>10 3M.
pumped by a monochromatic beam of intengity= P“/A, We denoteV, =L,L,L, the cavity volume occupied by
[12]. A possible interpretation of such similarity follows. Be- the solution, and.,=L; Ny,/V, is the number of molecules
cause of reflections inside the volurve there is a mean per unit volume inside the cavity. We also denote rijy
numberL /L. of images placed along theaxis at distance =n(w;) the solvent refraction index at frequenay . In a
L. between each other. They behave like a crystal of effecrealistic experiment, we measure the power outgoing from
tive lengthL,, section area, and densityy(Lo/Lc)/V,, one side of the cavity, whlch2 therefore, can be suppo§e.d_ to
and assure the quasiconservation of momentum along thePe asymmetric. We now define the nonlinear susceptibility
direction. But nonlinearityl, ; in the expression of the polar- €nsor as:
ization of the “medium” created by interference of images
cannot be proportional tdN., because that would mean dijk=
counting interference effects twice; hence it must depend

only on the square root of this density, so its square is simpl¥n order to avoid complications introduced by the asymmet-

equal to the sum of the contributions due to each single. " . ;
. ; : fic boundary conditiongvoid solven} on mirror surfaces, we
image. In conclusion we have shown that, in the presence o

T . . . . ~.shall suppose that the cavity is embedded in the same solvent
a cavity, it is possible to introduce an effective length, simi- o , -
lar to the crystal coherence length, even for a pointlike objecPresent inside the cavity. Then the wave vectorshave the
like an atom or a molecule. same values inside and outside the cavity. Therefore we can
apply the theory of Sec. Il to calculate the scattering ampli-
tude. We must sum all such scattering amplitudes over all the
medium molecules before squaring and, because the only
Until now we considered a single quantum system in ahonvanishing amplitude for an asymmetric cavity\i,, we
cavity both in the case of parametric fluorescence and ofan write
SHG. In a realistic experiment we should use a dense me-
dium in order to have an appreciable radiation emission. For _ ik,
a cavity resonant in the visible or near-infrared part of the Mz 2.: 2,: Ek: €2 (X)Diyk
electromagnetic spectrum, we have @<L <50um,
but the coherence I_engﬂg of a crystal, .i.e., the_maximum —>E 2 E (2 égk(f))DijkEMX (68)
crystal length that is useful in producing nonlinear power T T K\ T
exceeds this value. Indeed, if we take a typical value\ of
=1um andn(2w)—n(w)=10"2, we obtainl,=100um  and
for no phase-matched processes. So it would be of no use N N
putting a crystal into a microcavity. Greater emission could oM oijk— ik gy M f 3y Ak g
be obtained using organic and polymer materials which ex- A S zx: €2 (%) vV, de x &7 (%), (69
hibit very large quadratic optical nonlinearities. For example,
a crystal of 2-methyl-4-nitroanilinéMNA) [19] is known to S0 we have
be one of the most efficient organic materials for second- 42
order nonlinear interaction. The reported value for the _n _ ik
component is 508 25% times thed,, coefficient of quartz, M= Aexs AE"_Zzi 2 ; s (70
viz d;;(MNA) =250+ 62X 1012 m/V [24]. While in inor-
ganic systems nonlinear phenomena arise from band¥e must keep in mind that, because of the presence of the
structure effects, in organic and polymer systems nonlineamedium, it is necessary to substituig— ege, = eonf, where

eNp/V, Ny ~

Ty Dijk:V_ diji - (67)
X

VI. DIFFERENTIAL EXTINCTION COEFFICIENT
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n,=n(w,). In the examined case, the tercﬁ in Eg. (17) summing over final states. Since we have considered a
comes from the product of three fields at angular frequenciemonochromatic pump, we can also integratediﬁp after

w1, Wz, andwp; then having defined5(K,) = d(k,— k), obtaining
3 . .3.222 .
€o— €oN1N2Np. (71 do(K) j (A€1) i wepwosoiG(Kp) Sk —k — k)
g = — k. —
Moreover, we assume the following dispersion relation is ° 2ane(I2p)n§(IZS)n§(IZi) o

valid:
X 8(wep— woi— wos) dkidk,dks, (80)
wn(w)—|k|c=0. (72 _ , ,
where we renamed the indexes-5 and 2—i. Equation

So we can write the process probability per unit time as  (80) is exactly the same as E(®4) in Ref.[13], confirming
that our model is correct. Now we suppose that all molecules
are aligned along the axis, so in the expression dfe, only

|Ae,[28(wp—w1—w,). (73 ~ oneterm is nonzero:

A€, =25 =2s"d;, (81)

2mNphwpw o,
W = —
X (260V)3nening

Before going ahead, let us verify that, in the limit of absence

of the cavity, Eq(73) gives results in agreement with those where we used the crystallografic notatidr®].
valid in free space. For this purpose we compare our results After volume integration we find
with those in Ref[13]. In the free-space limit, we have

Egk()—()) = ( glzpsp)i(glzlsl)j(glzzsz)kexnti (IZP_ lzl_ EZ))—()]

(74) L e

en ater irtearat - X( swzwr«f«ama)(iﬁ)
en, arter integration, we obtain = = = 1:82),

m=xy [% (kp—ki—=Kz)mbm]

o (82
Mey=(2m? 472, dij(Ei5,)'(Eys,) (Eys)" o
N where we introduced the functiof(k, ,k,):
X 5( |Zp_ El_ Ez), (75)

Z(Izl,IZZ)ES,,eXF[—i(wl+W2)]—S+,exp(—iwl)
We compare Eq(75) with Eq. (17) in Ref.[13]: noting that

dijk:(47760)3/2/\/i'\jlll(_! if we put _S—+eXF(_iW2)+S++ (83)
_ ‘ R R N and
(EQPSP)I(gglsl)l(glzzsz)kaei(kp)oj(kl)ok(kz), (76) it
i|ts
. . i
we find Pkisi_ 1— |rsj|exp(—2iwj) ' 84
Ae,=(4mep)¥(2m)?Ae;8(kp—ki—K),  (77)  We have also defined the following four functions:
whereAe, is defined in Eq(17) in Ref.[13]. Furthermore, sin (Kp— Ky —K,),L,]
in Eq. (73), we make the assumptions S.=——
[E(kP_kl_kZ)sz]
2,.2.2 2 20 20
npnins—ng(ky,)ng(kng(ky), L.
PPz Ml Moka)na(le) 78) o dsiike Rtk
WpW Wy Wep®o1 W2 - T [A(Kp—Ky+ KoL,

(89
We have identified the dispersive features of the solution .
with those of the crystal in Ref13]. Then the process rate is S _sinz(kptky—kz),L,]

[3(Kp+Ky—Ky) L]

X

_ ) (Sen) B oepvore
Vo VVE nZ(ko)nd(k)nZ(Ky)

Wy ﬁP (2m)° (Ael)zhwepwolwoz

8(K,—ky—Ko)

_sin3(Kp+ Ky ko) L]
+ 4+ = > s> =~ .
[%(kP+ k1+ kZ)sz]
x&( Wep™ Wo1 ™ ®02). (79
_ _ o o . . ~InEq.(73), there is a square absolute valueAof, , and we
The differential extinction coefficierdo(k,) is obtained di-  also have to sum over the final polarization states which

viding Eq.(79) by the incident pump quNpC/ne(IZp)V and appear in Eq.(82 only in the first product; making the
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calculation, we find whereAy ¢ are defined in Eq39). If we compare Eqs.86)

and(33), we recover the influence of the vacuum field fluc-
D tuations on the process considered. We can now calculate the
o differential extinction coefficient, multiplying E¢73) by the
final state density of the electromagnetic field, then summing

2 2
:,Hl [Al;jlsin2¢>j

2
L X
I (Pigé o)

=1

+A,;jzco§0jc0§¢j] over_polarization states and dividing by the incident pump
R R flux ¢p, and finally dividing by the active volum¥, . So
=Fo(k1) Fo(ka), (86)  we find

- Mo 3/2ﬁwP(wP_w1)3win(wl)n(wP_wl)vxdil
do—x(kl) = 26’775C4n(wp)

Fo(Ky) Fo(ky)

€0

L. sin £ (Kp— Ky —Ko) L m]
x [ a0z, Kol? T1 ( i

2
- — — dwldﬂl. (87)
m=xy | [5(kp—Ki—Kz)mbkm] )

A straightforward calculation shows the validity of the fol- —

Wp— Wq 2
lowing relation: {o= o Nwp—wy)
Z(ky ko) |?=(S* _+S? ,+S2 _+ 1. . |
|Z(ky ko) [*=(S"_+S7, +S]_+Si,) _?(|k”P|2+|k”l|2—2k'|'3~k”1) . 91

—2cosw;(S, S, _+S__S_,)

—2coSW,(S4+S_.+S__S,_) We are intere;ted in_ the p_ossibili'_[y of a practical realization
of a parametric oscillator in a microcavity, so we suppose

that the cavity is resonant oﬁl. In this arrangement?”1

+2cogw,+w,)S, . S__. (89 =0, and Eq.(91) becomes simpler. The condition for the
argument of the root in Eq91) to be positive implies, for

This expression seems complicated; however, all the terrﬂ@‘lzo, a limited set of values fow; as a function offp.

but the first are almost zero, because they are the products 8bme calculations show that the pump incident angle is lim-
sinc functions[sinc denote (six)/x] with different argu- ited to

ments. In the case of near degeneratois= w,= wp/2, and

for near-collinear phase matching on the forward mode the ) N(wp— wq)
only nonzero term iS_ . Becausd., andL, are typically O=sin fp= N(wp)
several thousand optical wavelengths, the sinc’s product in P

Eqg. (87) can be well approximated by &function; that is, . — .

wg consider the case (F))]Pcavity mirror); infinitely extended in_':Igure 8 showg, as a function obp andw, ; the plane part

. in the graph corresponds to the values forbidden by(&2).
the x-y plane. If we denote the wave vectoroy It is calculated for a generic medium with a refractive index

following Sellmeir's formula[26]. We deduce from it, for

+2cogw,—W,)S, _S_,

- ﬂ) . (92)
wp

k=(&x+ 79)+ {2=K'+k*, (890  example, that the pump incident angle on the microcavity
cannot be greater than the valug§yax =-31 if we want to
we can rewrite Eq(87), after integration irdl%, as work in conditions of nearly degeneration, i.e;= wp/2.

Assume now, as in Sec. IV, that mirror reflection and trans-
mission coefficients are independent of polarization and fre-

3 2
do(K;)= hwpwiwanlcdy quency, so we defing ((»;)|?=R. If we set
X 2404773€gnp[n((1)p_(1)1)]2 - -
N 2 > N Wp— W1 kZE Izll‘jdl_ kJZ_ = 77F’9+ §221 (93)
X|Z(Ky ko) |*Fe(kq) Fo(ky) ——
2 then the differential extinction coefficient becomes
2
N(wp—w;) - 32
X| ————| 8({2—{2)d{dw,dQy, - (hwp)wi(wp—wl)znchdil Mo
c do-)((kl = — —
247T3C3np§2 60

(90

where X |Z(Ky ko) | 2Fo(Kp) Fo(Kp)dw1dQy . (94)
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Let us briefly discuss the form of E¢P4): the first factor
is simply a number dependent on the examined process and
containing the constraint92) via £,. The function|Z|? is
similar to that of free spac@sinc(AkL/2)]?>, made more
complicated by the terms due to multiple reflections in the
15 cavity. However, these terms tend to eliminate each other
and make a negligible contribution, as we can see in Eq.
(88). We note that in conditions of exact resonance, (@§)
& reduces to[ (1+ R)/(1—+R)]% This factor, increasing
whenR—1, suggests the real possibility of making a micro-

3 x 107

Gm™)

1x 1018

2% 10% scopic parametric oscillator. Indeed, as the energy of the pro-
9 (5ot 3% 1015 cess is conserved, the increase of power emitted on the for-
/ ward mode must occur at the expense of other loss channels

- hical ) ¢ allowed val ¢and represented by all the other electromagnetic field modes in

G. 8. Graphical representation of allowed valueswafand — yhe cavity. Then, as happens in a microlaser, we can expect a

0p , for a generic medium with a refractive index that follows the lower-energy threshold and a gain increase. However, the

Sellmeir formula. The plane part of the graph corresponds to th%ynamics of nonlinear processes in microcévities Wi||, be
forbidden value.

treated in a forthcoming work.

This formula is the goal of this section. Now we see how it

depends on the microcavity parameters. A calculation shows VII. SUMMARY
that
In this work, scattering amplitudes for parametric fluores-
. - (1+ \/E)Z cence, and SHG emission from a single molecule inside a
Fe(ky) Fe(ko)= ——. (95  microcavity, have been computed. We have explicitly writ-
1+R-2vR cod 27N Q ten out their dependence on vacuum field fluctuations which
ky have been calculated for several cavity configurations. We

have seen that in general vacuum field fluctuations factorize
As in Sec. V, one can demonstrate that in proximity to theout for fields at angular frequencies, and w,. Concerning
mth resonancém is an integer or zedo ({,) n=k;m/N, and  SHG from a single molecule, we have shown that in a planar
for 1-R<1, Eq.(95) is well approximated by microcavity it is possible to introduce a parameter propor-
tional to the cavity’s finesse and length: the effective length
L., that is analogous to coherence lenlgtiof a crystal. This
is possible because the phase-matching condition, that is the
5. (96) momentum conservation for the electromagnetic field, is as-
sured by the cavity rather than the crystal. In Sec. VI of this
paper, we have concentrated on parametric fluorescence from
a uniform distribution of aligned dipoles into an asymmetric
So we can write the energy emitted per unit time in a micro-cavity. The differential extinction coefficient has been calcu-
cavity P(k,) as lated, and its dependence on the cavity’s parameters dis-
cussed; moreover, we have shown that it increases on the
P(El)dwldﬂlzdU'X(lzl)ﬁwlvxd’P- (97) fo_rward mode _vvith finesse. Thifs suggests, in an_alogy wi_th
microlaser devices, the possibility of making a microscopic
If we want to calculate the energy emitted in a microcavityparametric oscillator. Moreover, parametric fluorescence in a
during a process, we must be very careful. We must integrat@licrocavity exhibits an interesting behavior with respect to a
Eq. (97) over a time interval which depends on the ratio of microlaser. For the parametric fluorescence emission power
two parameters: the coherence time of the pumping lasen the forward mode described in B§7), we have found a
mo=1/Avp and the photon mean flight time in microcavity “quadratic” efficiency [Eq. (96)] which is larger than the
.. Indeed, because the energy reservoir of the nonlinesgorresponding “linear” efficiency in microlasers, where
phenomena we considered is the pumping laser itself, fonly a unique field frequency is confined by the microcavity.
ol 7.<1 we must integrate betwedr-0 andt=rp, but
for 7p/7.>1 the effect of the cavity on the process, that is
the validity of Eq. (97), persists only during a time.
Therefore the integration interval is nowsQ<r.. Typi- One of the author§A.A.) is deeply indebted to Professor
cally 7. is of the order of some picoseconds, so the firstP. Mataloni for helpful and stimulating discussions, and to
regime is realized only using ultrashort laser pulses. Dr. G. D’Auria for reading the manuscript.

.= 4nt
Fo(ky) Fe(kp)=f

(wNE, Iky—mar)2+

ACKNOWLEDGMENTS




PRA 58 PARAMETRIC FLUORESCENCE AND SECOND-HARMONMI. . . 2459

[1] S. Haroche and D. Kleppner, Phys. Todayl), 24 (1989. [14] A. Yariv, IEEE J. Quantum ElectroQE-13, 943(1977).
[2] L. Knoll and D. G. Welsch, Prog. Quantum Electrdi, 135 [15] F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and
(1992. R. Loudon, Phys. Rev. 43, 2480(199)).

[3] Spontaneous Emission and Laser Oscillation in Microcavities [16] M. Ley and R. Loudon, J. Mod. Op84, 227 (1987).
edited by H. Yokoyama and K. Ujial®RC, Boca Raton, FL, [17] R. Loudon,The Quantum Theory of Ligh2nd ed.(Oxford

1995. University Press, Oxford, 1990
[4] F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni,[18] L. D. Landau and E. M. Lifés, Teoria Quantistica Relativis-
Phys. Rev. Lett59, 2955(1987. tica (Editori Riuniti, Rome, 1978 Chap. VI.

[5] S. M. Dutra and P. L. Knight, Phys. Rev. 38, 3587(1996. [19] B. F. Levine, C. G. Bethea, C. D. Thurmod, R. T. Lynch, and
[6] F. De Martini and M. Giangrasso, Appl. Phys. B: Photophys. J. L. Bernstein, J. Appl. Phy&0, 2523(1979.

Laser Chem60, S-49(1995. [20] H. Khrosavi and R. Loudon, Proc. R. Soc. London, Se#38,
[7] A. Aiello, F. De Martini, M. Giangrasso, and P. Mataloni, 337(199)).

Quantum Semiclassic. Opt, 677 (1995. [21] M. Born and E. Wolf Principles of Optics6th ed.(Pergamon,
[8] F. De Martini, F. Cairo, P. Mataloni, and F. Verzegnassi, Phys. Oxford, 1993.

Rev. A 46, 4220(1992. [22] G. Bjork, H. Heitman, and Y. Yamamoto, Phys. Rev.4X,
[9] P. Mataloni, A. Aiello, D. Murra, and F. De Martini, Appl. 4451 (1993.

Phys. Lett.65, 1891(1994. [23] F. De Martini, M. Marrocco, and D. Murra, Phys. Rev. Lett.
[10] F. Cairo, F. De Martini, and D. Murra, Phys. Rev. L€eT0, 65, 1853(1990.

1413(1993. [24] G. F. Lipscomb, A. F. Garito, and R. S. Narang, J. Chem.
[11] F. De Martini, M. Marrocco, C. Pastina, and F. Viti, Phys. Phys.75, 1509(1981).

Rev. A53, 471(1996. [25] A. Garito, R. F. Shi, and M. Wu, Phys. Tod&y7 (5), 51
[12] A. Yariv, Quantum Electronigs3rd ed. (Wiley, New York, (1994).

1989, Chaps. 16 and 17. [26] R. Morita, N. Ogasawara, S. Umegaki, and R. Iro, Jpn. J. Appl.

[13] T. G. Giallorenzi and C. L. Tang, Phys. Red66, 225(1968. Phys.26, L1711 (1987).



