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Homodyne measurements on a Bose-Einstein condensate
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We investigate a nondestructive measurement technique to monitor Josephson-like oscillations between two
spatially separated neutral atom Bose-Einstein condensates. One condensate is placed in an optical cavity,
which is strongly driven by a coherent optical field. The cavity output field is monitored using a homodyne
detection scheme. The cavity field is well detuned from an atomic resonance, and experiences a dispersive
phase shift proportional to the number of atoms in the cavity. The detected current is modulated by the
coherent tunneling oscillations of the condensate. Even when there is an equal number of atoms in each well
initially, a phase is established by the measurement process and Josephson-like oscillations develop due to
measurement backaction noise aloi#1050-294®8)03509-4

PACS numbg(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

. INTRODUCTION fixed points atr;=+qgX,r,=—qox, where g5=d/2b, at
which the linearized motion is harmonic with frequensy
The experimental observation of Bose-Einstein condensa= (4d/m)2. We setw,= w, for simplicity. It is convenient
tion (BEC) in dilute systems of trapped neutral atofis-4]  to scale the length in units of the position uncertainty in a
has stimulated a large research program on Bose-Einsteffarmonic oscillator ground state, where ro= \%/2maw.

condensation of dilute neutral atom gases in confining potenrhe parrier height is then given W= (% wq/8) (0o /T o) 2.
tials. One aspect of BECs that has attracted much theoretical The many-body Hamiltonian describing an atomic BEC

work is the idea of phase. Several papfs7,10,11 have i a confining potential i§13]
discussed the role of measurements in establishing the phase,

in the form of interference between two condensates or .
Josephson-like coherent tunneling between the condensates. H(t)zf d°r
The latter situation is discussed in this paper, where we in-

vestigate homodyne detection of the output of an optical cavyyhere m is the atomic mass,J,=4=#%2a/m measures the
ity containing one condensate in a double well system. Theyrength of the two-body interaction, aradis the s-wave

measurgment process induges tunneling oscillqtions thoug&:attering lengthi/(rt) and i (r,t) are the Heisenberg pic-
backaction noise and thus induces a phase difference b(E__]re field operators, which annihilate and create atoms at

h—zv”v”w“#ﬁ**” 2
S VIV IV S

Consistent manner he tunneling mposes a phase modiatggSonT: and normal ordering has been used.
' g imp b For a suitable choice @, only two energy eigenstates lie

on the light field, which is detected in the homodyne currentbeneath the barrier, which enables a many-body treatment in
terms of only two single-particle states. For details we refer
Il. CONDENSATE MODEL to [12]. We now define the statay(r) as the normalized

The model of the condensate used here, namely, the BE@round-state mode of the local potenfiédf(r), around the
in a double-well potential, has been presented in previougottom of each well, with energ§,, and define the local
papersg12], and so we only present a brief overview of the mode solutions of the individual wells, 5(r)=uq(r—ry ).
system here. The potential is symmetric with barrier heighiThese local modes are approximately orthogonal with a first-
and well separation chosen so that only two single-particl®rder correction ¢') to orthogonality given by the overlap
states are below the barrier separating the two wells. Thigetween the modes of opposite wells. The energy eigenstates
enables a treatment of the many-body problem with a twoof the global double-well potential may then be approxi-
mode approximation. The resulting model is sufficiently mated as the symmetricH) and asymmetric{) combina-
simple to enable an analytic solution to be found for thetions
semiclassical equations, and to permit a tractable numerical

comparison of the semiclassical description with the full 1
quantum dynamics. u.(r)~ E[Ul(r)iuz(f)], 3
Consider a dilute gas of atoms moving in the double-well
potentialV(r) with with corresponding eigenvaluds, =Ey+ R, and
d\?2 1 5
V(r)=b| x*= 5| +5moi(y*+2%), 1) sz dBrur (N[VI) -V —r)Jus(r). (@)

where the interwell coupling occurs along and w, is the ~ The matrix elemenfR, which is of ordere!, describes the
trap frequency in the/-z plane. This potential has elliptic coupling between the local modes. The tunneling frequency
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) between the two minima is then given by the energy level s 1oy :
splitting of these two lowest states: J;=5(C1C2F €30, (12
qé 2,2
— — _Y Aggler R 1
Q=2RI% “’02r(z)e oo (5) Jx=§(c£c2—c’{cl), (13)

In the two-mode approximation we expand the field opera- i
tors in terms of the local modes and introduce the Heisen- Jyzz(cgcl—clcz) (14)
berg picture annihilation and creation operators

s xn and settinchcl+c£cz= N=N (as the total number is con-
Cj(t):f derui (r)g(r,t) (6)  served, the Hamiltonian becomes
so that[c;,c}]~d;x. The validity of this expansion if en- H,=%Q0J,+2hkJ2. (15)

sured when the overlap is small: ) 5
Here we have neglected terms proportionalNoand N

R Q since they merely correspond to a shift in the energy scale.
£ =—<L (7 The Casimir invariant is
0 0
The ratio of the separation of the minima of the global po- AZ_N N
tential V(r) to the position uncertainty in the staig(r) can J ) §+1 . (16)

be as small as@,/ry=6 (as in the simulations presented in
this papey, and this condition is still satisfied. The many- This is analogous to an angular momentum model with total
body Hamiltonian then reduces to the following two-modeangular momentum given bjy=N/2.

approximation: The angular momentum operators have a simple physical
interpretation. The operatal, corresponds to the particle
- T I hQ Toet occupation number difference between the single-particle en-
Ha(t) =Eo(C1€1+€3C5) + —~(C1C2+ C1C) pa > Single-particie
ergy eigenstates. For example, the maximal weight eigen-
+ﬁx[(0{)2ci+(c§)2c§], ®) state|j,j), corresponds to all the particles occupying the

highest single-particle energy eigenstatg(x). The opera-
where k=Uy/2h Vg, and V= [d3r|ug(r)|* is the effec-  tor J, gives the particle number difference between the lo-
tive mode volume of each well. calized states of each well. In fact tikecomponent of the
The two-mode approximation is valid when many-body position operator in the field representation is
interactions produce only small modifications of the ground-

state properties of the individual potentials. This is true when A~ 20p-
X= N (17)
A% N|Ug|
h(,!)oz 2> . (9) Th . .. . . ~
omr Vst us the maximal and minimal weight eigenstated,otor-

respond to the localization of all the particles in one well or
3/2,.3

Using Veg~87>%3 for this case, we obtain the following the other.
condition on the number of atoms:
I1l. HOMODYNE DETECTION SCHEME

N<|%O|- (10 Figure 1 illustrates the system under investigation here.
One of the wells of the double-well system is placed in one
The values used in our simulations, namely=5 um, a  arm of an optical cavity. The cavity is strongly driven by a
=5 nm, andN=100 satisfy this criterion. Thus the two- coherent field at the cavity frequency. We assume that on the
mode approximation is valid for small number of atomstime scale of tunneling oscillations, the cavity is heavily

to an interaction picture, resulting in the Hamiltonian us to make an adiabatic elimination of the cavity dynamics.

The cavity field is assumed to be far off resonance with
- — +io 2 2.2 respect to a dipole transition in the atomic species. The effect
Ha=—-(CiCoHcico) +hnl(cy)cit(c)°Cal. (1) of the atoms is then entirely dispersive and shifts the phase

of the cavity field by an amount proportional to the number

A full guantum analysis of the quantum dynamics result-of atoms in the cavity at any particular time. If the atomic
ing from the many-body Hamiltonian E) is not tractable, number in the cavity oscillates, so will the phase shift. Thus
however, considerable insight can be gained within the twoany tunneling of the condensate will be manifest in a modu-

mode approximation. 1h12] an angular momentum model lated phase shift of the optical field exiting the cavity. To
was defined, which is equivalent to the Hamiltonian Bd).  detect this phase shift we consider a homodyne detection
Using the transformations scheme. The light leaving the cavity is combined with the
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‘an Condensate

o FIG. 1. Schematic representation of the ho-
modyne detection scheme to monitor the tunnel-
ing between two spatially separated condensates.
One part of the condensate is contained in an op-
tical cavity. The light in the cavity is well de-
tuned from the atomic resonance. The output
light from the cavity is detected by balanced ho-
modyne detection.

1st Condensate

R VA,

Photodetector

N

reference beam and allowed to fall ona ph_otodetect(_)r, which o= —1 3, piod — 126132, pror]
records the photocurrent. If there is a difference in atom

number of the two condensates, then coherent tunneling can ) Ny N ) o oy
occur and the homodyne current will be modulated at the —i| d- 5 |[aapaltixla'adapiod —iela
tunneling frequency.

Assuming that the incoming light is detuned from any v vt +
atomic resonance, the interaction Hamiltonian density is +apolt5(28p0@ —a'apo po@’d), (2D
A A - where the initial cavity detuning=Ny/2 is chosen to re-
Hi=V(N[Hem—Aug(ra'a]w(r), (18
50 . : j
wherea, a' are the cavity field operatorg(r) is the inten- 40, an
sity mode function, ang.=Q2/4A, with Rabi frequencyg 30l |
and optical detuningA. ¥ (r) and ¥'(r) are the atomic ol |

many-body operators, ardl. ,, describes the center-of-mass

motion. L1 1
Introducing the condensate field operators’ and aver- X< of i
aging over the optical mode function gives the interaction ¥
energy: -
-20
H,=—7%ya'aclc, -30
-40
= —ﬁﬂ afa—fiya'al (19) -50 ‘ : :
2 X Xa adx, 0 50 100 150 200
Time t
. . . i -42 ; :
wherey is the interaction strength. If the optical mode has a (b)
beam waistv, then the interaction strength can be written as  -43; ‘
-44
z | |
X= e (20) ~45 |
V2(ro/w)?+1 o “| ”
D as
o |
For N=100 atoms,y>10 3s ! should give detectable -47
phase shifts (0.1 rad), and should be experimentally fea- ” H
sible. For example, witlry as abovew=30 um, A/27 ‘48
=100 MHz, saturation intensitys=17 Wi/n?, optical fre- _49
quency w/27=3.8X10" Hz, atomic linewidth y,/2
=10’ Hz and incident poweP=6 mW, in a cavity 10 cm -50 \ : :
long, theny~10"2 s~ L. Larger values ofy may then be 0 50 . 150 200

achieved by reducing the detuning or the incident intensity. R

The cavity is assumed to be driven by a strong coherent FIG. 2. Evolution of(J,). in the monitored system, foN
field of strengthe and strongly damped at the raje Hence =100 atoms all initially in one well andy=0.01. In (a), «
the master equation for the whole system is, with 1, =0.005 and in(b), x=0.02.
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move theN-dependent linear dispersion. The optical fieldthat gives an equal number of atoms in each well. Presum-
may now be adiabatically eliminated from the master equaably in a real experiment, the initial state would be
tion [14]:

- 3 32 2 (7)) =€}, 0)x. (30
=—iQ[J,,p]—12«[I5,p]+ix|a|TIy,
P [Jz.p] [pltixal el where 7 is a random variable uniformly distributed on the
~D[3,.[.p]] (22)  interval[0,27]. This then implies a random initial phase.

A common technique for dealing with master equations
where the coherent amplitude i&=-—2ie/y and D describing open systems in quantum optics is to numerically
=8x%€?/y®. The double commutator represents a decohersimulate stochastic realisations of quantum trajectories. This
ence produced by photon-number fluctuations in the opticainethod has already been used by several authors investigat-
fields. It is a quantum measurement backaction term consisng the effect of measurement on the relative phase of BECs
tent with the interpretation that the optical field makes a[7-9], but these differ from the approach used here in that
measurement on the condensate. In fact this last term deve monitor the homodyne detection current. The resultant
stroys coherence in the eigenbasis Jof and thus should Stochastic process is a diffusive evolution rather than the
inhibit tunneling oscillations. This is indeed true for the en-jump processes that occur in the direct detection of atoms or
semble of measured systems described by the master equ@dividual photons. The quantum trajectory method is a very
tion. However, as we show below, it is not true for a particu-appropriate one for the situation considered in this paper. We
lar realization of a single measurement run. The ensembldiave one two-part condensate system continuously moni-
averaged effect of the measurement can be seen in thiered by the homodyne detection scheme. If there is any

operator moment equatiorifor x=0): phase difference between the two parts of the condensate it
will be established in each run of the experiment. The quan-
<3 Y= _Q<j ) (23) tum trajectory method enables us to simulate each run of an
X y/

experiment. The master equation, however, corresponds to
an average over many runs of the experiment and many ho-

(Ip)=xlal*(I)+ 03,0 —D(Jy), (24 modyne current records. For this reason moments calculated
N R R directly from the master equation will show no evidence of
(J,)= —X|a|2(Jy>—D<JZ>. (250  quantum tunneling if there is no initial phase difference be-

] o ~ tween the condensates. In contrast, as we show, a single run
The terms with coefficienty|a|? produce a precession of the experiment can establish a self-consistent phase dif-
around thex axis, which tends to inhibit coherent tunneling. ference even if no phase difference is present initially. Such
The effect of these terms can be negated by adding a linegf “measurement induced” phase difference is manifest in a
ramp, or tilt, to the double-well potential. Tl terms cause measurement induced tunne”ng current.
a decay toward the origin, indicating decoherence, as ex- The conditional master equatior{that is the evolution

pected. If the system is started in a number state with agonditioned on the measurement rektdir the optical field
equal number of atoms in each We”, then no tunnellng W|”undergoing homodyne detection[%llq

occur at all—these moments remain identically zero.
When the wells are tilted, so that the precession around dp.

the x axis is suppressed, we can obtain equations for the (W) _ =yDlalpe+y

second order moments: field

dW(t)
dt

Hlalpe, (31

wheredW(t) is the infinitesimal Weiner increment. In this

(3§)=—Q<A>, (26)  equation,p. is the density matrix that is conditioned on a
particular realization of the homodyne current up to titme
(32=Q(A)+2D(<32>—<32)) 27) Wiseman'’s superoperators are defined as
y z y/ /s
Ny o Dlalp=apa’—;(a’ap+pa'a), (32)
(35)=2D((I) (32, (28)
H[a]lp=ap+pa'—tr(ap+pa’)p. (33
(Ay=20((3%)—(3%)-D(A), (29) The stochastic Shdinger equation, which describes the

N oA aoa conditional evolution of the system is

where A =J,J,+J,Jy.
Thus even when the system is started with an equal num- d|€1'fc(t)>:dt[_i|3|2_i|f|l 1ya'a+l (t)a]|qfc(t)>,

ber of atoms in each well, the unconditional evolution of (34)

(3%) and () exhibit oscillations initially. For long times, A . ~ N . _

the amplitude of these oscillations decays du®tand the ~WhereH,=0QJ,+2xJ; and|W (1)) is theunnormalizedket

system approaches the fixed po(rfiﬁ):(jf,):(ji). From descrlbmg the condmoTnaI state of the system. The meas_ured

this we see that the condensate has on average a definfdTent isl (t)=y(a+a’)(t)+ V7(1), where the stochastic

initial phase(which is clearly seen in the second-order mo- €M &(t) has the correlations

ments, but not the first-order momentahich is determined (£(1))=0, (35)

by the initial state. In our simulations the initial state was

chosen to be a eigenstatefl;f, which is not the only state (&(1),&(t"))=8(t—t"). (36)
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FIG. 3. Evolution of(J,). in the monitored system, fdd= 100 atoms an&=0. In (a), y=0.0001, in(b), x=0.001,(c), y=0.01, and
in (d), y=0.1.

Thus we can see how the system evolution is conditioned The terms in the equation due to the measurement depend
upon the measured current. o _ on the quantityd,—(J,).. This is minimal in semiclassical
Adiabatic elimination of the optical field, using E(L9) type trajectories for WhiC|Q3)2<>c factorizes to(j)(}g. Thus it

gives may be expected that for some range of valuegypthe

8x2€? stochastic measurement terms would drive the system to-
d[P () =dt| —iH,— =32+ 1(1)3, || T(1)), wards an oscillating trajectory for whig2),=(J,)2.
Y
(37)
IV. SIMULATIONS
2.2

I(t):?,ZX—E<jx>c+4£ d_W(t)_ (38) The results of the simulations are shown in Figs. 2-5.

y: \/? dt Time is plotted along th& axis in dimensionless uni{®or-

malized by the inverse of the tunneling frequeri@y. The
Hence the oscillations in the occupation number between thetrengths of the atom-atom collisions and the atom-field in-
two wells can be determined from the measured current. teraction were controlled by varying the normalized vari-
It is helpful to consider the Shdinger equation for the ablesk= x/Q and?zxe/\/ﬂ_yg. The parameters stated pre-
normalizedket, which does not explicitly mention the detec- viously give the range of measurement strengths used in the

tion current: . . — .
simulations (104< y<0.1) when the power of the optical

2,2 field is varied from 0.06 to 6 mW. The mass of the particles
dW(t))=| —iA,dt— - (3= (3,)0)%dt is taken to bem=1.5x10"% kg.
Y The measured current gives the conditional dynamics of

the the system. However, in the conditional results shown,

+ 4X—6(jx—<jx>c)dW Ww(1). (39 We plot(J)c, which is proportional to the current without
NE% the noisg Eq. (38)]. For clarity, the other moments, namely,
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FIG. 4. Unconditional evolution of second-order moments, for 15 ‘ .

N=100 atoms an&=0. In (a), x=0.01, in(b), y=0.1 (c)
10t .

(Jy)c and(J,)., are not plotted in the figures. Except when 5 ﬂ |

K is very large, (Jy>c follows (J,)., but with a /2 phase

difference, and J,). remains at or close to zero. 0 %

The dynamics of the unmonitored system when started 2 AL U
with all the condensate in one well has been discussed |n _5 .
previous work[12]. Basically when there are no atom-atom
interactiongi.e., k=0), (J,) oscillates from—N/2 to + N/2. -10f ]
When the interactions are present but only weak, tunneling
still occurs, but the amplitude quickly collapses due to non-  -15¢ 1
linear dephasing. The collapse is followed some time later by
small revivals. There is a critical strength of collisionsN 20, 50 100 150 200
=1) at which the tunneling is suppressed. Above this value Time t

of x, the condensate is trapped in the well in which it started,
with only very small oscillations occurring i(ﬁx)
We expect to see similar behavior in the current of the

monitored systemEg. (39)]. Whenk=0, (JX>C oscillates as
before, for weak atom-light coupling.e., yN=<1). For changes are also more pronounced. The effect of the critical

stronger measurements, the resulting backaction can be se¥dlue (<N=1) is seen in the suppression of the oscillations
in the current. For long times, the amplitude of the tunnelingin the current above this value. Figure 2 shows the evolution
oscillations starts to fluctuate and a slow phase change isf (J,). for values ofx above and below the critical value.
evident. In the case when atom collisions are present, the If the system is started with an equal number of atoms in
effect of the measurements is to halt the collapse of the oeach well, then we expect no coherent tunneling in the ab-
cillations seen in the unmonitored system. The phasgence of any detection apparatus. However, the presence of

FIG. 5. Evolution of(J,). in the monitored system, foN
=100 atoms, and( 0.001. In(a), k=0.0001, in(b), k=0.005,
and in(c) k=0.02.
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the field effects a measurement on the condensate systesmall in amplitude and most likely to suffer random fluctua-
This should establish a phase, which can be detected by metiens.
suring the output currerlt(t). The simulations of Eq(39) The presence of atom-atom interactions increases the

show an oscillation in the current and, for the optimum in-phase diffusion, even for quite weak collisioneN<0.1).

teraction strength, this can be established in a few tunnelingigure 5 shows the evolution ¢8,), for various atom-atom
periods, for a small number of atoms. The results for the case — Xre

. . — . Interaction strength, above and below the critical value.
where there are no atom collision, i.&;=0, are shown in - o Jmpjitude is also more irregular, and the Fourier trans-
Fig. 3, for various measurement strengihsThe growth in form of the oscillations no longer shows a clear peak at the
oscillations occurs because, for large enoygh(J,)2 is  expected tunneling frequency, but a group of random spikes

driven to matcl”(f]i)c, which typically has large oscillations. centered on the the tunneling frequency. In Figh)5 k-
If, as in Figs. 3a) and 3b), the interaction strength is too  =0.005, which is close to the value efcalculated from the
small (yN=<0.1), then generally the fluctuations are notparameters given in previous sections. Above the critical

large enough_to drive full _tun.neling and the current suffersyalue of kN=1, (f]X)C suffers small, very irregular oscilla-
small, rather irregular oscillations. However, even for largetions around the origiiFig. 5c)]. This is quite different

X, when the oscillations in the current are established, sucfrom the behavior o(jx>c when the condensate was initially
as in Fig. 3c), they are not guaranteed to stay large in am-placed entirely in one wel[Fig. 2(b)], in which case the
plitude. This is becausgl?), undergoes what appears to be acondensate was trapped in the well it started in and the criti-
random walk, which, because of the Casimir invariant, di-cal value ofkx marked quite a sharp bounddwyr bifurcation
rectly affects the amplitude of the oscillations Gﬁﬁ)c and between two diff_erer_1t t_ypes of behavior. In this case where
<j32/>c- Consequently, since the measurement Io(:fk,g)ﬁ the condensqte is dlstrlb_uted _equally between the_ wells, the
condensate is trapped in neither well, but remains across
Ol?oth, and the change in behavior as the critical point is

h bit of (32 h i ilati in th crossed is more continuous. Asincreases past the critical
the orbit of (J;)., the tunneling oscillations in the current i \ve see a decrease in the overall amplitude of the tun-

over a certain time frame in a “good” run may be large, but elina and in its reqularity. However. the critical value of
in another with the same parameters the oscillations may pac!ing ni gufarity. However, tical vaiu

small and irregular in amplitude. IS still quite meaningful in Fh.IS case ar.1.|nd|cat|on of when the
, i — i strength of the atom collisions significantly suppresses the
When the measurement is quite strongNE10), as in

: . o 92 tunneling.
Fig. 3(d), the tunneling oscillations appear to be quite irregu-
lar. However, a Fourier transform of the current picks out the
tunneling frequency) very strongly, so the fluctuations are
mainly in the amplitude of oscillations, not so much in the  We have shown that this homodyne detection scheme, for
phase. When the measurement strength is very lagdé ( an appropriate choice of measurement strengtbould well
=40), <jx>c still indicates a tunneling from one well to an- be suitable _to detect.the relative phase, in the form' of
other, but the oscillations are no longer harmonic and appeajoSéphson-like tunneling, between two condensates in a
quite random, both in frequency and amplitude. double-well poten_t|al. The dynamics of the measured current

The equations for thenconditionaldynamic§ Egs.(23)— reflec_t the tunneling of the condensa}tg as well as the self-

(291] show a decay in the oscillations (ﬁlﬁ) and(f]i) for trapping effect caused by atom collisions. It also demon-

I i hich i ith th ' st ttrates quite vividly how a measurement can establish a
long imes, which Increases wi € measurement srengtie ative phase in a system which initially exhibits no phase

x- Figure 4 shows the unconditional dynamics for two dif- jnformation.
ferent measurement strengths. No such decay is seen in the
individual trajectories, but rather there is a diffusion in the

phase of the oscillation over long times that accounts for the

decay in the mean evolution. This change in phase appears to The authors would like to thank H. M. Wiseman for use-
be most rapid over the periods when the oscillations aréul discussions.

onto the orbit of(J2)., this changes the amplitude of the
oscillations in the current. Because of the random nature

V. CONCLUDING REMARKS
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