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Dynamics of Bose-Einstein condensed gases in highly deformed traps
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We provide a unified investigation of normal modes and sound propagation at zero temperature in Bose-
Einstein condensed gases confined in highly asymmetric harmonic traps and interacting with repulsive forces.
By using hydrodynamic theory for superfluids we obtain explicit analytic results for the dispersion law of the
low-energy discretized modes for both cigar- and disk-shaped geometries, including the regime of large
guantum numbers where discrete modes can be identified with phonons. The correspondence with sound
propagation in cylindrical traps and the one-dimensional nature of cigar-type configurations are explicitly
discussed[S1050-2947@8)02509-9

PACS numbe(s): 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.9&

The recent experimental realizatiph] of Bose-Einstein tion can be written in a convenient form by expressing the
condensation in dilute gases of alkali atoms confined in magerder parameter in terms of its modulus and phabe,
netic traps has opened unique perspectives in the study of the Jpe'?, and looking for equations for the densjiyand for
dynamical and statistical behavior of mesoscopic quantunthe velocity fieldv=V¢. The equations of motion then take
systems. These highly degenerate quantum gases have bdba following form[5]:
shown to exhibit both the dynamic features of microscopic
many-body systems, associated with the occurrence of quan- d
tized collective excitationgnormal modeg and the ones of EPJFV(VP):O @
macroscopic quantum fluids, characterized by the propaga-
tion of sound in the collisionless reginieero soung and

The frequencies of the collective excitations have been
the object of various experimentd®—4] and theoretical P 72
studies, based on both analyfis—8] and numerica[9] in- M—V+V| Vet gp—
vestigations. The magnitude of these frequencies is fixed by dt 2m\/;
the oscillator frequency of the trapping potentigipically a
few tens of Hz, the exact value depending on the nature ofwhere g=4m%2a/m is the interaction coupling constant,
the excitationangular momentum, ejcand on the effects of fixed by thes-wave scattering length and
two-body interactions. In the experiment pf] the large
number of Bose-Einstein condensed atoms and the elongated Vex= sMw?r2 + imw?z? ©)
geometry of the trap have allowed for very precigesitu
images of the oscillations of the axial radius and conseis the trapping potential, for which we have made the choice
quently for high precision in the measurement of the collecof an axially symmetric oscillatorr( = NN y2 is the radial
tive frequencies, whose values turn out to be in excellentoordinate. Equation(1) is the equation of continuity, while
agreement with the predictions of thedy]. These experi- Eq. (2) establishes the irrotational nature of the motion.
ments, however, do not probe directly the phononic nature ofhese equations have the typical structure of the dynamic
the excitation because of the discretization of frequenciegquations of superfluids at zero temperat(see, for ex-
imposed by the harmonic trapping. ample,[12]).

The fact that phonons can propagate in the medium in a |f the repulsive interaction among atoms is enough strong,
continuous way, according to Bogoliubov theory, has beenhan the density profiles become smooth and one can safely
recently shown in the experiement[d0] where wave pack- neglect the kinetic pressure term proportionalitin the
ets have been produced and directly observed in a Bosequation for the velocity field. This yields, for the static so-
Einstein condensed gas of sodium atoms confined in a highlyition of Eq. (2), the so-called Thomas-Fermi expression
asymmetric, cigar type trap.

The purpose of this paper is to discuss the correspondence 1
between these two dynamic featurésccurrence of dis- po(r) = —[pm—=Vexr)] (4)
cretized collective modes and phononlike propagatemd 9

to give analytic results for the dispersion law of the coIIec-if 1=V (1), and zero elsewhere. Hege is the chemical

:a’: rrgoidn?: 'gf t:;er (;asi;]:tﬂ'rghE’u?negg:;nsyhg?epihénzlgig%ﬁotential, fixed by the normalization @f(r). In the case of
9 ge d armonic trapping one has

modes can be identified with phonons.
The proper theory to describe the dynamic behavior of 1 q |25

interacting Bose gases is the time-dependent Gross- u= —hwo( 15N _) ,

Pitaevskii[11] equation for the order parameter. This equa- 2 aHo

1
v2\p+ Emv2 =0, (2

©)
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where wg= (wzwf)l’?’ is the geometrical average of the os- out on a very asymmetric trapof/w, =17/230), it has been
cillator frequencies and, o= \#%/ma, is the corresponding Possible to measure at low temperature the frequency of the
oscillator length. The Thomas-Fermi approximatigh for ~ low-energym=0 mode of even parity with very high preci-
the ground state is accurate to the extent that the conditiorBion[ wey,=1.569(4 )w,] in excellent agreement with theory
u>tho, ho, are satisfied. The density) has the shape of (/5/2=1.58). This agreement is not a surprise because the
an ellipsoid with radial R,) and axial g) radii defined by conditions of applicability of hydrodynamic theory are very
mw’R? =mw?Z?=2pu. well satisfied in this experiment. In fact the parameters of the

In the following we will neglect the kinetic energy pres- trap (a/ayo~10°) and the number of atoms\(-10") are
sure term also in the solution of the time dependent equasuch thatu~ 304w, ~400i », and hence the validity of the
tions (1) and (2). After linearization these equations then Thomas-Fermi approximation is well ensured. Furthermore,
take the simplified, hydrodynamic form since the lowest frequencies are of order the condition
ho<u, relevant for the applicability of hydrodynamic
theory, is also very well satisfied.

It is useful to derive the dispersion law also for the exci-
tations with higher quantum numbers in axially symmetric
where dp=p(r,t) —po(r) andc(r), defined by cigar-shaped traps. The excitations we are interested in have

frequencies of ordew,, much smaller tham, . Let us re-
Mc(r)=p—Vedr), (7)  \write the linear equations) and (7) in the form

25p

7 = V() Vop), ®)

can be interpreted as a local sound velocity. The validity of 1 1
the HD equation$6) and(7) is based on the assumption that w?dp=——V ,[(#—Vex) V. 6p]— =V (t—Vex) V,6p].
the spatial variations of the density are smooth not only in m m 10
the ground state, but also during the oscillation. In a uniform (19

system Ve 0) this is equivalent to imposing that the col- Thjs equation shows that in the limit,<w, the low-energy
lective frequencies should be much smaller than the chemiso|ytions cannot have any dependence on the radial coordi-
cal potential. In this case the solutions of the HD equatiomates. This would in fact yield high frequency components of
(6) are sound waves propagating with the Bogoliubov velocyrder w, in the solution, due to the first term in the right-

ity c=u/m, wherep=gpo andpg is the equilibrium den-  hand side of Eq(10). It is then natural to expand the
sity. Due to the nonuniform nature of the trapping potential—=g solutions of Eq(10) in the form

the solutions of Eqe6) and(7) exhibit new interesting fea-

tures. The corresponding spectrum is discretized and its ex- 8p(r)=0po(z) +\?r28p(2)+- - -, (11)
plicit form, in the case of spherical trapping, was first de-

rived in [5]. The fact that these equations have analyticwhereh=w,/w, is the deformation parameter of the trap.
solutions reflects the occurrence of underlying, nontrivialAfter inserting Eq(11) into the hydrodynamic equatigii0)
symmetries as recently discussed &h. For the lowest mul- and integrating over the radial coordinates we obtain\for
tipolarities it is possible to obtain analytic results also for—0, the following differential equation fofp:

arbitrary values ofw, and w, . In particular, for the lowest 5 L 209 o2 )

m=0 value of thezth component of angular momentum and ~ ®@“0po(2) = — 3w3(Z°=2°)V;8po(2) + @32V ;6po(2).

even parity, one findg5] (12)

3 1 where —Z=<z<Z. The discretized solutions of E¢12) are
0’ (M=0)=2w’+ 5(»315\/9603'— 1603 0° + 16w} . polynomials of the form 6p{Y(2)=(Z+ az" 2+--.),
(g satisfying the orthogonality —condition [ T2dz(z?
) 6p8‘)(z) 5p8")(z)=0 for k#k’. They obey the disper-
The dispersion(8) has been also derived [T] using differ-  sjon relation
ent approaches. Resuy) can be generalized to a triaxially

deformed trap of the fornV,= (wix?*+ wiy?+ w2z?)/2m. w?=1k(k+3)w? (13
In this case the collective frequencies are given by the solu-
tion of the equation already derived i8] using a different approach. The num-
ber of nodes of these solutions is equakid for evenk, and
0 =3t wi+ o)+ wl)+ 8w (wiw] + wiwi+ win] to (k+1)/2 for oddk.

It is also interesting to look for solutions of E¢L2) lo-
calized in the center of the traz{0). These are sound
waves propagating with velocity

—20wiw;w2=0. (9)

For example, using the valuesi=2wi=4w?, characteriz-

ing the tra_p recently _used i[iLS_] to achizeve Bgse—Einst;ain C1p=Vul2m, (14)
condensation, we find solutions ab“=5w; and w
=(8+4\2)w?. where we have used the identji= 3 mw2Z? for the chemi-

In the limit of highly deformed, cigar-shaped geometry cal potential. Notice that in the Thomas-Fermi approxima-
(w,<w,), Eq.(8) gives the resultv=/5/2w, and 2», for  tion the chemical potential is always related to the central
the low- and high-energy solutions, respectively. As antici-density by the relatiou=gpy(0) [see Eq(4)], so that the
pated in the Introduction, in the experiment [df], carried sound velocityc,p is smaller by a factok/2 with respect to
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the Bogoliubov velocity calculated in the center of the trap.straightforward algebra, the resulip;(z)=—V26po(2)
The occurrence of this factor was first pointed outli] and  (notice the analogy with the resup;=q?8po/8 holding in
has a simple physical meaning. In fact, in deriving the rel-cylindrical geometry and
evant hydrodynamic equatiofi2), we have integrated Eq.
(10) over the radial variables, so that the new sound velocity , 1 )
corresponds to an average whose value is smaller than the w*=7k(k+3)wz| 1= Za(k=1)(k+4) . (17)
one in the center of the trap.

To better understand the propagation of sound waves iGome remarks are in order here. First one recovers the limit
the case of highly elongated traps let us consider a trap withf the sound wave dispersidé) holding in cylindrical ge-

cylindrical geometry and harmonic confinement in the radialometry in the limit of large quantum numbeks-1, by the
direction. The hydrodynamic equations in this case are simproper identification

ply obtained by settingo,=0 in Eq. (3) and take the form

2

coa?=k2wil4 (18)

w?8p=—307V [(RI=1?)V, 8p]— 3wl (RE—1})Viép

(19  vyielding k?=q?Z? . This is consistent with the already dis-
cussed conditiomyZ>1 needed to observe phonons propa-
gating in thezth direction. In the same limit the first correc-
tions in the dispersiofi16) and (17) coincide since one has
g°R?=k?\2. This completes the correspondence between
the propagation of discretized modes and sound and shows
the analogy between the dynamic behavior in the cylindrical
and elongated harmonic oscillator geometries.

defined in the interval- L<z<L, where 2 is the length of
the cylinder, and &r, <R, . It is worth noting that in the
cylindrical geometry the validity of the Thomas-Fermi ap-
proximation for the ground state is guaranteed by the condi
tion u>fw, or, equivalently,Na/L>1 (in this case we
always assume>R). If we impose periodic boundary con-

ditions atz=*L the soluztlons of Eq(19) can be written in Concerning the frequencies of the discretized modes pre-
the form 6p=[3po(2) +17 5p1(2) + - - -] with 6po and dp1  gicted by Eq.(17) it is worth pointing out that the lowest
proportional toe'9”. After integration in the radial variables 1,5de k=1) corresponds to the center-of-mass motion and
Eq. (15) takes, to the lowest order ig°R? , the simplified  its frequency coincides with the oscillator frequenay.
form w?8po=—(u/2m)V38po, yielding the dispersionw  This frequency is unaffected by the presence of two-body
=c;pq with the sound velocity given by Eq14). The nu- interactions. The second mod&=2) is the "quadrupolé
merical solution of Eq(15) with largerq has been carried collective excitation observed if4]. It corresponds to the
out in[13]). Itis not difficult to calculate the first correction |ow-energy solutior(8) in theA—0 limit. The direct experi-

to the linear behavior. One find$p,(z) =q°dp,(2)/8 and mental observation of the higher modes, as well as of the
first correction in\? predicted by Eq(17) would complete
the scenario of the low-energy excitations in the elongated
geometry.

It is finally interesting to discuss the one-dimensional na-
Result(16) explicitly reveals that the linear dispersion holds ture of these systems. One should first point out that all the
if the wavelength is much larger than the radial size of theresults discussed in this paper have been derived starting
condensate and that the sound has a negative dispétspn from 3D configurations. In particular, in order to derive the

Coming to the dynamic behavior in the presence of hardispersion law(17), we have assumed the validity of the
monic trapping one expects to observe wave packets propdhomas-Fermi approximation in both axial and radial direc-
gating with the 1D sound velocitg, if the conditionsqZ  tions, so that Eq(17) holds if u>#%w, >#w,. This means
>1 andgR, <1 are simulataneously satisified. Of coursethat the ground-state wave function of the system is built up
the conditionig<<mc must be also satisfied because it en-including many excited single-particle states in both axial
sures the applicability of hydrodynamic theory. The condi-and radial directions. A full 1D problem should involve only
tion gZ>1 guarantees that the medium can be treated athe lowest oscillator wave function in the radial direction and
locally uniform in thez direction and that one can conse- in this case the corresponding excitation spectrum in the
quently observe wave packets propagating in the central réFhomas-Fermi regime would Ha5] o?=1k(k+ 1)w§ in-
gion of the trap. The conditiogR, <1 instead ensures that stead of Eq(17). This dispersion is easily derived from Eq.
we are not exciting the motion in the radial direction and that(10) ignoring the radial coordinates in the equation and holds
the dispersion will look “one dimensional” and given by the if Zw, >(u—%w,)>%w,. At present this regime is far
first term of (16). In the experiment of10] Z is a few hun-  from experimental possibilities. Nevertheless, even remain-
dred micrometersR, =\Z is a few tens of micrometers and ing in the 3D Thomas-Fermi regime, it is clear that for
md#i~2—4 (um) ! depending on the value of the peak highly elongated configurations the low-energy dynamic be-
density. It is then possible that the wave packets observed inavior (QR, <1) looks one dimensional, the radial direc-
[10] are, at least partially, built up with wave vectors satis-tions providing only a renormalization of the sound velocity.
fying the above conditions. A detailed discussion of theSo all the statistical and thermodynamic properties of 1D
propagation of wave packets, with the inclusion of nonlin-systems should apply to these configurations provided the
earity effects, has been recently reported 4. temperature is smaller than the radial oscillator energy. This

Let us complete our discussion by calculating the firstincludes in particular the Luttinger liquidlike behavior re-
corrections to the dispersion relati@tB). By solving the HD  cently suggested for these systefid$] and the two-step
equationg(15) to the next order in? we obtain, after some Bose-Einstein condensation recently discussed in the context

2_ .2 2
w"=C1p(

1
1- 4—8q2Rf). (16)
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of the ideal Bose gajsl7]. Furthermore, due to the coupling 2= (4124 4nm+ 20+ m) 02 29

with the radial modes, the transition from the phonon to the 0= ® Joi - 22

single-particle regime exhibits new interesting features. In

particular the first correction to the phonon dispersion i S _ o

negative[see Eqs(16) and (17)], differently from the tradi- “The casesn=0m=2 (0=20,), and n=1m=0 (o

tional Bogoliubov behaviow?=c2q?+ (g2/2m)>2. =/10/3w,) correspond to the modes of even parity ob-
In analogous way we can carry out the analysis in the disi€rved in the experiments (] (them=0 state corresponds

geometry (o>, ). In this case, to the lowest order im®/ ~ to the low-energy solutioni8) in the w, <w, limit). One

the density fluctuations will depend only on the radial coor-Should, however, note that in this experiment the deforma-

dinates and, after integration of E.0) in the variablez, the  tion of the trap and the number of atoms in the condensate

relevant equation fobp(r,) takes the form were not very largeX= /8 andN~10%). As a consequence
) L2 peo 5 the conditions required to apply the dispersion I2) (A
0 0p(ry)=—3w (RI-r)Vidp(r ) +wir, V,op(r,). >1 and validity of the Thomas-Fermi approximatioare

19 not very well satisfied in this case.
We finally note that also in deriving the dispersion law
2) we have assumed the validity of the Thomas-Fermi ap-
proximation in both axial and radial directionst$7% w,
2 1 >hw,). The hydrodynamic dispersion in a true 2D trap
C20= V3 1y (200 would in fact follow a different dispersion law given §g5]
w?=(2n%+2nm+2n+m)w? . This 2D hydrodynamic dis-
The discretized solutions of EqL9) have the form persion law holds if the conditiongiw,>(u—3%w,)
>hw, are satisfied.

Notice that in this case wave packets in the center of the traEJ
will propagate with the 2D sound velocity 2

SpMM=(r2N4 qr2" =24 .. )rheimé (22)
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