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Coherence of atomic matter-wave fields
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In analogy to Glauber’'s analysis of optical coherence, we adopt an operational approach to introduce
different classes of atomic coherence associated with different types of measurements. For the sake of con-
creteness we consider specifically fluorescence, nonresonant imaging, and ionization. We introduce definitions
of coherence appropriate to them, which we call electronic, density, and field coherence, respectively. We
illustrate these concepts in various descriptions of Bose-Einstein condensation, showing that each of these
descriptions makes different implicit assumptions on the coherence of the system. We also study the impact of
elastic collision on the field and density coherence properties of atom 1§8&(50-294{©8)01509-1

PACS numbgs): 03.75-h, 42.50.Ar, 42.50.Ct

I. INTRODUCTION Il. FIELD AND DENSITY COHERENCE

. : A physically appealing operational way to discuss matter-
Quantum optical coherence theory is based on the faCto(/'vave coherence relies on the analysis of specific detection

ization prop_erti.es of normally orQe_red c_orrelation fumtionsschemes, in complete analogy with the optical case. As we
of the electric field operatdl]. This is a direct consequence gp g see, this approach naturally leads to the need to associ-
of the fact that most optical experiments detect light by abxte gifferentclasses of coherencaith different types of

sorption, i.e., by “removing” photons from the light field. measurements. In addition, it builds useful bridges between

But the situation is not so simple in the case of matter-wavesncepts familiar in quantum optics and methods of tradi-
fields, and in particular for atomic de Broglie waves. This istjgnal many-body theory.

because atomic detectors can work in a number of different |, this paper we consider for concreteness a bosonic

ways: For instance, one can choose to measure electronigomic Schidinger field described by a multicomponent

properties of the atoms, or center-of-mass properties, or both. Id W ith ¥ .

Measurements may or may not remove atoms from the field/€/d operator W(r,t),  with components W;(r,t), i
1,2,... . Wenormally think of the atoms comprising this
I

hence the role of the annihilation operator is not as central af§ . . .
for light fields. ield as adequately described in the Born-Oppenheimer ap-

Due to the added complexity of that situation as compare(ﬂ)rOXimation’ so that describes their center-of-mass motion

to the optical case, no unified theory of atomic coherencé‘”d the index labels various electronic states. For bosonic

exists to date. The major objective of this paper is to preserfl0Ms, one has then
a step toward this goal, extending the ideas of optical coher-

. 7 ot -
ence theory to introduce several types of matter-wave coher- [Wi(r,t), ¥(r',t)]=6;0(r—r"). (1)
ence, in particular “field coherence” and “density coher- . . - .
ence” [2]. Our goal is to characterize the statistical properties of one

or more components of this field. One familiar method in-
yplves the detection of light fields interacting with the atomic

we adopt an operational approach where different classes e in the h h . f the Sdimaer field
atomic coherence are associated with different types of mea2Mple, In the hope that properties of the dirger 1
gn be inferred from it. All of laser spectroscopy relies on

surements. For the sake of concreteness we consider speciff o ;
is approach, although it is not normally cast in terms of

cally three classes of measurements: fluorescence, nonre field h h. which il find
nant imaging, and ionization. Section Il briefly reviews thematter-yvave lelds. Anot er approach, which we will fin
Aiseful in some respects, involves ionizing atoms from the

outcome of these measurements, and introduces definitio ; ; ; ;
of coherence appropriate to them. We call them eIectronic?ample and St“@'y'”g the properties of the_ emitted lons or
lectrons. But this method typically also relies on the inter-

density, and field coherence, respectively. In the case df'e . . . .
bosonic atoms, field-coherent states are easily seen to corrf@ction Of. the atoms with a light field. Hence, a generic
spond to the usual Glauber coherent statgsin the single- Hgmlltonlan descr_lblng a measurement scheme for the prop-
mode case, density-coherent states are simply given by Fo¥ties of the atomic Schdinger field is of the form

states, but a more general discussion is required for the mul-

timode case. Section lll illustrates these ideas in various de- v=> d3rxifj’r(r)[d” CE(r,0)]W (), )
scriptions of Bose-Einstein condensates. Section IV further ij

develops the concept of multimode density coherence, which .

is applied to the case of the atom laser in Sec. V. In this lattewhere E(r,t) is the electric field operatod;; is the dipole
example, we illustrate in particular how elastic collisions, matrix element between electronic staieand j, and we
while strongly modifying the field coherence of the device,have assumed for simplicity that the electric dipole approxi-
have almost no effect on its density coherence. Finally, Seanation gives an adequate description of the atom-field inter-
VI is a summary and outlook. action.

In analogy to Glauber’s analysis of optical coherefite
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We consider the situation where the electromagnetic field N - - -
consists of a classically populated field mode of amplitudes(w)“J dre (W (ry,00We(rg,00Wi(ro, ) Wy(ro, 7))
Ey, wave vectorky, and polarizatione, and a series of
weakly excited side modes of wave vectéysand polariza- +c.c. (8)
tions g . In that case, the Hamiltonia2) becomes

Resonance fluorescence has been studied in considerable
detail, both experimentally and theoretically. The resonance
fluorescence spectrum of a two-state atom is known to con-
sist of acoherentand anincoherentcontribution. For a per-

v=3 | drilna onetor e
7

+iQ); ,|a|e”‘l"]\ifi(r) +H.c., (3)  fectly monochromatic excitation laser, the coherent spectrum
Scon consists of a function at the laser frequency, while the
where we have introduced the Rabi frequencies incoherent spectrum is the famous Mollow three-peak spec-
trum. Mathematically,
Qjj o(r) =d;;Eo(r) (€ - €)/% (4)

corresponding to the classical driving field and the vacuunscohocf dq-e*‘a"(\if;(ro,o)ﬁfe(ro,0))(@2(r0,7-)\ifg(r0,7-))
Rabi frequencies

Qij i =dij&i (€ €)/h. ®) +c.c. ©

In these expressions;; is the direction of the atomic dipole and Sip(w) =S(w) — Seo(@) . In physical terms, this means
of magnitude d;; for the i< transition, and & that coherent effects are associated with fdnetorizedcor-

=[hwl2e,V] 2is the “electric field per photon” in mode  rélation function

A. Resonance fluorescence <‘i’;(ro,O)Q’e(ro’0)><‘i’l(ro,7)‘i’g(ro,7')>- (10

In resonance fluorescence measurements, one proceeds-Byase considerations justify defining the *

shining a laser quasiresonant with an electronic transition A . o
g—e, and measuring, e.g., the fluorescence spectrum ence” of the matter fieldPP(r,t) in terms of the factorization

properties of normally ordered correlation functions of the
field polarizationoperator

electronic coher-

S(w)=JdTe"“’T(IAE’(rO,O)IAE*(rO,7))+C.C. (6)

_ _ S_(r)=Vvirnwert). (11)
at the locationr, of a photodetector. In that expression,

E*(rq,t) andE ™ (rq,t) are the familiar positive and nega-

tive frequency parts of the electric field operator, and we
have assumed stationarity to identify the Fourier transform In contrast to resonance fluorescence, off-resonant imag-
of the first-order correlation function of the field with its ing involves a strongly detuned electromagnetic field inter-

spectrum. It is well known that, except for unimportant re-acting with the atoms in the sample in such a way that it

B. Off-resonant imaging

tardation effects, one has that induces only virtual transitions. After adiabatic elimination
of the upper electronic state of the atomic transition under
E*(ro,t)xﬁf’g(ro,t)ﬁfg(ro,t), (7)  consideration, the interaction between the Sdhger field
and the radiation field is described to lowest order in the side
so that modes by the effective Hamiltonian
2 * *
V:ﬁf d3r[w+2| (%afe“ko_k'“ + wale‘“kf"k'“) }P*(r)‘l’(r), (12
0 0 0

where the atom-field detunin@g,=w,— wqy is such that

| 80|>]Q(r)|, and we have omitted the index labeling the

ground-state component of the Scttirmger field, which can

now be considered as scalar. A R -
There are a number of ways in which off-resonant imag- p(r,)=wT(r,H)w(r,t), (13

ing can be applied to the determination of specific properties

of the Schrdinger field. For instance, one can detect inter-whose expectation value is the local density of the sample.

ferences between the classical incident field and scattered Alternatively, one can measure the spectrum of the scat-

light, as in the MIT experiment3]. This results in a signal tered light in a fashion familiar from resonance fluorescence

proportional to the densitﬁfa(r,t)), where we have intro-
duced thdfield densityoperator
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experimentg4]. For side modes initially in a vacuum state,
the most important nontrivial contribution to the fluorescenc

signal F is proportional to the intensity},|2 of the incident 0 continuum state®;(r).
field, In contrast to the preceding measurement schemes, we are

no longer interested in the dynamics of the light field, whose
role is merely to ionize the atoms. Rather, one extracts infor-

|Qol? , (A , mation about the state of the Schinger field (r,t) by
= 52 El: |Qllzf drdr f drdr standard atomic physics methods, such as, e.g?, the detection
0 of the quasifree electrons of the continuum states. It is there-
><ei[(kofk|)~(r*r')*(wofw|)(7'77")]<5(r,T);)(rl,rl)>, f_ore sufficient to describe th_e light fie!d via ifpossibly
time-dependentclassical Rabi frequencieQ; between the
(14 levels|g) and|i), so that the atom-field interaction reduces
to

eponent‘i'g(r) of this field, which is electric dipole-coupled

and hence is sensitive to the second-order correlation func- s SLos ot

tion of the Schrdinger field density. Indeed, it can be shown V=ﬁ§i: J drQi(r,)Wi(r)Wy(rye "'+ H.c. (16)

that any measurement involving the electromagnetic field

scattered by the atomic sample under conditions of offfor ground-state atoms cooled well below the recoil tem-
resonant imaging is determined by correlation functions oherature and tightly focused laser beams, the spatial size of

p(r 1), the atomic wave function is much larger than the laser spot
. . and we can approximate the electric fidir) by E(r)
DM(Xy, ... X)) ={p(X1)- - p(Xn)), (15  =Ed(r—ry), so that Eq(16) becomes
WherEXiE(ri ,ti)- V:ﬁZI Qi(ro’t)\i,i'l'(ro)\i,g(ro)e—ith_l_ H.c. (17)

In analogy with the optical case, we therefore define a

Schralinger field as beinglensity-coherent to ordek/ if its o
density correlation function®™(x,, . .. x,) factorize for We assume for simplicity that the center-of-mass wave

all n</. From this definition, it is obvious that single-mode functions of the continuum states of the atoms are well de-
density coherent states are the familiar number states. B§€ribed by plane waves of momentugnso that the single-
the situation is more complex for multimode fields, to which @tom Hamiltoniarf, may be expressed as

we return in Sec. IV.

Ho=Hy+ 2 Hig, (18
C. lonization '
1. Physical model where
The reason resonance fluorescence and off-resonant imag- Hiq:hwiqbﬁqbi'q. (19

ing yield signals proportional to correlation functions of bi- R
linear products of components of the Satiirmer field is of Here we expande®;(r) in plane waves as
course that the electric dipole interaction is itself bilinear in
the Schrdinger field operators. This raises the question as to V()=
L : . X i(r)y= r)b; 20
whether it is possible to measure correlation functions of (" Eq o(1)biq 20

\if(r,t) itself, as in the case of optical fields. This can be

- o 72
achieved if instead of making measurements on the radiatiof!th [Di.a-Bis q:1= S4q: i+, andwig=hq"2M + w; .

field, one detects the atoms directig,6l. One possible In the following we take the atomic system to be initially
scheme that achieves this goal is the ionization method tha® the state
we now discuss. Ly =i g} tbg)- (21

Consider a detector consisting of a tightly focused laser
beam that can ionize atoms by inducing transitions from theiiTo first order in perturbation theory and for cw beams, the
ground electronic levelg) to a continuum leveli). We are  transition probability away from that state during the time
interested in measuring properties of the ground-state cominterval At is

) t+At t+At ) , . ~
w= 2 |Qi(r) Jt dTJt dr' [t g | Wi(re, I Wo(ro,7")| i)
I,q,I’,q’

X<{¢’i,q}|\i,i(r0aT)|{¢i’,q/}><{¢i/,q’}lli,iT(rOvT,)l{dfi,q})+eiiwL(tit,)<’//g|‘ijg(rOaT)\i’;(rOaT,H‘/’g)
X<{‘//i,q}|‘i,i)r(r017')|{¢i’,q’}><{¢i’,q’}|\i,i(r0vT’)l{'/’i,q}ﬂ! (22
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where the sum is over all final statds;, /}) in the excited o oo
state manifold. In this expression, we have neglected contritnn( @)~ J,wdTe @TOUTGA(tt4 751, 1) +C.C. (24)
butions involving the product of two creation or annihilation

operators, a result of the implicit assumption that any atom i . .
the continuum will be removed from the sample instanta[hereﬁw is the energy of the registered photoelectrons, and

neously. In addition, we explicitly carried out the sum over "¢ introduced the ionization ratgyw)=wn{w)/At and

all final states of the ground-state field, but not for the ex—the normally ordered f!rst-order cprrelation function of the
cited fields manifold. This is because we want to allow forgrognd—state Schicinger field Ga(t,t'3r0.70)

the possibility of selective detection of the ionized atoms.=(¥{(ro,t)¥4(ro,t’)). In this limit, the detector measures
Following Ref.[1], this can be easily achieved by replacing the Fourier component of the atomic correlation function

the sum over final states in E(R2) by a weighted sum Ga(t,t';rg,rg). For stationary fields, the Wiener-Khintchine
theorem implies that tuning the detector sensitivR{E)
> =D RGL9), (23)  Yields the spectrum of the Schtiager fieldW y(r,0).
i’q i’.q In the case of broadband detection, in contrast, the energy

distribution AE of the ionized states is much broader than

. S ' AEg. This situation can be realized, e.g., by exciting the

| i q)- In practice, we have in mind energy-selective detecy,nq state with a broadband laser pulse and detecting the
tors, R(i’,q')—~R(w), and the degeneracy of the levels roq ing electrons(or iong with a broadband detector

must the’? of course be acc'ou.nte_d for. .. .. R(E)= const. Assuming that the spectrum of the ground
There is a fundamental distinction between the situation at —

hand and Glaubers photodetection theory, because in trfl0mMs Schrdinger field is centered ab, we find

present case both the detected and detector fields consist of

matter waves. There is a complete symmetry between these Mop™=7(r0) Ga(t,t;r0,10), (25)
two fields so far, and their roles are interchangeable. In order

to break this symmetry and to truly construct a detector, wavhere we have introduced in prevision of the following dis-
now make a series of assumptions on the state of the detectession the “detector cross-efficiency”

fields ¥;(r,t). Physically, this amounts to making a state-

ment about the way the detector is prepared prior to a meag(y, )= ">, Qi(r) Q7 (ry)

surement. Specifically, we assume that all atoms are in the i

ground stateW;(rq,0)|{¢; 4})=0, and that any atom in an At 7

ionized state will be removed from the sample instanta- X dr(\ifi(rz,H—T)\if;r(rl,t))e‘i(“’_“’t”,
neously, as already mentioned. In that case, the second term 0

in Eq. (22) vanishes. (26)

whereR(i’,q’) is the detector sensitivity to atoms in state

2.E -selective detect . - o
nergy-seleciive detectors from which the usual detector efficiency is simply recovered

To illustrate this result, we consider the situation ofas 7(ry)=7(rq.ro). As expected, a broadband detector is
energy-selective detectors, and discuss the limitsasfow-  not able to resolve any spectral feature of the Sdimger
band and broadbanddetection[1,7]. In the first case the field, and only measures the local atomic density, like off-
detector bandwidtlAE, is assumed to be much narrower resonant imaging.
than the energy widtAE, of the ground-state Schdinger
field, which is determined solely by the spread in center-of- 3. Higher-order correlations
mass momentunftemperaturg since all atoms occupy the

same internal state. The reverse is true in the second casg The detection of higher-order correlations of the Sehro
We note that in contrast to the detection of optical fields hger field can be achieved by a straightforward generaliza-

where the center-of-mass motion of the detector is i noreJion of the ionization detector. For instance, second-order
9 ¢oherence measurements can be carried out by focusing the

the narrowband regime can now be achieved only by ma : : .
nipulating the detector sensitivitR(E). This is because “faser at two locations, andry, in which case
even a monochromatic excitation of the atomic fields results
in equal bandwidth_sAEg:AEd of the dgtecteq and detector V=*# Z 2 Qj(r#)\i';r(r#)‘i'g(rﬂ)e*“’%% H.c.
fields, due to atomic center-of-mass dispersion. mw=12 "]

For a narrowband detector and long enough detection
timesAt>#%/AEy, the substitution of Eq(23) into Eq.(22)  The joint probability to ionize an atom at and another one
yields readily atr, is then

t+At t+At t+At t+At .
Wy= 2 f dTlf def dT3f d7'4e7|a)|_(71+7'2*7'3*7'4)9j* (rl)QJ* (rz)Q] (FZ)QJ (rl)
{iiHai} Jt t t t 1 2 3 4

X(W (11, 1)W1, )W (12, 7) W (1, 7)) (W0, m) W (12, 7o) W12, 7) W(r1,70)). (27)
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It involves two detected atoms, hence it is now necessary to properly account for the quantum statistics of the measured
particles. For this purpose, we describe the ionized atoms as ion-electron pairs, whereby the electrons are described by the
creation and annihilation operatcrlfﬁS andc,, satisfying Fermi commutation relatio@sks,cl,S,L: s O - Heres labels

the electron spin ank its momentum. We similarly introduce ion creation and annihilation operaﬁgr,aks, also satisfying

Fermi commutation relation§or bosonic atomg.For a spin-zero atom, the atomic mode operalgrg can be expressed in

terms of the ion and electron operators as

bjq=lia)(0|= > [kk'ss')(kk’ss'[ja)(0|
kk'ss'

=k25 (Pj(k)aqsck—szzs AgsCj—s (28)

where ¢;(k) are electron wave functions ki space cjs=2y¢;(k)cys, and we have assumed that the center-of-mass wave
function ise'?" with r being the ion(or atomic center-of-magposition. Due to spin conservation the values of electron and
ion spins are clearly opposite.

Substituting this result into Eq27) yields, in the case of broadband detection,

t+ At t+At T T
Wp= ﬂ(rl)ﬂ(rz)ﬁ dTlft A7y (Pg(ry, 1) Py(r2, 72)Py(ra, 72) Py(ry, 7))

t+At t+At + +
+7I(r1ar2)77(r2'r1)ft dTlft A7 Dy(ry, 1) Py(ra, 72) Py(ra, 71) Py(ry, 72))

t+

At
"‘7]x(r1’r2)J’t dry(D(ry, 1) P12, ) Py(r, 7)) Py(r, 7)), (29

where the detector sensitivity,(r,r,) to processes involving electron exchange is

t+At t+At t+At ) ,
77x(r11r2): J def dng d7_4e—lw|_('rl+72—73—74) 2 [e'[wK(Tl_73)+wq(7'2_74)+wa(71_7'4)+“’ﬁ(72_73)]
t t t afxq

X |Qa(r1)|z|93(rz)|2¢:(r1)¢K(r2)¢a(r2)¢q(r1)+Q;(rl)ﬂa(rz)QZg(rz)Qg(rl)|¢K(r1)|2|¢q(r2)|2

X ei[wK(Tlff4)+wq(7'27 T3)t W, (11— T3)+wﬁ(72774)]]. (30)

The first term in Eq(29) is familiar from double photo- In that case, the ionization scheme simply yields normally
detection, with the usual exchange contributions from theordered correlation functions of the Sctager field
detectedfield. The second term is an additional exchange ~ ~ . ~
term due to the fact that the detector field is a single Schro G™(xy, ... Xp)=(¥T(xy)- - U (x)W(xp)- - - W (X)),
dinger field. Its origin is the interference of thetectorfield (31)

at pointsr, andr,. It is absent in conventional photodetec- . . . N . .
tion theory, a result of the implicit assumption that the two'" complete analogy with the optical situation. This also jus-

detectors used are distinguishabinally, the term propor- tifies defining a Schdinger field asfield coherent to order
tional to 7, results from the fact that electrons do not know-V if its normally ordered correlation functio®" factorize

from which atom they originate. We note that these last twd©" all n<N.
terms can be eliminated by using a gated detection scheme

[7] that eliminates the contribution of the exchange terms in  Ill. EXAMPLE: BOSE-EINSTEIN CONDENSATION
the detector field. In practice, such gating can be achieved by

; . L A. Hartree description
using nonoverlapping short laser pulses to ionize the atoms.

To illustrate the ideas developed in the preceding section,
we consider a quantum-degenerdieparticle bosonic sys-

Tn o o tem described by the state
A similar comment can be made about the position measurement

scheme discussed in Ref®,6]. In that case, the absence of the 1 R

detector exchange contribution can be traced back to the assump- |¢//(t))N=—f dfrifn(rid,HILWI(r)]0), (32

tion that the sets of states excited at different locations are distin- N

guishable. While this approximation is usually reasonable, it be-

comes questionable in situations involving quantum degenerat@here theN-body wave functionfy({r;},t) is totally sym-
gases such as Bose-Einstein condensates. metric in its arguments. If the sample forms a condensate, it
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is described to an excellent degree of approximation by a@ensate fluctuates, so that only the mean number of atoms in
Hartree wave function, whereby tié-body wave function the condensate is known. In this picture it is appropriate to
fn({ri},t) factorizes as a product of the formy({r;},t) describe the condensate as a wave packet in Fock space, and
=TII,¢\(ri,1). That is, all atoms in the condensate are de-assume that the particle number distribution is sharply

scribed by the same Hartree wave functigg(r,t) and the  peaked around. Following Ref.[8] we assume a Poisso-

N-particle state reduces to nian particle number distribution, and thus, the state of a
L N condensate reads
t =—fdr r,t‘iffr)o. 33 —
| ()N N dn(r, ) wT(r) | |0) (33 N2

< N :
[pv)y=e">, e Mi@hMo). (39
The equation of motion fowby(r,t) is obtained from the '

variational principle In contrast to a pure condensate state with a fixed number of

atoms in the Hartree ground state, this state can be charac-
(z//|ihi—H|¢,//> =0 (34) terized with a nonzero “order parameter” defined [[8}
N ot N ’

o
S (r)

where’H is a many-body Hamiltonian.
We expand then the Schiimger field a$[8]

@(r,t>z<¢(t>|ﬂf(r>|w(t>>=J@mr)e“ﬂ“ﬁfN(t),mo)

A A whereu= _+E '—, = gun/dN|y-n and
F1(r)= g (r)al+ s9T(r), (35 w=pntNuy, p=dun/IN|n=N
N(N—l)

wherea' is the creation operator for a particle with the Har- N ol NN
Fu(t)=e N% wNopre et NuR - (41)

tree wave functiongy(x) and the operatoﬁzjﬂ(r) creates
particles in all other states. Further assuming that the con-

densate state is stationary This order parameter exhibits periodical collapses and reviv-
' als due to the dispersion of the chemical potential over the
AN, 1) = py(r)e At (36)  particle number variance. Physically, this is a consequence

. . _ _ of the fact that while the initial state of the condensate is
with uy being the chemical potential, the state of the systengield (Glaubej coherent, it does not remain so in the course

is simply of time. Hence, the staté39) is neither field nor density
_ coherent.
(D))= 7'“Nt/h(aT)N|o>=|N> 37 Interestingly, it turns out that thene-timefield coherence
N NI e functions measured in ionization experime(@ec. 11 Q are

factorizable. Indeed, the first-order field coherence function

where we have used the orthogonality of the condensate staife this case reads

to all other modes, i.e fdr ¢y(r)847(r)|0)=0. Hence the _

Hartree approximation is equivalent to the assumption that GY(r;0)=N|pn(r)|?

the condensate is in a number state of the self-consistent

Hartree “mode.” In this description the condensate is in aand the second-order field coherence function is
density coherent sta{@7). Indeed,|#(t))y is easily seen to

be an eigenstate of the field density operatér), G2(r,r';0)=N? (1) |2 d(r')]?,

p(D)| P(1))n=Np()| () (38  so that the normalized second-order coherence function
' @)(0)—
g'“/(0)=1.
wherep(r)=|¢n(r)|? is the local Hartree density of the con-
densate. It is Straightforward to see that this state is denSity- C. Spontaneous symmetry breaking description

coherent to all orders. However, just like single-mode num- As a final ible d o f1h d i
ber states of the electromagnetic field, it does not exhibit . S afinal possible description of the condensate, we con-
field coherence past first-order coherence. sider the standard spontaneous symmetry breaking approach

whereby the Schdinger field operator is replaced byca
o number{9],
B. Wave-packet description
For small systems containing a finite number of atoms, W (r,t)—d(r,t). (42
the assumption that all particles are in the condensate state is
actually not realistic. Rather, the particle number in a con-This description is equivalent to the assumption that the state
of the system is an eigenstate of the Sclimger field opera-

tor W (r,t)| )= (r,t)|4), or, in other words, that the con-
Note that this representation of the Satirmer field operator is densate is in a Glauber coherent state. This state can be ob-
different from the Bogoliubov description, a consequence of thetained from the previous wave packet description in the
fact that the system isot taken to be in a field coherent state. thermodynamic limit when the dispersion pfover the par-
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ticle number variance becomes negligible amg can be where we recall thab*)(x) is nothing but the expectation

approximated byy . In that case value of the Schrdinger field density, see E@15).
Disregarding mathematical rigor, states that are density
O(r,0)| )= \/ie_i”mti’ﬁ(fﬂl#) (43) coherent if allx; are taken at the same time can be con-

structed as follows. Define

the condensate remains in a Glauber coherent state at all 1
times. It is field coherent, but not density coherent since for =t Coapt 0 48
that state one finds easily that Yms - ya) Jc (Ym) (y2)[0) 49

D@(r,r’;0)=D(r)D(r")+DP(r)s(r—r"). with C=(0|¥(yy) - ¥(ym) ¥ (ym) - ¥T(yy)|0).4 This
(44) state describes a system mof particles that are localized at

] ] o pointsy,, . ...Yn. For this state the density correlation func-
These results illustrate how different descriptions of thetions are of the forn(47) with

condensate make different implicit assumptions about its co-

herence properties. These models are amenable, at least in m

principle, to experimental tests. We note finally that all de- DY(x)=2>, 8(x—yi), (49
scriptions reviewed in this section become equivalent in the =1

thermodynamic limit as far as their coherence properties argnich is a direct consequence of the relation
concerned, despite the fact that their order parameters are

different. . m
POOYms -+ - yay=| 2 8=y |[Ym - - y2)- (50

IV. MULTIMODE DENSITY CORRELATIONS .
Due to dispersion the stateg,,...,y;) will not remain

A. Density-coherent states . . .
y density coherent in the course of time.

In this section we further develop the notion of density For the sake of comparison we also compute the equal-
coherence and introduce density-coherent states for a multiime first-order correlation function for a general two-particle
mode Schrdinger field® state

From the definition(15) of the nth-order density correla-
tion function, we have readily that 1 ~ -

|¢>:_f dxy A% (X1, %) (%) W(x,)|0)  (51)
DMW(Xy, ... xn)=DM(X,, ... X)*. (45) V2

with symmetric two-particle wave functiogh(x;,X,). De-

. ima(™ | imi
If all x; are taken at the same timB," is real. Similarly to noting the marginal distributiof dx,| ¢(X1,X,)|? by p(x,)

the case of field correlation functiop0] one can derive the

. ) one obtains
inequality
) D®M(x1,%2) = 2| h(x1, %) >+ 2p(x1) (X1~ Xp), (52)
DPV(Xy, ... XpoXns e .. Xq)
(2m) compared with Eq44). This correlation function is not fac-
XD (Ymy YY1 Ym) torizable in general.
2|D(m+n)(xl! D A EREE iym)|2' (46)

B. Thermal fields

The State Of a SyStem iS Said tO.MEh-Order density COherent A Simp'e System that can be discussed in the context Of
if all density correlation functions up to orde¥’ factorize,  density correlations is provided by the thermal multimode
l.e., Schralinger field. Here for the sake of simplicity we con-
sider an ideal thermal Bose gas of atoms without condensate
DM(xy,... X)) =DP(xy)---DP(x,), n<AN, fraction (i.e., above the Bose condensation transition tem-
(47) peratureT.)® in which case the state of the system is de-
scribed by the density operator

3The discussion in this section can also be applied to a more
general class of density correlation functions. To this end, consider “The normalization constagtis not well defined mathematically,
a one-particle observablg with (discrete or continuogsigenval-  of course. This is due to the continuous nature of the eigenvalue
uesb, and eigenvectorib,). One might choosg=p, for example.  spectrum of the position operator If one considered density cor-
In analogy to¥T(r,t) and p(r,t) one can construct operators relation functions for a discrete operair(as outlined in the pre-

¥T(b,,t) andp(b,,t). In terms of these operators one defines theVious footnote these problems would not arise.

density correlation functions according to Eg5). The subsequent ~ “However, the momentum eigenstates will be “momentum den-
derivations then apply similarly to these correlations functions. Insity coherent” at all times for free particles, i.e.,Hf=p?/2m.

case ofB having a discrete spectrum, the mathematical problems ®The calculation of the second-order field coherence function for
connected with the normalizability of the density-coherent states déhe thermal Bose gas with both interactions and condensate fraction
not arise. present can be found iri1].
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;;Tzle’E (e mafa ke (53)
2
where ¢ is the eigenenergy of thieth mode kg the Boltz-
mann constant] is temperatureu the chemical potential, N
andZ the partition function. The equal-time first-order field — ot
coherence function of this system is K (N+1) ‘{)211
G“)(X)=Tr[pT‘I’T(X)‘I’(X)]=2k Nl d(x)[%, (54
where we have expanded the Sdinger field operator in Ko
terms of mode annihilation operators in the usual way as
‘I’(X):Ek%(x)aly and the mean number of atoms in mode FIG. 1. Schematic three-mode atom laser model.
kis ne=Tr(praja). Similarly, the equal-time second-order p 4 up as soon as the influx of atoms due to pumping
field coherence function is compensates for the losses induced by the damping.
2 ~ e - - - For the master equation of this atom laser model one
G (X1, %) =Tr pr V(X)W (X2) W (X2) W(Xy1) ] makes the ansatz
= 20 MM i, (x0) Pl b (x2) |7 W= —i[Ho+Hcol, W]+ koDl ag]W+ ky(N+1) Dl a; ]W
1%2
+ k;ND[a] W+ x, D[ a,]W (59

+ i, (X1) i, (X2) dic (X2) b, (Xa) |-
(55) yvith ﬁz_l. In .this equation, the second qua_ntized fo_rmalism_
is used in which each center-of-mass atomic mode is associ-
These correlation functions are not factorizable. The oneated with an annihilation operata;, and W denotes the
point normalized second-order coherence function is atomic density operatdrThe free Hamiltonian is given by

@ (x)=G2(x,x)IGV(x) GV (x)=2. 56
9?0 =G (xx/GM(x)GM(x) (56) Ho= 5. wala,
The equal-time second-order density coherence function is S

2 ~ sy - = 4 - w; being the mode frequencies. For the following we set
DY (X, %) =Trlpr¥ (X)W (X)W (X2) W (x2) ] wo+ w,=2w,. This condition can be fulfilled, e.g., if the

=GP (xq,%)+GD(x)8(x;—%p)  (57) atomic cavity is realized by time-modulated optical fields

[15].
and is likewise not factorizable. Thus the thermal Sehro  The operation of the atom laser relies on binary collisions
dinger field is neither field nor density coherent. between the atoms in the resonator. The general form of the

corresponding interaction Hamiltonian is
V. FIELD VERSUS DENSITY COHERENCE
IN A DYNAMICAL SYSTEM: HCOF- E VijklaiTa;rakal ’ (59)
THE BINARY-COLLISION ATOM LASER i<j,ksl

In order to illustrate how differently the field and density whereV;,, are the matrix elements of the two-body interac-
coherence of a Schdinger field can behave in a dynamical tion responsible for the collisions. However, for the present

system, we compute these properties for a model of a binarynyestigation we restrict our attention to the simplified form
collision atom laser. We show in particular that elastic colli-

sions, while being extremely detrimental to the field coher- Heo= Voa120a52181 + V108121 8082+ Vooodeahaoedo
ence, and hence to the linewidth of the laser, have almost no (60)
influence on its density coherence.

This binary-collision atom laser has been investigated irin which (besides the pumping collisionenly collisions in-
various publication§12—17. One considers a resonator for volving ground-state atoms are retained. The damping rates
atoms, realized, e.g., by optical fields, in which only threeof the cavity modes are given by the coefficierts and the
atomic center-of-mass modes are taken into account explistrength of the external pumping of mode 1 is characterized
ity (cf. Fig. 1). Bosonic atoms in their ground electronic by the parameteN, which is the mean number of atoms to
state are pumped into an atomic resonator level of “intermewhich mode 1 would equilibrate in the absence of collisions.
diary” energy(mode 1. They then undergo binary collisions The superoperatdP is of the Lindblad form and is defined
that take one of the atoms involved to the tightly bound laseby
mode 0, whereas the other one is transferred to the heavily
damped loss mode 2. This latter atom leaves the resonator
quickly, thereby providing the irreversibility of the pumping ’Since we consider ground-state atoms only, they are fully de-
process. A macroscopic population of the laser mode cagcribed by their center-of-mass quantum numbers.
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1
D[C]PZCPCT—E(CTCPJr Pcfe) (61)

with arbitrary operators and P.
In order to achieve a sufficiently high degree of irrevers-
ibility, it is necessary thak, is much larger than the damp-

ing rates of the other modes. This suggests to adiabaticall

eliminate this mode, an approximation that leads to the sim
plified master equatiopl2—14

p=—i[Hc,p]+ keD[aglp+ ky(N+1)D[a;]p

+x;ND[a]lp+T'Dlala?]p. (62)

Equation(62) is written in the interaction picture with re-
spect toH o= woajay+ w;ala,, and the reduced density ma-
trix p is p="Trnode 4 W]. The reduced collision Hamiltonian
H.is

He=Voooeadaodo. (63

andI'=4|Vy,,{% k. Consistently with Ref[13] we call the
limiting casesI'<ky and I'>«, the weak- and strong-
pumping regimes, respectively.

A. Linearized fluctuation analysis

In order to obtain analytical approximations for the corre-
lation functions

2I'n?n, —2I'n2n,
—2I'n?ny  2x,Nn;—2T'n
D= —2Vg0odo — Vo101
—Vo101No =2V

In the limit ny>1 one obtains from Eq<66) and (67) the
above-threshold semiclassical steady-state populafi®is

— 1 —
n0=§:—;(N—n1), (71)
ny= \/é (72)

the threshold condition beinly> \xq/T". The drift terms in
Egs. (66)—(69) and the correlation matri® do not depend
on the phaseg;. This means that the time evolution of the
atom numbersy; is not influenced by the phase dynamics
and is thus completely determined by E¢66) and (67)
alone. To proceed further we introduce the fluctuation vari

ables énj=n;—n;. In the linear approximation their time
evolution is given by

dén=—kéndt+ds,, (73
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G(7=(a/(0)af(Dai(Ma(0), (64

and

D{?(7)=(a/(7)a;(1)a/(0)a;(0)) (65)

% the two-mode sytem a linearized fluctuation analysis can
be performed10,1§. To this end the master equati@p) is
converted to a Fokker-Planck equation using Bré&unction
representation as described [ih3]. This equation can be
transformed to polar coordinates= \/n—je‘ ¢, whereq; de-
notes the complex amplitudes originally appearing in the
Fokker-Planck equatiofl9,20. This leads to stochastic dif-
ferential equations

dno=[T'nf(no+1) = konoldt+dS, , (66)
dny=[x;(N=ng) =2 nf(no+1)]dt+dS, , (67)
do=[—Voood 2No—1) ~Voroin1]dt+dSy , (68)
d¢1=[—V1111(2n;—1) = Voonoldt+dS,,. (69

The correlation matrix for the stochastic force$S"
=(dSnO,dSnl,dS¢O,dS¢l) is given by

—2Vooodlo  — Voioio
%no —Voro1  —2ViMm
I'n?/(2ny) I'n,/2 (70
N I'n
Iny/e 2,27
2nq 2

where sn"=(6ny,8n,) and the matrix is obtained by lin-
earizing the drift terms in Eqs66) and (67) around the

steady-state values;. The correlation matrixD, for the
stochastic forcedSI= (d &O,d&l) is given by the upper left
2X2 minor of the matrixD of Eq. (70) after replacing; by

n]-.

B. Second-order correlation function G®

In the linear approximation the steady-state second-order
correlation function for modg¢ is given by[10,1§

G (r)=(e o), +n? (74)

(7=0), whereo is the steady-state covariance matrix

AD,+ (k—3)Dp(k—3)T
o=

2SA (75)
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400 4K5
Jo=————=, (80)
300 | 4K0+ Klnl/no
Q1:K1+4K0H0/F1- (81)

2 200 |
© Their inverses can be interpreted as the relevant time scales
for the dynamics of the atom number fluctuations. Numerical
comparison to Eq(74) shows that the approximatidi9) is

very accurate, in general. The time dependence of the
second-order correlation functions is thus purely exponential.
The correlation functiorG{?) decays on a time scale of the

100t

i, order ofx, whereas the time evolution &%) is much more
rapid.
FIG. 2. Dependence oy, on ny. The curves are calculated ) . )
using Eq.(76) for parameter valuek =0.07x, (ascending curves C. Density-correlation function D
and I'=15k, (descending curves xy=20ko (full), x3=100k, Using EQ.(10.5.28 of Ref.[19] we find that in the linear

(dashedl The single points show numerical results o+ 0.07x,

) approximation the steady-state density-correlation function
k1=20k, (@), andx,;=100ky (<), respectively.

D{? for modej is given by

with A=detk andX =Trk (we use the numbers 0,1 as in-
dices for the X 2 matrice$. For the matrix elements of
one obtains the expressions

D2 (r)=n;(e”*"); + G{2(7). (82)

From Eqs(76) and(77) it follows thatD}z)(0)>Fj2. In anal-

— — - — ogy to Eq.(79) one obtains the expression
000=[Ng(2Kkg— Ko/N1) +Ng(K1Ny+ Ko+ K1)

— — D2(r)=(n+0;)e 97+n? 83
+ k2N, /(4k0) /(AT N1NG+ K1), (76) S (=t o) : 63
for the explicit time dependence 8. The intensity fluc-
Kko(2n;—1)Ng+ k1N2+ Kkohy tuation spectrum, i.e., the Fourier transformidf’(7) —n?,
011~ ' (77) is thus a Lorentzian.

4roNo/ny+ xky It should be noted that all results of this section are inde-

o pendent of the rate of elastic collisiorfas quantified by
001= 0 0= —N1/2. (78) Voooo between atoms in the laser mode. This means that in
the two-mode description the atom laser is second-order co-
herent[at least in the sense gf?(7)~1 for all 7] even if
_ — — — — Voooo IS large. In such cases the first-order correlation func-
approximated asro~3(N1—3)No and e11~3(N1—3)N1,  tion G will decay very rapidly so that the laser is not
respectively. Fon,;>1/2, i.e., in the weak-pumping regime, first-order coherent, and is characterized by a large linewidth
the second-order correlation functions thus show bunchind,17].
whereas fom;<<1/2, i.e., in the strong-pumping regime, the
linearized fluctuation analysis — which is, however, not ex- D. Numerical examples
pected to be fully reliable in that case — predicts antibunch-  As discussed in detail in Ref16], the master equations
ing. The normalized second-order C(ﬂfmati@f)z)(o) (58) and (62) may be solved numerically with the help of
=GP(0)/n2 goes to 1 with I, for largen,. In contrast, quantum Monte Carlo techniqug®1,22. The correlation

— i (2) (2) ithi i -
9{?)(0)—3/2—1/(4n,). For the case ofi,;>1 the results for functions G* and D can be calculated within this ap
og and o, are in agreement with the conclusions of Ref. proach according to the description given in Re]. In the

. : following we compare some numerical results with the ana-
[13]. To illustrate the physical contents of E¢86) and(77) lytical predictions of Secs. IV B and IV C.

In the far-above-threshold IimEO> 1 the covariances can be

in Fig. 2 the depe_ndencg ofyoon nolis shown for the weak- Strong-pumping regimerigure 3a) depicts a typical re-
and strong-pumping regime and different valuescof sult for the calculation ofD{?) and G{?) in the strong-
An expansion o X7 in the parameten,/n; yields the  pumping regime. In this example, the parameférs15«o,
approximate result k1=20ky, and N=1.2 were chosen yielding a numerical
o equilibrium population 0ofng=9.0 (9.4 analytically. As
G{?(r) =0y 97+n’ (79 should be expected?)(0)— G{?(0)~n,. The behavior of

_ _ _ Dgz)(r) is very well approximated by an exponential decay
for the time dependence of the correlation functiéd).  with time constant If,, as predicted in Eq83). From the
Thereby, theg; are the two eigenvalues of the matkixFor  pehavior ofG{?)(7) it can be inferred thatg{®(7) —1|<1
ng/n,>1 they are approximately given by for all 7. However, even after a very large number of Monte
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FIG. 4. Numerical calculation o&{?(7) for parameter values

160
I'=0.07«q, k1=20ko, N=3.9. Dashed curve: exponential decay
150 with time constant 4.
140 . . - .
in this way. A similar agreement was also found in other
130 examples.
120 In Fig. 2 the results of several numerical calculations of
0.0 25 5.0 7.5 10.0 oy are shown as a function of the numerical valuengfor
Kot the parametersI'=0.07«,, k;=20k, (®), and «;

FIG. 3. Numerical calculation ob{?(7) and G{(7) for pa- ;100K0d(<>?]. T_he numerical val_uesf o:fr(l)o shouldobe uhn-
rameter valued™ = 15x,, x;=20ky N=1.2 (@) and I'=0.07,, erstood as having an error margin of at leadi0-15%. The

1, =20ko, N=3.9 (b). Dashed curves: exponential decay with cor- Fesults depicted agree in order of magnitude with the predic-
responding time constantdy. tions of Eq.(76) and also demonstrate a dependencergf

on ng and k4 similar to the analytical one.
Carlo simulations, numerical noise prevents any further de- Second-order correlation function for the pumping mode.
tails of the time dependence 6(?)(7) to be identified. This An example of the behavior of the second-order correlation
observation applies to most calculations in the strongfunctionG{?(7) in the weak-pumping limit is shown in Fig.
pumping regime. In particular, it could not be unambigu-4. There, the parameter valués=0.07«g, «1=20ko, and
ously determined whether antibunching actually occurs foN=3.9 were used. The order of magnitude ®f?(0) as

= oy 2
larger values oh,. On the other hand, these numerical re-Well as the temporal decay rate@?) (which is much larger

sults are compatible with the fact that Eq6) predicts a than the decay rate @{?)) are in good agreement with the
small value oflg{?’(7) — 1| (compare with Fig. 2 analytical predictions. It should be noted that the time evo-

It should be noted that a small amount of antibunching inIUtEron of the mean population of the pumping mode
G could be observed in calculations for the three-mode 21(Dai(D)) starting from an initial vacuum state contains
m(())del in cases in whicN gy is large compared t&qp;. oth characteristic time scalesqd/and 16;. This is quite

Under these conditions, however, the main effect to be Obg|fferent from the behavior o63™, which is characterized

served is a significant decrease in the equilibrium populatiorlf’y 1/d, a'o(’;)e- In the st_rong pumping “mlt the time depen_—
— dence ofG}”’ could again not be recognized due to numeri-
No.

) ) . cal noise. This is consistent with the fact that the linearized
; Wr(]aak—purrkmmg regimdn contrast o éhe prewous casef,] fluctuation analysis predicts a small valug@f)(0)— 1| for
or the wea 'p“T“p'”g reglm'e I C"’z‘? e' eXF’eC,t,e on t Ghe parameter values investigated. Furthermore, the calcula-
grounds of the linear analysis thg(0) is significantly  jions indicated that Ed72) ceases to be valid for larde. It

different from 1 ifn is not too large(cf. Fig. 2. As exem- ¢ not possible to reducy to very small values in which
plified in Fig. 3b), this prediction is indeed confirmed by the case a more pronounced antibunching would be expected.
numerical calculations. There the correlation functiﬁl{%) In conclusion, we see that the results obtained from the
and G are shown for the parameter valuEs=0.07«o, linear fluctuation analysis describe well the essential aspects
x1=20ko, and N=3.9. Unfortunately, the quantitative re- of the behavior of the correlation functiom{" and G
sults of the linear analysis in the weak-pumping regime argynd may be used as a first quantitative estimate.

not very accurate for low values af, (to which the numeri-
cal computations have to be restricted due to time con- VI. CONCLUSION AND OUTLOOK

strainty. For example, for the above parameters . )
3— P P £ In this paper, we have adopted an operational approach to

yields ng=1.2, which is much s.maller t_han the numerical jhiroduce several classes of coherence of the ‘Sohger
value of 11. However, EQ80) still constitutes a good ap- fie|q. Of particular importance are density coherence, which
proximation to the decay rate of the correlatlon_functlo_ns ifitis connected to far-off-resonance imaging measurements,
is used with the numerically determined valuesigfandn;. and field coherence, which can be measured in ionization-
This is demonstrated by the dashed curve in Figg),3vhich  type measurements. One can readily imagine further classes
depicts an exponential decay with a time constant calculatedf coherence associated with other types of measurements,
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but they are probably not as important as field and densitpf an atom laser. While this is likely to be the case in some
coherence. interferometric applications, other possible uses of atom la-
One question of considerable significance in the futureser beams, such as coherent lithography, may well require
will be to quantify the usefulness of various sources ofonly a high degree of density coherence, in which case, as
Schralinger fields for specific applications. In optics, one of we have seen, elastic collisions do not play a detrimental
the most important characteristic of lasers is their spectralole. Hence, we believe that it is important at this point to
width, and higher-order coherence plays a limited role instart analyzing in detail the coherence requirements of spe-
most cases. By analogy, past studies of atom lasers hawéfic atom laser applications, so as to optimize their design.
concentrated on their spectral width, as determined by their
flr.st-order field (_:orrelatlons. It has bgen found that this Ilne—_ ACKNOWLEDGMENTS
width can be quite broad, especially in the presence of elastic
collisions. Indeed, things can be so bad that the atom laser This work is supported in part by the U.S. Office of Naval
linewidth is broader than the natural linewidth of the atomResearch under Contract No. 14-91-J1205, by the National
cavity, in sharp contrast to the optical situation where, ofScience Foundation under Grant No. PHY95-07639, by the
course, the reverse is true. It is not clear, however, whethdd.S. Army Research Office and by the Joint Services Optics
this is a useful way to determine the quality and usefulnes®rogram.
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