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Multilayer “dielectric” mirror for atoms
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All existing atomic mirrors are conceptually similar to metallic mirrors in standard optics in the sense that
they are constructed with repulsive potentials and thus produce an imaginary “refraction index.” Here a
different kind of mirror for atoms that is similar to a multilayer dielectric mirror in standard optics is proposed.
We show that a periodic attractive laser potential can reflect atoms of certain momenta due to the presence of
gaps in the spectrum of energies, as in the photonic band-gap structures in light optics. Spontaneous emission
and gravitational effects are also analyzed.
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Recently, atom optics has become an extremely fast- Let us consider two laser beartes indicated in Fig. Jlof
developing research field. Some very striking phenomenéhe same intensity, polarization, and with the same Gaussian
due to the wave nature of cold atoms have been reportegdrofile, but with respective wave vectoli§ = k(cos ¢uy
such as the diffraction of atonjd], the construction of an +sin ¢u,) and K,=k(cos¢u,—sin ¢u,). In the zone very
atomic Young interferometei2], imaging and focusing of close tox=0, the electric field, which one assumes to be
atoms[3], and even, very recently, the atom optics equiva_linearly polarized in they direction, can be written in the
lent of the laser, i.e., the so-called atom lag&} Atomic  form
mirrors have also been constructed with evanescent laser

fields[5] and, more recently, with magnetic fiel(]. Both E~E.8.e (2-2)° o ¢ld’qdk(z— 7. )sin
mirrors are based on the same physical effect, i.e., the ap- o=y gk J)Sin ¢]
pearance of repulsive potentials. The atom is reflected if it X cogkx cos ¢p— wt), @

reaches a turning point. After the turning point the probabil-

ity density follows an exponential decay, just like an electric . . .
field directed onto a metallic surface. In this sense, therefor whereE,/2 is the amplitude of each lase, is the center of

A . She laser region, and s the half-width of the Gaussians. Let
these atomic mirrors can be considered as the atom optics

equivalent of metallic mirrors in light optics. In the past few \> coo0me that the laser frequency is close to some atomic
9 . gnt optics. P ; tr?nsition from the ground state to an excited stafeener-
years several studies have been reported on the behavior o 5 d7 vely i h h
cold atoms in periodic light potentialight latticeg created gieshwg andwe, respectivelyin such a way that we can
! . tréeat the atom as a two-level system. In this work we assume
by stationary laser waves. The analogy between this case and_ e internal detuningA = o — (@,— )] in such a wa
solid-state physics has aroused great intdf@sThus Bragg that ?he adiabatic approximation \7vill t?e valld3]. So toy
scattering has been analyzg®] and so has the use of this . app . N :
. ; . obtain a scalar Schdinger equation to describe the atomic
effect to construct atomic beam splitters and interferometers . . X
C o . interaction with the laser we follow the standard formalism
[9]. Bragg reflection is in fact a particular case of a more . X . .
0 = . developed in[13], except for the inclusion of the gravita-
general situation, i.e., the so-called photonic band-gap struc-
tures (PBGSs [10]. In dielectric periodic structures, some
electromagnetic waves cannot propagate and are therefore
reflected because their frequencies lie within a gap created
by the periodic structure. In this paper we propose a laser
arrangement that acts as a matter-wave band-gap structure in
the sense that it resembles a PBGS, but for matter waves
instead of electromagnetic waves. The atoms can be reflected
if their incoming kinetic energy lies within a gap produced
by the periodic structure. This effect allows the construction
of an atomic mirror with an attractive laser potential that acts
as an atom optics equivalent of a multilayer dielectric mirror
in light optics. (We must note that quantum reflection, i.e.,
reflection on an attractive potential, is not an unknown prob-
lem; in particular, this is a textbook problem in the case of a
potential steg11]. Recently, quantum reflection has been
analyzed in the context of atom optics for the case of an F|G. 1. Scheme of laser arrangement considered. Two Gaussian
attractive exponential potentipl2]. The main different idea lasers propagate, forming an angkeand — ¢ with the x axis. At-
of this paper lies in the periodic character of the potential andms are dropped from a MOT onto the interference region of both
the resemblance to the reflection on a PBGS. lasers, where a periodic profile is formed.
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tional field. As we show later, this can have non-negligible (2

effects. The scalar equation takes the form e W(Z)= —{G%+ 2+ 1A= LVA2+40(2) 2 4 (2),
52 2 o (©)
v a2 Y D=y V@ |¥(2), (20 in which a tilde denotes dimensionless units. In ). we
have the function
whereV(z) = —Mgz— A F 34 JAZ+40(2)?, with A(Z)=Qgexf —cof ¢(z—7.)%/d?]cog (z—Z.)sin ¢].

The parameteB=2M?2g/#%k® is a gravitational term that
introduces some differences depending on the mass of the
atom. Since we shall assume tif3g<|A|?, we can define a
ep')arame'[ern:QS/A that determines the strength of the laser
potential. This can be easily shown by introducing a Taylor
expansion on the right-hand side of E):

Q(2)=Qqexd — cos¢(z— z.)%/d?]cog k(z— z;)sin ¢].

The sign depends on the detuning: the minus sign corr
sponds taA <0 and the plus corresponds A40>0. The cou-
pling is given by Qy=— uEy/2%, which is the Rabi fre-
quency associated with each laser, where(€,u), with 4
the transition dipoleq is the z momentum atz=0, suffi- d? _ o~
ciently far away fromz, to consider that the field a=0 is a2 W(2)=—{Q%+ Bz V(@) ¢ (2), 4
negligible. To make the model as realistic as possible we
include the diffuse scattering resulting from spontaneougynhere
emission by adopting the lossy vector Satinger equation ~ ~
method_of[14], i.e., A—A+iy/2, wherey is the spontane-  V(Z)= 5 exd —2 cof¢(Z—7,)%/d ?]coS[(Z—Z;)sin ¢].
ous emission rate.
As may be seen, the potentM(z) is periodic, its period- Note that the potential is formed by the product of a cosine
icity given by Az=\/2 sin¢, where\ is the wavelength of squared and a Gaussian envelope.
the lasers employed. To better understand the effect of peri- In a recent paperl7] Tan and Walls developed a power-
odicity, let us remove gravitation and spontaneous emissioful transfer-matrix method to calculate the reflection and
and for the time being let us forget the smooth Gaussiatransmission coefficients of a plane wave interacting with a
dependence. Let also assume tﬁ%t<|A|2. With these as- laser of arbitrary profile. However, the method was devel-
sumptions, the laser potential is a simple cosine-squared p&ped without considering the effects of gravitation. Here we
tential, whose amplitude#(Q3/A) can be positive(if A~ Propose another method that consists of analyzing the adia-
>0) or negative(if A<0), depending on which dressed Patic scalar Schitinger equation by finite differences. Let us
state is reached. In what follows we always consider the cas@keN equally spaced pointg, 7, ... zy—1,Zy} in the laser
A<0 and hence the potential is always negative. It is well"€gion in such a way that for the first two points we can
known that a periodic potential leads to an energy structur€nsure that the laser field is zefice., they are in the reflec-
of allowed and forbidden band&5]. Only the atoms whose tion zong and the same for the last two points, which are in
energy lies in an allowed band can propagate inside the pdhe transmission zone. For poirjts 2,...N—1 we can write
tential. If g does not satisfy the band conditiéire., if g%/2M the scalar Schitinger equation using finite differences
lays in a gap, then the atoms with this momentum cannot a‘” 20t s
propagate inside the laser beam and are therefore reflected, !~ 7Y =2 s N1 X240 202
reflection bands being formed. The gaps appear for repulsive g2 (a7 B2+ 242 2 NATH 40530y,
and also for attractive potentials, allowing the possibility of (5)
reflecting atoms with attractive potentials. Obviously, the - _ _
gravitational field, the spontaneous emission, and the Gaus¥herey;=(z), Q;=Q(z), ande=7;,,—2;. For conve-
ian envelope of the laser profile will distort this simple pic- hience, we use,=0. Using the expression for the wave
ture, but the basic effect of enhancing the reflection for soméunction in the reflection zone, we can obtain a relationship
momenta, due to energy gaps, remains, as we show belowbetween the first two points
Wave functions outside the laser zone are linear combi-
nations of Airy functions [16]. If we set u(2) fu(Za) 1= Fu(Z1) 2=Tp(21) fu(Z2) — fo(Z2) fu(Za).
=(2M?g/%%)Y3(z+g?/2M?g), we can characterizép(z)
=A[-u(z)]-i Bil~u(z)] and fu(2)=Ai[-U(2)]  For the last two points, we can use the expression for the
+i Bi[—u(z)] as the (_jownward e_md the upwar(_j COMPO- transmission zone
nents of the wave function, respectively. The functions in the
zone before and after the laser beam can thus be _character— —fo(Zn) Un—1+ fo(Zn_1) ¥n=0. (7)
ized by ¢(z2)=fp(2)+rfy(z) and tfp(z), respectively,
wherer andt are the reflection and transmission amplitudes,From Egs.(4)—(6) we thus obtairN equations, which form
respectively. The aim of this work is to analyze the reflectionan easily solvable tridiagonal system of equations. Once we
probability |r|? as a function of the momentumg atz=0.  know the solutions &, andzy, we can obtain the values of
Using convenient units of lengttk (1), momentum k), r andt.
and frequency ¢,=#%k?/2M), we can rewrite the Schro Without considering spontaneous emission, from the ex-
dinger equation in a dimensionless form pressions of the reflection and transmission zones it is pos-

(6)
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sible to state that the law of conservation of the flux has the | _

form |r|?+|t|?>=1. This conservation law can be used to 'Ve,,v(Z)l
check our numerical analysis. In all the calculations the erro
is less than 108, guaranteeing that our method is consistent.
This check is evidently only a preliminary step before in-
cluding spontaneous emission, which produces flux losse:
We also confirmed that in the absence of gravity our metho
leads in all the cases to the same result 1], i.e., is
completely equivalent to a transfer-matrix method. Adiaba-

=
<

ticity was checked in all the calculations by a comparison 2 1
with a fully spinorial calculation. z 08

In Fig. 2 we address the case of the-2p ‘Li transition, é 0.4
whose parameters ave=670.8 nm,w,=3.96x10° s %, y & 0.3

=3.72x10’ s71, and 3=0.000 293. In this figure we con- 05 1 15 2 25 3

sider = —5. The position of the center of the laser region is (b) g
atz.=300/27k 1=0.142 mm and the half-width of the la-

ser Gaussians is given by=100rk '=33.5um. For a o1

typical laser with a Gaussian profile, the reflection spectrun 08

is flat and equal to zero, because for this detuning the poter E g:g

tial is always attractive and thus there are no turning point: g 02 A

(this is true except for very low momentum, for which quan-
tum reflection such as that reported 2] is producegl This

is what one would observe in the case of an anfye0. Let

us analyze the effects of the periodicity that appear in the
potential whene is not zero. Let us consider the casedof

= 7/3. By using the previous numerical method, we show in
Fig. 2(b) the reflectivity without considering gravitation and
spontaneous emission. In order to obtain a physical insigr
into the effects behind these exact numerical results of re
flectivity we cannot use the previous simple cosine-square
model, but we must take into account the Gaussian envelop
i.e., that the amplitude of the cosine-squared oscillations i
not constant within the laser region. In order to take this intc
account, we define a band struct{iFég. 2(a)] for each value

of the envelope function\,) [18]. As each value of the
envelope is linked with a spatial position, then a space

Reflectivity
=
EN

dependent band structure appears. In particular we obsenr 0

that for certain momenta some spatial regions are forbidde 5 1 18 & 258

(white regiong. We will call these regions spatial gaps. In (e) q

this case we observe that three spatial gaps appear within the

envelope(white region$. By extrapolating to zero potential, FIG. 2. Results, as a function of tzanomentumg at z=0, for

we recover the Bragg orders, as one obtains the Bragg mod#® case of the 22p "Li transition, consideringn=—5, Z,

for tiny refractive indices in the PBGSs. By comparing Figs.=300/27, d=100m, and¢= /3. (a) Band structure as a function
2(a) and 2b), we can understand why some momenta areof z i.e., for different values of the envelope functipr,]. Note
reflected: If an atom, with some momentum, while travelingthat in this case three gagahite region are opened. Small ver-
inside the laser finds a forbidden regitfor its momentum tical bars indicate the position of the Bragg modes. The atoms are
then it is reflectedif the region is very narrow there is some assumed to travel in the graph initially from bottom to top, begin-
probability of tunneling through it, leading to partial reflec- Ning with momentumq at the bottom £=0) of the figure.(b)
tion). We show now that other details of the reflectivity can Reflectivity calculated without gravitation and without spontaneous
be easily explained using this image of spatial gaps. In Figgmlssmn.(c) Ref!ec_tlwty calculated without gravitation but with
2(c) we add the effect of spontaneous emission 4o ;pontanegus ermssmn fpr:.—ZOOy. (d) Band §tructure a.safunc-.
— 200y=—7.44x 10° 52 (Qo=1.214X 10 L which tion of z, including gravitational effects. Forbidden regions are in

means an intensity per bedrs 54 mW/cn?). The spontane- \t/vhite. _Tilting is clear_ gqmpared tte). The atoms are a_lssgmed_to
. . ravel in the graph initially from bottom to top, beginning with
ous emission acts as a mechanism of flux Ioss_es and ther lomentumg at the bottom £=0) of the figure (e) Reflectivity for
f_ore gffects th? _reflectlpn spectr!,lm by introducing a rGduc'the same case as (n) but with gravitational acceleration.
tion in reflectivity. This reduction can be observed by
comparing the cases witholEig. 2(b)] and with[Fig. 2(c)]  reach a forbidden spatial region for small values of the en-
spontaneous emission. The details of this reduction can beelope are reflected earlier than the components that reach a
explained using the image of spatial gaps. The longer thepatial gap for larger values of the envelope. Thus the first
atom stays inside the laser region, the larger the effects of thenes are affected by the laser for a shorter time and then they

spontaneous emission. The momentum components thate less affected by the spontaneous emission than the later
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isfy the adiabatic condition. Figurg® shows the reflectiv-

ity for the case of Fig. @&). Spontaneous emission is not
considered, which is a valid approximation for very large
detunings or for metastable transitions. Gravity is not con-
sidered because, as remarked above, its effect is only impor-
tant for extremely low momentaj&0.5). As in the case of
Fig. 2, the atoms are reflected if, when traveling inside the
Gaussian envelope, they find a forbidden region. Thus, in
this case we observe that a momentum up to 5 times the
recoil momentum can be reflected. The figure also shows the
appearance of oscillations in reflectivity fqe>3. The for-
bidden regions are very narrow fgr>3 and hence the at-
oms can partially tunnel through them. After tunneling
g through a narrow forbidden region the atoms find the next
gap, from which they can be partially reflected back to the

first forbidden region, where they can be partially reflected,
1 and so on, leading to multiple reflections between the gaps.
.*E‘ 0.8 The oscillations in the reflection spectrum are due to these
€ 0.6 multiple reflections.
= 04 To conclude, let us sum up a few remarks concerning the
> 0.2 validity of Eqg. (1) and the detection of the reflected atoms.
0 Atoms that travel out of the region of=0 but close to it
1 2 also undergo a periodic potential that leads to similar quali-
®) 5 tative effects. However, the results obtained in this work are

strictly only for x=0 or for a very close neighborhood and
can be quantitatively distorted by the atoms falling out of
this zone. Let us analyze a detection arrangement that could
~ : lead to a measurement of the reflection that could quantita-
d=100m, and »=—200. (&) Band structure as a function af tively coincide with our theoretical calculations. Fab

without including gravitational effects. Note that several gaps - . . :
(white region$ are opened. The atoms are assumed to travel in theS /3, in & region offx|<d/5 the profile of the amplitude of

graph initially from bottom to top, beginning with momentugrat the field is ap_proximately constant gnd c_equal to the profile at
the bottom ¢=0) of the figure(b) Reflectivity without considering x=0; Eq. (3)_'5 therefore valid in this neighborhood. DUG_} to
spontaneous emissiofvalid for large detuning compared to the thexdimensions of the trapped cloud and because the initial
spontaneous emission or for metastable transitiamsl without ~atomic beam(although very coliihas anx-momentum dis-
considering gravitatioriwhose effect for the case dti atoms is  tribution and therefore spreadsduring flight, part of the
basically a very small displacement to lower momeénta beam falls out of the previous very narrow region. We can
detect the reflection of the atoms with a weak probe laser by
ones. This effect is clearly observed on comparing Fig®. 2 studying the fluorescence of the atoms. This probe beam can
and Zc). For larger detunings, the effects of spontaneouse considered as directed in théirection, placed above the
emission are smaller and can in fact be almost completelprrangement and sufficiently focused to obtain a very narrow
negligible if we use/A|>vy. The use of metastable transi- spot of width 0.4 in the x direction in the zone of dropping
tions, such as Raman transitigri®], can also allow sponta- and therefore the detected fluorescence is mainly produced
neous emission to be neglected. In Figd)2ve add the ef- by atoms traveling inside the laser within the narrow region
fects of gravitational acceleration. Note now that the|x|<d/5. Additionally, if the laser frequency is chosen with a
symmetry inz is broken due to the tilting of the bands, large detuning from the transition the effects of the pressure
whose main effect is a displacement and a broadening of thef radiation(i.e., the effects of the absorption of momentum
bands[Fig. 2e)] [20]. The effects of gravity are very small k cosg¢ in thex direction, which tends to move the atom out
for two reasons. First, for a fixed distanggit is easy to  of x=0, are negligible. The Gaussian dependence also af-
show from simple Newton laws that the larger the initial fects they direction, but this dependence is so smooth that it
momentum az=0, the smaller the effect of gravity over the can be neglected in the region we are studying. This is the
distancez (for example, ifg=2 atz=0, the final momentum reason for simply taking into account a two-dimensional
atz, is 9=2.09). For small momentum, the effects of grav- model in thex-z plane. Finally, we remark that other experi-
ity would be important; however, the reflection is not pro- mental arrangements that lead to a spatially periodic poten-
duced atz, but earlier, when the atoms find a forbidden tial confined in a finite region can afford similar qualitative
region, and so the effects of the gravitation are again smalkesults.
The effects of gravity are appreciable only for very low mo- To summarize, we have shown that an attractive periodic
menta §<0.5), as seen in Fig.(8). laser profile can act as an atomic mirror for some specific
If we increase s| more gaps are opened inside the lasermomenta. The reflection on this laser arrangement has been
region, as seen in Fig.(& for the same case as Fig. 2, but analyzed using an exact numerical calculation, based on fi-
now %= —200. Increasing the potential means increasing theaite differences, and completely equivalent to a transfer-
laser intensity, but also increasing the laser detuning to satnatrix method. We have also developed a simple model

FIG. 3. Results, as a function of tkenomentumqg at z=0, for
the case of the €2p “Li transition, consideringz,=300/2,
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based on the spatial dependence of the induced band strysdrely quantum effects, i.e., the periodicity of the laser po-
ture, which allows a physical understanding of the relevantential hinders some momentum components from propagat-
processes behind the numerical results of the atomic refle¢ag inside the laser beam and they are therefore reflected.
tion. Until now, all reported atomic mirrors have been con-Like their counterparts in usual optics, these mirrors produce
structed with repulsive laser potentials and are therefore thgflection only for certain momenta, i.e., they have a reflec-
equivalent of the usual metallic mirrors in optics. For thesejyity that can be strongly dependent on the de Broglie wave-

as the effect of a classical repulsive force. Here we havgy great interest for certain atom optics devices.

shown a conceptually different kind of atomic mirror, con-

structed with an attractive periodic potential. These mirrors Partial support from the Spanish DirecsicgGeneral de
underscore the similarities between light and atom optics beinvestigacim Cientfica y Tecnica (Grant No. PB95-0955
cause they are the equivalent for atoms of a photonic bandind from the Junta de Castilla y Lie¢Grant No. SA 16/98
gap structure in light optics. Reflection is achieved due tds acknowledged.

[1] D. W. Keith, M. L. Schattenburg, H. I. Smith, and D. E. Prit- [14] W. Zhang and B. C. Sanders, J. Phys2B 795(1994.
chard, Phys. Rev. Let61, 1580(1988. [15] See, for example, N. W. Ashcroft and N. D. Mermi@&olid
[2] O. Carnal and J. Mlynek, Phys. Rev. Led6, 2689(1991). State Physic¢Saunders, Philadelphia, 1976
[3] O. Carnal, M. Sigel, T. Sleator, H. Takuma, and J. Mlynek, [16] G. J. Liston, S. M. Tan, and D. F. Walls, Appl. Phys. B: Lasers
Phys. Rev. Lett67, 3231(1991). Opt. 60, 211(1995.
[4] M. O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. [17] S. M. Tan and D. F. Walls, Phys. Rev. 30, 1561(1994.
G. Townsend, and W. Ketterle, Phys. Rev. LetB, 582 [18] This approximation leads to a good explanation of the details
(1997. of the exact numerical results. Its validity is based on the fol-
[5] V. 1. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, and A. I. lowing considerations. In the cases analyzed in the present
Sidorov, Phys. Rev. Let60, 2137(1988. paper the width of the Gaussian envelope of the potential at
[6] T. Roach, H. Abele, M. G. Boshier, H. L. Grossman, K. P. 1/e is 245 cosine-squared periods. Since the width of the
Zetie, and E. A. Hinds, Phys. Rev. Le®5, 629(1995. Gaussian is much larger than the periodicity of the cosine
[7] See, for example, M. Wilkens, E. Schumacher, and P. Meystre,  squared, we can consider that within small intervals of the
Phys. Rev. Ad44, 3130(1991. envelope we have a large number of cosine-squared oscilla-
[8] P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard, tions of approximately constant amplitude, for which we can
Phys. Rev. Lett60, 515 (1988; L. Santos and L. Roso, J. define a band structure. We can extend this reasoning and de-
Phys. B30, 5169(1997. fine a band structure for each value of the envelope function
[9] E. M. Rasel, M. K. Oberthaler, H. Batelaan, J. Schmiedmayer, (Veny. This is the band structure calculated for a cosine-
and A. Zeilinger, Phys. Rev. Letf5, 2633 (1995; D. M. squared potential of infinite periods of constant amplitude
Giltner, R. W. McGowan, and S. A. Leebid. 75 2638 Veny-
(1995. [19] M. Kasevich and S. Chu, Phys. Rev. Lei8, 1741(1992. In
[10] E. Yablonovitch, Phys. Rev. Let8, 2059(1987. Bragg scat- this reference, a large detuning from the optical resonance is
tering is a special case of PBGS for a tiny refractive index; see  assumed. If this detuning is very large, the two ground states
the discussion in E. Yablonovitch, J. Opt. Soc. Am1& 283 form a two-level system with an effective Rabi frequerky

(1993. Moler, D. S. Weiss, M. Kasevich, and S. Chu, Phys. Rev. A
[11] A. Messiah,Quantum MechanicéNorth-Holland, Amsterdam, 45, 342 (1992]. We can use our theory with this two-level
1961, Vol. I. atom, where the detuning that we use is the detuning from the

[12] C. Henkel, C. Y. Westbrook, and A. Aspect, J. Opt. Soc. Am. Raman transition. Spontaneous emission is then suppressed,
B 13, 233(1996. even though this last detuning is small.

[13] The adiabatic approximation is valid if the precession fre-[20] Recently some studies on the effects of the acceleration of an
quency of the two-level system, given by the generalized Rabi atom inside a periodic potential have been reported. See, for
frequency, is very large compared to the reciprocal rise time of example, Q. Niu, X. G. Zhao, G. A. Georgiakis, and M. G.
the electric-field amplitude. For very large detuning, this con- Raizen, Phys. Rev. Let76, 4504 (1996; M. B. Dahan, E.
dition is satisfied and we can use the so-called adiabatic ap- Peik, J. Reichel, Y. Castin, and C. Salomdid. 76, 4508
proximation, in which the spatial derivatives of the eigenvec- (1996; S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q.
tors of the Hamiltonian can be neglected. This approximation Niu, and M. G. Raizenibid. 76, 4512(1996. In these refer-

allows splitting of the Schidinger equation, which initially
has a spinorial form, into two scalar ScHinger equations,

each one describing the evolution of one dressed state. For a
more detailed analysis of the adiabatic approximation, see, for
example, R. Deutschmann, W. Ertmer, and H. Wallis, Phys.

Rev. A 47, 2169 (1993. In contrast to this reference, in the
present paper we approximaigz~A because\ is very large.

ences, experimental observations of the well-known Bloch os-
cillations (BOg and their stationary counterpart, i.e., the
Wannier-StarkWS) ladders, are reported. BOs can be easily
understood for weak potentidlg. Peik, M. B. Dahan, Y. Bou-
choule, Yvan Castin, and C. Salomon, Phys. Re\a5A2989
(1997]. Due to accelerationy increases linearly according to
Newton’s law until it reaches a critical value satisfying the



2412

Bragg condition. The atomic wave is then reflected and its
momentum is reversed. The atom travels again under New-
ton’s law until it reaches another Bragg condition and is then
reflected again. BOs can therefore be understood as oscilla-
tions between two Bragg reflections. In our problem, BOs
would be produced if the atoms were spatially confined be-
tween two gravitationally tilted forbidden regions. Multiple re-
flections would then occur at the edges of the forbidden re-
gions, leading to an oscillatory motion. However, in our case,
the atoms come from outside the laser. If the atoms reach a
forbidden region, they cannot be transmitted and are reflected
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back to free space. The atoms are therefore not between two
gaps and hence cannot develop such multiple oscillations. Ac-
cordingly, the gravitational field does not lead to Bloch oscil-
lations and so no effect of the WS ladders is observed in the
reflection spectrum. Only if the first forbidden region were
very narrow could the atom tunnel through the forbidden re-
gion (in a similar way to Landau-Zener tunnelingnd enter an
allowed region, finally reaching another forbidden region and
producing multiple reflectiongFor a review of the BOs, and
WS ladders in the context of solid-state physics see E. E. Men-
dez and G. Bastard, Phys. Tod4§ (6), 34 (1993].



