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Solitary waves in clouds of Bose-Einstein condensed atoms
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We consider the conditions under which solitary waves can exist in elongated clouds of Bose-Einstein
condensed atoms. General expressions are derived for the velocity, characteristic size, and spatial profile of
solitary waves, and the low- and high-density limits are examined.@S1050-2947~98!06709-2#
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Clouds of Bose-Einstein condensed atoms in elonga
traps provide excellent conditions for investigating t
propagation of essentially one-dimensional sound pulses
der@1#. In previous work, propagation of pulses in such tra
was considered in the Thomas-Fermi approximation, an
was demonstrated that pulses propagate at a spee

(n̄U0 /m)1/2 in the linear regime. Here,U054p\2asc/m is

the effective two-body interaction matrix element,n̄ is the
particle density averaged over the cross section of the c
@2,3#, m is the atomic mass, andasc is the scattering length
for atom-atom collisions. Nonlinear effects were also inv
tigated in Ref.@3# and were found to be important for con
ditions of experimental relevance. The effects of dispers
were neglected in this study since the length scales of inte
were much larger than the superfluid coherence len
which sets the scale on which dispersive effects become
portant. It is of interest to include the effects of dispersi
and to investigate the possible existence of solitary wave
these systems.

Solitary waves have been studied in many different phy
cal contexts@4,5#. We shall not attempt to review the exte
sive literature for the Gross-Pitaevskii equation, the non
ear Schro¨dinger equation that describes motion of a Bo
Einstein condensate, apart from mentioning the pionee
work of Zakharov and Shabat@6# on solitary waves in bulk
systems. There are a number of studies for clouds of Bo
Einstein condensed atoms in a trap. Morganet al. @7# con-
sidered a class of solitary wave solutions that are, in eff
center-of-mass oscillations of the stationary states of
time-independent Gross-Pitaevskii equation.

It is possible experimentally to make very elongat
clouds of Bose-Einstein condensed atoms in magnetic or
tical traps, and in this paper we examine the possibility
solitary waves propagating along the axis of such a clo
The solutions we seek are the analogs of the solitary wa
first observed by Scott Russell on his historic horse r
along the canal@8#. However, an important difference be
tween canals and Bose-Einstein condensed clouds is
whereas it is often a good approximation to assume that
depth of water in a canal is constant and thus the so
speed is independent of position, this is a poor approxim
tion in Bose-Einstein condensed clouds, where the den
and hence also the sound speed, vary significantly in di
tions transverse to the axis of the trap. Consequently,
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conditions under which one can find solitary wave solutio
for Bose-Einstein condensed clouds is more restricted t
for canals. We wish to consider in this paper situations wh
the variation of cloud properties along the axis of the tr
may be neglected. In the directions perpendicular to the a
we shall assume that the cloud is confined by a harmo
trapping potential. However, to set the stage and estab
notation, let us first consider the case of a homogene
medium and then generalize our discussion to atoms in t
that confine particles in two directions.

The condensate wave functionC satisfies the Gross
Pitaevskii equation,

i\
]C

]t
5S 2

\2¹2

2m
1U0uCu21VDC, ~1!

whereV is the external potential, which may be taken to
zero for a homogeneous medium. We write the conden
wave function asC5n1/2eif, wheren is the particle density,
which is spatially uniform in equilibrium and in the absen
of an external potential. To obtain equations resembl
those of hydrodynamics, it is convenient to work in terms
a superfluid velocity,v5\¹f/m. We consider solutions tha
depend on a single coordinate,z. From the real and imagi-
nary parts of the Gross-Pitaevskii equation one obtains
equations, the equation of continuity

]n

]t
52

]~nv !

]z
, ~2!

and the equation for the phase,

\
]f

]t
52nU02

1

2
mv21

\2

2mn1/2

]2n1/2

]z2
. ~3!

When differentiated with respect toz, the latter gives the
generalized Euler equation,

m
]v
]t

52
]

]zS m~n!1
1

2
mv22

\2

2mn1/2

]2n1/2

]z2 D , ~4!

where we have introduced the chemical potential,m. For a
dilute Bose gas,m(n)5nU0. We seek solutions to thes
equations for which the fluid velocity and particle dens
propagate at a uniform velocity,u, without change of form,
2417 © 1998 The American Physical Society



n-

t

n

nt

he

s
pa

l t
-

em
s
te

th

s

l
nce
re 1

er
mes

ical

a
ion
the
e
ime
icle
ta-
red
we
ly.

tary

ce,

2418 PRA 58A. D. JACKSON, G. M. KAVOULAKIS, AND C. J. PETHICK
i.e., they depend onz and t only through the combinationz
2ut. Thus, one may write]v/]t52u(]v/]z) and ]n/]t
52u(]n/]z). Far away from the solitary wave, the conde
sate is at rest and has its equilibrium density,n0. With these
boundary conditions, the continuity equation, Eq.~2!, gives

v5uS 12
n0

n D . ~5!

Also, Eq. ~4! can be written as

2mu
]v
]z

52
]

]zS m~n!1
1

2
mv22

\2

2mn1/2

]2n1/2

]z2 D . ~6!

We integrate this equation to obtain

\2

2mn1/2

]2n1/2

]z2
5~n2n0!U01

m

2
~v2u!22

m

2
u2. ~7!

Here, we have added the integration constant2n0U0 to im-
pose the boundary conditionn→n0 at infinity. Combining
Eqs.~5! and~7!, we obtain a differential equation forn. If we
multiply this equation by]n1/2/]z and integrate with respec
to z, we find

\2

2mS ]n1/2

]z D 2

5~nU02mu2!
~n2n0!2

2n
. ~8!

We note that the phase has the more general formf(z,t)
5f1(z2vt)1f2(t), which can be seen from the equatio
]f/]z5mv/\. Thus, Eq.~3! can be written as

\
]f2

]t
5

\2

2mn1/2

]2n1/2

]z2
2nU01

m

2
~v2u!22

m

2
u2. ~9!

Since the left side of this equation is a function oft and the
right is a function ofz2ut, each must be equal to a consta
This constant must equal2n0U0 in order to satisfy the
boundary condition n→n0 at infinity. Thus, f2(t)5
2n0U0t is a linear function of time.

We see from Eq.~8! that the conditionnU02mu2>0
must be satisfied in order to obtain real solutions. In ot
words, the density must exceed the minimum valuenmin ,

nmin5
mu2

U0
. ~10!

To obtain solutions that are localized in space,n must lie
betweennmin andn0. This has a ready interpretation in term
of one-dimensional motion of a classical particle whose s
tial coordinate is proportional ton1/2 if z is regarded as the
time variable. The classical potential is then proportiona
2(n2nmin)(n2n0)2, and the solitary wave solutions corre
spond to an oscillation of the ‘‘particle’’ fromn5n0 to n
5nmin and back again. Thus, solitary waves for this probl
are depressions in the density. In contrast, solitary wave
canals correspond to elevations of the surface of the wa
We also note that the velocity of the wave is equal to
sound speed at the minimum density,nmin . The sound speed
in a uniform gas with densityn0 is given byc25n0U0 /m. It
follows from Eq.~10! that
.

r

-

o

in
r.

e

nmin

n0
5

u2

c2
. ~11!

Integrating Eq.~8! we find that the profile of the wave i
given by

n~z!5nmin1~n02nmin!tanh2~z/z!, ~12!

wherez521/2j(n0)@12(nmin /n0)#21/2 andj(n0) is the co-
herence length corresponding to the background densityn0,
j(n0)5(8pn0asc)

21/2. Therefore,z, which gives the spatia
extent of the solitary wave, is on the order of the cohere
length that corresponds to the background density. Figu
shows the profile of two solitary waves,n(z), for Na atoms
with a background density ofn051013 cm23, and for two
values of nmin /n0, 20% ~solid curve! and 80% ~dashed
curve!.

For typical densities in the MIT experiment@1# (n
'1014 cm23 at the center of the cloud!, j is '0.220.4 mm
with asc527.5 Å for Na atoms@9#. However, in order to be
able to observe solitary waves, it is desirable to look at low
densities than these, so that the coherence length beco
sufficiently large that structures can be resolved by opt
means. For nonzeronmin the solutions~12! correspond to
what are termed ‘‘gray solitons’’ in Ref.@10#. Finally, we
point out that, ifu50 (nmin50), Eq. ~12! gives the well-
known kink solutionC5n0

1/2tanh(z/z) @11#, which is some-
times referred to as a ‘‘dark soliton’’@10,12#.

We turn now to the more realistic problem of atoms in
trapping potential that is harmonic in the transverse direct
and for which there is no restoring force along the axis of
trap, which we take to be thez axis. We assume that th
transverse dimension of the cloud is so small that the t
scale for adjustment of the transverse profile of the part
density to the equilibrium form appropriate for the instan
neous number of particles per unit length is small compa
with the time for the pulse to pass a given point. Later,
shall investigate what this condition means quantitative
The problem becomes one-dimensional, and the soli
pulse may be specified in terms of a local velocity,v(z), and
a local density of particles per unit length,s(z),

s~z!5E dxdyuC~x,y,z!u2. ~13!

FIG. 1. Density profiles of solitary waves as a function of spa
as given by Eq.~12!. Here the background density of atoms isn0

51013 cm23 and therefore for Na atomsj(n0)'1.2 mm. For the
solid curve, the rationmin /n0520% andz'1.9 mm; for the dashed
curve,nmin /n0580% andz'3.8 mm.
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Here,x andy are coordinates perpendicular to the axis of
trap. With this assumption, the wave function may be writ
in the form

C~r ,t !5 f ~z,t !g~x,y,s!, ~14!

whereg is the equilibrium wave function for the transver
motion; g(x,y,s) depends on time implicitly through th
time dependence ofs. We chooseg to be normalized so tha
* ugu2dxdy51, and therefore from Eqs.~13! and ~14!, u f u2

5s.
It is convenient to derive the equations forf andg from a

variational principle. The Ginzburg-Pitaevskii equation m
be derived by requiring stationarity of the action

S52E i\

2 S C*
]C

]t
2C

]C*

]t Ddrdt

1E S \2

2m
u¹Cu21

1

2
U0uCu41VuCu2Ddrdt. ~15!

Using Eq.~14! for C, we can write Eq.~15! as

S52E i\

2 S ~ f g!*
]~ f g!

]t
2 f g

]~ f g!*

]t Ddrdt

1E F \2

2mS Ug ] f

]zU
2

1u f ¹gu2D Gdrdt ~16!

1E F1

2
U0u f gu41Vu f gu2Gdrdt.

Terms containing (] f /]z)(]g/]z) vanish because of the no
malization condition ong. Minimizing Eq. ~16! with respect
to g* , we find thatg obeys the equation

2
\2¹2

2m
g1Vg1U0u f gu2g1

\2

2mu f u2
U] f

]zU
2

g5m~s!g,

~17!

wherem is the chemical potential. We neglect the last te
on the left side of Eq.~17! since, as we show below, th
characteristic length of pulses is sufficiently long that it
negligible in all cases of interest. For the same reason
term f ¹g in Eq. ~16!, which equalsf ¹'g1 ẑf ]g/]z, is ap-
proximately equal tof ¹'g, where¹'5 x̂]/]x1 ŷ]/]y, with
x̂, ŷ, andẑ being the unit vectors in the directionsx, y, andz,
respectively. Thus, Eq.~17! takes the final form

2
\2¹'

2

2m
g1Vg1U0u f gu2g5m~s!g. ~18!

We now minimize Eq.~16! with respect tof * and find

i\
] f

]t
52

\2

2m

]2f

]z2
1S \2

2mE u¹'gu2dxdyD f

1U0S E ugu4dxdyD u f u2f 1S E ugu2VdxdyD f .

~19!
e
n

e

Following the same procedure as for the homogeneous
dium, we assume thatf 5s1/2eif, with the velocity field as-
sociated with f being v5(\/m)]f/]z. Again, we obtain
hydrodynamic equations fors andv, which are the same a
Eqs.~2! and~4! but with n replaced bys andm given in the
present case by

m~s!5S \2

2mE u¹'gu2dxdyD
1S E ugu2VdxdyD1U0S E ugu4dxdyDs. ~20!

The first term on the right side of Eq.~20! is the kinetic
energy in the transverse direction, the second is the pote
energy due to the confining potential, and the third is
energy due to interactions between atoms. Assuming thas
and v are functions ofz2ut only with u constant, we find
that

\2

2mS ]s1/2

]z D 2

5@e~s!2e~s0!#2m~s0!~s2s0!

2mu2
~s2s0!2

2s
, ~21!

wheree(s)5*0
sm(s8)ds8 is the energy per unit length. In

Eq. ~21!, we have imposed the boundary conditionss5s0
andv50 far away from the disturbance.

There is no simple expression for the energy per u
length for general values ofs. To obtain analytical results
we explore some limiting cases for the experimentally r
evant situation where the confining potential in the tra
verse directions is harmonic and rotationally invariant, a
given byV5mv'

2 (x21y2)/2. In the low-density regime, the
interaction energy can be treated perturbatively and the p
lem reduces essentially to the one-dimensional case tre
above. As we shall show below, in this limite(s)}s(1
1ascs). In the high-density limit, the Thomas-Fermi ap
proximation applies@13#, ande(s) varies ass3/2.

Before examining the two cases separately, we estim
the density,sc , at which the crossover between the tw
limits occurs. This corresponds to the condition that the
teraction energy per particle is on the order of the oscilla
energy in the transverse direction. The interaction energy
particle isnU0. If A is the cross section of the cloud andR'

is the corresponding radius,n5s/A. Therefore, the condi-
tion determiningsc is U0sc /A;\v' . Denoting the char-
acteristic length scale for the ground state of a particle in
transverse confining potential bya'5(\/mv')1/2 and as-
suming thatR'5a' , the cross section of the cloud isA
5pa'

2 ; thus one finds sc;asc
21 , which gives sc

'43106 cm21 for Na atoms. Alternatively, we can dete
mine sc by equating the interaction energy per particle a
the kinetic energy of the atoms due to their confinemen
the transverse direction,scU0 /A;\2/(mA), which gives
the same result forsc . This expression forsc is equivalent
to the condition that the coherence length,j, be comparable
to the transverse dimension of the cloud,R' .

We now examine the low-density limit,s!sc , in which
the interaction energy can be treated perturbatively. To fi
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the differential equation thatg satisfies in this limit, we ne-
glect the interaction-energy term~the third term on the left
side! in Eq. ~18!. The last term on the left side i
;\2/(2mz2)(d f / f )2, whered f is the deviation off , which
is much less than\2/(2ma'

2 ) because of the conditionz
@a' . Therefore, this term is negligible, andg thus satisfies
the Schro¨dinger equation in a harmonic potential,

2
\2¹'

2

2m
g1Vg5mg, ~22!

which means thatugu}exp@2(x21y2)/2a'
2 #. From Eq.~20!,

we find thatm(s)5\v'(112ascs). The first term inm is
the ground-state energy of the harmonic oscillator and
second is the interaction energy. Thus,e(s)5\v's(1
1ascs) in the low-density limit, and Eq.~21! takes the form

\2

2mS ]s1/2

]z D 2

5S s

2A
U02mu2D ~s2s0!2

2s
, ~23!

by analogy with Eq.~8!. The results for the profile and th
width of the cloud are analogous to the one-dimensio
case,u25sminU0 /(2mA), wheresmin is the minimum ofs
associated with the solitary wave and

s~z!'smin1~s02smin!tanh2~z/z!. ~24!

For this problem,

z52j~n0!@12~smin /s0!#21/2 ~25!

or z521/2j(n0/2)@12(smin /s0)#21/2 with n05s0 /A. From
Eq. ~23!, we see that the density that determinesu2 is
smin/2A and the one that determinesz is s0/2A. The factor
of 1/2 in these results compared with the analogous res
for the homogeneous case is due to the average of the e
librium density of atoms across the trap,n(x,y), given
by *n2(x,y)dxdy/*n(x,y)dxdy. Its origin is thus com-
pletely different from that of the factor of 1/2 that occurs
the Thomas-Fermi limit @3#. The latter is
*n(x,y)dxdy/@n(0,0)*dxdy#. It is amusing that the soun
speed expressed in terms of the density of particles on
axis of the trap is given by precisely the same express
c5@n(0,0)U0 /(2m)#1/2, in both the high- and low-density
limits for harmonic transverse trapping potentials.

We argued above that the motion would be quasi-o
dimensional if the time scale for adjustments in the tra
verse structure of the cloud is short compared with the t
for passage of the pulse, and we now check the consiste
of this assumption. In the low-density regime,s!sc , the
characteristic time for adjustment of the profile is on t
order ofv'

21 , while the time scale for passage of the pulse
at least of orderj/c. The ratio of these scales isnU0 /\v' ,
which is much less than unity in this regime, and theref
our assumption is consistent.

Another case that can be solved analytically is that
small-amplitude solitary waves for arbitrary densities. W
expande(s) to order (s2s0)3 and write Eq.~21! as
e

l

lts
ui-

he
n,

-
-
e
cy

s

e

f

\2

2mS ]s1/2

]z D 2

'
1

2
e9~s0!~s2s0!21

1

6
e-~s0!~s2s0!3

2mu2
~s2s0!2

2s
, ~26!

where the prime denotes differentiation with respect tos.
Clearly, two roots of the right side of the above equation
equal tos0. The remaining root gives an expression for t
velocity u as a function ofs0 andsmin ,

u2'
smin

m S e9~s0!1
e-~s0!

3
~smin2s0! D . ~27!

Becausee9(s) depends ons, the velocity of propagation of
the wave is not generally equal to the bulk velocity at t
minimum density, except in the low-density limit, whe
e9(s) is independent ofs. Integrating Eq.~26!, we can de-
termine the profile of the solitary wave,s(z). For small val-
ues ofs2s0, Eq. ~26! takes the simple form

]s1/2

]z
'

~s2smin!
1/2

l S 12
s

s0
D , ~28!

where the length l is given by l 25\2/$ms0@e9(s0)
1s0e-(s0)/3#%. Again assuming thats is close tos0, we
find that

s~z!'smin1~s02smin!tanh2~z/z! ~29!

with z5 l @12(smin /s0)#21/2.
We now consider the calculation ofe(s) in the high-

density limit where the kinetic-energy term is negligib
@13#. We also neglect the last term on the left of Eq.~18!.
The consistency of this assumption will be checked belo
With these approximations, we write the Thomas-Fer
equation forg,

Vg1U0u f gu2g5mg. ~30!

Thus,ugu2 is a parabola,ugu2}@12(x21y2)/R'
2 #. This form

for ugu implies that the potential energy is equal tomv'
2 R'

2 /6
and that the interaction energy is equal to 4U0s/(3pR'

2 ).
From Eq. ~20! we see thatm(s) is the sum of these two
terms in this limit. To find the explicit dependence ofm on
s, we calculateR' @3# now. The density of atoms,n(x,y,z),
has the functional form ofugu2,

n~x,y,z!5n~0,0,z!S 12
x21y2

R'
2 D , ~31!

wheren(0,0,z) is the density on the axis of the trap. Thu
the number of particles per unit length is given by

s~z!5E n~x,y,z!dxdy5
1

2
n~0,0,z!pR'

2 . ~32!

In the Thomas-Fermi approximation where the kinetic e
ergy is negligible, the sum of the chemical potentialm
5n(x,y,z)U0 plus the potential energyV is a constant, and
therefore the density on the axis of the trap is given by
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n~0,0,z!U05 1
2 mv'

2 R'
2 . ~33!

Thus, we find thatR'
2 54a'

2 (sasc)
1/2. Equation ~20! then

implies that m(s)52\v'(sasc)
1/2 and therefore e(s)

5(4/3)\v'(ascs
3)1/2. The width,z, of the solitary waves is

therefore given byz5(12/5)1/2j(n0)@12(smin /s0)#21/2,
wheren05s0 /(pR'

2 ).
In considering the limits of validity of our calculation i

the high-density regime, we observe that the time scale
adjustment of the profile of the pulse is;R' /c and that the
time for passage of the pulse is;z/c. If the motion is to be
essentially one-dimensional,R' must be much smaller tha
z. In the Thomas-Fermi approximation,R' is larger thana'

due to the repulsive interactions between the atoms. This
be seen from the formula for the radiusR'52a'(sasc)

1/4

derived above. To satisfy the conditionz@R' , the quantity
sasc must be large compared with (3/10)2(s0asc)

21@1
2(smin /s0)#22. Thus, if ds5s02smin is the amplitude of
the disturbance, we see thatds/s0!3/(10s0asc). This indi-
cates that the amplitude of the solitary wave,ds, must be
extremely small if the one-dimensional approximation is
be valid whens@sc , and therefore our small-amplitud
treatment given above is applicable. For the experime
conditions of Ref.@1#, the number of particles in the trap
N;53106, and the length of the trap in the axial directio
L is ;450 mm, implying thats0;108 cm21. Validity of
the one-dimensional approximation therefore requires
ds/s0!0.01. Finally, we check the consistency of the a
sumption made in deriving the Thomas-Fermi equation
g. The last term on the left of Eq.~18! has an upper bound
of \2/(2mz2). This term is approximately equal to\2/
(2mj2)(ds/s0)!\2/(2mj2);nU0. Therefore, this term is
indeed negligible.

Our calculations indicate that the most favorable con
tions for observing solitary waves in trapped Bos
condensed gases occur when the density is sufficiently lo
permit a perturbative treatment of particle interactions.
this case, one-dimensional behavior persists even for la
amplitude solitary waves. Low-density systems have the
ther advantage that the coherence length is correspond
large. Since the coherence length determines the size of
tary waves, this simplifies resolution of these structur
However, a lower density of particles makes the detection
these effects more difficult because of the lower signal.

We now wish to estimate the experimental conditions
quired for observation of solitary waves in the low-dens
regime. The spatial resolution of current experiments us
direct imaging methods is;4 mm @14#. As a theoretical
estimate for the width of the solitary wave, we take the f
width of the dip in the density profile at half the maximu
depression, that is, the distance between points wh
s5(s01smin)/2. This is given by 2ztanh21(1/A2)
'3.5j(n0)@12(smin /s0)#21/2, which must exceed the ex
perimental resolution if solitary waves are to be observa
This leads to the condition

j~n0!*@12~smin /s0!#1/2 mm, ~34!

or j(n0)*1 mm for solitary waves withsmin /s0!1. For
the coherence length to exceed 1mm, the density per unit
volume must be less thannobs'1013 cm23. The correspond-
or

an

al

at
-
r

i-
-
to
n
e-
r-
ly
li-
.
f

-

g

l

re

e.

ing number of particles per unit lengths is nobsA
'nobspa'

2 . For a transverse trapping frequency of 240 H
which is a typical value of the MIT trap@1,15#, the oscillator
length,a' , in this direction is; 1.4 mm, implying that the
number of particles per unit length must be less th
83105 cm21 for structures to be observable. This valu
corresponds tosc/5, and therefore the coupling would b
weak. Let us now calculate the number of particles t
should be used in the MIT trap fors to have the value 8
3105 cm21. The kinetic energy along the axial direction
typically of order \2/2mL2, and the interaction energy i
;sU0 /(pa'

2 ). The ratio of these quantities i
;(a' /L)2(8sasc)

21. Thus for L@a' /(8sasc)
1/2, the ki-

netic energy along thez direction is negligible, and the
Thomas-Fermi approximation@13# may be used to determin
the structure along the axis of the trap. We shall assume
to be the case and subsequently will check the consistenc
this assumption. Under these conditions, the Thomas-Fe
approximation may be used to calculate thez dependence of
s, even though it may not be used to calculate the struc
of the cloud in the transverse directions. In the presence
confining potential in thez direction, the Thomas-Fermi con
dition is that the sum of the chemical potential and t
z-dependent part of the trapping potential should be const
Since the chemical potential ism5\v'(112sasc) in the
low-density limit, this condition is

\v'@112s~z!asc#1 1
2 mvz

2z25const, ~35!

wherevz is the frequency of the trapping potential along t
z axis. We equate the value of the left side of Eq.~35! at z
50 to the value atz5Z, whereZ is the distance from the
center of the cloud to its edge,Z5L/2. Sinces vanishes at
the edges of the cloud, we get

2\v's~z50!asc5
1
2 mvz

2Z2, ~36!

wheres(z50) is the number of particles per unit length
the center of the cloud. Solving the above equation forZ, we
find

Z52
az

2

a'

@s~z50!asc#
1/252Ap~nobsasc!

1/2az
2 , ~37!

where az5(\/mvz)
1/2 is the oscillator length in the axia

direction. From Eqs.~35! and~37! we see that the number o
particles per unit length can be written as

s~z!5s~z50!S 12
z2

Z2D . ~38!

The total number of particles isN5*2Z
Z s(z)dz; thus from

Eqs.~37! and ~38! we find

N5
4

3
s~z50!Z5

8p3/2

3
nobs

3/2~aza'!2asc
1/2. ~39!

For the MIT trap, the frequency in the axial direction is;7.9
Hz @15# and thereforeaz;7.5 mm; the total number of par-
ticles, N, should be equal to; 23103 if s(z50) is to be
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83105 cm21. The total width of the trap in thez direction
would then beL'38 mm. Returning to our assumption, w
see that fors5sc/5 ~the highest value ofs for which these
structures are observable!, the conditionL@a' /(8sasc)

1/2

implies thatL must be much larger than 0.8a' . This is in-
deed true and the Thomas-Fermi approximation is va
along thez axis of the cloud.

The development of traps with stronger transverse c
finement, such as the optical dipole trap of the MIT gro
@16#, promises to facilitate experiments on solitary wav
since, for a given value of the dimensionless couplingsasc,
the corresponding densities will be higher. However, the d
advantage is that the higher density will result in shor
.

E

d

-

s

-
r

length scales for structures.
In this paper we have discussed the propagation of s

tary waves in elongated traps and have estimated chara
istic sizes of these structures. Clearly, many questions
main. These include the stability of these structures, the
they play in other phenomena~such as dissipation!, and the
question of how pulses propagate when the motion is
quasi-one-dimensional.
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