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Multilayer ‘‘dielectric’’ mirror for atoms

Luis Santos and Luis Roso
Departamento de Fı´sica Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain

~Received 29 July 1997!

All existing atomic mirrors are conceptually similar to metallic mirrors in standard optics in the sense that
they are constructed with repulsive potentials and thus produce an imaginary ‘‘refraction index.’’ Here a
different kind of mirror for atoms that is similar to a multilayer dielectric mirror in standard optics is proposed.
We show that a periodic attractive laser potential can reflect atoms of certain momenta due to the presence of
gaps in the spectrum of energies, as in the photonic band-gap structures in light optics. Spontaneous emission
and gravitational effects are also analyzed.
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Recently, atom optics has become an extremely f
developing research field. Some very striking phenom
due to the wave nature of cold atoms have been repor
such as the diffraction of atoms@1#, the construction of an
atomic Young interferometer@2#, imaging and focusing of
atoms@3#, and even, very recently, the atom optics equiv
lent of the laser, i.e., the so-called atom laser@4#. Atomic
mirrors have also been constructed with evanescent l
fields @5# and, more recently, with magnetic fields@6#. Both
mirrors are based on the same physical effect, i.e., the
pearance of repulsive potentials. The atom is reflected
reaches a turning point. After the turning point the probab
ity density follows an exponential decay, just like an elect
field directed onto a metallic surface. In this sense, theref
these atomic mirrors can be considered as the atom o
equivalent of metallic mirrors in light optics. In the past fe
years several studies have been reported on the behavi
cold atoms in periodic light potentials~light lattices! created
by stationary laser waves. The analogy between this case
solid-state physics has aroused great interest@7#. Thus Bragg
scattering has been analyzed@8# and so has the use of th
effect to construct atomic beam splitters and interferome
@9#. Bragg reflection is in fact a particular case of a mo
general situation, i.e., the so-called photonic band-gap st
tures ~PBGSs! @10#. In dielectric periodic structures, som
electromagnetic waves cannot propagate and are there
reflected because their frequencies lie within a gap cre
by the periodic structure. In this paper we propose a la
arrangement that acts as a matter-wave band-gap structu
the sense that it resembles a PBGS, but for matter wa
instead of electromagnetic waves. The atoms can be refle
if their incoming kinetic energy lies within a gap produce
by the periodic structure. This effect allows the construct
of an atomic mirror with an attractive laser potential that a
as an atom optics equivalent of a multilayer dielectric mir
in light optics. ~We must note that quantum reflection, i.e
reflection on an attractive potential, is not an unknown pr
lem; in particular, this is a textbook problem in the case o
potential step@11#. Recently, quantum reflection has be
analyzed in the context of atom optics for the case of
attractive exponential potential@12#. The main different idea
of this paper lies in the periodic character of the potential a
the resemblance to the reflection on a PBGS.!
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Let us consider two laser beams~as indicated in Fig. 1! of
the same intensity, polarization, and with the same Gaus
profile, but with respective wave vectorskW15k(cosfuWx
1sinfuWz) and kW25k(cosfuWx2sinfuWz). In the zone very
close tox50, the electric field, which one assumes to
linearly polarized in they direction, can be written in the
form

EW 'E0eW ye
2~z2zc!2 cos2 f/d2

cos@k~z2zc!sin f#

3cos~kx cosf2vt !, ~1!

whereE0/2 is the amplitude of each laser,zc is the center of
the laser region, andd is the half-width of the Gaussians. Le
us assume that the laser frequency is close to some at
transition from the ground state to an excited state~of ener-
gies\vg and\ve , respectively! in such a way that we can
treat the atom as a two-level system. In this work we assu
a large internal detuning@D5v2(ve2vg)# in such a way
that the adiabatic approximation will be valid@13#. So to
obtain a scalar Schro¨dinger equation to describe the atom
interaction with the laser we follow the standard formalis
developed in@13#, except for the inclusion of the gravita

FIG. 1. Scheme of laser arrangement considered. Two Gaus
lasers propagate, forming an anglef and 2f with the x axis. At-
oms are dropped from a MOT onto the interference region of b
lasers, where a periodic profile is formed.
2407 © 1998 The American Physical Society
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2408 PRA 58LUIS SANTOS AND LUIS ROSO
tional field. As we show later, this can have non-negligib
effects. The scalar equation takes the form

2\2

2M

d2

dz2 c~z!5F q2

2M
2V~z!Gc~z!, ~2!

whereV(z)52Mgz2 1
2 \D7 1

2 \AD214V(z)2, with

V~z!5V0exp@2cos2f~z2zc!
2/d2#cos@k~z2zc!sin f#.

The sign depends on the detuning: the minus sign co
sponds toD,0 and the plus corresponds toD.0. The cou-
pling is given by V052mE0/2\, which is the Rabi fre-
quency associated with each laser, wherem5^eW ymW &, with mW
the transition dipole.q is the z momentum atz50, suffi-
ciently far away fromzc to consider that the field atz50 is
negligible. To make the model as realistic as possible
include the diffuse scattering resulting from spontane
emission by adopting the lossy vector Schro¨dinger equation
method of@14#, i.e., D→D1 ig/2, whereg is the spontane-
ous emission rate.

As may be seen, the potentialV(z) is periodic, its period-
icity given by Dz5l/2 sinf, wherel is the wavelength of
the lasers employed. To better understand the effect of p
odicity, let us remove gravitation and spontaneous emiss
and for the time being let us forget the smooth Gauss
dependence. Let also assume thatV0

2!uDu2. With these as-
sumptions, the laser potential is a simple cosine-squared
tential, whose amplitude (\V0

2/D) can be positive~if D
.0) or negative~if D,0), depending on which dresse
state is reached. In what follows we always consider the c
D,0 and hence the potential is always negative. It is w
known that a periodic potential leads to an energy struc
of allowed and forbidden bands@15#. Only the atoms whose
energy lies in an allowed band can propagate inside the
tential. If q does not satisfy the band condition~i.e., if q2/2M
lays in a gap!, then the atoms with this momentum cann
propagate inside the laser beam and are therefore refle
reflection bands being formed. The gaps appear for repul
and also for attractive potentials, allowing the possibility
reflecting atoms with attractive potentials. Obviously, t
gravitational field, the spontaneous emission, and the Ga
ian envelope of the laser profile will distort this simple pi
ture, but the basic effect of enhancing the reflection for so
momenta, due to energy gaps, remains, as we show bel

Wave functions outside the laser zone are linear com
nations of Airy functions @16#. If we set u(z)
5(2M2g/\2)1/3(z1q2/2M2g), we can characterizef D(z)
5Ai @2u(z)#2 i Bi@2u(z)# and f U(z)5Ai @2u(z)#
1 i Bi@2u(z)# as the downward and the upward comp
nents of the wave function, respectively. The functions in
zone before and after the laser beam can thus be chara
ized by c(z)5 f D(z)1r f U(z) and t f D(z), respectively,
wherer andt are the reflection and transmission amplitud
respectively. The aim of this work is to analyze the reflect
probability ur u2 as a function of thez momentumq at z50.

Using convenient units of length (k21), momentum (\k),
and frequency (vn5\k2/2M ), we can rewrite the Schro¨-
dinger equation in a dimensionless form
e-
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d2

dz̃2 c~ z̃!52$q̃ 21b z̃1 1
2 D̃6 1

2
AD̃ 214Ṽ~ z̃!2%c~ z̃!,

~3!

in which a tilde denotes dimensionless units. In Eq.~3! we
have the function

Ṽ~ z̃!5Ṽ0exp@2cos2 f~ z̃2 z̃c!
2/d2#cos@~ z̃2 z̃c!sin f#.

The parameterb52M2g/\2k3 is a gravitational term tha
introduces some differences depending on the mass of
atom. Since we shall assume thatṼ0

2!uD̃u2, we can define a
parameterh5Ṽ0

2/D̃ that determines the strength of the las
potential. This can be easily shown by introducing a Tay
expansion on the right-hand side of Eq.~3!:

d2

dz̃2 c~ z̃!52$q̃ 21b z̃2Ṽ~ z̃!%c~ z̃!, ~4!

where

Ṽ~ z̃!5h exp@22 cos2f~ z̃2 z̃c!
2/d̃ 2#cos2@~ z̃2 z̃c!sin f#.

Note that the potential is formed by the product of a cos
squared and a Gaussian envelope.

In a recent paper@17# Tan and Walls developed a powe
ful transfer-matrix method to calculate the reflection a
transmission coefficients of a plane wave interacting with
laser of arbitrary profile. However, the method was dev
oped without considering the effects of gravitation. Here
propose another method that consists of analyzing the a
batic scalar Schro¨dinger equation by finite differences. Let u
takeN equally spaced points$z̃1 ,z̃2 ,...,z̃N21 ,z̃N% in the laser
region in such a way that for the first two points we c
ensure that the laser field is zero~i.e., they are in the reflec
tion zone! and the same for the last two points, which are
the transmission zone. For pointsj 52,...,N21 we can write
the scalar Schro¨dinger equation using finite differences

c j 2122c j1c j 11

«2 52$q̃ 21b z̃j1
1
2 D̃6 1

2
AD̃214Ṽj

2%cJ ,

~5!

wherec j5c(zj ), V j5Ṽ( z̃j ), and«5 z̃j 112 z̃j . For conve-
nience, we usez̃250. Using the expression for the wav
function in the reflection zone, we can obtain a relations
between the first two points

f U~ z̃2!c12 f U~ z̃1!c25 f D~ z̃1! f U~ z̃2!2 f D~ z̃2! f U~ z̃1!.
~6!

For the last two points, we can use the expression for
transmission zone

2 f D~ z̃N!cN211 f D~ z̃N21!cN50. ~7!

From Eqs.~4!–~6! we thus obtainN equations, which form
an easily solvable tridiagonal system of equations. Once
know the solutions atz̃1 andz̃N , we can obtain the values o
r and t.

Without considering spontaneous emission, from the
pressions of the reflection and transmission zones it is p
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sible to state that the law of conservation of the flux has
form ur u21utu251. This conservation law can be used
check our numerical analysis. In all the calculations the e
is less than 1026, guaranteeing that our method is consiste
This check is evidently only a preliminary step before
cluding spontaneous emission, which produces flux los
We also confirmed that in the absence of gravity our met
leads in all the cases to the same results of@17#, i.e., is
completely equivalent to a transfer-matrix method. Adiab
ticity was checked in all the calculations by a comparis
with a fully spinorial calculation.

In Fig. 2 we address the case of the 2s-2p 7Li transition,
whose parameters arel5670.8 nm,vy53.963105 s21, g
53.723107 s21, and b50.000 293. In this figure we con
siderh525. The position of the center of the laser region
at zc5300&pk2150.142 mm and the half-width of the la
ser Gaussians is given byd5100pk21533.5mm. For a
typical laser with a Gaussian profile, the reflection spectr
is flat and equal to zero, because for this detuning the po
tial is always attractive and thus there are no turning po
~this is true except for very low momentum, for which qua
tum reflection such as that reported in@12# is produced!. This
is what one would observe in the case of an anglef50. Let
us analyze the effects of the periodicity that appear in
potential whenf is not zero. Let us consider the case off
5p/3. By using the previous numerical method, we show
Fig. 2~b! the reflectivity without considering gravitation an
spontaneous emission. In order to obtain a physical ins
into the effects behind these exact numerical results of
flectivity we cannot use the previous simple cosine-squa
model, but we must take into account the Gaussian envel
i.e., that the amplitude of the cosine-squared oscillation
not constant within the laser region. In order to take this i
account, we define a band structure@Fig. 2~a!# for each value
of the envelope function (Venv) @18#. As each value of the
envelope is linked with a spatial position, then a spa
dependent band structure appears. In particular we obs
that for certain momenta some spatial regions are forbid
~white regions!. We will call these regions spatial gaps.
this case we observe that three spatial gaps appear withi
envelope~white regions!. By extrapolating to zero potentia
we recover the Bragg orders, as one obtains the Bragg m
for tiny refractive indices in the PBGSs. By comparing Fig
2~a! and 2~b!, we can understand why some momenta
reflected: If an atom, with some momentum, while traveli
inside the laser finds a forbidden region~for its momentum!
then it is reflected~if the region is very narrow there is som
probability of tunneling through it, leading to partial refle
tion!. We show now that other details of the reflectivity c
be easily explained using this image of spatial gaps. In F
2~c! we add the effect of spontaneous emission forD5
2200g527.443109 s21 (V051.2143104 s21, which
means an intensity per beamI 554 mW/cm2). The spontane-
ous emission acts as a mechanism of flux losses and th
fore affects the reflection spectrum by introducing a red
tion in reflectivity. This reduction can be observed
comparing the cases without@Fig. 2~b!# and with @Fig. 2~c!#
spontaneous emission. The details of this reduction can
explained using the image of spatial gaps. The longer
atom stays inside the laser region, the larger the effects o
spontaneous emission. The momentum components
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reach a forbidden spatial region for small values of the e
velope are reflected earlier than the components that rea
spatial gap for larger values of the envelope. Thus the fi
ones are affected by the laser for a shorter time and then t
are less affected by the spontaneous emission than the

FIG. 2. Results, as a function of thez momentumq at z50, for
the case of the 2s-2p 7Li transition, consideringh525, z̃c

5300&p, d̃5100p, andf5p/3. ~a! Band structure as a function
of z, i.e., for different values of the envelope functionuVenvu. Note
that in this case three gaps~white regions! are opened. Small ver-
tical bars indicate the position of the Bragg modes. The atoms
assumed to travel in the graph initially from bottom to top, begi
ning with momentumq at the bottom (z50) of the figure.~b!
Reflectivity calculated without gravitation and without spontaneo
emission.~c! Reflectivity calculated without gravitation but with
spontaneous emission forD52200g. ~d! Band structure as a func-
tion of z, including gravitational effects. Forbidden regions are
white. Tilting is clear compared to~a!. The atoms are assumed t
travel in the graph initially from bottom to top, beginning with
momentumq at the bottom (z50) of the figure.~e! Reflectivity for
the same case as in~c! but with gravitational acceleration.
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ones. This effect is clearly observed on comparing Figs. 2~a!
and 2~c!. For larger detunings, the effects of spontaneo
emission are smaller and can in fact be almost comple
negligible if we useuDu@g. The use of metastable trans
tions, such as Raman transitions@19#, can also allow sponta
neous emission to be neglected. In Fig. 2~d! we add the ef-
fects of gravitational acceleration. Note now that t
symmetry in z is broken due to the tilting of the band
whose main effect is a displacement and a broadening o
bands@Fig. 2~e!# @20#. The effects of gravity are very sma
for two reasons. First, for a fixed distancez, it is easy to
show from simple Newton laws that the larger the init
momentum atz50, the smaller the effect of gravity over th
distancez ~for example, ifq̃52 atz50, the final momentum
at zc is q̃52.09). For small momentum, the effects of gra
ity would be important; however, the reflection is not pr
duced atzc but earlier, when the atoms find a forbidde
region, and so the effects of the gravitation are again sm
The effects of gravity are appreciable only for very low m
menta (q̃,0.5), as seen in Fig. 2~e!.

If we increaseuhu more gaps are opened inside the la
region, as seen in Fig. 3~a! for the same case as Fig. 2, b
now h52200. Increasing the potential means increasing
laser intensity, but also increasing the laser detuning to

FIG. 3. Results, as a function of thez momentumq at z50, for
the case of the 2s-2p 7Li transition, consideringz̃c5300&p,
d̃5100p, and h52200. ~a! Band structure as a function ofz,
without including gravitational effects. Note that several ga
~white regions! are opened. The atoms are assumed to travel in
graph initially from bottom to top, beginning with momentumq at
the bottom (z50) of the figure.~b! Reflectivity without considering
spontaneous emission~valid for large detuning compared to th
spontaneous emission or for metastable transitions! and without
considering gravitation~whose effect for the case of7Li atoms is
basically a very small displacement to lower momenta!.
s
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he
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isfy the adiabatic condition. Figure 3~b! shows the reflectiv-
ity for the case of Fig. 3~a!. Spontaneous emission is no
considered, which is a valid approximation for very lar
detunings or for metastable transitions. Gravity is not co
sidered because, as remarked above, its effect is only im
tant for extremely low momenta (q̃,0.5). As in the case of
Fig. 2, the atoms are reflected if, when traveling inside
Gaussian envelope, they find a forbidden region. Thus
this case we observe that a momentum up to 5 times
recoil momentum can be reflected. The figure also shows
appearance of oscillations in reflectivity forq̃.3. The for-
bidden regions are very narrow forq̃.3 and hence the at
oms can partially tunnel through them. After tunnelin
through a narrow forbidden region the atoms find the n
gap, from which they can be partially reflected back to t
first forbidden region, where they can be partially reflect
and so on, leading to multiple reflections between the ga
The oscillations in the reflection spectrum are due to th
multiple reflections.

To conclude, let us sum up a few remarks concerning
validity of Eq. ~1! and the detection of the reflected atom
Atoms that travel out of the region ofx50 but close to it
also undergo a periodic potential that leads to similar qu
tative effects. However, the results obtained in this work
strictly only for x50 or for a very close neighborhood an
can be quantitatively distorted by the atoms falling out
this zone. Let us analyze a detection arrangement that c
lead to a measurement of the reflection that could quan
tively coincide with our theoretical calculations. Forf
<p/3, in a region ofuxu,d/5 the profile of the amplitude o
the field is approximately constant and equal to the profile
x50; Eq. ~3! is therefore valid in this neighborhood. Due
thex dimensions of the trapped cloud and because the in
atomic beam~although very cold! has anx-momentum dis-
tribution and therefore spreads inx during flight, part of the
beam falls out of the previous very narrow region. We c
detect the reflection of the atoms with a weak probe laser
studying the fluorescence of the atoms. This probe beam
be considered as directed in they direction, placed above the
arrangement and sufficiently focused to obtain a very nar
spot of width 0.4d in thex direction in the zone of dropping
and therefore the detected fluorescence is mainly produ
by atoms traveling inside the laser within the narrow reg
uxu,d/5. Additionally, if the laser frequency is chosen with
large detuning from the transition the effects of the press
of radiation~i.e., the effects of the absorption of momentu
k cosf in thex direction!, which tends to move the atom ou
of x50, are negligible. The Gaussian dependence also
fects they direction, but this dependence is so smooth tha
can be neglected in the region we are studying. This is
reason for simply taking into account a two-dimension
model in thex-z plane. Finally, we remark that other exper
mental arrangements that lead to a spatially periodic po
tial confined in a finite region can afford similar qualitativ
results.

To summarize, we have shown that an attractive perio
laser profile can act as an atomic mirror for some spec
momenta. The reflection on this laser arrangement has b
analyzed using an exact numerical calculation, based o
nite differences, and completely equivalent to a transf
matrix method. We have also developed a simple mo

s
e
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based on the spatial dependence of the induced band s
ture, which allows a physical understanding of the relev
processes behind the numerical results of the atomic re
tion. Until now, all reported atomic mirrors have been co
structed with repulsive laser potentials and are therefore
equivalent of the usual metallic mirrors in optics. For the
‘‘metallic’’ mirrors for atoms, reflection can be understoo
as the effect of a classical repulsive force. Here we h
shown a conceptually different kind of atomic mirror, co
structed with an attractive periodic potential. These mirr
underscore the similarities between light and atom optics
cause they are the equivalent for atoms of a photonic ba
gap structure in light optics. Reflection is achieved due
t-
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purely quantum effects, i.e., the periodicity of the laser p
tential hinders some momentum components from propa
ing inside the laser beam and they are therefore reflec
Like their counterparts in usual optics, these mirrors prod
reflection only for certain momenta, i.e., they have a refl
tivity that can be strongly dependent on the de Broglie wa
length of the incoming atom. This important feature may
of great interest for certain atom optics devices.
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Bragg condition. The atomic wave is then reflected and
momentum is reversed. The atom travels again under N
ton’s law until it reaches another Bragg condition and is th
reflected again. BOs can therefore be understood as os
tions between two Bragg reflections. In our problem, B
would be produced if the atoms were spatially confined
tween two gravitationally tilted forbidden regions. Multiple re
flections would then occur at the edges of the forbidden
gions, leading to an oscillatory motion. However, in our ca
the atoms come from outside the laser. If the atoms reac
forbidden region, they cannot be transmitted and are refle
s
-

n
la-

-

-
,
a
d

back to free space. The atoms are therefore not between
gaps and hence cannot develop such multiple oscillations.
cordingly, the gravitational field does not lead to Bloch osc
lations and so no effect of the WS ladders is observed in
reflection spectrum. Only if the first forbidden region we
very narrow could the atom tunnel through the forbidden
gion ~in a similar way to Landau-Zener tunneling! and enter an
allowed region, finally reaching another forbidden region a
producing multiple reflections.@For a review of the BOs, and
WS ladders in the context of solid-state physics see E. E. M
dez and G. Bastard, Phys. Today46 ~6!, 34 ~1993!#.


