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Comparison of gapless mean-field theories for trapped Bose-Einstein condensates
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We present two gapless mean-field theories for trapped Bose-Einstein condensates, and compare them to the
better known Hartree-Fock-Bogoliubd@idFB)-Popov approach. The proposed theories are based on suitable
inclusion of the simplest anomalous average of the Bose field operator. This leads to an effective interaction
between two atoms which is both temperature and density dependent, as opposed to the HFB-Popov approach,
for which it is constant. These theories are compared to the HFB-Popov approach for a trapped one-
dimensional condensate of 2000 atoms. The density profiles and excitation frequencies of the proposed theories
differ from the corresponding HFB-Popov ones by at most a few perf8h050-294{©8)12109-]

PACS numbds): 03.75.Fi

[. INTRODUCTION tions of the HFB-Popov theory, and take into account some
of the effects of the medium on the atomic collisions. As
The theoretical description of trapped Bose-Einstein conalready argued elsewhefd3,14], the HFB-Popov theory

densed gases has so far relied heavily on the Hartree-Fockoes not deal adequately with the fact that collisions are
Bogoliubov (HFB) mean-field approximatiofl—3]. This  taking place in the presence of other condensed and excited
theory takes account of the mean fields of both condenseatoms. This has two effects on the colliding atorfig:the
and excited atoms, as well as the lowest or¢ar pairn intermediate collisional states may be occupied, leading to a
anomalous average of the Bose field operator. This repremodification of the scattering amplitude via bosonic en-
sents pair correlations between atoms and becomes crucial fancement; andi) the spectrum of initial, intermediate, and
the case of net attractive interactiofis which case it may final states is alterefl.e., the atoms participating in the col-
lead to a competing BCS-like phase transition, as discussegions are not bare atoms, but dressed ones, or quasiparti-
in Ref.[4]). However, a limitation of the HFB approach was ¢jeg. The medium therefore modifies the effective interac-
clear from the early days of its use, when it was shown thafioy experienced by a pair of colliding atoms from its value
the theory predicted a gap in the single-particle excitatior), vacuum. The latter is often termed the two-bddynatrix,

ifoencér:Eeogrgrcf)gogll'igesoi?nspI?az;{fvi;r:owoc\)/lgpc?onmgtk?igllcijr_ni and, for low-energy scattering, can be well approximated by
tation of the HFB approach is to make the so-called Popo&he contact potential/(r—r’)=Uod(r—r’), where Uy is

approximation[6—8], in which the anomalous average doesdVEN N terms of the binarg-wave scattering lengta by

— 2 e i i
not explicitly appear. The fact that the HFB-Popov theory isU0_47Tﬁ a/m [18]. However, the atomic |.nteract|on.s in the
gaplesssee, e.g., Ref8]) implies that it can be considered condensate cannot be completely described by this contact

a better theory for the elementary excitations of Boselotential[19], because the scattering length is determined
Einstein condensates than the full HFB approach. The HFBeXPerimentally in dilute atomic gases in the absence of con-
Popov theory has therefore been employed in a variety offensation[20]. Nonetheless, aT =0, these many-body ef-
calculations[9—11]. Indeed, the frequencies of elementary fects are small, as they depend on the paranmgjet, where
excitations calculated via the HFB-Popov theory are in exJo iS the condensate densit21]. . _

cellent agreement with the experiments of étral. [12] at The effects of the medium on a colliding pair lead to the
reasonab'y IOW temperatures_ replacement Of- the t\.NO'bqu ma'[l’iX by the many'body-

At higher temperatures, howevef ¥ 0.6T,, whereT is  matrix. A de_talled d|scus§|on of th_e two-body and many-
the transition temperaturethe theory appears to deviate Pody T matrices, and their respective domains of validity,
from experimental results10]. This is probably due to the Can be found in Ref$13,14,22 2% In this paper we propose
inherent limitations of the HFB-Popov theory, namefy,it ~ (and briefly mot|va_\t¢ two novel mean-field theories which
assumes that the condensate moves through a static thern§anploy an approximation for the many-bodymatrix, and
cloud[13-16, and(ii) it does not take into account the full therefore take part of the effects discussed above into
effects of the medium on the interatomic collisions. Za-account. This is achieved by consideration of the anomalous
remba, Griffin, and Nikunj17] discussed how to go beyond averages of the Bose field operator, which leads to a gener-
the approximation of a static thermal cloud and treat the
coupled dynamics of condensed and excited atoms under the
assumption of local thermodynamic equilibrium for the ex- 1The issue of a generalized gapless theory has also been addressed
cited states. However, one would not expect this approach t@ the early literature in a variety of approachigst]. However,
be valid for the experiments of Refl2], where the thermal such methods have not yet facilitated explicit numerical results for
cloud is rather dilute. condensate densities and excitation frequencies, and are harder to

In this paper we address the second of the above limitalink to the more familiar HFB formalism.
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alized effective interaction that is both temperature and dening the HFB-Popov theojyform special cases of the above

sity dependent. This effective interaction is shown to be conset of equations, depending on the choicellf,(r) and
sistent with analytical expressions in the homogeneous Ilmlﬁexc(r)r as outlined below.

[13,23. The predictions of the proposed theories are com- =7 ~
pared to those of other more elementary approa¢ies in (i) The HFB-Popov theory2 corresponds 13 cor(1)
particular to the HFB-Popov theoryfor trapped one- =Uexdr)=Uo, whereUy=4n7A"a/m is the usual dilute
dimensional (1D) Bose-condensed assemblies of 2000 atBose gas effective interaction strength. B
oms. The modifications which are introduced over the HFB- (ii) The first gapless theoryQ1) is defined byU .(r)
Popov theory are found to be of the order of a few percent={j(r) and U, r)=U,, where U(r)=Uy[1+m(r)/
This paper is structured as follows: Secs. Il and Il de-
scribe and motivate the two mean-field theories. The numeri
cal implementation of these theories in 1D systems is dis- ... ; :
cussed in Sec. IV. The subsequent two sections analyze the Git) ;”le seci)rld gaplgss~ theonG%) is defined by
predictions of the various theories and compare them t&Jcorlr) =Uexdr)=U(r), with U(r) as above.

those of the HFB-Popov theory, with the main results sum- e point out that both th&1 andG2 theories extend
marized in Sec. VII. Finally, the Appendix establishes theP€yond the HFB approximation, and we shall show that they

link between our expression for the effective interaction incorrespond to the two extreme approximations for the mo-

trapped gases, and known analytical results for the homogd?€ntum dependence of the many-bobymatrix. \We also
neous gas. note that the full HFB theory cannot be written in ttgap-

lesy form of Egs. (1)—(4), because it does not treat all
condensate-condensate interactions consistg?ily In Sec.
Il we briefly discuss the physical origin of the theories de-

The self-consistent equations discussed in this paper ca¥ffibed above.
all be summarized by the generalized eigenvalue problem

#2(r)] andm(r) represents the pair anomalous avergige
ined in Eq.(8)].

Il. GAPLESS MEAN-FIELD THEORIES

5272 Ill. MOTIVATION OF PROPOSED MEAN-FIELD
; -
—W+Vtrarﬁl’)—,u+Ucor(r)|¢(r)|2 THEORIES

The effective interactiot (r) employed in both th&1
+2U0r)N(r) { ¢(r)=0, (1) ~and G2 theories arises naturally in the time-independent
Gross-Pitaevskii equatiofQPE for the condensate mean
field ¢(r). In the usual form of the HFB theor{see, e.g.,
ﬁ(r)uj(r)+Ucon(r)dfz(r)vj(r)=ﬁwjuj(r), 2) Ref. [8]) based on the contact interactipk!(r—r’).
=Uyd(r—r"), the condensate wave function is determined

200y + Deod DL (DU, (N =—fiwpy(r). 3

by #(r), u represents the chemical potential of the assem- | — ———+Viyad 1) — s | (1) + Ul |(r)|2+2n(r)J(r)

In these equations, the condensate wave function is denotect £2y2
bly, uj(r) andv;(r) are the usual Bogoliubov functiof25], 2m

and the Hermitian operatcft is defined by +Um(r)¢* (r)=0, (5)
. h2v2
L(r)y=— Z_mr +Viad 1) — e+ 2U o 1) 4(1) |2 with ¢(r) normalized to the total number of condensate par-
ticles, i.e., fdr|¢(r)|?=Ny. The first term in Eq.(5) de-
+ 20 1)R(T). 4) scribes the ‘free’ evolution of the condensate mean field in a

confining potentialVy,r). The two terms in the square

To model the interactions between trapped atoms in the mo?[raCkeFS’ correspand, respectively, to collisions_between two
general manner, we have allowed them to interact with eacAOMS In the condensate and between an atom in the conden-

other via different effective interactions, depending onSate and an excneq one. The _fmal tefmeglected in the
. ~ HFB-Popov approximationcontains the effect of the sim-

vv~hether they are both in the condensftée(r)] or not plest anomalous average of the Bose field, which represents
[Uexc(r)]. The phySical jUStiﬁcation for such a distinction pair correlations between atoms.
will be discussed shortly. The quantity(r) appearing in These pair correlations modify the scattering of two con-
Egs. (1)—(4) corresponds to the density profile of excited densate atoms, producing an effective interatomic potential
atoms, and is to be determined self-consistef®ly by a  [14,23. In the simplest approximation, this potential is given
transformation to the quasiparticle balig., via Eq.(7)]. by the two-bodyT matrix, itself conventionally approxi-

The above set of self-consistent equations is gapless, irrenated byU,8(r —r’) [18]. The next level of approximation
spective of the choice of potentidlk,,(r) andU(r) [26].  corresponds to the inclusion of many-body effects, which are
This follows from the fact that Eq€1)—(4) support a zero- introduced bym(r). The form of the effective interaction in
frequency mode withug(r),vo(r)]=[¥(r),—¢*(r)]. The this case can be seen by grouping the final term of (Bp.
three different theories to be compared in this paperiud-  with the expressioto| 4 (r)|2y(r), which gives
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in the literaturg 9,10] and can be summarized in the follow-
|y(r)|?y(r)  ing steps
(i) Solve Egs.(1)—(3) in the zero-temperature limit of
n(r)=m(r)=0, which also implies that)(r)=U,. One
=0(n)|(r)|2(r) (6)  thus obtains an initial value for the condensate wave function
#(r), as well as the quasiparticle functiongr) andv;(r)

~ o (which are henceforth treated as real quantities

HenceU(r) can be thought of as an approximation to the full (i) Calculaten dn by t forming t .

many-body interaction potential between two condensate at- ) ~aicula en(r) andm(r) by transforming to a quasi-
%rtlcle basigsee Eqgs(7) and(8)].

oms in the presence of the condensate and excited-state med

m(r)

1+
PA(r)

Uol [4()|2g(r)+m(r)* (r)]=U,

fields. (i) Resolve Egs(1)—(3) using the new values ai(r)
The Appendix shows that for a homogeneous gas, ouandm(r), and iterate to convergence.
definition of the effective interactiotl(r) is equivalent to The excited-state density(r) and the pair anomalous av-

the zero-energy, zero-momentum limit of the many-bddy eragem(r) can be calculated by a Bogoliubov transforma-
matrix if one includes the effect of the mean field on thetion [30] to quasiparticle basis, yielding the well-known ex-
spectrum of the intermediate states in a collision but not orpressions

the propagator. This avoids difficulties associated with infra-

red divergences in the theofyt3]. U(r) is therefore the ~ 5 ) )
natural extension of the existing homogeneous treatments n(r)—; {L1uj (O] [v(D]*INQ(E + v (D7, (7)
[13,23 to the case of trapped gases. It is nonetheless an

approximation of the many-body matrix, and we believe

that full calculations should be possible for trapped gases in r~n(r)=2 uj(r)v}*(r)[ZNQ(EjH 1], (8)
the near future. j

Our discussion so far shows tha(r) upgrades the effec- L . i
tive interaction between two atoms to the many-bddgma- ~ Where the quasiparticle populatioNg,(E;) are given by the
trix. However, in view of Eq.(5), this effective interaction Bose-Einstein distributionNg(E;) =1/(e’5i—1), with 3
only appears rigorously in the interactions between two con=1/kgT. The expression fom(r) is ultraviolet divergent,
densate atoms. To obtain an effective interaction in collisionsvhich is a consequence of the use of a contact approximation
between condensed and excited atoms in a rigorous mannde, describe the two-bodyl matrix rather than the full
one must deal explicitly with correlations of three particlespseudopotential given in R€fL8]. However, it is known that
[28], which requires a treatment beyond the usual mean-fielthe effect of using the full pseudopotential is to remove this
approaciassumed in Eq5)] [14]. To a first approximation divergencg21,31,33, and this justifies our renormalization

[and in the same manner as for(r)] such three-particle of m(r) by the subtraction of the high-energy part. The
correlations lead to the introduction of the two-boflyna-  excited-state density is calculated using a small basis set for
trix in the condensate—excited-state interactions. At the nexhe strongly coupled low-lying states, and treating all states
level of approximation they produce additional terms in Eq.above this as an ideal gas. The error this involves can be
(5), which correspond to many-body effedise., a many- determined by repeating the simulations using a larger basis
body T matrix) in the interactions between condensed andset. In one dimension we find that 40 basis states is sufficient
excited atomg$29]. for a good description of the system even at temperatures
The two theories discussed in this paper differ in how theabove critical.

condensate—excited-state interactions are approximated. In The form of the interaction potentigj(r) of Eq. (6) can

the low-momentum regime, many-body effects are impor{ead to numerical difficulties in a trap, since the condensate
tant. Since we expect the interaction between condensed amghve functiony(r) becomes small away from the center.
excited atoms to be the same as that between two condensaige therefore compute with a modified form of the interac-

atoms, this leads to the use 0f(r) to describe all interac- tion potential given by U(r)=Uy((1+mG)/[ e+ °G])
tions, thus motivating th&2 theory. However, in the limit where € is a small parameter of the order of 10 Our
of high relative momenta the condensate—excited-state intefesults are independent of the valueeyfas has been con-
actions are best described by the two-bddynatrix since  firmed by performing simulations using various different
many-body effects die out in this regimi26,23. This moti-  (small) values. This is to be expected since physical results
vates theG1 theory, in which the condensate-condensatelepend on the properties of the system in the region of con-
interactions are modeled Hy(r), whereas the condensate- densation, i.e., near the center of the trap, wheigindeed
excited state interactions are described in termd@f Hav-  negligible in comparison to the condensate wave function.
ing discussed the origin of the various theories, let us now |n three dimensions, th&, which appears irl~J(r) is
briefly describe their numerical implementation. related to the s-wave scattering length via the usual expres-
sionUy=4mA2%a/m. In one dimension, howeveld, is sim-
ply a measure of the strength of the interactions relative to
the spacing of the energy levels in the trap. It has dimensions
Equations(1)—(3) form a set of nonlinear eigenvalue of energy times length and in our simulations we used a
problems which must be solved self-consistently. The nuvalue ofUgy /% wX 5= 10, which corresponds to strong inter-
merical procedure for doing this has been explicitly reportedactions. Herew is the trap frequencym is the mass of an

IV. SELF-CONSISTENT NUMERICAL ANALYSIS
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FIG. 1. This figure shows the condensate fraction as a function of temperature for a trapped assembly of 2000 atoms. The solid line
corresponds to the noninteracting limit, wher€asnd + respectively, correspond to the interacting HFB-Popov @2dmodels. TheG1
predictions coincide with those of the HFB-Popov model on the scale of thiSgeetalso Fig. ¥ The dotted line gives the condensate
fraction for a noninteracting gas of a very large number of atoms using a formula given if3RBefComparison with the other curves
clearly shows that the effects of interactions on the condensate fraction are much smaller than the finite number effects.

atom, andx ,s= \%/2me is the oscillator length unit which trapped 1D Bose condensate. Since we have a finite number
sets the scale of length for the system. The value for th@f atoms, the transition point is smeared out and shifted rela-
interaction strength was chosen so that the effects of ouiive to the large number limit. Although these are very small
theories would be clearly visible. effects in three dimensions, they are much more noticeable
Finally we should mention that at high temperatures then one dimensiori33]. In this section, we examine the fur-
eigenvaluew which appears in the GPE cannot be taken tother modifications imposed on the transition temperature by
be the true chemical potential if there is a constraint on thehe addition of interactions. We find that the presence of
total number of particles in the system. Thus we use a Bosgteractions has only a small effect on the 1D transition tem-
distribution of the formNg(E;)=1/(el’5i~°%)—1), where  perature(see Fig. 1 In three dimensions, such a shibeit
du is the difference between the true chemical potential angmall) has been measured in anisotropic condensates with
the eigenvalue appearing in the GPE and is of ordBip 1/  repulsive interactiond34]. These experiments indicate a
The n which appears in Eq4) is still given by the eigen-  |ower transition temperature, in agreement with theoretical
value of the GPE, however, since the calculation of the quapredictiong35]. This can be understood as follows: the pres-
siparticle energies is really a calculation of their energiesnce of repulsive interactions leads to atoms being repelled
relativg to the condengate. This corr.ection is_ necessary if th@om the center of the trap, where their density is highest.
numerical procedure is to be consistent with the way onéryig corresponds to a reduction in the phase-space density,
calculates the statistical properties of an ideal gas for a fixe 0 to reach the critical value required for Bose-Einstein con-

number of particles. It is more S|gn|f|c_ant in one d'mens'ondensatior(BEC) the system must be cooled to a lower tem-
than in three because of the more rapid decrease of the cop- h ideal h h
densate population with temperature. perature than an ideal Bose d&$]. Furthermore, once the

Having discussed the numerical techniques, we now turiystem has undergone BEC, the repulsive interactions will
to the interpretation of the predictions of tltiél, and G2 lead to a lower condensate fraction at any given temperature

theories and their comparison to the HFB-Popov theory. Wéha_lrjhfor ap |<3eal gas. h learly in Fia. 1. where th
shall see that as far as density profiles or excitation frequend etsef eafure; arel Stt o(;/vn ¢ ea}r y ":. |g.f EW ere i e c?n-
cies are concerned, the predictions of & theory lie re- ensate fraction is plotied as a function ot temperature for

markably close to those of the HFB-Popov theory. The dethe case of an ideal Bose gas, as well as for the three inter-

o . acting models discussed earlier: HFB-Pop@enoted by
viation of theG2 theory from the HFB-Popov theory is more C ;
significant, but is still only of order a few percent. O), G1 (coinciding with the HFB-Popov theoryand G2

(+). In Fig. 1 (and subsequent figureghe temperature is
V. RESULTS IN TRAPPED ONE-DIMENSIONAL expressed in dimensionless unitsTdfl'g WhereTg is defined
CONDENSATES by N= (kpT/% w)log(2,TY%w). This result for the critical
temperature in a 1D trap applies to the limit>co, and is
derived in Ref[33]. Note that this is not the usual thermo-
Let us first discuss the temperature dependence of théynamic limit in whichN—« with Nw held constant, both
condensate fraction and the importance of interactions in @ecause BEC cannot occur in one dimension in this limit and

A. Condensate fraction and critical temperature
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Anomalous Pair Correlation

Position in trap

FIG. 2. “Density profile” of the anomalous pair averaggr) at T/T2=0.58 in both theG1 (solid line) andG2 (dashedl theories. The
position in the trap is in units of,s, and the anomalous average is in units of,d/, where the harmonic-oscillator length unit g,

=Jh2mw.

because it is not the appropriate limit for current experimentsjon, {j (r) which has been introduced. A physical understand-
(see Ref.[33]). Of course a transition temperature is Noting of these modifications therefore requires a knowledge of
precisely defined in a finite systell87], butT; sets the scale the form of this interaction strength. The important feature in
for the appearance of a condensate, and for the case of 20Q81, these theories is the explicit appearancen@f). The
atoms it is given byl(bT(c)/ﬁw)=310.91. The ideal Bose gas “density profile” of m(r) at T/T°=0.58 is plotted in Fig. 2
results shown in Fig. 1 are the exact results for an assembl%r both theG1 andG2 theoriesc It is found to be predomi-
of 2000 atomgsolid ling), based on the analysis of Ketterle nantly negative, and slightly Iar.ger in magnitude in (B2
and van Drute33]. These are accurately reproduced by ourtheory than in ,theGl theory. This leads to a marginally
numerical routine. o S
Figure 1 confirms that repulsive interactions lower theSmaller effective interaction(r) in the case of theG2
transition point, and shows clearly that these modificationgheory, with the difference betwees(r) in the two theories
are negligible in comparison to the finite number effects. Asncreasing with increasing temperature. This is clearly dis-
a result, there is no significant difference in the temperaturglayed in Fig. 3, where the value bf(r) near the trap center
dependence of the condensate fraction betwee®theG2, s piotted for both theories and a range of temperatiiés)
and HFB-Popov theories. In particular, the predictions of the,aries strongly within the trap, experiencing a local maxi-
G1 and HFB-Popov theories cannot be distinguished on thgym at the trap center, where the condensate density reaches
scale of Fig. 1. Nonetheless, both tBd andG2 theories ts peak. At large distances from the trap center it reduces
predict a slightly smaller condensate fraction than the HFBysymptotically to the dilute Bose gas,, as would be ex-
Popov theory, which may come as a surprise to the readepected for interactions in the absence of condensation. We
given thatU(r) is always locally smaller thatl, (see sub- have also examined the effect of different scattering lengths
sequent Fig. B Indeed, if this generalized effective interac- by varying the nonlinearity in our 1D NLSE. This led to the
tion wereconstant(i.e., position independenand less than anticipated result that smaller scattering lengths generate ef-
Ug, both theG1 andG2 plots would lie between the ideal fective interactions which deviate less from the conventional
gas and HFB-Popov curves. However, as shown more exd,.

plicitly below, the net effect of) (r) is to push atoms away

from the center of the trap and out of the condendate C. Density profiles of trapped atoms
comparison to the HFB-Popov thegryThus, both of the ) ) ~
theories yield a lower value for the total number of conden- Having discussed the form @f(r), we can now compare

sate atoms at a given temperature, with the correction frorf’€ density profiles of the trapped atotbsth condensed and

the HFB-Popov theory being largest in t&2 theory excited for a fixed temperature, as predicted by the
' G1, G2, and HFB-Popov theories, and the ideal Bose gas.

The detailed atomic profiles of condensed and excited atoms

are illustrated in Figs. @ and 4b) at a temperaturd@/T?
Modifications from the HFB-Popov theory in both td =0.58, for which there arésee Fig. 1 approximately equal

andG2 theories are due to the many-body effective interacnumbers of atoms in the condensate and excited states.

B. Position-dependent effective interactiorJ (r)
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FIG. 3. Variation of the effective interactidd(r) (in units ofU,) near the center of the trap. The position in the trap is given in units
of the oscillator lengthx.s.. The solid lines correspond to tli&l predictions, and the dashed lines to the corresponding values (BZhe
theory. The curves shown correspond to different temperatﬂ'r/€§(=0.06, 0.19, 0.58, and 0.84with temperature increasing with the
lower curves. The predictions of tf&1 andG2 theories are indistinguishable in the low-temperature refigm two curves

Figure 4a) shows clearly that repulsive interactions causeThis can be understood as follows: In the low-temperature
condensate atoms to be repelled from the center of the traggion, the pair anomalous average is negligible and pro-
where their density is highest, i.e., the corresponding waveluces no significant modification of the effective interaction
function spreads out relative to the noninteracting case. Thggom the dilute Bose gas strength,. As the temperature
particular interaction model chosen has an additiditalt  increases, however, the anomalous average becomes increas-
much smaller effect, with the corresponding wave function jngly negative, and reaches a peak near the critical tempera-
for the G1 andG2 theories, respectively, spreading further yyre, since at that point the fluctuations of the BEC order
from the ideal case than the HFB-Popov theory. This leads t85rameter are maximized. Simultaneously the condensate
an associated change in the profile of excited atoms, as plod- v d that the effective int ~
ted (over the region of appreciable condensatiam Fig. ensily decreases so ihat the efiective in eractityir)
4(b). In both casedFigs. 4a) and 4b)], we note that the =Uo[1+m(r)/¢?(r)]| becomes progressively smaller. As
main qualitative differences from the HFB-Popov theorythe temperature is further increased beyond the critical point,
arise in theG2 theory with theG1 theory leading to very the system asymptotically approaches the norfualcon-
minor modifications. This is readily understood by notingdensed phase, for which the anomalous average vanishes
that the condensate—excited-state interactions are given t@nd the effective interaction of a dilute atomic gas is known
U(r) in the G2 theory and by, in the G1 and HFB-Popov (0 be accurately determined ty,.

. L~ . In the homogeneous limit, it is well known that the zero-
s e g o e onsre e, SasomPer  energy zetomomertun it of e many-botymat

y 9 |arge € . g vanishes exactly at the transition temperafir&,23,38,39
ergy price associated with excited atoms is less in@®z&

N ) which is characteristic of a second-order phase transition
theory than in either th&1 or HFB-Popov theories. As a J#O]. This feature is reproduced by the definition of our ef-
result there are fewer atoms in the condensate at any giv ; - o )
temperature in th&2 theory(see Fig. 1 and so the conden- €ctive many-bo-dy interactiod (r) of Eq. (6?' since the ho-
sate density at the center is lower and the excited state defrogeneous limit ofJ(r) corresponds precisely to the zero-

sity is higher(Fig. 4). energy, zero-momentum limit of the many-bo@ynatrix, as
shown in the Appendix. However, for trapped condensates
D. Temperature dependence ofi(r) at the trap center we must consider the fact that collisions do not occur pre-

) o cisely at zero momentum. In this case, our expression for
Another issue worth examining is the temBerature depenﬁ(r) predicts a decrease of the effective interactiarith

dence of the generalized effective interactidifr) at the respect to the value in vacuum, o) of the order of 4-5
center of the trap in both th@1 andG2 interacting models. o4 with the lower prediction being made by the G2 theory.
This is plotted in Fig. 5, which shows that as the temperaturerhe fact that this decrease is much less significant than the
increasesUy(r=0) decreases in the low-temperature re-homogeneous case should not come as a surprise, since it is
gime, reaches a minimum around the transition point, andlready well documented that a treatment of trapped gases as
then increases again in the region of negligible condensatiohocally homogeneous breaks down in a very small region
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FIG. 4. Atomic density profilegin units of 1k .9 in the region of appreciable condensationTaT8=O.58. The position in the trap is
given in units of the oscillator length,s.. (8 shows the condensate, afig) the noncondensate profiles. These are shown within the
HFB-Popov(dash-dotted ling G1 (solid), andG2 (dasheglapproximations. The dotted lines show the corresponding results in the absence
of interactions. The total density is obtained from the sum of these two figures and has a maximum at the center of the trap as expected.

near the transition temperature, when the correlation lengt

becomes infinitd22]. nwore interesting question is whether any of the theories con-

sidered satisfy the generalized Kohn theorem for parabolic
confinement [41]. This states that the partially Bose-
condensed system should have a mode of oscillation corre-
sponding to the rigid motion of the entire systéne., con-

Possibly the simplest way to compare theories with ex-densate and excited atonat a frequency which is exactly
periment in the case of trapped Bose-Einstein condensatestise same as the lowest excitation in the noninteracting limit
to consider the frequencies of elementary excitations. In thigi.e., 1 in harmonic-oscillator units We have found this
section we compare the predictions of tll, G2, and theorem to be only approximately satisfied by the theories
HFB-Popov theories for the temperature dependence of thesgesented heréto within 12% by the HFB-Popov theory,
frequencies for 1D inhomogeneous Bose-Einstein condentgo, by theG1 theory and 5% by th&2 theory. Further-
sates. more, theG2 theory is found to reach the anticipated value
asymptotically much faster with increasing temperature than
the other two theories.

However, a complete theory of elementary excitations

As mentioned earlier, a gapless theory should have a sshould recover this mode exactly, as opposed to the approxi-
lution with precisely zero excitation energy, and this is themate behavior found here. The reason why these theories do
case for all the theories considered here. Numerically, th@ot exactly satisfy the Kohn theorem, is that they do not
code employed reproduces this zero frequency mode to ordeonsistently treat the dynamics of both condensed and ex-
1014 which acts as a useful first consistency test. A muctcited atoms9,10,13—-17, as the condensate is assumed to

VI. FREQUENCIES OF ELEMENTARY EXCITATIONS
IN ONE DIMENSION

A. Numerical consistency of theG1, G2,
and HFB-Popov theories
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FIG. 5. This figure shows the behaviord{r) (in units ofUy) at the center of the trap, as a function of temperaﬂﬁg{r =0) acquires
its minimum value near the transition temperature for bothGhe(solid line) andG2 (+) theories. Note that the variation from the value
of the dilute Bose gabl, is minimal in comparison to the complete vanishing of the interaction anticipated for a homogeneous system.

move in a static thermal cloud. For the Kohn theorem to beand all theories should tend to the noninteracting limit, given
completely satisfied, one must take into account the dynanmby the dash-dotted line of Fig. 6. This is already well satis-
ics of the thermal cloud. This was done in RéL7] by fied for T~O(2TP).

means of a kinetic theory based on the assumption of local There are two interesting qualitative differences between
thermodynamic equilibrium for the excited states. This is aih€ G2 theory and the other two theories over the important
reasonable assumption for those experimentally availablditermediate temperature regioffoughly 0.2<T/T;<2)
condensates which are sufficiently dense for the collisionafhich we would like to comment on: First, tH@2 theory
mean free path to be much smaller than the typical atomic dBre.d'CtS a much weaker temperature doependence of the exci-
Broglie wavelength, leading to rapid local equilibration of tation frequencies for temperaturgs<T.. Second, the ex-

the system. Nonetheless, such an approach is not expected(F‘\‘;'é"’ltlon frequencies predicted by both ti&l and HFB-

. i pov theories overshoot the noninteracting ones, before
be of much use in the case of very dilute condensates such ﬁﬁproaching them asymptotically, whereas in G theory

those of Ref[12]. One should not be too discouraged, hOw-he noninteracting limit is reached asymptotically from be-
ever, if the Kohn theorem is only approximately satisfied,|ow. The significancdif any) of this overshoot is yet to be
because this need not necessarily have a large effect on thtermined, but it is interesting to note that this overshoot
excitation frequencies of other modek2]. This appears rea- occurs roughly at the transition temperature.

sonable since the low-temperature predictions of the HFB- The dashed lines of Fig. 6 correspond to the predictions of

Popov theory agree with experimental dai®] within the zero-temperature theofye., Eq.(1) with n(r)=m(r)=0],

few percent experimental uncertairf0]. using a condensate population determfnfedm Fig. 1. The
predictions of such a theory are only meaningful at low tem-
B. Temperature dependence of excitation frequencies peratures, where they are found to be in good agreement with

Possibly the most important result of this paper, is thel'® HFB-Popov theory. However, the difference between

temperature dependence of the excitation frequencies of thtgese prez_j|ct|ons .anq the other theones at h|gher tempera-
low-lying modes, which is shown in Fig. 6. Ti@1 predic- tures provides an indication o_f the importance of interactions
tions are denoted by the solid line, and are found to be Ver)t;etween condensed and excited atoms.
similar to those of the HFB-Popov theo(glenoted byO).

. VII. DISCUSSION
The predictions of the52 theory, on the other hand, are . _
significantly different from the other two theories for a wide  In this paper we have presented two gapless mean-field
range of temperatures. In fact, &2 theory is only com- theories, which we have compared to the conventional HFB-
patible with theG1 and HFB-Popov theories in the limits of
low and high temperature. In the former case, this is because
the appreciable condensation means that the effect of th€?jere we have used the HFB-Popov curve for condensate popu-
excited atoms and the anomalous aVerage}S.neg“le'ei thystion as a function of temperature, although use of the correspond-
all theories tend to the same value. In the limit of high tem-ing curves for the other interacting models leads to negligible dif-
peratures '['>T2) the condensate density is greatly reducedferences.
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FIG. 6. Temperature dependence of the excitation frequency of modeeathing modefor a variety of theoretical treatments.
Frequencies are measured in units of the trap frequencyGllheredictions(solid line) lie very close to those of the HFB-Popov theory
(O), whereas the52 results(+) reveal a significantly different qualitative behavior from the aforementioned theories for most of the
interesting temperature range. TB predictions are seen to be almost temperature independent at low temperatures, and do not overshoot
the frequencies of the noninteracting ddash-dotted ling unlike theG1 and HFB-Popov predictions. The dashed line corresponds to the
predictions of zero-temperature theory, evaluated for numbers of condensate atoms determined from the HFB-Popov curvésegFig. 1
text). A similar behavior is observed in the other low-lying modes of excitation for all the above theories.

Popov approach. We believe this to be the first numericaG2 theories is to push atoms toward the edges of the trap and
calculation of excitation frequencies for a trapped gas beeut of the condensate. This in turn influences the frequencies
yond the HFB-Popov and HFB methods. The interesting feaef elementary excitations of the condensed system. In one
tures of these theories arise from the effect of the medium odimension, we find that quantities of interdstg., conden-
the colliding atoms, and are taken into account using an efsate fraction, atomic density profiles, and excitation frequen-
fective many-body interaction. These theories differ fromcieg predicted by theG1 theory are effectively identical to
each other in their treatment of interactions involving excitedthe predictions of the HFB-Popov theory. In contrast there is
states which are approximated either by the high-momentursignificantly different behavior for th&2 theory, especially
limit of the many-bodyT matrix (G1) or by the low- in the frequencies of the elementary excitations. This is be-
momentum limit G2). These represent the two extreme ap-cause interactions involving excited states are treated differ-
proximations for the many-body¥y matrix, and one might ently in theG2 theory as compared with bot1l and HFB-
expect a complete treatment of the interactions to lie betweeRopov theories. The extent of the deviation of @2 theory
these two theories. All theories considered in this pdper  from both theG1 and HFB-Popov theories may be some-
cluding the HFB-Popov theojyreat the thermal cloud stati- what surprising. Nonetheless, this may well be needed to
cally, thus yielding an inherent limitation. explain the experimental observations in small trapped as-
The expression we have used for the low-momentum limisemblies, if one accepts the initial measurements of excita-
of the many-bodyT matrix in the inhomogeneous case is tion frequencies reported in Ref12]. Preliminary results
given by theU(r) of Eq. (6). This is a function of both the [43] of the G2 theory for the anisotropic 3D condensates of
s-wave scattering length and the anomalous avefage, this experiment indicate very good agreement with experi-

and is therefore both density and temperature dependent, Jintal data in one of the modes of oscillati@uadrupole
opposed to the constant effective interactiob, mode, whereas the agreement in the other mode deviates

= (4mh2a)/m of the HFB-Popov theory. In addition, we even further from experiment than the HFB-Popov predic-

~ _ _ . tions. Clearly, a lot of work remains to be done on this issue.

have shown thatl(r) is consistent with an explicit expres-
sion for the homogeneous many-bodflymatrix in the zero-
energy, zero-momentum lim{t13,23, suggesting that our
approach is a natural extension of these homogeneous treat-
ments to the case of a trapping potential. Such a statement is \We are indebted to H. T. C. Stoof for stimulating discus-
further justified by the fact that our theory is in agreementsjons and, in particular, for pointing out to us that a gapless
with the requirements recently laid forward by Giordii6]  theory can be obtained even if the interactions involving ex-
for a mean-field theory beyond the HFB-Popov theory.  cited atoms are treated by a different effective interaction to

The main effect of employindJ(r) in both theG1 and the collisions between two condensed atoms. We would also
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require the homogeneous expression ffu(r) which, after
Rusch.

the subtraction of the ultraviolet divergent pais given by

APPENDIX: THE MANY-BODY T MATRIX 5
IN THE HOMOGENEOUS LIMIT ~ ~ dk .
m(r)=m= f 2—)(ukvk[2N(Ek)+ 11— limuw,),

3
In this appendix we show that the effective interaction (2m koo

U(r)=Ug[1+m(r)/¢(r)] of Eq. (6) is a valid approxima- (AS)
tion to the many-body matrix. This is achieved by proving \yherey, anduv, are the Bogoliubov transformation factors
the equivalence obi(r) to the homogeneous many-body expressed agt4]

matrix (denoted here bf‘o as in[13)) in the zero-energy,

zero-momentum limit.

~ 112
Ek+ €k+ noro
W=l—""H5 | Uk=

~ 1/2
Ek+ noro_ Ek:|

It was shown in Refs[13,23 that1~“0 is related to the 2E, 2E,
zero-momentum limit of the vacuum scattering amplitutie (AB)
via

I'y rather thanU, appears in these expressid@s in the
quasiparticle energies of EGA3)], since they are evaluated
_ Uo self-consistently. A simple calculation then givegv,=
Fo:m, (Al)  —nyTy/2E,, enabling us to writén as
. . _ - ~ [ &3 [2N(Ep+1 1
wherea(T) depends both on the energies of the intermediate m=—nyl’ / (E -, (A7)
0% 0 3l 2E 2
(2) k €

states in a collision and on propagator factors for these states.
Explicit expressions for(T) can be obtained13,23 by ) ) )
ignoring the infrared-divergent contributions. Here we fol- Sinceng= ¢, comparison with Eq(A4) clearly shows that
low the notation of Ref[13], which gives

m
1+ —|, (A8)

I'o=Up e

T_J' d’k [ 1 t,BEk 1 A
a(T)= (ZT)gz—EkCO“—Z Zed)’ (A2)
which is the result we set out to prove.
Since the expression far(T) of Eq. (A2) does not in-
where the term—(1/2¢)) is required to remove ultraviolet clude the infrared divergent contribution, it has the same
divergences arising from the integration over all momenta. Irform both above and belowW, [13]. This means that al-

this equatione, is the bare particle energy, arig, corre-  thoughT', takes into account the modification of the energy
sponds to the quasiparticle energy given by spectrum produced by the mean field, the propagators ap-
pearing in the many-body{f matrix are unperturbed ones.
Hence Eq.(A8) corresponds formally to the zero-energy,
_ (2 = zero-momentum limit of the homogeneous many-bddy
Ei= Vet 2noloe, (A3)  matrix which takes into account the modification imposed by
the medium on the energy spectrum, but not on the propaga-

wheren, is the condensate densitfio rather thanU, ap-  tors, as argped in the text. This is expected to be a very good
pears in this expression since the numerical procedure @PProximation for most temperatures, except for a very small
made self-consistent. region neaiT =0 [23].
We can now rewrite the expression fe(T) of Eq. (A2)
by noting that cothBE,/2)=(efEk+1)/(efEk—1)
=2N(E) +1, where N(E)=[e’%~1]"" is the Bose-  3This subtraction can be justified as follows: we have argued that
Einstein distribution. Thus, writing EqALl) asT'y;=Ug[1 m(r) modifies the effective interation between two condensate at-
—a(T)f”o], we obtain oms, replacing the bare interatomic_ potential With_ the scattering
matrix. However, the contact potentidly,5(r—r’) which appears
in our equations is actually an approximation of the two-bddy
matrix rather than to the bare interatomic poteniftihis is because
(Ad) the s-wave scattering length which appearsUyg is measured by
observing the effect ofcomplete collisions in the absence of con-
densation Thus the perturbative part afi(r) is implicitly present
Let us now show that the homogeneous limitdfr)  in the use of the contact potential, and to avoid double counting we
yields exactly the same relation as E44). To do this, we  must renormalizen(r) by subtracting it.

foz UO

- d3k/2N(Ek)+1 1
1_F°J(2w)3\ 2Ey _Z_GK)'
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