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Interacting Fermi gas in a harmonic trap

G. M. Bruun and K. Burnett
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, England

~Received 17 April 1998!

In view of ongoing experiments to trap ultracold spin-polarized6Li, we study various properties of an
interacting Fermi gas in a harmonic trap, taking the discrete nature of the unperturbed harmonic trap levels into
account exactly. As6Li has a rather large and negative scattering length, we focus on the effects of the
attractive atom-atom interaction on several thermodynamic properties, and on the momentum and density
distributions. The dependence of the chemical potential, the specific heat, and the density and momentum
distributions on the number of particles in the trap is obtained. We also calculate the energy of the gas.
Comparison is made with results of a semiclassical calculation and with the properties of a noninteracting gas.
We find that the effect of the interactions is rather large for realistic trap frequencies. Hence it is important to
include these interactions in any quantitative predictions relevant for experiments.@S1050-2947~98!11909-1#

PACS number~s!: 03.75.2b, 05.30.Fk
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I. INTRODUCTION

Recently there has been a lot of interest in the proper
of trapped ultracold atoms. This interest has largely b
sparked by the achievement of Bose-Einstein condensa
in the bosonic systems87Rb, 7Li, and 23Na @1–3#. Several
theoretical studies of trapped degenerate Fermi gases
been presented, in addition to those on Bose systems. I
even been shown that a two-component gas of spin-polar
atomic 6Li becomes superfluid at experimentally obtainab
densities and temperatures@4#. This is due to the fact that6Li
has an anomalously large and negatives-wave scattering
length a, with a recent measurement givinga.22160a0 ,
wherea0 is the Bohr radius@5#. s-wave scattering is forbid-
den for two fermions in the same spin state, but the6Li atom
has six hyperfine states. This means that by trapping6Li in
two different hyperfine states, one can observe relativ
strong interactions due tos-wave scattering between atom
in different states. The trapping can be achieved since
energy of the hyperfine states depend on the external m
netic field. The highest three states ‘‘prefer’’ a lower ma
netic field, and can therefore be trapped in a static magn
trap. In particular, one can trap the two highest states
proposed by Houbierset al. @6#. These two states will here
be labeledu↑& and u↓&. In such a two-component gas o
trapped spin-polarized6Li atoms, there will only be, to a
good approximation, interactions between atoms in differ
hyperfine states, whereas there will be almost no interac
between atoms in the same state. Indeed, it was for su
two-component system that the relatively high transit
temperatureTc for a BCS-type phase transition was pr
dicted @4#.

The purpose of this paper is to examine the normal-s
properties of such a trapped gas of6Li atoms with compo-
nents in the two highest hyperfine states. It is clearly nec
sary to understand these properties on the path to achie
the predicted BCS-type transition. The normal-state prop
ties of a noninteracting trapped cloud of fermions have b
treated within the semi-classical Thomas-Fermi approxim
PRA 581050-2947/98/58~3!/2427~8!/$15.00
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tion @7#, and also by taking the discrete nature of the tr
energy levels in the noninteracting limit into account@8#. As
the interactions between6Li atoms in two different hyperfine
states are relatively strong, it is important to include the
fect of these interactions in any realistic treatment of
system. Hence the present paper extends the analysis of
@7,8# by including both the discrete nature of the trap lev
as well as the effects of the interactions~in the mean-field
approximation!.

The paper is organized as follows. In Sec. II, we set
the formalism needed to treat an interacting two-compon
system of fermions within the mean-field approximation. W
then, in Sec. III, analyze the influence of the trap poten
and the interactions on the chemical potential of the gas.
show that the interactions have two distinct effects on
chemical potential; they lower its value below the nonint
acting value, and smooth out the steplike features predic
by Schneider and Wallis@8#. The quasiparticle energy spec
tra and wave functions are considered in Sec. IV, and in S
V we investigate the behavior of the energy and the h
capacity. We find that at sufficiently low temperatures t
interactions change the qualitative behavior of the heat
pacity. This is explained in terms of the effect the intera
tions have on the quasiparticle spectrum. In Sec. VI, we d
cuss the density and momentum distribution and th
deviations from the noninteracting case and from
Thomas-Fermi predictions. Finally, we summarize the
sults in Sec. VII.

II. FORMALISM

We consider a dilute gas of interacting6Li atoms in two
hyperfine states trapped in an external potentialU0(r ). As
the gas is dilute, the interactions mainly happen through tw
body collisions. Furthermore, since thes-wave scattering
length is much larger than thep-wave scattering length, we
can neglect any interaction between fermions in the sa
2427 © 1998 The American Physical Society
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hyperfine state. The gas is then described by the Hamilto

Ĥ5(
s

E d3r cs
†~r !F2\2

2m
¹21

1

2
mv2r 22mGcs~r !

2gE d3r c↑
†~r !c↓

†~r !c↓~r !c↑~r !, ~1!

wherem is the mass of the particles, and the attractive int
particle potential has been approximated by a contact po
tial V(r 82r ).2gd(r 82r ), g.0. The field operators
cs(r ) obey the usual fermionic anticommutation rules, a
describe the annihilation of a fermion at positionr in the
hyperfine stateus&. The trapping potential is for simplicity
assumed to be well described by an isotropic harmonic
cillator U0(r )5 1

2 mv2r 2. The trapping frequencyv is taken
to be the same for each hyperfine state. We have assu
that the number of particlesN in each state is the same su
that we only have one chemical potentialm. As the critical
temperature for a BCS-type transition is maximum when
number of particles in the two hyperfine levels is equal@4,6#,
we expect this configuration to have the most experime
relevance. The noninteracting case is achieved by setting
50; this limit has been treated by Butts and Rokhsar wit
the Thomas-Fermi approximation@7#, and by Schneider and
Wallis @8# taking the quantizing effect of the trap potenti
into account. In this paper, we are interested in the effec
the interactions on the normal state properties of the gas.
can, therefore, ignore any pairing correlations leading t
BCS-type transition, and use the mean-field Hamiltonian

ĤMean5(
s

E d3r cs
†~r !

3F2\2

2m
¹21

1

2
mv2r 21U~r !2mGcs~r !. ~2!

Here the self-consistent fieldU(r )52g^c2s
† (r )c2s(r )& is

the standard Hartree-Fock result for a contact interaction
include all two-body scattering processes on the mean-fi
level, one can putg54puau\2/m, with a being thes-wave
scattering length of collisions between the fermions in
two hyperfine states@9#. As the trapping potential is assume
to be isotropic, the self-consistent solution of the mean-fi
Hamiltonian with the lowest energy will be spherically sym
metric. The Hamiltonian can then readily be diagonalized
writing the field operator ascs(r )5(n lmulm

n (r )as lm
n . The

operatoras lm
n describes the annihilation of a quasiparticle

the hyperfine states with total angular momentum@ l ( l
11)\2#1/2, a component along an arbitraryz direction of
m\, and a wave functionulm

n (r ). We write the quasiparticle
wave function in the form

ulm
n ~r !5

ul
n~r !

r
Ylm~u,f!, ~3!

where Ylm(u,f) are the usual orbital angular momentu
eigenfunctions.ĤMean is then diagonalized by solving
an
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nul

n~r !5F2
\2] r

2

2m
1

\2l ~ l 11!

2mr2

1
1

2
mv2r 21U~r !2mGul

n~r ! ~4!

for each angular momentuml. Here the quasiparticle energ
El

n is independent ofm due to the spherical symmetry. Th
self-consistent potential is determined by

U~r !52g(
n lm

uulm
n ~r !u2f ~El

n!

52g(
n l

ul
n~r !2

r 2

2l 11

4p
f ~El

n! ~5!

wheref (x)51/@exp(x/kBT)11# is the Fermi function, and the
addition theorem for spherical harmonics has been used.
merically, we use a cutoff of the orderEl

n&2m for the sum
given in Eq.~5!. This is more than sufficient, since in th
paper we are considering low temperatures (kBT,\v) and
we know that levels with energies higher than a fewkBT
give a vanishing contribution to the density. Thus, within t
mean-field approximation, the problem of an interacting g
of fermions in two hyperfine states in an isotropic harmo
trap is equivalent to solving Eqs.~4! and ~5! self-
consistently. Once a solution is found, one can easily ca
late various observables for the gas. The total energyE for
the particles in both hyperfine states is given by

E5^Ĥ&12mN52(
n l

~2l 11! f ~El
n!

3E d3r ul0
n ~r !S 2\2

2m
¹21

1

2
mv2r 2Dul0

n ~r !

2
1

g E d3rU ~r !2. ~6!

Here we have added 2N to ^Ĥ&, as it is the total number o
particles in the trap. In the following sections we will solv
the above equations for various sets of parameters and
culate several observables from the solutions.

As the negative scattering length introduces an attrac
interatomic potential, the system can collapse to a fluid
solid state when the density of particles becomes too la
This effect was examined in Ref.@6# within the semiclassica
Thomas-Fermi approximation. For a trap with an equal nu
ber of particles in each hyperfine state, the authors of Ref.@6#
found that the spinoidal point is given byN1/6uau/ l .0.66,
with l 5A\/vm being the trap length. Numerically, this tran
sition is seen from the fact that there is no self-consist
solution to Eqs.~4! and ~5! when the chemical potential i
too high for a given coupling strength. The density of pa
ticles increases for each interaction without bound, indic
ing that the system is collapsing into a new dense phase.
find that this problem arises in the region of paramet
where N1/6uau/ l;O(1), in qualitative agreement with Ref
@6#. However, due to the computation load we have not b
able to verify in detail the predictionN1/6uau/ l .0.66 for the
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PRA 58 2429INTERACTING FERMI GAS IN A HARMONIC TRAP
spinoidal transition line. As we do not have an appropri
theory for such a phase, in this paper we will work wi
parameters~N,g! such that we are well below this spinoid
phase-transition line.

We shall compare some of our results obtained from
solution of Eqs.~4! and ~5! with approximate results base
on the Thomas-Fermi approximation. This approximation
sentially treats the trap potential as being locally consta
The Hartree-Fock equations are then trivially solved for e
r by plane waves. The quasiparticle energies are given b

Ek~r !5
\2k2

2m
2gr~r !2m~r !. ~7!

Here the local chemical potential ism(r )[m2 1
2mv2r 2, and

the density is given by

r~r !5E d3k

~2p!3 f @Ek~r !#. ~8!

Equations~7! and ~8! have to be solved self-consistently
each pointr . The total number of particles in a single hype
fine state in the system is thenN5*d3r r(r ).

III. CHEMICAL POTENTIAL

In this section we will determine the chemical potentialm
as a function of the number of particles in the trap. Schne
and Wallis@8# did an extensive analysis ofm(N) in the case
of a noninteracting gas. They found some remarkable s
like features inm(N) as compared to the Thomas-Fermi a
proximation; these steps were due to the shell structure o
energy spectrum of an isotropic harmonic trap. They d
however, predict that for a real Fermi gas, the interacti
would tend to smooth out the steps. Using the formali
outlined above, we are now able to examine in detail how
interactions affect these steplike features. In Fig. 1, we p
the chemical potentialm as a function of the number of pa
ticles N in a single hyperfine state for various couplin
strengthsg for a very low temperature (kBT!\v). These
curves were obtained by solving Eqs.~4! and~5! for varying
m andg. The dashed lines correspond to the Thomas-Fe
approximation obtained from the solution of Eqs.~7! and~8!.
In Fig. 1~a!, we comparem(N) for the rather large coupling
strengthsg851 and 2 with theg50 case, when there ar
relatively few particles in the trap in order to highlight th
steplike features. We have definedg8[g/(\v l 3). As can be
seen, that the interaction has two effects. First of all, it lo
ers the value of the chemical potential for a given numbe
particlesN as compared to theg50 case. This is as ex
pected, since the mutual attraction between the particle
the two hyperfine states lowers the energy of the gas. S
ond, we note that the steplike features ofm(N) are smoothed
out by the interaction. Forg851 the steplike features surviv
up toN&2000, and forg852 they survive forN&500. Fig-
ure 1~b! shows m(N) for g850.4 and 0.2. Puttingugu
54puau\2/m, with a522160a0 being thes-wave scatter-
ing length for 6Li, g850.4 corresponds to a trap frequen
of n5v/2p5144 Hz, andg850.2 to a trap frequency ofn
5v/2p5288 Hz. These values are close to the ones use
the Bose-Einstein condensation experiments describe
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Refs. @10# and @11#, respectively. We again see the sam
behavior as in Fig. 1~a!. The steplike features break down fo
N'43104 for g850.4. For g850.2 they break down a
N'105, which is not shown in Fig. 1.

IV. ENERGY SPECTRUM

From Fig. 1, we see that the steplike features survive e
though the value ofm(N) is several\v lower than theg
50 prediction. This is somewhat surprising, as the steps
associated with the gaps of size\v in the g50 spectrum.
One might expect these gaps to disappear once the level
lowered by more than\v due to the interactions. To examin
this effect, in Fig. 2 we plot the quasiparticle spectrum
g852 for a very low temperature for each angular mome
tum l. In Fig. 2~a!, the chemical potential ism/\v58,
whereas it ism/\v513 in Fig. 2~b!. Thex axis denotes the
angular momentuml of the quasiparticle states, and the qu
siparticle energies are marked by the symbol3. For com-
parison the symbolss denote the noninteracting quasipar
cle energies. The chemical potential is indicated by a t
dotted line. In the noninteracting case (g50), the energy
spectrum is given byEn5(n13/2)\v, with n50,1,2 . . . .
The degeneracy of each level isDn5(n11)(n12)/2 corre-
sponding to the angular momentuml being l 50,2, . . .n for

FIG. 1. m(Ns) in units of \v for g851, g852 ~a! and g8
50.2,g850.4 ~b!. The dashed lines are the Thomas-Fermi appro
mation.
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2430 PRA 58G. M. BRUUN AND K. BURNETT
n even andl 51,3, . . . ,n for n odd. This degeneracy inl
gives rise to the shell structure of the spectrum, which
indicated in Fig. 2 by horizontal dashed lines. In the int
acting case, the energyEl

n in general depends on bothn and
l. From Fig. 2~a! (m58\v), we see that the quasipartic
energies in the interacting case are lowered several\v as
compared to the normal state energies, e.g., the lowes
ergy is21.7\v for g852 as compared to 1.5\v for g850.
However, from the solid lines in Fig. 2~a!, we see that the
energies still depend only weakly on the angular momen
l. This means that the Hartree potential lowers the energ
the l 5n state by almost the same amount as it lowers thl
50 ~n even! or l 51 ~n odd! state. This is nota priori obvi-
ous, as the wave functions for those two states are c
pletely different. This is shown in Fig. 3, where the so
lines denote the quasiparticle wave functionsul 50

n58(r ) ~a! and
ul 58

n58(r ) ~b! for m58\v and g852. These states have th
energiesEl 50

n5858.2\v andEl 58
n5858.4\v, respectively. The

l 50 wave function is spread out fromr 50 to r'r class

5A2En /mv254l , whereas thel 5n wave function is
peaked aroundr'2.8l . Hence one might expect that th
Hartree potential, which is also plotted as a solid line in F
3~c!, would affect the quasiparticle states completely diff
ently. But, in fact, the lowering of the two energies as co
pared to theg50 case is approximately the same. This e
plains the fact depicted in Fig. 1, that even though

FIG. 2. Quasiparticle spectrum in units of\v for g852,
m/\v58 ~a! andg852, m/\v513 ~b!.
s
-

n-

m
of

-

.
-
-
-
e

chemical potential is several\v below theg50 prediction,
m(N) still exhibits steplike features. The reason for this
that even though each quasiparticle energy is lowered sev
\v due to the interaction, there is still an approximatel de-
generacy: there are still bands separated in energy by'\v in
the energy spectrum as a function ofl. These bands~shell
structure! give, as in theg50 case, rise to the steplike struc
ture of m(N). For comparison, in Fig. 3 we also plot th
noninteracting wave functions as dashed lines. As expec

FIG. 3. Radial quasiparticle wave functions forn58, l 50 ~a!
and n58, l 58 ~b! as functions ofr / l . The solid lines are forg8
52 and the dashed lines are forg50. The Hartree field in units of
\v is plotted in~c!.
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PRA 58 2431INTERACTING FERMI GAS IN A HARMONIC TRAP
we see that the effect of the interactions is to compress
quasiparticle states closer to the center of the trap where
Hartree field is large. The cloud of particles is compress
as will also be seen from the density distributions plotted
Sec. VI. We can qualitatively understand the slight incre
in energy with increasingl as seen from the solid lines i
Fig. 2~a!. The low angular momentum functions have
larger amplitude in the center of the trap, and are thus m
affected by the Hartree field than the highl states.

Contrary to them58\v case, we see from the solid line
in Fig. 2~b! that, whenm513\v, the approximate indepen
dence of the quasiparticle energies onl no longer holds. The
Hartree field is now so strong that it has washed out the s
structure of the spectrum, and it is qualitatively differe
from theg50 case. The energies now increase significan
with increasingl. This explains the fact from Fig. 1~a! that
for m;13 andg852 the steplike features have disappear

V. ENERGY AND HEAT CAPACITY

For a gas of particles in a constant confining potential,
most useful definition of the heat capacity is@12#
CN[(1/2N)]E/]TuN with E(T,N) given by Eq. ~6!. As
pointed out by Schneider and Wallis@8#, the shell structure
of the harmonic trap spectrum has a drastic consequenc
the low temperature (kBT!\v) heat capacity; the gaps i
the energy spectrum forg50 mean that the heat capacity
exponentially suppressed for low temperatures. In the no
teracting case the total energy for particles in both hyper
states is given by

E~T!52(
n

EnDn f ~En!. ~9!

When the number of particles is such that a finite numbe
energy levels up to and including the levelEnF

are com-

pletely filled for T50 ~i.e., N51,4,10,20, . . . for nF
50,1,2,3, . . . !, the low-temperature chemical potential for
constant number of particles is given by

m~T!5EnF
1

\v

2
2

1

2
ln~knF

!kBT, ~10!

with knF
5DnF11 /DnF

.1. The low-temperature heat capa
ity is then easily found to be

CN~T!

2NkB
5F ~nF15/2!DnF11

1

AknF

2~nF13/2!DnF
AknFG ~\v!2e2b\v/2

2N~kBT!2 , ~11!

whereb51/kBT. This is, as one would expect, suppress
by a factor exp(2b\v/2) as compared to the usual low tem
perature Thomas-Fermi result

CN~T!

2NkB
5

p2kBT

\v~6N!1/3. ~12!
e
he
d,
n
e
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y
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e
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It is interesting to examine how the interactions chan
this result. In Fig. 4, we plot the energy per particleE8/2N of
the interacting gas as a function of temperatureT8[T/\v,
whereE8[E/\v, and the energy is given by Eq.~6!. We
have used the parametersg850.4, N55456 ~a! and g8
50.4, N543680 ~b!. For comparison we have also plotte
the g50 results as dashed lines in Figs. 4~c! and 4~d!. As
can be seen, the interactions for both set of parameters
lowered the total energy of the gas considerably. This is
expected, as from Fig. 1 we see that the chemical potentia
both cases is significantly lower than theg50 result. Figure
5 depicts the corresponding heat capacity as a function of
temperature forN55456~a! andN543 680~b! ~solid lines!.
The dashed lines are theg50 results, and the dash-dotte
line is the Thomas-Fermi result forg850 as given by Eq.
~12!. For N55456 @Fig. 5~a!# we see that the heat capaci
for the interacting system is still exponentially suppress
for kBT!\v. For very lowT the heat capacity is practicall
zero as for theg50 case, and the interactions have n
changed the qualitative behavior of the heat capacity. Thi
a direct result of the fact that the interactions have
changed the shell structure of the energy spectrum. This
be seen from Fig. 1~b!, where the steplike features ofm(N)
are still prevailing forg850.4 andN55456.

The breakdown of this effect is shown in Fig. 5~b!. We
see that forN543 680 the interactions have now increas
the heat capacity substantially over the noninteracting re
for low temperatures. This has the same order of magnit
as the Thomas-Fermi prediction, and it is qualitatively d
ferent from the noninteracting case. This is due to the f
that for this set of parameters the interactions have was
out the shell structure in the energy spectrum~the l degen-
eracy!, as can be seen from Fig. 1, where the steplike f
tures are smoothed out forN543 680 andg850.4. There are
no gaps of\v in the spectrum, and hence no exponent
damping factor in the heat capacity.

It should be noted that for very low temperatures the p
sibility of a transition to a superfluid state arises@4#. From
the well-known result of weak-coupling superconductors,
expect that this transition will give rise to a kink in theE(T)
curve as the energy per particle is lowered as compare
the normal state@13#. From this kink, we obtain a disconti
nuity in CN(T) at the transition temperatureTc . In this paper
we will not consider this effect as we are concentrating
the normal-state behavior. Work is under progress to ex
ine for which temperatures and densities this transition ta
place, and how it can be determined experimentally.

We conclude that the interactions in general lower
total energy as one would expect. The effect of the inter
tion on the heat capacity depends on the strength of the
teractions and on the number of particles in the syste
When few particles are in the system or when the interac
is so weak that the shell structure of the energy spectrum
intact, the heat capacity is still exponentially suppressed
low temperatures. The heat capacity can be suppressed
though the total energy of the system is significantly low
than for the noninteracting case. This is, of course, a con
quence of the fact that the lowering of the quasiparticle
ergies and the washing out of the shell structure happe
different sets of parametersg andN, as explained in Secs. II
and IV. Once the interactions are strong enough to wash
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FIG. 4. Energy in units of\v for g850.4 ~solid lines! andN55456~a! andN543 680~b!. The dashed lines are for the noninteracti
case forN55456 ~c! andN543 680~d!.
a
e

s
tw

nd
bu
he

fro

le
d

in
io

d

-

sub-

ruc-
the
tan-

for
n-

um
ruc-
t, it
-
sh

an-
of

-
ion
na-
he
the shell structure around the chemical potential, the beh
ior of the heat capacity changes qualitatively. It is no long
suppressed, and has the same order of magnitude a
Thomas-Fermi prediction. The transition between those
limiting behaviors is smooth as a function ofN or g.

VI. DENSITY DISTRIBUTIONS

In this section we will present results for the density a
momentum distributions. In an isotropic trap, these distri
tions will be spherically symmetric when the gas is in t
ground state. The density distributionr(r ) is calculated from
r(r )52U(r )/g, with U(r ) given by Eq. ~5!. In Fig. 6,
r(r / l ) is displayed forN5120 and 165 andg852. For com-
parison we have also plotted the distributions forg850. The
dashed curves are the Thomas-Fermi results obtained
the solution of Eqs.~7! and~8! with a givenN. The tempera-
ture is taken to be zero. As can be seen,r(r / l ) is substan-
tially changed due to the interactions. The cloud of partic
is compressed as compared to the noninteracting result
to the attractive forces. As a high density of particles
creases the critical temperature for a BCS-type transit
this effect favors the formation of the superfluid state@4#.
Furthermore, we observe a central minimum forN5120 and
a central peak forN5165 for bothg852 and 0, as compare
to the Thomas-Fermi predictions. For theg850, this is be-
v-
r
the
o

-

m

s
ue
-
n,

causeN5165 corresponds to a filled shell withnF58, N
5120 corresponds to a filled shell withnF57, and the fact
that shells withn5odd do not contribute tor~0! as they have
odd angular momentum@8#. We see that the interacting sys
tem exhibit the same qualitative dependence ofr~0! for this
set of parameters, even though the actual densities are
stationally different from theirg850 counterparts. This is
due to the fact that, for this set of parameters, the shell st
ture of the quasiparticle spectrum is still intact, although
actual energies and wave functions are changed subs
tially. This can be seen from Fig. 1~a!, where the steplike
features still prevail for this set of parameters. Thus, even
g852, N5165 still corresponds a highest shell of even a
gular momentum states totally filled, whereasN5120 corre-
sponds a filled highest shell of odd angular moment
states. For a larger number of particles, where the shell st
ture of the quasiparticle spectrum has been washed ou
turns out that this behavior ofr~0! has disappeared, as ex
pected. Also, a nonvanishing temperature will tend to wa
out the predicted dip-top behavior of the density, as the tr
sition from occupied to unoccupied shells as a function
energy becomes less abrupt.

The momentum distribution of the particles is not com
pletely straightforward to measure. A simple free expans
experiment where one switches off the trap potential no
diabatically does not strictly measure this distribution. T
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reason for this is that the gas does not expand freely; c
sions between particles in different hyperfine states will a
the momentum distribution. One would need a tim
dependent formalism@14# in order to treat such an expansio
rigorously. However, here we will assume that the mom
tum distribution in the trapped state gives a good indicat
of the distribution measured in such a free expansion exp

FIG. 5. Heat capacity in units ofkB for g850.4 andN55456
~a! andN543 680~b!.

FIG. 6. Density distributionr(r / l ) for N5120 and 165, and
g850 and 2~solid lines!. The dashed lines are the Thomas-Fer
results.
li-
r
-

-
n
ri-

ment. The spherically symmetric momentum distributi
^ck

†ck&, where ck
† creates a particle in a plane wave sta

exp(ikz) along an arbitraryz direction, is calculated from

^ck
†ck&5(

n l
u^kuul0

n &u2f ~El
n!. ~13!

Here we have utilized the fact that a plane wave along thz
direction only containsm50 spherical harmonics. Using th
well-known expansion of a plane wave exp(ikz) in spherical
harmonics@15#, we obtain

^kuul0
n &5E d3re2 ikzul0

n ~r !

5(2 i ) lA~2l 11!4p S p

2kD 1/2

3E
0

`

Jl 11/2~kr !ul
n~r !Ardr , ~14!

whereJl 11/2(x) is the ordinary Bessel function. In Fig. 7, w
plot the momentum distribution forN543 680 and g8
50.4. The momentum is measured in units ofl 21. The
dashed curve is the noninteracting result. For this high nu
ber of particles, the shell structure of the quasiparticle sp
trum is washed out and the distributions are, apart from
small shell around the edge of the cloud, almost identica
the Thomas-Fermi prediction~not plotted!. We see that the
interactions have spread out the distribution considerably
compared to the noninteracting case. As the Hartree fi
lowers the quasiparticle energies, more levels become o
pied in the center of the trap. The higher momentum sta
thus become populated leading to a spreading out of
momentum distribution as compared to theg850 case.

We conclude that the interactions in general alter both
momentum distribution and the density distribution subst
tially. The density distribution is compressed, and the m
mentum distribution spread out as compared to the nonin
acting results. Furthermore, the central minima and max

i

FIG. 7. Momentum distribution̂ck
†ck& for N543 680,g850.4

~solid!, andN543 680,g850.0 ~dashed!.
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of r(r ) as a function ofN can still be observed, when th
interactions have not yet washed out the shell structure of
quasiparticle spectrum.

VII. CONCLUSION

In this paper we have considered a trapped spin-polar
gas of interacting fermions. We find that the interactio
have two distinct effects on the quasiparticle spectrum
lowers the quasiparticle energies and thus the total energ
the gas. Also, above a certain number of particles in the t
it washes out the shell-like structure of the spectrum ass
ated with a harmonic trap. These two effects are indep
dent, in the sense that the energy of the gas can be low
considerably as compared to the noninteracting case, bu
shell structure of the spectrum is left relatively intact. O
an

et
,

n,
tt.

et,

.

r,
he

d
s
It
of
p,
i-

n-
ed
he

can still, therefore, observe effects such as steplike feat
in the chemical potential, exponential damping of the lo
temperature heat capacity, and maxima and minima inr~0!
associated with a noninteracting gas. Whether these eff
will be observable depend on whether the conditionkBT
!\v is experimentally feasible. The interactions are a
found to compress the atom cloud, and spread out the
mentum distribution considerably. This effect should
readily observable; it is important to include in any realis
calculation of the properties of spin-polarized6Li in a trap.
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