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We consider the conditions under which solitary waves can exist in elongated clouds of Bose-Einstein
condensed atoms. General expressions are derived for the velocity, characteristic size, and spatial profile of
solitary waves, and the low- and high-density limits are examif@ti050-2947®8)06709-2

PACS numbeps): 03.75.Fi, 05.30.Jp, 67.40.Db

Clouds of Bose-Einstein condensed atoms in elongatedonditions under which one can find solitary wave solutions
traps provide excellent conditions for investigating thefor Bose-Einstein condensed clouds is more restricted than
propagation of essentially one-dimensional sound pulses urior canals. We wish to consider in this paper situations where
der[1]. In previous work, propagation of pulses in such trapsthe variation of cloud properties along the axis of the trap
was considered in the Thomas-Fermi approximation, and ifnay be neglected. In the directions perpendicular to the axis,
was demonstrated that pulses propagate at a speed We shall assume that the cloud is confined by a harmonic
(FUO/m)l’Z in the linear regime. HerelJo=4#2ag./m is trapping potential. However, to set the stage and establish

_ . _ . = notation, let us first consider the case of a homogeneous
the effective two-body interaction matrix elementis the  mnedium and then generalize our discussion to atoms in traps

particle density averaged over the cross section of the cloughat confine particles in two directions.

[2,3], m is the atomic mass, ardl. is the scattering length  The condensate wave functioff satisfies the Gross-
for atom-atom collisions. Nonlinear effects were also inves-pitaevskii equation,

tigated in Ref[3] and were found to be important for con-

ditions of experimental relevance. The effects of dispersion L ov [ h2v?
were neglected in this study since the length scales of interest ! ot 2m
were much larger than the superfluid coherence length,

which sets the scale on which dispersive effects become imv¥hereV is the external potential, which may be taken to be
portant. It is of interest to include the effects of dispersionZ€© for a homogeneous medium. We write the condensate

: 2
and to investigate the possible existence of solitary waves if/ave function asi’=n

+Ug|P|2+V | W, (1)

e'® wheren is the particle density,
these systems. which is spatially unifo_rm in equilib_rium and_in the absen(_:e
Solitary waves have been studied in many different physi-Of an external poter)tlal._ TO obtaln_ equations _resemblmg
cal contextd4,5]. We shall not attempt to review the exten- those of hydrodynamlcs, it is convenlent.to work in terms of
sive literature for the Gross-Pitaevskii equation, the nonlin-& Superfluid velocityy=7V¢/m. We consider solutions that
ear Schidinger equation that describes motion of a Bose-d€Pend on a single coordinat, From the real and imagi-
Einstein condensate, apart from mentioning the pioneering@'y Parts of the Gross-Pitaevskii equation one obtains two
work of Zakharov and Shab#6] on solitary waves in bulk €duations, the equation of continuity
systems. There are a number of studies for clouds of Bose-

Einstein condensed atoms in a trap. Morgaral. [7] con- a_n: — (?(nv), )
sidered a class of solitary wave solutions that are, in effect, at 9z
center-of-mass oscillations of the stationary states of theo\nd the equation for the phase
time-independent Gross-Pitaevskii equation. '
It is possible experimentally to make very elongated i 1 22 g2nie
clouds of Bose-Einstein condensed atoms in magnetic or op- h—=—-nUy— —mv?+ 3

tical traps, and in this paper we examine the possibility of Jt 2 2mn'? 9z
solitary waves propagating along the axis of such a cloud. . . . _
The solutions we seek are the analogs of the solitary wave&/hen differentiated with respect @ the latter gives the
first observed by Scott Russell on his historic horse ridegdeneralized Euler equation,

along the canal8]. However, an important difference be-

_Einstei i v J 1 A% g*n'2
tween canals and Bose-Einstein condensed clouds is that, M—=——| w(n)+=mv2— )
whereas it is often a good approximation to assume that the ot 0z 2 2mnt2 572

depth of water in a canal is constant and thus the sound

speed is independent of position, this is a poor approximawhere we have introduced the chemical poteniial,For a
tion in Bose-Einstein condensed clouds, where the densityilute Bose gasu(n)=nU,. We seek solutions to these
and hence also the sound speed, vary significantly in direequations for which the fluid velocity and particle density
tions transverse to the axis of the trap. Consequently, thpropagate at a uniform velocity, without change of form,
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i.e., they depend om andt only through the combination
—ut. Thus, one may writeJv/dt=—u(dv/dz) and dn/at <
= —u(dn/dz). Far away from the solitary wave, the conden- S
sate is at rest and has its equilibrium density, With these =
boundary conditions, the continuity equation, E2), gives £
g
No
v= U( 1- —) . (5) 0
n 8 6 4 2 0 2 4 6 8

. Distance (um)
Also, Eqg.(4) can be written as

FIG. 1. Density profiles of solitary waves as a function of space,
#2  9*nY? as given by Eq(12). Here the background density of atomsnis
I (6)  —10% cm 2 and therefore for Na atom&(ng)~1.2 um. For the
2mnt“ gz . )
solid curve, the ratim,,;,/ng=20% and{~1.9 um; for the dashed
curve,Npin/Ng=80% and{~3.8 um.

d
—Mu—=——
iz oz

1
w(n)+ Emvz—

We integrate this equation to obtain

% 2 192n1/2

2mnt2 972

m m Nmin U
=(n—ngUo+ = (v—u)?—su% (7 min_ 2
( O) 0 2(U ) 2 () no C2. (11)

Here, we have added the integration constanyUg to im-

Integrating Eq.(8) we find that the profile of the wave is
pose the boundary conditiom—ng at infinity. Combining grating Eq(®) we fi prof wavet

iven b
Egs.(5) and(7), we obtain a differential equation for. If we o 4
. . B 1/2 . .
{guzltls\llyé tfmsd equation byn~'9dz and integrate with respect N(2) =N+ (Ng— Ny tanki(2/ ), (12
£2 [ gnl2 2 , (n—ng)?2 where = 2%(no)[1— (nin/Ng)] Y2 and £(ny) is the co-
om\ 9z =(nUp—mu )T' (8) herence length corresponding to the background dengity

£(ng) =(8mngas) ~ Y2 Therefore ¢, which gives the spatial
We note that the phase has the more general fo(mt) extent of the solitary wave, is on the order of the coherence
= ¢1(z—vt) + ¢,(t), which can be seen from the equation /€ngth that corresponds to the background density. Figure 1
d¢laz=mol#. Thus, Eq.3) can be written as shows the profile of two solitary waves(z), for Na atoms
with a background density aiy=10'* cm™3, and for two
m m values of nyi,/ng, 20% (solid curvg and 80% (dashed
—nUp+ g(v—U)Z—EUZ- (9  curve.
For typical densities in the MIT experimertl] (n

~1014 ~-3 is ~0.2—

Since the left side of this equation is a functiontadnd the ~10 cm atAthe center of the cloygd¢ is ~0.2-0.4 um
right is a function oz— ut, each must be equal to a constant. With @sc=27.5 A for Na atomg9]. However, in order to be
This constant must equatnoU, in order to satisfy the able to observe solitary waves, it is desirable to look at lower

boundary conditionn—n, at infinity. Thus, ¢(t)= den_sl_tles than these, so that the coherence length bec_omes
—noUot is a linear function of time sufficiently large that structures can be resolved by optical
We see from Eq(8) that the conditionnUy—mu?=0 means. For nonzera,, the solutions(12) correspond to

must be satisfied in order to obtain real solutions. In otherWhat are termed “gray solitons” in Re{10]. Finally, we

words, the density must exceed the minimum vaiyg,, point out that, ifu=0 (nmy=0), Eq. (12 gives the well-
y W known kink solution® =n¢/%anh@/¢) [11], which is some-

mu? times referred to as a “dark soliton[10,12.
Mmin="5 (10) We turn now to the more realistic problem of atoms in a
0 trapping potential that is harmonic in the transverse direction

To obtain solutions that are localized in spanemust lie  and for which there is no restoring force along the axis of the
betweem,,;, andn,. This has a ready interpretation in terms trap, which we take to be the axis. We assume that the
of one-dimensional motion of a classical particle whose spatransverse dimension of the cloud is so small that the time
tial coordinate is proportional to'? if z is regarded as the Scale for adjustment of the transverse profile of the particle
time variable. The classical potential is then proportional todensity to the equilibrium form appropriate for the instanta-
—(n— N (N—ng)2, and the solitary wave solutions corre- N€oUs number of particles per unit length is small compared
spond to an oscillation of the “particle” froon=n, to n  With the time for the pulse to pass a given point. Later, we
= n, and back again. Thus, solitary waves for this problemshall investigate what this condition means quantitatively.
are depressions in the density. In contrast, solitary waves ihh€ problem becomes one-dimensional, and the solitary
canals correspond to elevations of the surface of the watePUlse may be specified in terms of a local velocit{z), and
We also note that the velocity of the wave is equal to the local density of particles per unit lengi(2),
sound speed at the minimum density,,. The sound speed

in a uniform gas with density, is given byc?=nyU,/m. It _ f 2
follows from Eq.(10) that o(z)= | dxdy|¥(x,y,2)|* (13

it omnt? 522
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Here,x andy are coordinates perpendicular to the axis of theFollowing the same procedure as for the homogeneous me-
trap. With this assumption, the wave function may be writtendium, we assume thdt=o*%'#, with the velocity field as-
in the form sociated withf being v=(A/m)d¢/dz. Again, we obtain
hydrodynamic equations far andv, which are the same as
v(r,H)=1f(z,H)9(x,y,0), (14 Egs.(2) and(4) but with n replaced byr and . given in the

. S . resent case b
whereg is the equilibrium wave function for the transverse P y

motion; g(x,y,o) depends on time implicitly through the 52
time dependence af. We choose to be normalized so that pu(o)= 2—f |Vlg|2dxdy
f]g|2dxdy=1, and therefore from Eqg13) and (14), |f|? m
=0.
It is convenient to derive the equations foandg from a +(J |g|?Vdxdy +Uo(f |g|*dxdy|o. (20)
variational principle. The Ginzburg-Pitaevskii equation may
be derived by requiring stationarity of the action The first term on the right side of Eq20) is the kinetic
_ N energy in the transverse direction, the second is the potential
S=— J' f(w*ﬂ_\y‘”’ )drdt energy due to the confining potential, and the third is the
2 at at energy due to interactions between atoms. Assumingdhat

52 1 andv are functions ofz—ut only with u constant, we find
ﬁ|V«1f|2+ §U0|\If|4+v|\lf|2)drdt. (15  that

g

ﬁZ &0_1/2 2
Using Eq.(14) for ¥, we can write Eq(15) as ﬁ( — ) =[e(o)—€(0op)]— pu(og)(o—09)
if a(fg) a(fg)* (0—0g)?
= — J— * — g— 0
S f 2((fg) - —fg——|drdt _muz_zao , (21)
2 2
+f [h_( g— +|ng|2”drdt (16) wheree(a)zfg,u(q’)da’ is the energy per unit_ !ength. In
2m\ |~ 9z Eq. (21), we have imposed the boundary conditians o

andv =0 far away from the disturbance.

There is no simple expression for the energy per unit
length for general values af. To obtain analytical results,
we explore some limiting cases for the experimentally rel-
Terms containingdf/9z) (9g/dz) vanish because of the nor- evant situation where the confining potential in the trans-
malization condition ory. Minimizing Eq. (16) with respect  verse directions is harmonic and rotationally invariant, and
to g*, we find thatg obeys the equation given byV=mo? (x*+y?)/2. In the low-density regime, the

interaction energy can be treated perturbatively and the prob-

_ lem reduces essentially to the one-dimensional case treated
9=u(0)g, above. As we shall show below, in this limé{o)e o (1
(17) +asw). In the high-density limit, the Thomas-Fermi ap-

proximation applie§13], ande(o) varies ass®.
where u is the chemical potential. We neglect the last term  Before examining the two cases separately, we estimate
on the left side of Eq(17) since, as we show below, the the density,o., at which the crossover between the two
characteristic length of pulses is sufficiently long that it islimits occurs. This corresponds to the condition that the in-
negligible in all cases of interest. For the same reason theeraction energy per particle is on the order of the oscillator
term fVg in Eq. (16), which equalsfvig-kifag/az, is ap-  energy in the transverse direction. The interaction energy per
proximately equal tdV, g, whereV, =xd/dx+yal ay, with particle isnUg. If A is the cross section of the cloud aRd _
A A A . . L is the corresponding radius,=g/A. Therefore, the condi-
X, ¥, andz being the unit vectors in the directiorsy, andz,

; . tion determiningo. is Ugo./A~fw, . Denoting the char-
respectively. Thus, Eq17) takes the final form acteristic length scale for the ground state of a particle in the

drdt.

[

5 Uolfgl*+V|fg|?

22 2

+Vg+U,|fgl?g+
5m 91T Va+Uolfgl°g PR

2

0z

202 transverse confining potential by, = (%/mw, )Y? and as-
- Zmlg—i—Vg—{— Uolfal?g=pu(o)g. (189 suming thatR, =a, , the cross section of the cloud &
1

=ma’; thus one finds o,~ag!, which gives o
~4x10° cm™! for Na atoms. Alternatively, we can deter-
mine o by equating the interaction energy per particle and
of 52 52f 52 the kinetic energy of the atoms due to their confinement in
—=— —+(—J’ |Vlg|2dxdy)f the transverse directiony.Uy/A~7%2/(mA), which gives
at 2m gz2 - \2m the same result fos.. This expression for. is equivalent

to the condition that the coherence lengthpe comparable
+UO(J |g|*dxdy |f|2f+(f |g|2dedy)f_ to the transverse dimension of the cloy, .

We now examine the low-density limit;<<o, in which

(190  the interaction energy can be treated perturbatively. To find

We now minimize Eq(16) with respect tof* and find

i%
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the differential equation that satisfies in this limit, we ne- 82 9at2\2 1 1
glect the interaction-energy terfthe third term on the left %( 7z ) ~ 56"(00)(0—Uo)z+ gf'”((fo)((f—tfo)3
sidg in Eq. (18). The last term on the left side is
~h21(2m{?)(8F/1)2, where s is the deviation off, which ,(0—00)?
is much less thark:?/(2ma’) because of the conditio L (26)
>a, . Therefore, this term is negligible, amgdthus satisfies
the Schrdinger equation in a harmonic potential, where the prime denotes differentiation with respecisto
Clearly, two roots of the right side of the above equation are
h2v? equal tooy. The remaining root gives an expression for the
~Zm g+Vg=pug, (22)  velocity u as a function ofoy and o,
2 Omin[ , €"(og)
which means thalg|<exd —(x*+y?)/2a]. From Eq.(20), um=-—11€ (‘TOHT(‘Tmin_ 00) |- (27)

we find thatu(o)=fhw, (1+2a,w0). The first term inw is
the ground-state energy of the harmonic oscillator and th@ecauses” (o) depends omr, the velocity of propagation of
second is the interaction energy. Thugo)=%w, o(1 the wave is not generally equal to the bulk velocity at the
+agw) in the low-density limit, and Eq21) takes the form  minimum density, except in the low-density limit, when
€'(o) is independent of. Integrating Eq(26), we can de-
K2 (oot 2 | & , (0—0p)? termine the profile of the solitary wave(z). For small val-
ﬁ( P ) = (ﬂUo—mU )T’ (23)  ues ofo— oy, Eq.(26) takes the simple form

(90_1/2~ (0__ O-min)llz(

by analogy with Eq(8). The results for the profile and the iz | 1o (28
width of the cloud are analogous to the one-dimensional 0

caseu’=omUo/(2mA), whereo, is the minimum ofs  \where the lengthl is given by 12=#2/{maoy[€" (o)

associated with the solitary wave and + 0g€e” (00)/3]}. Again assuming thawr is close too,, we
find that
0(2)~ o mint (09— omin)tantt(z/ ). (24
e 0(2)= O in'+ (70— Omin)tant(2/0) (29
For this problem, with £=1[1— (il og)] Y2
We now consider the calculation @f{o) in the high-
{=2&(Ng)[ 1~ (T in/ 79)] 1 (25  density limit where the kinetic-energy term is negligible

[13]. We also neglect the last term on the left of Ef8).
or {=22¢(ng/2)[ 1= (T minl 70) 1~ Y2 with ng= oo /A. From  The consistency of this assumption will be checked below.

Eq. (23), we see that the density that determing is With these approximations, we write the Thomas-Fermi
omin/2A and the one that determinésis oo/2A. The factor ~ €guation forg,

of 1/2 in these results compared with the analogous results fal2g=

for the homogeneous case is due to the average of the equi- Vg+Uo|fgl"g=nug.

librium density of atoms across the trap(x,y), given Thus,|g|? isaparabolal.g|20<[1—(x2+y2)/Ri]. This form

by fn?(x,y)dxdyfn(x,y)dxdy. Its origin is thus com- o - . > 2
pletely different from that of the factor of 1/2 that occurs in for|g| |mp||es_that thE_“ potential energy 1s equahto) RL2/6
and that the interaction energy is equal t0#&/(37RT).

the  Thomas-Fermi limit [3]. The latter is )
In(x,y)dxdy/[n(0,0)fdxdy]. It is amusing that the sound From Ed.(20) we see thau(o) is the sum of these two
speed expressed in terms of the density of particles on th€rms in this limit. To find the explicit dependence @fon
axis of the trap is given by precisely the same expressior?» We calculateR, [3] now. T2he density of atomsy(x,y,2),
c=[n(0,0)U,/(2m)]¥2 in both the high- and low-density has the functional form ofg|*,

limits for harmonic transverse trapping potentials.

We argued above that the motion would be quasi-one-
dimensional if the time scale for adjustments in the trans-
verse structure of the cloud is short compared with the time
for passage of the pulse, and we now check the consistengynheren(0,07) is the density on the axis of the trap. Thus,
of this assumption. In the low-density regime<o., the  the number of particles per unit length is given by
characteristic time for adjustment of the profile is on the
order ofwj1 , While the time scale for passage of the pulse is
at least of ordeg/c. The ratio of these scalesid)y/fiw, ,
which is much less than unity in this regime, and therefore
our assumption is consistent. In the Thomas-Fermi approximation where the kinetic en-

Another case that can be solved analytically is that ofergy is negligible, the sum of the chemical potential
small-amplitude solitary waves for arbitrary densities. We=n(x,y,z)U, plus the potential energy is a constant, and
expande(o) to order (— o,)® and write Eq.(21) as therefore the density on the axis of the trap is given by

(30)

x2+y?
n(x,y,z)=n(0,0z)| 1— 2| (32

L

1 2
a(z)=J n(x,y,z)dxdy= En(O,OZ)WRL. (32
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n(0,02)Uo=3% mw?R?. (33 ing number of particles per unit lengtlr is ng,A
] 5 5 ) ~nob31-raf . For a transverse trapping frequency of 240 Hz,

Thus, we find thatR? =4a? (oas) "% Equation(20) then  \hich is a typical value of the MIT trafL,15], the oscillator
implies that u(o)=2fiw, (cas)"® and thereforee(c)  length,a, , in this direction is~ 1.4 wm, implying that the
=(4/3)fiw, (aso®)"% The width, ¢, of the solitary waves is number of particles per unit length must be less than
therefore given by¢=(12/5)"%¢(ng)[ 1~ (omin/a0)]1 % 8x10° cm ! for structures to be observable. This value
whereng= oo /(7R?). corresponds tar./5, and therefore the coupling would be

In considering the limits of validity of our calculation in weak. Let us now calculate the number of particles that
the high-density regime, we observe that the time scale fogshould be used in the MIT trap far to have the value 8
adjustment of the profile of the pulse-sR, /c and thatthe x10° cm™'. The kinetic energy along the axial direction is
time for passage of the pulse-is/c. If the motion is to be typically of order2/2mL?, and the interaction energy is
essentially one-dimensiondR;, must be much smaller than ~UUO/(7-raf). The ratio of these quantities is
{. In the Thomas-Fermi approximatioR, is larger tham, ~(a, /L)*(8cag) *. Thus for L>a, /(8cas)'? the ki-
due to the repulsive interactions between the atoms. This cafetic energy along the direction is negligible, and the
be seen from the formula for the radils =2a, (¢asd™  Thomas-Fermi approximatidit3] may be used to determine
derived above. To satisfy the conditig®R, , the quantity  the structure along the axis of the trap. We shall assume this
oas, must be large compared with (3/fQ)oas) '[1  to be the case and subsequently will check the consistency of
—(minl 00)172. Thus, if 5o=0g— o'y is the amplitude of  this assumption. Under these conditions, the Thomas-Fermi
the disturbance, we see thét/oq<3/(1000as). This indi-  approximation may be used to calculate théependence of
cates that the amplitude of the solitary wawvi;, must be &, even though it may not be used to calculate the structure
extremely small if the one-dimensional approximation is toof the cloud in the transverse directions. In the presence of a
be valid wheno>o., and therefore our small-amplitude confining potential in the direction, the Thomas-Fermi con-
treatment given above is applicable. For the experimentadition is that the sum of the chemical potential and the
conditions of Ref[1], the number of particles in the trap is z-dependent part of the trapping potential should be constant.
N~5x10°, and the length of the trap in the axial direction Since the chemical potential ig=%w, (1+20ay) in the
L is ~450 um, implying thatoo~10° cm™*. Validity of  |ow-density limit, this condition is
the one-dimensional approximation therefore requires that
60l0¢<<0.01. Finally, we check the consistency of the as- ho, [1+20(2)as] + %mw322=const, (35)
sumption made in deriving the Thomas-Fermi equation for
g. The last term on the left of Eq18) has an upper bound wherew, is the frequency of the trapping potential along the
of #%/(2m¢?). This term is approximately equal t%?/ 7 axis. We equate the value of the left side of E3f) at z
(2mé%) (8ol og)<h?l(2mE?) ~nU,. Therefore, this termis =0 to the value az=2Z, whereZ is the distance from the

indeed negligible. center of the cloud to its edg&=L/2. Sinces vanishes at
Our calculations indicate that the most favorable condithe edges of the cloud, we get

tions for observing solitary waves in trapped Bose-

condensed gases occur when the density is sufficiently low to 2hw, 0(z=0)ag= 3 Mw3Z?, (36)
permit a perturbative treatment of particle interactions. In

this case, one-dimensional behavior persists even for largavhereo(z=0) is the number of particles per unit length at
amplitude solitary waves. Low-density systems have the furthe center of the cloud. Solving the above equatiorZfowe
ther advantage that the coherence length is correspondingfind
large. Since the coherence length determines the size of soli-
tary waves, this simplifies resolution of these structures. a; 12 Y22
However, a lower density of particles makes the detection of Z=2_—[o(z=0)as] =2\{m(ngpasaZ, (37
these effects more difficult because of the lower signal. -

We now wish to estimate the experimental conditions reyhere a,= (#/mw,)*2 is the oscillator length in the axial
quired for observation of solitary waves in the low-density girection. From Eqs(35) and(37) we see that the number of
regime. The spatial resolution of current experiments usingarticles per unit length can be written as
direct imaging methods is-4 um [14]. As a theoretical
estimate for the width of the solitary wave, we take the full 22
width of the dip in the density profile at half the maximum O'(Z)=0'(Z=0)( 1- —2>. (38
depression, that is, the distance between points where VA
o=(0o+tomn)/2. This is given by 2tanh (1/y2)
~3.5¢(No)[1— (0 min/ 00) 1~ Y2 which must exceed the ex- ,
perimental resolution if solitary waves are to be observableEds-(37) and(38) we find
This leads to the condition a2

4 8w
ENg)=[1—(ominlo0) 12 wm, (34) N=§U(Z:0)Z:

3
or é(ng)=1 um for solitary waves witho,i,/op<<1. For  For the MIT trap, the frequency in the axial directiont5.9
the coherence length to exceeduin, the density per unit Hz[15] and thereforea,~7.5 um; the total number of par-
volume must be less than,e~10' cm 2. The correspond- ticles, N, should be equal te- 2x10° if o(z=0) is to be

2

The total number of particles iN=f§Zcr(z)dz; thus from

Nordaa)’ay’. (39
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8x10° cm L. The total width of the trap in the direction  length scales for structures.

would then bel~38 um. Returning to our assumption, we  In this paper we have discussed the propagation of soli-

see that forr= o /5 (the highest value of for which these tary waves in elongated traps and have estimated character-

structures are observablehe conditionL>a, /(8cas)¥? istic sizes of these structures. Clearly, many questions re-

implies thatL must be much larger than @8. This is in-  main. These include the stability of these structures, the role

deed true and the Thomas-Fermi approximation is valithey play in other phenomerauch as dissipationand the

along thez axis of the cloud. question of how pulses propagate when the motion is not
The development of traps with stronger transverse conguasi-one-dimensional.

finement, such as the optical dipole trap of the MIT group

[16], promises to facilitate experiments on solitary waves Helpful discussions with H. Fogedby, W. Ketterle, H.-J.

since, for a given value of the dimensionless couphiay,, Miesner, M. Saffman, and H. Smith are gratefully acknowl-

the corresponding densities will be higher. However, the disedged. G.M.K. would like to thank the Foundation of Re-

advantage is that the higher density will result in shortersearch and Technology, Hell@&SORTH) for its hospitality.
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