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Comparison of gapless mean-field theories for trapped Bose-Einstein condensates
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We present two gapless mean-field theories for trapped Bose-Einstein condensates, and compare them to the
better known Hartree-Fock-Bogoliubov~HFB!-Popov approach. The proposed theories are based on suitable
inclusion of the simplest anomalous average of the Bose field operator. This leads to an effective interaction
between two atoms which is both temperature and density dependent, as opposed to the HFB-Popov approach,
for which it is constant. These theories are compared to the HFB-Popov approach for a trapped one-
dimensional condensate of 2000 atoms. The density profiles and excitation frequencies of the proposed theories
differ from the corresponding HFB-Popov ones by at most a few percent.@S1050-2947~98!12109-1#

PACS number~s!: 03.75.Fi
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I. INTRODUCTION

The theoretical description of trapped Bose-Einstein c
densed gases has so far relied heavily on the Hartree-F
Bogoliubov ~HFB! mean-field approximation@1–3#. This
theory takes account of the mean fields of both conden
and excited atoms, as well as the lowest order~or pair!
anomalous average of the Bose field operator. This re
sents pair correlations between atoms and becomes cruc
the case of net attractive interactions~in which case it may
lead to a competing BCS-like phase transition, as discus
in Ref. @4#!. However, a limitation of the HFB approach wa
clear from the early days of its use, when it was shown t
the theory predicted a gap in the single-particle excitat
spectrum of homogeneous gases@2#, in violation of Gold-
stone’s theorem@5#. The simplest way to overcome this lim
tation of the HFB approach is to make the so-called Po
approximation@6–8#, in which the anomalous average do
not explicitly appear. The fact that the HFB-Popov theory
gapless~see, e.g., Ref.@8#! implies that it can be considere
a better theory for the elementary excitations of Bo
Einstein condensates than the full HFB approach. The H
Popov theory has therefore been employed in a variety
calculations@9–11#. Indeed, the frequencies of elementa
excitations calculated via the HFB-Popov theory are in
cellent agreement with the experiments of Jinet al. @12# at
reasonably low temperatures.

At higher temperatures, however, (T.0.6Tc , whereTc is
the transition temperature!, the theory appears to devia
from experimental results@10#. This is probably due to the
inherent limitations of the HFB-Popov theory, namely,~i! it
assumes that the condensate moves through a static the
cloud @13–16#, and~ii ! it does not take into account the fu
effects of the medium on the interatomic collisions. Z
remba, Griffin, and Nikuni@17# discussed how to go beyon
the approximation of a static thermal cloud and treat
coupled dynamics of condensed and excited atoms unde
assumption of local thermodynamic equilibrium for the e
cited states. However, one would not expect this approac
be valid for the experiments of Ref.@12#, where the therma
cloud is rather dilute.

In this paper we address the second of the above lim
PRA 581050-2947/98/58~3!/2435~11!/$15.00
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tions of the HFB-Popov theory, and take into account so
of the effects of the medium on the atomic collisions. A
already argued elsewhere@13,14#, the HFB-Popov theory
does not deal adequately with the fact that collisions
taking place in the presence of other condensed and exc
atoms. This has two effects on the colliding atoms:~i! the
intermediate collisional states may be occupied, leading
modification of the scattering amplitude via bosonic e
hancement; and~ii ! the spectrum of initial, intermediate, an
final states is altered~i.e., the atoms participating in the co
lisions are not bare atoms, but dressed ones, or quasip
cles!. The medium therefore modifies the effective intera
tion experienced by a pair of colliding atoms from its val
in vacuum. The latter is often termed the two-bodyT matrix,
and, for low-energy scattering, can be well approximated
the contact potentialV(r2r 8)5U0d(r2r 8), where U0 is
given in terms of the binarys-wave scattering lengtha by
U054p\2a/m @18#. However, the atomic interactions in th
condensate cannot be completely described by this con
potential @19#, because the scattering length is determin
experimentally in dilute atomic gases in the absence of c
densation@20#. Nonetheless, atT50, these many-body ef
fects are small, as they depend on the parametern0a3, where
n0 is the condensate density@21#.

The effects of the medium on a colliding pair lead to t
replacement of the two-bodyT matrix by the many-bodyT
matrix. A detailed discussion of the two-body and man
body T matrices, and their respective domains of validi
can be found in Refs.@13,14,22,23#. In this paper we propose
~and briefly motivate! two novel mean-field theories whic
employ an approximation for the many-bodyT matrix, and
therefore take part of the effects discussed above
account1. This is achieved by consideration of the anomalo
averages of the Bose field operator, which leads to a ge

1The issue of a generalized gapless theory has also been addr
in the early literature in a variety of approaches@24#. However,
such methods have not yet facilitated explicit numerical results
condensate densities and excitation frequencies, and are hard
link to the more familiar HFB formalism.
2435 © 1998 The American Physical Society
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alized effective interaction that is both temperature and d
sity dependent. This effective interaction is shown to be c
sistent with analytical expressions in the homogeneous l
@13,23#. The predictions of the proposed theories are co
pared to those of other more elementary approaches~and in
particular to the HFB-Popov theory! for trapped one-
dimensional~1D! Bose-condensed assemblies of 2000
oms. The modifications which are introduced over the HF
Popov theory are found to be of the order of a few perce

This paper is structured as follows: Secs. II and III d
scribe and motivate the two mean-field theories. The num
cal implementation of these theories in 1D systems is
cussed in Sec. IV. The subsequent two sections analyze
predictions of the various theories and compare them
those of the HFB-Popov theory, with the main results su
marized in Sec. VII. Finally, the Appendix establishes t
link between our expression for the effective interaction
trapped gases, and known analytical results for the homo
neous gas.

II. GAPLESS MEAN-FIELD THEORIES

The self-consistent equations discussed in this paper
all be summarized by the generalized eigenvalue proble

H 2
\2¹ r

2

2m
1Vtrap~r !2m1Ũcon~r !uc~r !u2

12Ũexc~r !ñ~r !J c~r !50, ~1!

L̂~r !uj~r !1Ũcon~r !c2~r !v j~r !5\v juj~r !, ~2!

L̂~r !v j~r !1Ũcon~r !@c* ~r !#2uj~r !52\v jv j~r !. ~3!

In these equations, the condensate wave function is den
by c(r ), m represents the chemical potential of the asse
bly, uj (r ) andv j (r ) are the usual Bogoliubov functions@25#,

and the Hermitian operatorL̂ is defined by

L̂~r !52
\2¹ r

2

2m
1Vtrap~r !2m12Ũcon~r !uc~r !u2

12Ũexc~r !ñ~r !. ~4!

To model the interactions between trapped atoms in the m
general manner, we have allowed them to interact with e
other via different effective interactions, depending
whether they are both in the condensate@Ũcon(r )# or not

@Ũexc(r )#. The physical justification for such a distinctio
will be discussed shortly. The quantityñ(r ) appearing in
Eqs. ~1!–~4! corresponds to the density profile of excite
atoms, and is to be determined self-consistently@9# by a
transformation to the quasiparticle basis@i.e., via Eq.~7!#.

The above set of self-consistent equations is gapless,
spective of the choice of potentialsŨcon(r ) andŨexc(r ) @26#.
This follows from the fact that Eqs.~1!–~4! support a zero-
frequency mode with@u0(r ),v0(r )#5@c(r ),2c* (r )#. The
three different theories to be compared in this paper~includ-
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ing the HFB-Popov theory! form special cases of the abov
set of equations, depending on the choice ofŨcon(r ) and
Ũexc(r ), as outlined below.

~i! The HFB-Popov theory corresponds toŨcon(r )
5Ũexc(r )5U0 , where U054p\2a/m is the usual dilute
Bose gas effective interaction strength.

~ii ! The first gapless theory (G1) is defined byŨcon(r )
5Ũ(r ) and Ũexc(r )5U0 , where Ũ(r )5U0@11m̃(r )/
c2(r )] and m̃(r ) represents the pair anomalous average@de-
fined in Eq.~8!#.

~iii ! The second gapless theory (G2) is defined by
Ũcon(r )5Ũexc(r )5Ũ(r ), with Ũ(r ) as above.

We point out that both theG1 andG2 theories extend
beyond the HFB approximation, and we shall show that th
correspond to the two extreme approximations for the m
mentum dependence of the many-bodyT matrix. We also
note that the full HFB theory cannot be written in the~gap-
less! form of Eqs. ~1!–~4!, because it does not treat a
condensate-condensate interactions consistently@27#. In Sec.
II we briefly discuss the physical origin of the theories d
scribed above.

III. MOTIVATION OF PROPOSED MEAN-FIELD
THEORIES

The effective interactionŨ(r ) employed in both theG1
and G2 theories arises naturally in the time-independ
Gross-Pitaevskii equation~QPE! for the condensate mea
field c(r ). In the usual form of the HFB theory~see, e.g.,
Ref. @8#! based on the contact interactionV(r2r 8)
5U0d(r2r 8), the condensate wave function is determin
by

S 2
\2¹2

2m
1Vtrap~r !2m Dc~r !1U0@ uc~r !u212ñ~r !#c~r !

1U0m̃~r !c* ~r !50, ~5!

with c(r ) normalized to the total number of condensate p
ticles, i.e.,*dr uc(r )u25N0 . The first term in Eq.~5! de-
scribes the ‘free’ evolution of the condensate mean field i
confining potentialVtrap(r ). The two terms in the squar
brackets, correspond, respectively, to collisions between
atoms in the condensate and between an atom in the con
sate and an excited one. The final term~neglected in the
HFB-Popov approximation! contains the effect of the sim
plest anomalous average of the Bose field, which repres
pair correlations between atoms.

These pair correlations modify the scattering of two co
densate atoms, producing an effective interatomic poten
@14,23#. In the simplest approximation, this potential is give
by the two-bodyT matrix, itself conventionally approxi-
mated byU0d(r2r 8) @18#. The next level of approximation
corresponds to the inclusion of many-body effects, which
introduced bym̃(r ). The form of the effective interaction in
this case can be seen by grouping the final term of Eq.~5!
with the expressionU0uc(r )u2c(r ), which gives
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U0@ uc~r !u2c~r !1m̃~r !c* ~r !#5U0F11
m̃~r !

c2~r !
G uc~r !u2c~r !

5Ũ~r !uc~r !u2c~r ! ~6!

HenceŨ(r ) can be thought of as an approximation to the f
many-body interaction potential between two condensate
oms in the presence of the condensate and excited-state
fields.

The Appendix shows that for a homogeneous gas,
definition of the effective interactionŨ(r ) is equivalent to
the zero-energy, zero-momentum limit of the many-bodyT
matrix if one includes the effect of the mean field on t
spectrum of the intermediate states in a collision but not
the propagator. This avoids difficulties associated with inf
red divergences in the theory@13#. Ũ(r ) is therefore the
natural extension of the existing homogeneous treatm
@13,23# to the case of trapped gases. It is nonetheless
approximation of the many-bodyT matrix, and we believe
that full calculations should be possible for trapped gase
the near future.

Our discussion so far shows thatm̃(r ) upgrades the effec
tive interaction between two atoms to the many-bodyT ma-
trix. However, in view of Eq.~5!, this effective interaction
only appears rigorously in the interactions between two c
densate atoms. To obtain an effective interaction in collisi
between condensed and excited atoms in a rigorous man
one must deal explicitly with correlations of three particl
@28#, which requires a treatment beyond the usual mean-fi
approach@assumed in Eq.~5!# @14#. To a first approximation
@and in the same manner as form̃(r )] such three-particle
correlations lead to the introduction of the two-bodyT ma-
trix in the condensate–excited-state interactions. At the n
level of approximation they produce additional terms in E
~5!, which correspond to many-body effects~i.e., a many-
body T matrix! in the interactions between condensed a
excited atoms@29#.

The two theories discussed in this paper differ in how
condensate–excited-state interactions are approximated
the low-momentum regime, many-body effects are imp
tant. Since we expect the interaction between condensed
excited atoms to be the same as that between two conde
atoms, this leads to the use ofŨ(r ) to describe all interac-
tions, thus motivating theG2 theory. However, in the limit
of high relative momenta the condensate–excited-state in
actions are best described by the two-bodyT matrix since
many-body effects die out in this regime@26,23#. This moti-
vates theG1 theory, in which the condensate-condens
interactions are modeled byŨ(r ), whereas the condensat
excited state interactions are described in terms ofU0 . Hav-
ing discussed the origin of the various theories, let us n
briefly describe their numerical implementation.

IV. SELF-CONSISTENT NUMERICAL ANALYSIS

Equations ~1!–~3! form a set of nonlinear eigenvalu
problems which must be solved self-consistently. The
merical procedure for doing this has been explicitly repor
l
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in the literature@9,10# and can be summarized in the follow
ing steps

~i! Solve Eqs.~1!–~3! in the zero-temperature limit o
ñ(r )5m̃(r )50, which also implies thatŨ(r )5U0 . One
thus obtains an initial value for the condensate wave func
c(r ), as well as the quasiparticle functionsuj (r ) andv j (r )
~which are henceforth treated as real quantities!.

~ii ! Calculateñ(r ) and m̃(r ) by transforming to a quasi
particle basis@see Eqs.~7! and ~8!#.

~iii ! Resolve Eqs.~1!–~3! using the new values ofñ(r )
andm̃(r ), and iterate to convergence.

The excited-state densityñ(r ) and the pair anomalous av
eragem̃(r ) can be calculated by a Bogoliubov transform
tion @30# to quasiparticle basis, yielding the well-known e
pressions

ñ~r !5(
j

$@ uuj~r !u21uv j~r !u2#NQ~Ej !1uv j~r !u2%, ~7!

m̃~r !5(
j

uj~r !v j* ~r !@2NQ~Ej !11#, ~8!

where the quasiparticle populationsNQ(Ej ) are given by the
Bose-Einstein distributionNQ(Ej )51/(ebEj21), with b

51/kBT. The expression form̃(r ) is ultraviolet divergent,
which is a consequence of the use of a contact approxima
to describe the two-bodyT matrix rather than the full
pseudopotential given in Ref.@18#. However, it is known that
the effect of using the full pseudopotential is to remove t
divergence@21,31,32#, and this justifies our renormalizatio
of m̃(r ) by the subtraction of the high-energy part. Th
excited-state density is calculated using a small basis se
the strongly coupled low-lying states, and treating all sta
above this as an ideal gas. The error this involves can
determined by repeating the simulations using a larger b
set. In one dimension we find that 40 basis states is suffic
for a good description of the system even at temperatu
above critical.

The form of the interaction potentialŨ(r ) of Eq. ~6! can
lead to numerical difficulties in a trap, since the condens
wave functionc(r ) becomes small away from the cente
We therefore compute with a modified form of the intera
tion potential given by Ũ(r )5U0„(11m̃G)/@e1c2G#…
where e is a small parameter of the order of 1022. Our
results are independent of the value ofe, as has been con
firmed by performing simulations using various differe
~small! values. This is to be expected since physical res
depend on the properties of the system in the region of c
densation, i.e., near the center of the trap, wheree is indeed
negligible in comparison to the condensate wave functio

In three dimensions, theU0 which appears inŨ(r ) is
related to the s-wave scattering length via the usual exp
sionU054p\2a/m. In one dimension, however,U0 is sim-
ply a measure of the strength of the interactions relative
the spacing of the energy levels in the trap. It has dimensi
of energy times length and in our simulations we used
value ofU0 /\vx osc510, which corresponds to strong inte
actions. Herev is the trap frequency,m is the mass of an
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FIG. 1. This figure shows the condensate fraction as a function of temperature for a trapped assembly of 2000 atoms. The
corresponds to the noninteracting limit, whereass and1 respectively, correspond to the interacting HFB-Popov andG2 models. TheG1
predictions coincide with those of the HFB-Popov model on the scale of this plot~see also Fig. 4!. The dotted line gives the condensa
fraction for a noninteracting gas of a very large number of atoms using a formula given in Ref.@33#. Comparison with the other curve
clearly shows that the effects of interactions on the condensate fraction are much smaller than the finite number effects.
th
o

th
t

th
o

n

ua
ie
t
n

xe
on
co

u

W
e

e
e

t
n

ber
ela-
all
ble
-
by
of

m-

with
a
cal
s-
lled
st.
sity,
on-

-

will
ture

on-
for
ter-

-

nd
atom, andx osc5A\/2mv is the oscillator length unit which
sets the scale of length for the system. The value for
interaction strength was chosen so that the effects of
theories would be clearly visible.

Finally we should mention that at high temperatures
eigenvaluem which appears in the GPE cannot be taken
be the true chemical potential if there is a constraint on
total number of particles in the system. Thus we use a B
distribution of the formNQ(Ej )51/(e(bEj 2dm)21), where
dm is the difference between the true chemical potential a
the eigenvalue appearing in the GPE and is of order 1/N0 .
The m which appears in Eq.~4! is still given by the eigen-
value of the GPE, however, since the calculation of the q
siparticle energies is really a calculation of their energ
relative to the condensate. This correction is necessary if
numerical procedure is to be consistent with the way o
calculates the statistical properties of an ideal gas for a fi
number of particles. It is more significant in one dimensi
than in three because of the more rapid decrease of the
densate population with temperature.

Having discussed the numerical techniques, we now t
to the interpretation of the predictions of theG1 and G2
theories and their comparison to the HFB-Popov theory.
shall see that as far as density profiles or excitation frequ
cies are concerned, the predictions of theG1 theory lie re-
markably close to those of the HFB-Popov theory. The d
viation of theG2 theory from the HFB-Popov theory is mor
significant, but is still only of order a few percent.

V. RESULTS IN TRAPPED ONE-DIMENSIONAL
CONDENSATES

A. Condensate fraction and critical temperature

Let us first discuss the temperature dependence of
condensate fraction and the importance of interactions i
e
ur

e
o
e
se

d

-
s
he
e
d

n-

rn

e
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-
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a

trapped 1D Bose condensate. Since we have a finite num
of atoms, the transition point is smeared out and shifted r
tive to the large number limit. Although these are very sm
effects in three dimensions, they are much more noticea
in one dimension@33#. In this section, we examine the fur
ther modifications imposed on the transition temperature
the addition of interactions. We find that the presence
interactions has only a small effect on the 1D transition te
perature~see Fig. 1!. In three dimensions, such a shift~albeit
small! has been measured in anisotropic condensates
repulsive interactions@34#. These experiments indicate
lower transition temperature, in agreement with theoreti
predictions@35#. This can be understood as follows: the pre
ence of repulsive interactions leads to atoms being repe
from the center of the trap, where their density is highe
This corresponds to a reduction in the phase-space den
so to reach the critical value required for Bose-Einstein c
densation~BEC! the system must be cooled to a lower tem
perature than an ideal Bose gas@36#. Furthermore, once the
system has undergone BEC, the repulsive interactions
lead to a lower condensate fraction at any given tempera
than for an ideal gas.

These features are shown clearly in Fig. 1, where the c
densate fraction is plotted as a function of temperature
the case of an ideal Bose gas, as well as for the three in
acting models discussed earlier: HFB-Popov~denoted by
s), G1 ~coinciding with the HFB-Popov theory!, and G2
(1). In Fig. 1 ~and subsequent figures!, the temperature is
expressed in dimensionless units ofT/Tc

0 whereTc
0 is defined

by N5(kbTc
0/\v)log(2kbTc

0/\v). This result for the critical
temperature in a 1D trap applies to the limitN→`, and is
derived in Ref.@33#. Note that this is not the usual thermo
dynamic limit in whichN→` with Nv held constant, both
because BEC cannot occur in one dimension in this limit a
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FIG. 2. ‘‘Density profile’’ of the anomalous pair averagem̃(r ) at T/Tc
050.58 in both theG1 ~solid line! andG2 ~dashed! theories. The

position in the trap is in units ofxosc, and the anomalous average is in units of 1/xosc, where the harmonic-oscillator length unit isxosc

5A\/2mv.
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because it is not the appropriate limit for current experime
~see Ref.@33#!. Of course a transition temperature is n
precisely defined in a finite system@37#, butTc

0 sets the scale
for the appearance of a condensate, and for the case of
atoms it is given by (kbTc

0/\v)5310.91. The ideal Bose ga
results shown in Fig. 1 are the exact results for an assem
of 2000 atoms~solid line!, based on the analysis of Ketter
and van Druten@33#. These are accurately reproduced by o
numerical routine.

Figure 1 confirms that repulsive interactions lower t
transition point, and shows clearly that these modificatio
are negligible in comparison to the finite number effects.
a result, there is no significant difference in the temperat
dependence of the condensate fraction between theG1, G2,
and HFB-Popov theories. In particular, the predictions of
G1 and HFB-Popov theories cannot be distinguished on
scale of Fig. 1. Nonetheless, both theG1 andG2 theories
predict a slightly smaller condensate fraction than the HF
Popov theory, which may come as a surprise to the rea
given thatŨ(r ) is always locally smaller thanU0 ~see sub-
sequent Fig. 3!. Indeed, if this generalized effective intera
tion wereconstant~i.e., position independent! and less than
U0 , both theG1 andG2 plots would lie between the idea
gas and HFB-Popov curves. However, as shown more
plicitly below, the net effect ofŨ(r ) is to push atoms away
from the center of the trap and out of the condensate~in
comparison to the HFB-Popov theory!. Thus, both of the
theories yield a lower value for the total number of conde
sate atoms at a given temperature, with the correction f
the HFB-Popov theory being largest in theG2 theory.

B. Position-dependent effective interactionŨ„r …

Modifications from the HFB-Popov theory in both theG1
andG2 theories are due to the many-body effective inter
ts
t

00

ly

r

s
s
re

e
e

-
r,

x-

-
m

-

tion Ũ(r ) which has been introduced. A physical understan
ing of these modifications therefore requires a knowledge
the form of this interaction strength. The important feature
both these theories is the explicit appearance ofm̃(r ). The
‘‘density profile’’ of m̃(r ) at T/Tc

050.58 is plotted in Fig. 2
for both theG1 andG2 theories. It is found to be predom
nantly negative, and slightly larger in magnitude in theG2
theory than in theG1 theory. This leads to a marginall
smaller effective interactionŨ(r ) in the case of theG2
theory, with the difference betweenŨ(r ) in the two theories
increasing with increasing temperature. This is clearly d
played in Fig. 3, where the value ofŨ(r ) near the trap cente
is plotted for both theories and a range of temperatures.Ũ(r )
varies strongly within the trap, experiencing a local ma
mum at the trap center, where the condensate density rea
its peak. At large distances from the trap center it redu
asymptotically to the dilute Bose gasU0 , as would be ex-
pected for interactions in the absence of condensation.
have also examined the effect of different scattering leng
by varying the nonlinearity in our 1D NLSE. This led to th
anticipated result that smaller scattering lengths generate
fective interactions which deviate less from the conventio
U0 .

C. Density profiles of trapped atoms

Having discussed the form ofŨ(r ), we can now compare
the density profiles of the trapped atoms~both condensed and
excited! for a fixed temperature, as predicted by t
G1, G2, and HFB-Popov theories, and the ideal Bose g
The detailed atomic profiles of condensed and excited at
are illustrated in Figs. 4~a! and 4~b! at a temperatureT/Tc

0

50.58, for which there are~see Fig. 1! approximately equal
numbers of atoms in the condensate and excited states.
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FIG. 3. Variation of the effective interactionŨ(r ) ~in units of U0) near the center of the trap. The position in the trap is given in u
of the oscillator lengthxosc. The solid lines correspond to theG1 predictions, and the dashed lines to the corresponding values in thG2
theory. The curves shown correspond to different temperatures (T/Tc

050.06, 0.19, 0.58, and 0.84!, with temperature increasing with th
lower curves. The predictions of theG1 andG2 theories are indistinguishable in the low-temperature region~top two curves!.
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Figure 4~a! shows clearly that repulsive interactions cau
condensate atoms to be repelled from the center of the
where their density is highest, i.e., the corresponding w
function spreads out relative to the noninteracting case.
particular interaction model chosen has an additional~but
much smaller! effect, with the corresponding wave functio
for the G1 andG2 theories, respectively, spreading furth
from the ideal case than the HFB-Popov theory. This lead
an associated change in the profile of excited atoms, as
ted ~over the region of appreciable condensation! in Fig.
4~b!. In both cases@Figs. 4~a! and 4~b!#, we note that the
main qualitative differences from the HFB-Popov theo
arise in theG2 theory with theG1 theory leading to very
minor modifications. This is readily understood by noti
that the condensate–excited-state interactions are give
Ũ(r ) in theG2 theory and byU0 in theG1 and HFB-Popov
theories. SinceŨ(r ),U0 everywhere in the trap~and par-
ticularly in the region of large excited state density! the en-
ergy price associated with excited atoms is less in theG2
theory than in either theG1 or HFB-Popov theories. As a
result there are fewer atoms in the condensate at any g
temperature in theG2 theory~see Fig. 1! and so the conden
sate density at the center is lower and the excited state
sity is higher~Fig. 4!.

D. Temperature dependence ofŨ„r … at the trap center

Another issue worth examining is the temperature dep
dence of the generalized effective interactionŨ(r ) at the
center of the trap in both theG1 andG2 interacting models.
This is plotted in Fig. 5, which shows that as the temperat
increasesŨ0(r 50) decreases in the low-temperature
gime, reaches a minimum around the transition point,
then increases again in the region of negligible condensa
e
ap
e
e

to
ot-

by

en

n-

n-

e
-
d
n.

This can be understood as follows: In the low-temperat
region, the pair anomalous average is negligible and p
duces no significant modification of the effective interacti
from the dilute Bose gas strengthU0 . As the temperature
increases, however, the anomalous average becomes inc
ingly negative, and reaches a peak near the critical temp
ture, since at that point the fluctuations of the BEC ord
parameter are maximized. Simultaneously the conden

density decreases so that the effective interactionŨ0(r )

5U0@11m̃(r )/c2(r )#u becomes progressively smaller. A
the temperature is further increased beyond the critical po
the system asymptotically approaches the normal~uncon-
densed! phase, for which the anomalous average vanis
and the effective interaction of a dilute atomic gas is kno
to be accurately determined byU0 .

In the homogeneous limit, it is well known that the zer
energy, zero-momentum limit of the many-bodyT matrix
vanishes exactly at the transition temperature@13,23,38,39#,
which is characteristic of a second-order phase transi
@40#. This feature is reproduced by the definition of our e
fective many-body interactionŨ(r ) of Eq. ~6!, since the ho-
mogeneous limit ofŨ(r ) corresponds precisely to the zer
energy, zero-momentum limit of the many-bodyT matrix, as
shown in the Appendix. However, for trapped condensa
we must consider the fact that collisions do not occur p
cisely at zero momentum. In this case, our expression
Ũ(r ) predicts a decrease of the effective interaction~with
respect to the value in vacuum, orU0) of the order of 4–5
%, with the lower prediction being made by the G2 theo
The fact that this decrease is much less significant than
homogeneous case should not come as a surprise, since
already well documented that a treatment of trapped gase
locally homogeneous breaks down in a very small reg
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FIG. 4. Atomic density profiles~in units of 1/x osc) in the region of appreciable condensation atT/Tc
050.58. The position in the trap is

given in units of the oscillator lengthxosc. ~a! shows the condensate, and~b! the noncondensate profiles. These are shown within
HFB-Popov~dash-dotted line!, G1 ~solid!, andG2 ~dashed! approximations. The dotted lines show the corresponding results in the ab
of interactions. The total density is obtained from the sum of these two figures and has a maximum at the center of the trap as e
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near the transition temperature, when the correlation len
becomes infinite@22#.

VI. FREQUENCIES OF ELEMENTARY EXCITATIONS
IN ONE DIMENSION

Possibly the simplest way to compare theories with
periment in the case of trapped Bose-Einstein condensat
to consider the frequencies of elementary excitations. In
section we compare the predictions of theG1, G2, and
HFB-Popov theories for the temperature dependence of t
frequencies for 1D inhomogeneous Bose-Einstein cond
sates.

A. Numerical consistency of theG1, G2,
and HFB-Popov theories

As mentioned earlier, a gapless theory should have a
lution with precisely zero excitation energy, and this is t
case for all the theories considered here. Numerically,
code employed reproduces this zero frequency mode to o
10214, which acts as a useful first consistency test. A mu
th
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more interesting question is whether any of the theories c
sidered satisfy the generalized Kohn theorem for parab
confinement @41#. This states that the partially Bose
condensed system should have a mode of oscillation co
sponding to the rigid motion of the entire system~i.e., con-
densate and excited atoms!, at a frequency which is exactly
the same as the lowest excitation in the noninteracting li
~i.e., 1 in harmonic-oscillator units!. We have found this
theorem to be only approximately satisfied by the theor
presented here~to within 12% by the HFB-Popov theory
10% by theG1 theory and 5% by theG2 theory!. Further-
more, theG2 theory is found to reach the anticipated val
asymptotically much faster with increasing temperature th
the other two theories.

However, a complete theory of elementary excitatio
should recover this mode exactly, as opposed to the appr
mate behavior found here. The reason why these theorie
not exactly satisfy the Kohn theorem, is that they do n
consistently treat the dynamics of both condensed and
cited atoms@9,10,13–17#, as the condensate is assumed
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FIG. 5. This figure shows the behavior ofŨ(r ) ~in units ofU0) at the center of the trap, as a function of temperature.Ũ0(r 50) acquires
its minimum value near the transition temperature for both theG1 ~solid line! andG2 ~1! theories. Note that the variation from the valu
of the dilute Bose gasU0 is minimal in comparison to the complete vanishing of the interaction anticipated for a homogeneous sys
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move in a static thermal cloud. For the Kohn theorem to
completely satisfied, one must take into account the dyn
ics of the thermal cloud. This was done in Ref.@17# by
means of a kinetic theory based on the assumption of lo
thermodynamic equilibrium for the excited states. This i
reasonable assumption for those experimentally availa
condensates which are sufficiently dense for the collisio
mean free path to be much smaller than the typical atomic
Broglie wavelength, leading to rapid local equilibration
the system. Nonetheless, such an approach is not expect
be of much use in the case of very dilute condensates suc
those of Ref.@12#. One should not be too discouraged, ho
ever, if the Kohn theorem is only approximately satisfie
because this need not necessarily have a large effect on
excitation frequencies of other modes@42#. This appears rea
sonable since the low-temperature predictions of the H
Popov theory agree with experimental data@12# within the
few percent experimental uncertainty@10#.

B. Temperature dependence of excitation frequencies

Possibly the most important result of this paper, is
temperature dependence of the excitation frequencies o
low-lying modes, which is shown in Fig. 6. TheG1 predic-
tions are denoted by the solid line, and are found to be v
similar to those of the HFB-Popov theory~denoted bys).
The predictions of theG2 theory, on the other hand, ar
significantly different from the other two theories for a wid
range of temperatures. In fact, theG2 theory is only com-
patible with theG1 and HFB-Popov theories in the limits o
low and high temperature. In the former case, this is beca
the appreciable condensation means that the effect of
excited atoms and the anomalous average is negligible;
all theories tend to the same value. In the limit of high te
peratures (T@Tc

0) the condensate density is greatly reduc
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and all theories should tend to the noninteracting limit, giv
by the dash-dotted line of Fig. 6. This is already well sat
fied for T;O(2Tc

0).
There are two interesting qualitative differences betwe

the G2 theory and the other two theories over the import
intermediate temperature region~roughly 0.2,T/Tc

0,2)
which we would like to comment on: First, theG2 theory
predicts a much weaker temperature dependence of the
tation frequencies for temperaturesT,Tc

0 . Second, the ex-
citation frequencies predicted by both theG1 and HFB-
Popov theories overshoot the noninteracting ones, be
approaching them asymptotically, whereas in theG2 theory,
the noninteracting limit is reached asymptotically from b
low. The significance~if any! of this overshoot is yet to be
determined, but it is interesting to note that this oversh
occurs roughly at the transition temperature.

The dashed lines of Fig. 6 correspond to the prediction
zero-temperature theory@i.e., Eq.~1! with ñ(r )5m̃(r )50],
using a condensate population determined2 from Fig. 1. The
predictions of such a theory are only meaningful at low te
peratures, where they are found to be in good agreement
the HFB-Popov theory. However, the difference betwe
these predictions and the other theories at higher temp
tures provides an indication of the importance of interactio
between condensed and excited atoms.

VII. DISCUSSION

In this paper we have presented two gapless mean-
theories, which we have compared to the conventional HF

2Here we have used the HFB-Popov curve for condensate p
lation as a function of temperature, although use of the correspo
ing curves for the other interacting models leads to negligible
ferences.
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FIG. 6. Temperature dependence of the excitation frequency of mode 2~breathing mode! for a variety of theoretical treatments
Frequencies are measured in units of the trap frequency. TheG1 predictions~solid line! lie very close to those of the HFB-Popov theo
(s), whereas theG2 results~1! reveal a significantly different qualitative behavior from the aforementioned theories for most o
interesting temperature range. TheG2 predictions are seen to be almost temperature independent at low temperatures, and do not o
the frequencies of the noninteracting gas~dash-dotted line!, unlike theG1 and HFB-Popov predictions. The dashed line corresponds to
predictions of zero-temperature theory, evaluated for numbers of condensate atoms determined from the HFB-Popov curve of F~see
text!. A similar behavior is observed in the other low-lying modes of excitation for all the above theories.
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Popov approach. We believe this to be the first numer
calculation of excitation frequencies for a trapped gas
yond the HFB-Popov and HFB methods. The interesting f
tures of these theories arise from the effect of the medium
the colliding atoms, and are taken into account using an
fective many-body interaction. These theories differ fro
each other in their treatment of interactions involving exci
states which are approximated either by the high-momen
limit of the many-bodyT matrix (G1) or by the low-
momentum limit (G2). These represent the two extreme a
proximations for the many-bodyT matrix, and one might
expect a complete treatment of the interactions to lie betw
these two theories. All theories considered in this paper~in-
cluding the HFB-Popov theory! treat the thermal cloud stati
cally, thus yielding an inherent limitation.

The expression we have used for the low-momentum li
of the many-bodyT matrix in the inhomogeneous case
given by theŨ(r ) of Eq. ~6!. This is a function of both the
s-wave scattering length and the anomalous averagem̃(r ),
and is therefore both density and temperature dependen
opposed to the constant effective interactionU0
5(4p\2a)/m of the HFB-Popov theory. In addition, w
have shown thatŨ(r ) is consistent with an explicit expres
sion for the homogeneous many-bodyT matrix in the zero-
energy, zero-momentum limit@13,23#, suggesting that ou
approach is a natural extension of these homogeneous t
ments to the case of a trapping potential. Such a stateme
further justified by the fact that our theory is in agreeme
with the requirements recently laid forward by Giorgini@16#
for a mean-field theory beyond the HFB-Popov theory.

The main effect of employingŨ(r ) in both theG1 and
al
e-
a-
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f-

d
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-

en

it

, as

at-
t is
t

G2 theories is to push atoms toward the edges of the trap
out of the condensate. This in turn influences the frequen
of elementary excitations of the condensed system. In
dimension, we find that quantities of interest~e.g., conden-
sate fraction, atomic density profiles, and excitation frequ
cies! predicted by theG1 theory are effectively identical to
the predictions of the HFB-Popov theory. In contrast ther
significantly different behavior for theG2 theory, especially
in the frequencies of the elementary excitations. This is
cause interactions involving excited states are treated di
ently in theG2 theory as compared with bothG1 and HFB-
Popov theories. The extent of the deviation of theG2 theory
from both theG1 and HFB-Popov theories may be som
what surprising. Nonetheless, this may well be needed
explain the experimental observations in small trapped
semblies, if one accepts the initial measurements of exc
tion frequencies reported in Ref.@12#. Preliminary results
@43# of the G2 theory for the anisotropic 3D condensates
this experiment indicate very good agreement with exp
mental data in one of the modes of oscillation~quadrupole
mode!, whereas the agreement in the other mode devi
even further from experiment than the HFB-Popov pred
tions. Clearly, a lot of work remains to be done on this iss
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APPENDIX: THE MANY-BODY T MATRIX
IN THE HOMOGENEOUS LIMIT

In this appendix we show that the effective interacti
Ũ(r )5U0@11m̃(r )/c2(r )# of Eq. ~6! is a valid approxima-
tion to the many-bodyT matrix. This is achieved by proving
the equivalence ofŨ(r ) to the homogeneous many-bodyT

matrix ~denoted here byG̃0 as in @13#! in the zero-energy,
zero-momentum limit.

It was shown in Refs.@13,23# that G̃0 is related to the
zero-momentum limit of the vacuum scattering amplitudeU0
via

G̃05
U0

11a~T!U0
, ~A1!

wherea(T) depends both on the energies of the intermed
states in a collision and on propagator factors for these sta
Explicit expressions fora(T) can be obtained@13,23# by
ignoring the infrared-divergent contributions. Here we fo
low the notation of Ref.@13#, which gives

a~T!5E d3k

~2p!3S 1

2Ek
coth

bEk

2
2

1

2ek
D , ~A2!

where the term2(1/2ek) is required to remove ultraviole
divergences arising from the integration over all momenta
this equationek is the bare particle energy, andEk corre-
sponds to the quasiparticle energy given by

Ek5Aek
212n0G̃0ek, ~A3!

wheren0 is the condensate density.G̃0 rather thanU0 ap-
pears in this expression since the numerical procedur
made self-consistent.

We can now rewrite the expression fora(T) of Eq. ~A2!
by noting that coth(bEk/2)5(ebEk11)/(ebEk21)
52N(Ek)11, where N(Ek)5@ebEk21#21 is the Bose-

Einstein distribution. Thus, writing Eq.~A1! as G̃05U0@1

2a(T)G̃0#, we obtain

G̃05U0F12G̃0E d3k

~2p!3S 2N~Ek!11

2Ek
2

1

2ek
D G . ~A4!

Let us now show that the homogeneous limit ofŨ(r )
yields exactly the same relation as Eq.~A4!. To do this, we
te
es.

n

is

require the homogeneous expression form̃(r ) which, after
the subtraction of the ultraviolet divergent part3, is given by

m̃~r !5m̃5E d3k

~2p!3
~ukvk@2N~Ek!11#2 lim

k→`

ukvk!,

~A5!

whereuk and vk are the Bogoliubov transformation facto
expressed as@44#

uk5FEk1ek1n0G̃0

2Ek
G1/2

,vk52F ek1n0G̃02Ek

2Ek
G1/2

.

~A6!

G̃0 rather thanU0 appears in these expressions@as in the
quasiparticle energies of Eq.~A3!#, since they are evaluate
self-consistently. A simple calculation then givesukvk5

2n0G̃0/2Ek , enabling us to writem̃ as

m̃52n0G̃0E d3k

~2p!3S 2N~Ek!11

2Ek
2

1

2ek
D . ~A7!

Sincen05c2, comparison with Eq.~A4! clearly shows that

G̃05U0F11
m̃

c2G , ~A8!

which is the result we set out to prove.
Since the expression fora(T) of Eq. ~A2! does not in-

clude the infrared divergent contribution, it has the sa
form both above and belowTc @13#. This means that al-

thoughG̃0 takes into account the modification of the ener
spectrum produced by the mean field, the propagators
pearing in the many-bodyT matrix are unperturbed ones
Hence Eq.~A8! corresponds formally to the zero-energ
zero-momentum limit of the homogeneous many-bodyT
matrix which takes into account the modification imposed
the medium on the energy spectrum, but not on the propa
tors, as argued in the text. This is expected to be a very g
approximation for most temperatures, except for a very sm
region nearT50 @23#.

3This subtraction can be justified as follows: we have argued

m̃(r ) modifies the effective interation between two condensate
oms, replacing the bare interatomic potential with the scatter
matrix. However, the contact potentialU0d(r2r 8) which appears
in our equations is actually an approximation of the two-bodyT
matrix rather than to the bare interatomic potential@this is because
the s-wave scattering length which appears inU0 is measured by
observing the effect of~complete! collisions in the absence of con

densation#. Thus the perturbative part ofm̃(r ) is implicitly present
in the use of the contact potential, and to avoid double counting

must renormalizem̃(r ) by subtracting it.
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condensate interactionŨcon(r ), and this leads to the appea
ance of a gap in the spectrum of elementary excitations.

@28# N. P. Proukakis and K. Burnett, J. Res. Natl. Inst. Stand. Te
nol. 101, 457 ~1996!.

@29# N. P. Proukakis, Ph.D. thesis, University of Oxford, 1997~un-
published!.

@30# N. N. Bogoliubov, J. Phys.~Moscow! 11, 23 ~1947!.
@31# A. A. Abrikosov, L. P. Gor‘kov, and I. E. Dzyaloshinskiı˘,

Quantum Field Theoretical Methods in Statistical Phys
~Pergamon, Oxford, 1965!.

@32# F. Mohling and A. Sirlin, Phys. Rev.118, 370 ~1960!.
@33# W. Ketterle and N. J. van Druten, Phys. Rev. A54, 656

~1996!.
@34# M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn

D. S. Durfee, C. G. Townsend, and W. Ketterle, Phys. R
Lett. 77, 988 ~1996!.

@35# S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Le
78, 3987~1997!.

@36# Although mean-field effects reduce the atomic density at
center of the trap~in the case of repulsive interactions!, thus
moving the system away from the critical region, the requir
central density for Bose condensation is simultaneously
duced due to the competing fluctuation effects@38#. Nonethe-
less, such effects do not fully compensate for the increas
the critical number of particles predicted by mean-field theo
@M. Houbiers, H. T. C. Stoof, and E. A. Cornell, Phys. Rev.
56, 2041~1997!#.

@37# The definition of a ‘‘pseudocritical’’ temperature in one d
mension is further discussed in W. J. Mullin, J. Low Tem
Phys.106, 615 ~1997!; S. Grossmann and M. Holthaus, Phy
Rev. E54, 3495~1996!.

@38# M. Bijlsma and H. T. C. Stoof, Phys. Rev. A54, 5085~1996!.
@39# Y. A. Nepomnyashchii and A. A. Nepomnyashchii, Zh. Eks

Teor. Fiz.75, 976 ~1978! @Sov. Phys. JETP48, 493 ~1979!#.
@40# See standard textbooks like J. Zinn-Justin,Quantum Field

Theory and Critical Phenomena~Oxford University Press,
London, 1989!.

@41# See J. F. Dobson, Phys. Rev. Lett.73, 2244~1994!, and refer-
ences therein.

@42# E. Zaremba~private communication!.
@43# R. J. Dodd~private communication!.
@44# P. Nozieres and P. Pines,The Theory of Quantum Liquids

~Addison-Wesley, Reading, MA, 1990!, Vol. II.


