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Interacting Fermi gas in a harmonic trap
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In view of ongoing experiments to trap ultracold spin-polarifedl we study various properties of an
interacting Fermi gas in a harmonic trap, taking the discrete nature of the unperturbed harmonic trap levels into
account exactly. ASLi has a rather large and negative scattering length, we focus on the effects of the
attractive atom-atom interaction on several thermodynamic properties, and on the momentum and density
distributions. The dependence of the chemical potential, the specific heat, and the density and momentum
distributions on the number of particles in the trap is obtained. We also calculate the energy of the gas.
Comparison is made with results of a semiclassical calculation and with the properties of a noninteracting gas.
We find that the effect of the interactions is rather large for realistic trap frequencies. Hence it is important to
include these interactions in any quantitative predictions relevant for experirh8h@50-294{8)11909-1

PACS numbds): 03.75-b, 05.30.Fk

[. INTRODUCTION tion [7], and also by taking the discrete nature of the trap
energy levels in the noninteracting limit into acco{i® As

Recently there has been a lot of interest in the propertiethe interactions betweefhi atoms in two different hyperfine
of trapped ultracold atoms. This interest has largely beemstates are relatively strong, it is important to include the ef-
sparked by the achievement of Bose-Einstein condensatidiect of these interactions in any realistic treatment of the
in the bosonic system®Rb, “Li, and ?*Na [1-3]. Several system. Hence the present paper extends the analysis of Refs.
theoretical studies of trapped degenerate Fermi gases hayg8] by including both the discrete nature of the trap levels
been presented, in addition to those on Bose systems. It has well as the effects of the interactiofis the mean-field
even been shown that a two-component gas of spin-polarizeabproximation.
atomic ®Li becomes superfluid at experimentally obtainable The paper is organized as follows. In Sec. Il, we set up
densities and temperaturigd. This is due to the fact th&t.i the formalism needed to treat an interacting two-component
has an anomalously large and negatsrevave scattering system of fermions within the mean-field approximation. We
length a, with a recent measurement givirg=—216Q,, then, in Sec. lll, analyze the influence of the trap potential
wherea, is the Bohr radiug5]. sswave scattering is forbid- and the interactions on the chemical potential of the gas. We
den for two fermions in the same spin state, but%hieatom  show that the interactions have two distinct effects on the
has six hyperfine states. This means that by trappiridn chemical potential; they lower its value below the noninter-
two different hyperfine states, one can observe relativelycting value, and smooth out the steplike features predicted
strong interactions due tewave scattering between atoms by Schneider and Wallig8]. The quasiparticle energy spec-
in different states. The trapping can be achieved since thga and wave functions are considered in Sec. IV, and in Sec.
energy of the hyperfine states depend on the external magr we investigate the behavior of the energy and the heat
netic field. The highest three states “prefer” a lower mag-capacity. We find that at sufficiently low temperatures the
netic field, and can therefore be trapped in a static magnetig,iaractions change the qualitative behavior of the heat ca-
trap. In particular, one can trap the two highest states, a3acity. This is explained in terms of the effect the interac-
proposed by Houbierst al. [6]. These two states will here y,,chave on the quasiparticle spectrum. In Sec. VI, we dis-
?rg Ia:glidm a?(jri|zl>él_lr ?urcnh athtV\;O-C\:AC/mnp?l?erkl)t g?s of cuss the density and momentum distribution and their

PP pin-polarizedl.l atoms, there only be, 10 a yeviations from the noninteracting case and from the

good approximation, interactions between atoms in differen homas-Fermi predictions. Finally. we summarize the re-
hyperfine states, whereas there will be almost no interaction P ’ Y,

between atoms in the same state. Indeed, it was for suchsélmS in Sec. VII.
two-component system that the relatively high transition
temperatureT, for a BCS-type phase transition was pre-

dicted[4]. Il. FORMALISM
The purpose of this paper is to examine the normal-state
properties of such a trapped gas%i atoms with compo- We consider a dilute gas of interactifigi atoms in two

nents in the two highest hyperfine states. It is clearly necedayperfine states trapped in an external poteritig{r). As
sary to understand these properties on the path to achieviribe gas is dilute, the interactions mainly happen through two-
the predicted BCS-type transition. The normal-state properbody collisions. Furthermore, since thewave scattering
ties of a noninteracting trapped cloud of fermions have beefength is much larger than thgwave scattering length, we
treated within the semi-classical Thomas-Fermi approximaean neglect any interaction between fermions in the same
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hyperfine state. The gas is then described by the Hamiltonian ﬁZarZ #21(1+1)
Ejui(r)=| — >
2m 2mr
% 3t —h? 2.1 55
H=2> d°r oD 5 Vot 5 Mo — ] iy(r) 1
0 m +§mw2r2+U(r)—,u ur(r) 4
_ 3 gt T
gj d*r g7 () g (NP (1) (1), @) for each angular momentumHere the quasiparticle energy

E/ is independent ofm due to the spherical symmetry. The

wheremis the mass of the particles, and the attractive interS€lf-consistent potential is determined by
particle potential has been approximated by a contact poten-

tial V(r'—r)=-gé(r'—r), g>0. The field operators U(r)=—g> |ul(n)|2H(ED)
¥.(r) obey the usual fermionic anticommutation rules, and vim

describe the annihilation of a fermion at positionin the

hyperfine statds). The trapping potential is for simplicity _ —92
assumed to be well described by an isotropic harmonic os- 7
cillator Uo(r) = mw?r2. The trapping frequency is taken

to be the same for each hyperfine state. We have assumadheref(x)=1[expi/kgT)+1]is the Fermi function, and the
that the number of particldd in each state is the same such addition theorem for spherical harmonics has been used. Nu-
that we only have one chemical potential As the critical merically, we use a cutoff of the ord&;<2u for the sum
temperature for a BCS-type transition is maximum when theyiven in Eq.(5). This is more than sufficient, since in this
number of particles in the two hyperfine levels is eddab], paper we are considering low temperaturkgT(<#% ) and

we expect this configuration to have the most experimentale know that levels with energies higher than a fleyl
relevance. The noninteracting case is achieved by sefting give a vanishing contribution to the density. Thus, within the
=0; this limit has been treated by Butts and Rokhsar withinmean-field approximation, the problem of an interacting gas
the Thomas-Fermi approximatidi@], and by Schneider and of fermions in two hyperfine states in an isotropic harmonic
Wallis [8] taking the quantizing effect of the trap potential trap is equivalent to solving Egs(4) and (5) self-

into account. In this paper, we are interested in the effect ofonsistently. Once a solution is found, one can easily calcu-
the interactions on the normal state properties of the gas. Wate various observables for the gas. The total en&dyr

can, therefore, ignore any pairing correlations leading to ahe particles in both hyperfine states is given by

BCS-type transition, and use the mean-field Hamiltonian

ul(r)? 21+1
re 47

f(E) ®)

E=(H)+2uN=23 (2l + 1) (E})

HMeanzz stl’ 1,02([‘) )
7 - 1

42 1 xder ufo(r)(ﬁ V2+ = mw?r? |ujy(r)

W V2+E mw2r2+U(r)—,u lﬂo.(l’). (2)

2
X

1
~9 J d3rU(r)2. (6)
Here the self-consistent field (r) = —g(dﬁ_(,(r)(//_(,(r)) is
the standard Hartree-Fock result for a contact interaction. Tg,
include all two-body scattering processes on the mean-fielfl, icjes in the trap. In the following sections we will solve

— 2 ; i
level, one can pug=4|al%®/m, with a being theswave  he apove equations for various sets of parameters and cal-
scattering length of collisions between the fermions in the,,ate several observables from the solutions.

two hyperfine statef9]. As the trapping potential is assumed ~ Aq the negative scattering length introduces an attractive
to be isotropic, the self-consistent solution of the mean-field,iaratomic potential, the system can collapse to a fluid or
Hamiltonian with the lowest energy will be spherically sym- ¢qjiq state when the density of particles becomes too large.
metric. The Hamiltonian can then readily be diagonalized byryg effect was examined in Rd6] within the semiclassical
writing the field operator agi,(r) =2, imUim(r)asm- The  Thomas-Fermi approximation. For a trap with an equal num-
operatora,, describes the annihilation of a quasiparticle in per of particles in each hyperfine state, the authors of[Rgf.
the hyperfine stater with total angular momentunil(l  found that the spinoidal point is given bBy*®a|/I=0.66,
+1)%%]¥% a component along an arbitragydirection of  \ith | = \A7wm being the trap length. Numerically, this tran-
mf, and a wave functiom;y,(r). We write the quasiparticle sition is seen from the fact that there is no self-consistent

ere we have added\2to <|:I>, as it is the total number of

wave function in the form solution to Egs.(4) and (5) when the chemical potential is
too high for a given coupling strength. The density of par-
u’(r) ticles increases for each interaction without bound, indicat-
Uim(r) = - Yim(6,9), (3)  ing that the system is collapsing into a new dense phase. We

find that this problem arises in the region of parameters

where NY8a|/I~0O(1), in qualitative agreement with Ref.
where Y|,(6,¢) are the usual orbital angular momentum [6]. However, due to the computation load we have not been
eigenfunctionsH yea, is then diagonalized by solving able to verify in detail the predictioN'¥a|/1=0.66 for the
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spinoidal transition line. As we do not have an appropriate
theory for such a phase, in this paper we will work with

parametergN,g such that we are well below this spinoidal

phase-transition line.

We shall compare some of our results obtained from the
solution of Egs.(4) and (5) with approximate results based
on the Thomas-Fermi approximation. This approximation es-
sentially treats the trap potential as being locally constant.
The Hartree-Fock equations are then trivially solved for each
r by plane waves. The quasiparticle energies are given by

2k2
El(r)= = 9p(1) — (). @
0.0 L— . - : : :
0.0 500.0 1000.0 1500.0 2000.0 2500.0
Here the local chemical potential is(r)= u— mw?r?, and (@) N,
the density is given by
60.0
d3k

p(r)=f Wf[Ek(r)]- 8

Equations(7) and (8) have to be solved self-consistently at 40.0 -

each point. The total number of particles in a single hyper-
fine state in the system is théh=[d3 p(r).

H(Ny)

lIl. CHEMICAL POTENTIAL 20.0 ¢

In this section we will determine the chemical potengal
as a function of the number of particles in the trap. Schneider
and Wallis[8] did an extensive analysis @f(N) in the case 0.0 L ‘ ‘
of a noninteracting gas. They found some remarkable step- 0.0 10000.0  20000.0  30000.0  40000.0
like features inu(N) as compared to the Thomas-Fermi ap-  (b) N,
proximation; these steps were due to the shell structure of the
energy spectrum of an isotropic harmonic trap. They did, FIG. 1. u(N,) in units of iw for g'=1, g'=2 (@ andg’
however, predict that for a real Fermi gas, the interactions=0-2:9"=0.4(b). The dashed lines are the Thomas-Fermi approxi-
would tend to smooth out the steps. Using the formalisnination.
outlined above, we are now able to examine in detail how the
interactions affect these steplike features. In Fig. 1, we ploRefs. [10] and [11], respectively. We again see the same
the chemical potentigk as a function of the number of par- behavior as in Fig. (B). The steplike features break down for
ticles N in a single hyperfine state for various coupling N~4x10* for g’=0.4. Forg’=0.2 they break down at
strengthsg for a very low temperaturekgT<%w). These N=~10°, which is not shown in Fig. 1.
curves were obtained by solving Eq4) and(5) for varying
p andg. The dashed lines correspond to the Thomas-Fermi
approximation obtained from the solution of E¢#&. and(8).
In Fig. 1(a), we compareu(N) for the rather large coupling From Fig. 1, we see that the steplike features survive even
strengthsg’ =1 and 2 with theg=0 case, when there are though the value ofu(N) is severaliw lower than theg
relatively few particles in the trap in order to highlight the =0 prediction. This is somewhat surprising, as the steps are
steplike features. We have defingt=g/(% wl®). As can be associated with the gaps of size in the g=0 spectrum.
seen, that the interaction has two effects. First of all, it low-One might expect these gaps to disappear once the levels are
ers the value of the chemical potential for a given number ofowered by more thahiw due to the interactions. To examine
particlesN as compared to thg=0 case. This is as ex- this effect, in Fig. 2 we plot the quasiparticle spectrum for
pected, since the mutual attraction between the particles ig’ =2 for a very low temperature for each angular momen-
the two hyperfine states lowers the energy of the gas. Setam |. In Fig. 2a), the chemical potential i/ w=8,
ond, we note that the steplike featuresgiN) are smoothed whereas it isu/Zw=13 in Fig. 4b). Thex axis denotes the
out by the interaction. Fag’ =1 the steplike features survive angular momenturhof the quasiparticle states, and the qua-
up toN=<2000, and folg’ =2 they survive foN=<500. Fig-  siparticle energies are marked by the symbol For com-
ure 1b) shows u(N) for g’=0.4 and 0.2. Puttingg| parison the symbol® denote the noninteracting quasiparti-
=4q|a|h?/m, with a=— 2160, being thes-wave scatter- cle energies. The chemical potential is indicated by a thin
ing length for®Li, g’=0.4 corresponds to a trap frequency dotted line. In the noninteracting casg=<0), the energy
of v=w/2m=144 Hz, andy' =0.2 to a trap frequency of  spectrum is given b¥,=(v+3/2)hw, with »v=0,12. ...
= w/27m=288 Hz. These values are close to the ones used ifihe degeneracy of each levells,=(v+1)(v+2)/2 corre-
the Bose-Einstein condensation experiments described isponding to the angular momentdrbeingl =0,2, . . .v for

IV. ENERGY SPECTRUM
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FIG. 2. Quasiparticle spectrum in units dfw for g’'=2, 0.0

wlho=8 (@) andg’' =2, ulhw=13 (b).

v even and =1,3,... p for v odd. This degeneracy ih -1.0

gives rise to the shell structure of the spectrum, which is

indicated in Fig. 2 by horizontal dashed lines. In the inter-

acting case, the enerdy{’ in general depends on bothand

[. From Fig. Za) (u=8A ), we see that the quasiparticle

energies in the interacting case are lowered seviesahbs

compared to the normal state energies, e.g., the lowest en- -3.0

ergy is—1.7hw for g’ =2 as compared to 1% for g’ =0.

However, from the solid lines in Fig.(d), we see that the

energies still depend only weakly on the angular momentum _40 i ‘

I. This means that the Hartree potential lowers the energy of 0.0 5.0

thel = v state by almost the same amount as it lowersl the (c) r/l

=0 (veven orl=1 (v odd state. This is noa priori obvi- ) — .

ous, as the wave functions for those two states are com- FIG_‘ 3. _Rad'al quas'par.t'de wave funCt'ons f.mts’ |=0 (a,)
letely different. This is shown in Fig. 3, where the solid andv=8, 1=8 (b) as functions ofr/l. The sold lines are fog

P y . - g g =2 and the dashed lines are fp=0. The Hartree field in units of

lines denote the quasiparticle wave functiogisy(r) (@ and 4 is plotted in(c).

u,”jgs(r) (b) for u=8%#w andg’=2. These states have the

energieE!~=8.2%w andE/-=8.4h w, respectively. The chemical potential is severak below theg=0 prediction,

=0 wave function is spread out from=0 to r~r.,ss w(N) still exhibits steplike features. The reason for this is
=2E,/mw’=4l, whereas thel=v wave function is that even though each quasiparticle energy is lowered several
peaked around~2.8. Hence one might expect that the % due to the interaction, there is still an approximhtie-
Hartree potential, which is also plotted as a solid line in Fig.generacy: there are still bands separated in energy/y in

3(c), would affect the quasiparticle states completely differ-the energy spectrum as a function lofThese bandgshell
ently. But, in fact, the lowering of the two energies as com-structure give, as in theg=0 case, rise to the steplike struc-
pared to theg=0 case is approximately the same. This ex-ture of u(N). For comparison, in Fig. 3 we also plot the
plains the fact depicted in Fig. 1, that even though thenoninteracting wave functions as dashed lines. As expected,

e

u(r/l)




PRA 58 INTERACTING FERMI GAS IN A HARMONIC TRAP 2431

we see that the effect of the interactions is to compress the It is interesting to examine how the interactions change
quasiparticle states closer to the center of the trap where théis result. In Fig. 4, we plot the energy per partield2N of
Hartree field is large. The cloud of particles is compressedihe interacting gas as a function of temperatiites T/ w,
as will also be seen from the density distributions plotted inyhere E'=E/# w, and the energy is given by E¢6). We
Sec. VI. We can qualitatively understand the slight increas¢iave used the parametegg =0.4, N=5456 (a) and g’
in energy with increasing as seen from the solid lines in =0.4, N=43680(b). For comparison we have also plotted
Fig. 2@). The low angular momentum functions have athe g=0 results as dashed lines in Fig¢ciand 4d). As
larger amplitude in the center of the trap, and are thus morgan be seen, the interactions for both set of parameters have
affected by the Hartree field than the hipbtates. lowered the total energy of the gas considerably. This is as
Contrary to theu=8% w case, we see from the solid lines expected, as from Fig. 1 we see that the chemical potential in
in Fig. 2b) that, whenu=13% o, the approximate indepen- poth cases is significantly lower than the: O result. Figure
dence of the quasiparticle energieslaro longer holds. The 5 depicts the corresponding heat capacity as a function of the
Hartree field is now so strong that it has washed out the shefbmperature foN=5456(a) andN =43 680(b) (solid lines.
structure of the spectrum, and it is qualitatively differentThe dashed lines are the=0 results, and the dash-dotted
from theg=0 case. The energies now increase significantljjine is the Thomas-Fermi result fg’ =0 as given by Eq.
with increasingl. This explain_s the fact from Fig_.(a) that  (12). For N=5456[Fig. 5@a] we see that the heat capacity
for u~13 andg’ =2 the steplike features have disappearedsor the interacting system is still exponentially suppressed
for kgT<%w. For very lowT the heat capacity is practically
V. ENERGY AND HEAT CAPACITY zero as for theg=0 case, and the interactions have not
) ) o ) changed the qualitative behavior of the heat capacity. This is
For a gas of particles in a constant confining potential, the, gjrect result of the fact that the interactions have not
most useful definition of the heat capacity 2]  changed the shell structure of the energy spectrum. This can

Cn=(1/2N)JE/dT|y with E(T,N) given by Eq.(6). As e seen from Fig. (b), where the steplike features pf(N)
pointed out by Schneider and Wallig], the shell structure  5.q il prevailing forg’ =0.4 andN=5456.

of the harmonic trap spectrum has a drastic consequence for The preakdown of this effect is shown in Figlbs We
the low temperaturekgT<%w) heat capacity; the gaps in gee that forN=43 680 the interactions have now increased
the energy spectrum f@=0 mean that the heat capacity is {he neat capacity substantially over the noninteracting result

exponentially suppressed for low temperatures. In the noningsr 1o\ temperatures. This has the same order of magnitude
teracting case the total energy for particles in both hyperfings the Thomas-Fermi prediction, and it is qualitatively dif-

states is given by ferent from the noninteracting case. This is due to the fact
that for this set of parameters the interactions have washed

E(M=2> ED f(E). 9 out the shell structure in the energy spectr(the | deg_en—
(M Ey /D HE) © eracy, as can be seen from Fig. 1, where the steplike fea-

tures are smoothed out fok=43 680 andy’ =0.4. There are
When the number of particles is such that a finite number oflo gaps offiw in the spectrum, and hence no exponential
energy levels up to and including the levé|_ are com- darl?pll‘?g Ecgor mtthdet:\]ef; capamtly. t Cres
. -0 (i _ should be noted that for very low temperatures the pos-
pletely filled for T=0 (ie, N=1,4,1020... for v sibility of a transition to a superfluid state arided. From
the well-known result of weak-coupling superconductors, we
expect that this transition will give rise to a kink in tB£T)
ho 1 curve as the energy per particle is lowered as compared to
w(T=E, +—=—=In(x, )kgT, (100  the normal stat¢13]. From this kink, we obtain a disconti-
P2 2 F nuity in Cy(T) at the transition temperatufie . In this paper
_ we will not consider this effect as we are concentrating on
with «,_ =D, _.,/D,_>1. The low-temperature heat capac- the normal-state behavior. Work is under progress to exam-
ity is then easily found to be ine for which temperatures and densities this transition takes
place, and how it can be determined experimentally.

=0,1,2,3...), the low-temperature chemical potential for a
constant number of particles is given by

Cn(T) We conclude that the interactions in general Iovyer the
Nk (V,:+5/2)D,,FJrl —_— total energy as one would expect. The effect of the interac-
B \/K_VF tion on the heat capacity depends on the strength of the in-

2 Bho2 teractions and. on the .number of particles in th_e system.

(e+32D \/K— (hw)“e 11 When few particles are in the system or when the interaction

F VEN VR 2N(kBT)2 k is so weak that the shell structure of the energy spectrum is

intact, the heat capacity is still exponentially suppressed for
ow temperatures. The heat capacity can be suppressed, al-
hough the total energy of the system is significantly lower
than for the noninteracting case. This is, of course, a conse-
quence of the fact that the lowering of the quasiparticle en-
5 ergies and the washing out of the shell structure happen at
Cn(T)  7keT (12 different sets of parametegsandN, as explained in Secs. Ill

2Nkg B ho(6N)Ye’ and IV. Once the interactions are strong enough to wash out

where 8=1/kgT. This is, as one would expect, suppresse
by a factor exp{ Bhiw/2) as compared to the usual low tem-
perature Thomas-Fermi result
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FIG. 4. Energy in units ofiw for g’ =0.4 (solid lineg andN=5456(a) andN=43 680(b). The dashed lines are for the noninteracting
case forN=5456(c) andN=43 680(d).

the shell structure around the chemical potential, the behaxcauseN= 165 corresponds to a filled shell with-=8, N
ior of the heat capacity changes qualitatively. It is no longer=120 corresponds to a filled shell with-=7, and the fact
suppressed, and has the same order of magnitude as theat shells withv=o0dd do not contribute tp(0) as they have
Thomas-Fermi prediction. The transition between those tw@yqd angular momenturi8]. We see that the interacting sys-

limiting behaviors is smooth as a function Nfor g. tem exhibit the same qualitative dependence(@§ for this
set of parameters, even though the actual densities are sub-
VI. DENSITY DISTRIBUTIONS stationally different from theig’=0 counterparts. This is

due to the fact that, for this set of parameters, the shell struc-

In this section we will present results for the density andture of the quasiparticle spectrum is still intact, although the
momentum distributions. In an isotropic trap, these distribu-actual energies and wave functions are changed substan-
tions will be spherically symmetric when the gas is in thetially. This can be seen from Fig.(d, where the steplike
ground state. The density distributip(r) is calculated from  features still prevail for this set of parameters. Thus, even for
p(r)y=—U(r)/g, with U(r) given by Eq.(5). In Fig. 6, g’'=2, N=165 still corresponds a highest shell of even an-
p(r/1) is displayed foN=120 and 165 and’ =2. For com-  gular momentum states totally filled, wheréés 120 corre-
parison we have also plotted the distributionsdé=0. The  sponds a filled highest shell of odd angular momentum
dashed curves are the Thomas-Fermi results obtained frostates. For a larger number of particles, where the shell struc-
the solution of Eqs(7) and(8) with a givenN. The tempera- ture of the quasiparticle spectrum has been washed out, it
ture is taken to be zero. As can be segfr,/l) is substan- turns out that this behavior gf(0) has disappeared, as ex-
tially changed due to the interactions. The cloud of particlespected. Also, a nonvanishing temperature will tend to wash
is compressed as compared to the noninteracting result durit the predicted dip-top behavior of the density, as the tran-
to the attractive forces. As a high density of particles in-sition from occupied to unoccupied shells as a function of
creases the critical temperature for a BCS-type transitiongnergy becomes less abrupt.
this effect favors the formation of the superfluid stgdé. The momentum distribution of the particles is not com-
Furthermore, we observe a central minimumfbe 120 and  pletely straightforward to measure. A simple free expansion
a central peak foN= 165 for bothg’ =2 and 0, as compared experiment where one switches off the trap potential nona-
to the Thomas-Fermi predictions. For thé=0, this is be- diabatically does not strictly measure this distribution. The
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0.00 0.10 020 0.30 0.40 050 well-known expansion of a plane wave ez in spherical

harmonicq 15], we obtain

FIG. 5. Heat capacity in units dfg for g’ =0.4 andN=5456
(a) andN=43 680(b). N
(Kluig) = [ dPre~*eujy(n
reason for this is that the gas does not expand freely; colli-
sions between particles in different hyperfine states will alter w12

A . —(_i
the momentum distribution. One would need a time- =(=hV@l+Dam | 5
dependent formalisiiL4] in order to treat such an expansion
rigorously. However, here we will assume that the momen- % Y
tum distribution in the trapped state gives a good indication X 0 i+ A KNU(r) Jrdr, (14)
of the distribution measured in such a free expansion experi-

— whereJ, , 1,2(X) is the ordinary Bessel function. In Fig. 7, we
Lo - g=2N=165 plot the momentum distribution foN=43 680 andg’
20 I =0.4. The momentum is measured in units |oft. The
dashed curve is the noninteracting result. For this high num-
W ber of particles, the shell structure of the quasiparticle spec-
F- ) trum is washed out and the distributions are, apart from a
L. AN \ small shell around the edge of the cloud, almost identical to
the Thomas-Fermi predictiofnot plotted. We see that the
interactions have spread out the distribution considerably as
compared to the noninteracting case. As the Hartree field
lowers the quasiparticle energies, more levels become occu-
pied in the center of the trap. The higher momentum states
thus become populated leading to a spreading out of the
0.0 5.0 momentum distribution as compared to tpe=0 case.
r/l We conclude that the interactions in general alter both the
momentum distribution and the density distribution substan-
FIG. 6. Density distributionp(r/l) for N=120 and 165, and tially. The density distribution is compressed, and the mo-
g’'=0 and 2(solid lineg. The dashed lines are the Thomas-Fermi mentum distribution spread out as compared to the noninter-
results. acting results. Furthermore, the central minima and maxima

- g=2 N=120

X

p(r)

1.0 ¢

0.0




2434 G. M. BRUUN AND K. BURNETT PRA 58

of p(r) as a function ofN can still be observed, when the can still, therefore, observe effects such as steplike features
interactions have not yet washed out the shell structure of th§ the chemical potential, exponential damping of the low-

quasiparticle spectrum. temperature heat capacity, and maxima and minima(@
associated with a noninteracting gas. Whether these effects
VIl. CONCLUSION will be observable depend on whether the conditiyT

<fhw is experimentally feasible. The interactions are also

In this paper we have considered a trapped spin-polarizefbund to compress the atom cloud, and spread out the mo-
gas of interacting fermions. We find that the interactionsmentum distribution considerably. This effect should be
have two distinct effects on the quasiparticle spectrum. Iteadily observable; it is important to include in any realistic
lowers the quasiparticle energies and thus the total energy @hlculation of the properties of spin-polariz8id in a trap.
the gas. Also, above a certain number of particles in the trap,
it washes out the shell-like structure of the spectrum associ-
ated with a harmonic trap. These two effects are indepen-
dent, in the sense that the energy of the gas can be lowered This work was supported by the Engineering and Physical
considerably as compared to the noninteracting case, but ti&ciences Research Council. We should also like to acknowl-
shell structure of the spectrum is left relatively intact. Oneedge valuable discussions with R. Dum.
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