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Dynamics of Bose-Einstein condensed gases in highly deformed traps
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Dipartimento di Fisica, Universita` di Trento and Istituto Nazionale di Fisica della Materia, I-3850 Povo, Italy

~Received 8 January 1998!

We provide a unified investigation of normal modes and sound propagation at zero temperature in Bose-
Einstein condensed gases confined in highly asymmetric harmonic traps and interacting with repulsive forces.
By using hydrodynamic theory for superfluids we obtain explicit analytic results for the dispersion law of the
low-energy discretized modes for both cigar- and disk-shaped geometries, including the regime of large
quantum numbers where discrete modes can be identified with phonons. The correspondence with sound
propagation in cylindrical traps and the one-dimensional nature of cigar-type configurations are explicitly
discussed.@S1050-2947~98!02509-8#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.90.1z
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The recent experimental realization@1# of Bose-Einstein
condensation in dilute gases of alkali atoms confined in m
netic traps has opened unique perspectives in the study o
dynamical and statistical behavior of mesoscopic quan
systems. These highly degenerate quantum gases have
shown to exhibit both the dynamic features of microsco
many-body systems, associated with the occurrence of q
tized collective excitations~normal modes!, and the ones of
macroscopic quantum fluids, characterized by the propa
tion of sound in the collisionless regime~zero sound!.

The frequencies of the collective excitations have be
the object of various experimental@2–4# and theoretical
studies, based on both analytic@5–8# and numerical@9# in-
vestigations. The magnitude of these frequencies is fixed
the oscillator frequency of the trapping potential~typically a
few tens of Hz!, the exact value depending on the nature
the excitation~angular momentum, etc.! and on the effects o
two-body interactions. In the experiment of@4# the large
number of Bose-Einstein condensed atoms and the elong
geometry of the trap have allowed for very precisein situ
images of the oscillations of the axial radius and con
quently for high precision in the measurement of the coll
tive frequencies, whose values turn out to be in excell
agreement with the predictions of theory@5#. These experi-
ments, however, do not probe directly the phononic natur
the excitation because of the discretization of frequenc
imposed by the harmonic trapping.

The fact that phonons can propagate in the medium
continuous way, according to Bogoliubov theory, has be
recently shown in the experiement of@10# where wave pack-
ets have been produced and directly observed in a B
Einstein condensed gas of sodium atoms confined in a hi
asymmetric, cigar type trap.

The purpose of this paper is to discuss the correspond
between these two dynamic features~occurrence of dis-
cretized collective modes and phononlike propagation! and
to give analytic results for the dispersion law of the colle
tive modes in the case of highly deformed traps, includ
the regime of large quantum numbers where the disc
modes can be identified with phonons.

The proper theory to describe the dynamic behavior
interacting Bose gases is the time-dependent Gr
Pitaevskii@11# equation for the order parameter. This equ
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tion can be written in a convenient form by expressing
order parameter in terms of its modulus and phase,F
5Areif, and looking for equations for the densityr and for
the velocity fieldv5¹f. The equations of motion then tak
the following form @5#:

]

]t
r1¹~vr!50 ~1!

and

m
]

]t
v1¹S Vext1gr2

\2

2mAr
¹2Ar1

1

2
mv2D 50, ~2!

where g54p\2a/m is the interaction coupling constan
fixed by thes-wave scattering lengtha and

Vext5
1
2 mv'

2 r'
2 1 1

2 mvz
2z2 ~3!

is the trapping potential, for which we have made the cho
of an axially symmetric oscillator (r'5Ax21y2 is the radial
coordinate!. Equation~1! is the equation of continuity, while
Eq. ~2! establishes the irrotational nature of the motio
These equations have the typical structure of the dyna
equations of superfluids at zero temperature~see, for ex-
ample,@12#!.

If the repulsive interaction among atoms is enough stro
than the density profiles become smooth and one can sa
neglect the kinetic pressure term proportional to\2 in the
equation for the velocity field. This yields, for the static s
lution of Eq. ~2!, the so-called Thomas-Fermi expression

r0~r !5
1

g
@m2Vext~r !# ~4!

if m>Vext(r ), and zero elsewhere. Herem is the chemical
potential, fixed by the normalization ofr(r ). In the case of
harmonic trapping one has

m5
1

2
\v0S 15N

a

aHO
D 2/5

, ~5!
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wherev05(vzv'
2 )1/3 is the geometrical average of the o

cillator frequencies andaHO5A\/mv0 is the corresponding
oscillator length. The Thomas-Fermi approximation~4! for
the ground state is accurate to the extent that the condit
m@\vz ,\v' are satisfied. The density~4! has the shape o
an ellipsoid with radial (R') and axial (Z) radii defined by
mv'

2 R'
2 5mvz

2Z252m.
In the following we will neglect the kinetic energy pre

sure term also in the solution of the time dependent eq
tions ~1! and ~2!. After linearization these equations the
take the simplified, hydrodynamic form

]2dr

]t2 5¹„c2~r !¹dr…, ~6!

wheredr5r(r ,t)2r0(r ) andc(r ), defined by

mc2~r !5m2Vext~r !, ~7!

can be interpreted as a local sound velocity. The validity
the HD equations~6! and~7! is based on the assumption th
the spatial variations of the density are smooth not only
the ground state, but also during the oscillation. In a unifo
system (Vext50) this is equivalent to imposing that the co
lective frequencies should be much smaller than the che
cal potential. In this case the solutions of the HD equat
~6! are sound waves propagating with the Bogoliubov vel
ity c5Am/m, wherem5gr0 andr0 is the equilibrium den-
sity. Due to the nonuniform nature of the trapping poten
the solutions of Eqs.~6! and~7! exhibit new interesting fea
tures. The corresponding spectrum is discretized and its
plicit form, in the case of spherical trapping, was first d
rived in @5#. The fact that these equations have analy
solutions reflects the occurrence of underlying, nontriv
symmetries as recently discussed in@8#. For the lowest mul-
tipolarities it is possible to obtain analytic results also
arbitrary values ofvz andv' . In particular, for the lowest
m50 value of thezth component of angular momentum an
even parity, one finds@5#

v2~m50!52v'
2 1

3

2
vz

27
1

2
A9vz

4216vz
2v'

2 116v'
4 .

~8!

The dispersion~8! has been also derived in@7# using differ-
ent approaches. Result~8! can be generalized to a triaxiall
deformed trap of the formVext5(vx

2x21vy
2y21vz

2z2)/2m.
In this case the collective frequencies are given by the s
tion of the equation

v623v4~vx
21vy

21vz
2!18v2~vx

2vy
21vy

2vz
21vz

2vx
2!

220vx
2vy

2vz
250. ~9!

For example, using the valuesvx
252vb

254vz
2, characteriz-

ing the trap recently used in@18# to achieve Bose-Einstein
condensation, we find solutions atv255vz

2 and v2

5(864A2)vz
2.

In the limit of highly deformed, cigar-shaped geomet
(vz!v'), Eq. ~8! gives the resultv5A5/2vz and 2v' for
the low- and high-energy solutions, respectively. As ant
pated in the Introduction, in the experiment of@4#, carried
ns
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out on a very asymmetric trap (vz /v'517/230), it has been
possible to measure at low temperature the frequency of
low-energym50 mode of even parity with very high prec
sion@vexpt51.569(4)vz# in excellent agreement with theor
(A5/251.58). This agreement is not a surprise because
conditions of applicability of hydrodynamic theory are ve
well satisfied in this experiment. In fact the parameters of
trap (a/aHO;1023) and the number of atoms (N;107) are
such thatm;30\v';400\vz and hence the validity of the
Thomas-Fermi approximation is well ensured. Furthermo
since the lowest frequencies are of ordervz the condition
\v!m, relevant for the applicability of hydrodynami
theory, is also very well satisfied.

It is useful to derive the dispersion law also for the ex
tations with higher quantum numbers in axially symmet
cigar-shaped traps. The excitations we are interested in h
frequencies of ordervz , much smaller thanv' . Let us re-
write the linear equations~6! and ~7! in the form

v2dr52
1

m
¹'@~m2Vext!¹'dr#2

1

m
¹z@~m2Vext!¹zdr#.

~10!

This equation shows that in the limitvz!v' the low-energy
solutions cannot have any dependence on the radial coo
nates. This would in fact yield high frequency components
order v' in the solution, due to the first term in the righ
hand side of Eq.~10!. It is then natural to expand them
50 solutions of Eq.~10! in the form

dr~r !5dr0~z!1l2r'
2 dr1~z!1•••, ~11!

wherel5vz /v' is the deformation parameter of the tra
After inserting Eq.~11! into the hydrodynamic equation~10!
and integrating over the radial coordinates we obtain, fol
→0, the following differential equation fordr0:

v2dr0~z!52 1
4 vz

2~Z22z2!¹z
2dr0~z!1vz

2z¹zdr0~z!.
~12!

where2Z<z<Z. The discretized solutions of Eq.~12! are
polynomials of the form dr0

(k)(z)5(zk1azk221•••),
satisfying the orthogonality condition *2Z

1Zdz(Z2

2z2)dr0
(k)(z)dr0

(k8)(z)50 for kÞk8. They obey the disper-
sion relation

v25 1
4 k~k13!vz

2 ~13!

already derived in@8# using a different approach. The num
ber of nodes of these solutions is equal tok/2 for evenk, and
to (k11)/2 for oddk.

It is also interesting to look for solutions of Eq.~12! lo-
calized in the center of the trap (z;0). These are sound
waves propagating with velocity

c1D5Am/2m, ~14!

where we have used the identitym5 1
2 mvz

2Z2 for the chemi-
cal potential. Notice that in the Thomas-Fermi approxim
tion the chemical potential is always related to the cen
density by the relationm5gr0(0) @see Eq.~4!#, so that the
sound velocityc1D is smaller by a factorA2 with respect to
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the Bogoliubov velocity calculated in the center of the tra
The occurrence of this factor was first pointed out in@13# and
has a simple physical meaning. In fact, in deriving the r
evant hydrodynamic equation~12!, we have integrated Eq
~10! over the radial variables, so that the new sound velo
corresponds to an average whose value is smaller than
one in the center of the trap.

To better understand the propagation of sound wave
the case of highly elongated traps let us consider a trap
cylindrical geometry and harmonic confinement in the rad
direction. The hydrodynamic equations in this case are s
ply obtained by settingvz50 in Eq. ~3! and take the form

v2dr52 1
2 v'

2 ¹'@~R'
2 2r'

2 !¹'dr#2 1
2 v'

2 ~R'
2 2r'

2 !¹z
2dr
~15!

defined in the interval2L,z,L, where 2L is the length of
the cylinder, and 0,r',R' . It is worth noting that in the
cylindrical geometry the validity of the Thomas-Fermi a
proximation for the ground state is guaranteed by the co
tion m@\v' or, equivalently,Na/L@1 ~in this case we
always assumeL@R). If we impose periodic boundary con
ditions atz56L the solutions of Eq.~15! can be written in
the formdr5@dr0(z)1r'

2 dr1(z)1•••# with dr0 anddr1

proportional toeiqz. After integration in the radial variable
Eq. ~15! takes, to the lowest order inq2R'

2 , the simplified
form v2dr052(m/2m)¹z

2dr0, yielding the dispersionv
5c1Dq with the sound velocity given by Eq.~14!. The nu-
merical solution of Eq.~15! with larger q has been carried
out in @13#!. It is not difficult to calculate the first correctio
to the linear behavior. One findsdr1(z)5q2dr0(z)/8 and

v25c1D
2 q2S 12

1

48
q2R'

2 D . ~16!

Result~16! explicitly reveals that the linear dispersion hol
if the wavelength is much larger than the radial size of
condensate and that the sound has a negative dispersion@13#.

Coming to the dynamic behavior in the presence of h
monic trapping one expects to observe wave packets pr
gating with the 1D sound velocityc1D if the conditionsqZ
@1 and qR'!1 are simulataneously satisified. Of cour
the condition\q!mc must be also satisfied because it e
sures the applicability of hydrodynamic theory. The con
tion qZ@1 guarantees that the medium can be treated
locally uniform in thez direction and that one can cons
quently observe wave packets propagating in the centra
gion of the trap. The conditionqR'!1 instead ensures tha
we are not exciting the motion in the radial direction and t
the dispersion will look ‘‘one dimensional’’ and given by th
first term of ~16!. In the experiment of@10# Z is a few hun-
dred micrometers,R'5lZ is a few tens of micrometers an
mc/\;224 (mm)21 depending on the value of the pea
density. It is then possible that the wave packets observe
@10# are, at least partially, built up with wave vectors sat
fying the above conditions. A detailed discussion of t
propagation of wave packets, with the inclusion of nonl
earity effects, has been recently reported in@14#.

Let us complete our discussion by calculating the fi
corrections to the dispersion relation~13!. By solving the HD
equations~15! to the next order inl2 we obtain, after some
.
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straightforward algebra, the resultdr1(z)52 1
8 ¹z

2dr0(z)
~notice the analogy with the resultdr15q2dr0/8 holding in
cylindrical geometry! and

v25
1

4
k~k13!vz

2S 12
l2

48
~k21!~k14! D . ~17!

Some remarks are in order here. First one recovers the l
of the sound wave dispersion~16! holding in cylindrical ge-
ometry in the limit of large quantum numbersk@1, by the
proper identification

c1D
2 q25k2vz

2/4 ~18!

yielding k25q2Z2 . This is consistent with the already dis
cussed conditionqZ@1 needed to observe phonons prop
gating in thezth direction. In the same limit the first correc
tions in the dispersion~16! and ~17! coincide since one ha
q2R'

2 5k2l2. This completes the correspondence betwe
the propagation of discretized modes and sound and sh
the analogy between the dynamic behavior in the cylindri
and elongated harmonic oscillator geometries.

Concerning the frequencies of the discretized modes
dicted by Eq.~17! it is worth pointing out that the lowes
mode (k51) corresponds to the center-of-mass motion a
its frequency coincides with the oscillator frequencyvz .
This frequency is unaffected by the presence of two-bo
interactions. The second mode (k52) is the 9quadrupole9
collective excitation observed in@4#. It corresponds to the
low-energy solution~8! in thel→0 limit. The direct experi-
mental observation of the higher modes, as well as of
first correction inl2 predicted by Eq.~17! would complete
the scenario of the low-energy excitations in the elonga
geometry.

It is finally interesting to discuss the one-dimensional n
ture of these systems. One should first point out that all
results discussed in this paper have been derived sta
from 3D configurations. In particular, in order to derive th
dispersion law~17!, we have assumed the validity of th
Thomas-Fermi approximation in both axial and radial dire
tions, so that Eq.~17! holds if m@\v'@\vz . This means
that the ground-state wave function of the system is built
including many excited single-particle states in both ax
and radial directions. A full 1D problem should involve on
the lowest oscillator wave function in the radial direction a
in this case the corresponding excitation spectrum in
Thomas-Fermi regime would be@15# v25 1

2 k(k11)vz
2 in-

stead of Eq.~17!. This dispersion is easily derived from Eq
~10! ignoring the radial coordinates in the equation and ho
if \v'@(m2\v')@\vz . At present this regime is fa
from experimental possibilities. Nevertheless, even rema
ing in the 3D Thomas-Fermi regime, it is clear that f
highly elongated configurations the low-energy dynamic
havior (qR'!1) looks one dimensional, the radial dire
tions providing only a renormalization of the sound veloci
So all the statistical and thermodynamic properties of
systems should apply to these configurations provided
temperature is smaller than the radial oscillator energy. T
includes in particular the Luttinger liquidlike behavior re
cently suggested for these systems@16# and the two-step
Bose-Einstein condensation recently discussed in the con
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of the ideal Bose gas@17#. Furthermore, due to the couplin
with the radial modes, the transition from the phonon to
single-particle regime exhibits new interesting features.
particular the first correction to the phonon dispersion
negative@see Eqs.~16! and ~17!#, differently from the tradi-
tional Bogoliubov behaviorv25c2q21(q2/2m)2.

In analogous way we can carry out the analysis in the d
geometry (vz@v'). In this case, to the lowest order in 1/l2,
the density fluctuations will depend only on the radial co
dinates and, after integration of Eq.~10! in the variablez, the
relevant equation fordr(r') takes the form

v2dr~r'!52 1
3 v'

2 ~R'
2 2r'

2 !¹'
2 dr~r'!1v'

2 r'¹'dr~r'!.
~19!

Notice that in this case wave packets in the center of the
will propagate with the 2D sound velocity

c2D5A2

3

m

m
. ~20!

The discretized solutions of Eq.~19! have the form

dr~n,m!5~r'
2n1ar'

2n221••• !r'
meimf ~21!

wherem is thezth component of angular momentum andn
fixes the number of radial nodes. They satisfy the ortho
nality condition * r'<R'

dr'(R'
2 2r'

2 )1/2dr (n,m)dr (n8,m8)50

for n,mÞn8,m8. The resulting dispersion takes the form
,

hy
e
n
s

k

-

p

-

v25~ 4
3 n21 4

3 nm12n1m!v'
2 . ~22!

The cases n50,m52 (v52v'), and n51,m50 (v
5A10/3v') correspond to the modes of even parity o
served in the experiments of@2# ~them50 state correspond
to the low-energy solution~8! in the v'!vz limit !. One
should, however, note that in this experiment the deform
tion of the trap and the number of atoms in the condens
were not very large (l5A8 andN;104). As a consequence
the conditions required to apply the dispersion law~22! (l
@1 and validity of the Thomas-Fermi approximation! are
not very well satisfied in this case.

We finally note that also in deriving the dispersion la
~22! we have assumed the validity of the Thomas-Fermi
proximation in both axial and radial directions (m@\vz
@\v'). The hydrodynamic dispersion in a true 2D tra
would in fact follow a different dispersion law given by@15#
v25(2n212nm12n1m)v'

2 . This 2D hydrodynamic dis-
persion law holds if the conditions\vz@(m2 1

2 \vz)
@\v' are satisfied.
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