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Coherence of atomic matter-wave fields

E. V. Goldstein, O. Zobay, and P. Meystre
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721
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In analogy to Glauber’s analysis of optical coherence, we adopt an operational approach to introduce
different classes of atomic coherence associated with different types of measurements. For the sake of con-
creteness we consider specifically fluorescence, nonresonant imaging, and ionization. We introduce definitions
of coherence appropriate to them, which we call electronic, density, and field coherence, respectively. We
illustrate these concepts in various descriptions of Bose-Einstein condensation, showing that each of these
descriptions makes different implicit assumptions on the coherence of the system. We also study the impact of
elastic collision on the field and density coherence properties of atom lasers.@S1050-2947~98!01509-1#

PACS number~s!: 03.75.2b, 42.50.Ar, 42.50.Ct
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I. INTRODUCTION

Quantum optical coherence theory is based on the fac
ization properties of normally ordered correlation functio
of the electric field operator@1#. This is a direct consequenc
of the fact that most optical experiments detect light by
sorption, i.e., by ‘‘removing’’ photons from the light field
But the situation is not so simple in the case of matter-w
fields, and in particular for atomic de Broglie waves. This
because atomic detectors can work in a number of diffe
ways: For instance, one can choose to measure electr
properties of the atoms, or center-of-mass properties, or b
Measurements may or may not remove atoms from the fi
hence the role of the annihilation operator is not as centra
for light fields.

Due to the added complexity of that situation as compa
to the optical case, no unified theory of atomic cohere
exists to date. The major objective of this paper is to pres
a step toward this goal, extending the ideas of optical coh
ence theory to introduce several types of matter-wave co
ence, in particular ‘‘field coherence’’ and ‘‘density cohe
ence’’ @2#.

In analogy to Glauber’s analysis of optical coherence@1#,
we adopt an operational approach where different classe
atomic coherence are associated with different types of m
surements. For the sake of concreteness we consider sp
cally three classes of measurements: fluorescence, non
nant imaging, and ionization. Section II briefly reviews t
outcome of these measurements, and introduces defini
of coherence appropriate to them. We call them electro
density, and field coherence, respectively. In the case
bosonic atoms, field-coherent states are easily seen to c
spond to the usual Glauber coherent states@1#. In the single-
mode case, density-coherent states are simply given by F
states, but a more general discussion is required for the m
timode case. Section III illustrates these ideas in various
scriptions of Bose-Einstein condensates. Section IV furt
develops the concept of multimode density coherence, wh
is applied to the case of the atom laser in Sec. V. In this la
example, we illustrate in particular how elastic collision
while strongly modifying the field coherence of the devic
have almost no effect on its density coherence. Finally, S
VI is a summary and outlook.
PRA 581050-2947/98/58~3!/2373~12!/$15.00
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II. FIELD AND DENSITY COHERENCE

A physically appealing operational way to discuss matt
wave coherence relies on the analysis of specific detec
schemes, in complete analogy with the optical case. As
shall see, this approach naturally leads to the need to as
ate differentclasses of coherencewith different types of
measurements. In addition, it builds useful bridges betw
concepts familiar in quantum optics and methods of tra
tional many-body theory.

In this paper we consider for concreteness a boso
atomic Schro¨dinger field described by a multicompone

field operator Ĉ(r ,t), with components Ĉ i(r ,t), i
51,2, . . . . Wenormally think of the atoms comprising thi
field as adequately described in the Born-Oppenheimer
proximation, so thatr describes their center-of-mass motio
and the indexi labels various electronic states. For boson
atoms, one has then

@Ĉ i~r ,t !,Ĉ j
†~r 8,t !#5d i j d~r2r 8!. ~1!

Our goal is to characterize the statistical properties of o
or more components of this field. One familiar method
volves the detection of light fields interacting with the atom
sample, in the hope that properties of the Schro¨dinger field
can be inferred from it. All of laser spectroscopy relies
this approach, although it is not normally cast in terms
matter-wave fields. Another approach, which we will fin
useful in some respects, involves ionizing atoms from
sample and studying the properties of the emitted ions
electrons. But this method typically also relies on the int
action of the atoms with a light field. Hence, a gene
Hamiltonian describing a measurement scheme for the p
erties of the atomic Schro¨dinger field is of the form

V5(
i j

E d3r Ĉ j
†~r !@di j •Ê~r ,t !#Ĉ i~r !, ~2!

where Ê(r ,t) is the electric field operator,di j is the dipole
matrix element between electronic statesi and j , and we
have assumed for simplicity that the electric dipole appro
mation gives an adequate description of the atom-field in
action.
2373 © 1998 The American Physical Society



e
d

um

ds
tio

n,

-
w
rm
s
e

rable
nce
on-

um
e
ec-

s

er-

he

ag-
er-
t it
n

der

ide

2374 PRA 58E. V. GOLDSTEIN, O. ZOBAY, AND P. MEYSTRE
We consider the situation where the electromagnetic fi
consists of a classically populated field mode of amplitu
E0, wave vectork0, and polarizatione, and a series of
weakly excited side modes of wave vectorsk l and polariza-
tions el . In that case, the Hamiltonian~2! becomes

V5(
i j ,l

E d3r Ĉ j
†~r !@V i j ,0~r !ei ~k0•r2v0t !

1 iV i j ,lale
ikl•r#Ĉ i~r !1H.c., ~3!

where we have introduced the Rabi frequencies

V i j ,0~r !5di j E0~r !~ei j •e!/\ ~4!

corresponding to the classical driving field and the vacu
Rabi frequencies

V i j ,l5di jEl~ei j •el !/\. ~5!

In these expressions,ei j is the direction of the atomic dipole
of magnitude di j for the i↔ j transition, and El
5@\v l /2e0V#1/2 is the ‘‘electric field per photon’’ in model .

A. Resonance fluorescence

In resonance fluorescence measurements, one procee
shining a laser quasiresonant with an electronic transi
g↔e, and measuring, e.g., the fluorescence spectrum

S~v!5E dte2 ivt^Ê2~r0 ,0!Ê1~r0 ,t!&1c.c. ~6!

at the locationr0 of a photodetector. In that expressio

Ê1(r0 ,t) and Ê2(r0 ,t) are the familiar positive and nega
tive frequency parts of the electric field operator, and
have assumed stationarity to identify the Fourier transfo
of the first-order correlation function of the field with it
spectrum. It is well known that, except for unimportant r
tardation effects, one has that

Ê1~r0 ,t !}Ĉe
†~r0 ,t !Ĉg~r0 ,t !, ~7!

so that
e

g
tie
er
er
l

ld
e

by
n

e

-

S~v!}E dte2 ivt^Ĉg
†~r0 ,0!Ĉe~r0 ,0!Ĉe

†~r0 ,t!Ĉg~r0 ,t!&

1c.c. ~8!

Resonance fluorescence has been studied in conside
detail, both experimentally and theoretically. The resona
fluorescence spectrum of a two-state atom is known to c
sist of acoherentand anincoherentcontribution. For a per-
fectly monochromatic excitation laser, the coherent spectr
Scoh consists of ad function at the laser frequency, while th
incoherent spectrum is the famous Mollow three-peak sp
trum. Mathematically,

Scoh}E dte2 ivt^Ĉg
†~r0 ,0!Ĉe~r0 ,0!&^Ĉe

†~r0 ,t!Ĉg~r0 ,t!&

1c.c. ~9!

andSinc(v)5S(v)2Scoh(v). In physical terms, this mean
that coherent effects are associated with thefactorizedcor-
relation function

^Ĉg
†~r0 ,0!Ĉe~r0 ,0!&^Ĉe

†~r0 ,t!Ĉg~r0 ,t!&. ~10!

These considerations justify defining the ‘‘electronic coh

ence’’ of the matter fieldĈ(r ,t) in terms of the factorization
properties of normally ordered correlation functions of t
field polarizationoperator

Ŝ2~r ,t ![Ĉg
†~r ,t !Ĉe~r ,t !. ~11!

B. Off-resonant imaging

In contrast to resonance fluorescence, off-resonant im
ing involves a strongly detuned electromagnetic field int
acting with the atoms in the sample in such a way tha
induces only virtual transitions. After adiabatic eliminatio
of the upper electronic state of the atomic transition un
consideration, the interaction between the Schro¨dinger field
and the radiation field is described to lowest order in the s
modes by the effective Hamiltonian
V5\E d3r F uV0~r !u2

d0
1(

l
S V0~r !V l

!

d0
al

†ei ~k02kl !•r 1
V0

!~r !V l

d0
ale

2 i ~k02kl !•r D GĈ†~r !Ĉ~r !, ~12!
le.
cat-
ce
where the atom-field detuningd0[va2v0 is such that
ud0u@uV0(r )u, and we have omitted the index labeling th
ground-state component of the Schro¨dinger field, which can
now be considered as scalar.

There are a number of ways in which off-resonant ima
ing can be applied to the determination of specific proper
of the Schro¨dinger field. For instance, one can detect int
ferences between the classical incident field and scatt
light, as in the MIT experiments@3#. This results in a signa
-
s
-
ed

proportional to the densitŷr̂(r ,t)&, where we have intro-
duced thefield densityoperator

r̂~r ,t ![Ĉ†~r ,t !Ĉ~r ,t !, ~13!

whose expectation value is the local density of the samp
Alternatively, one can measure the spectrum of the s

tered light in a fashion familiar from resonance fluorescen
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experiments@4#. For side modes initially in a vacuum stat
the most important nontrivial contribution to the fluorescen
signalF is proportional to the intensityuV0u2 of the incident
field,

F5
uV0u2

d0
2 (

l
uV l u2E d3rd3r 8E

t

t1Dt

dtdt8

3ei @~k02kl !•~r2r8!2~v02v l !~t2t8!#^r̂~r ,t!r̂~r 8,t8!&,

~14!

and hence is sensitive to the second-order correlation fu
tion of the Schro¨dinger field density. Indeed, it can be show
that any measurement involving the electromagnetic fi
scattered by the atomic sample under conditions of
resonant imaging is determined by correlation functions

r̂(r ,t),

D ~n!~x1 , . . . ,xn!5^r̂~x1!••• r̂~xn!&, ~15!

wherexi[(r i ,t i).
In analogy with the optical case, we therefore define

Schrödinger field as beingdensity-coherent to orderN if its
density correlation functionsD (n)(x1 , . . . ,xn) factorize for
all n<N. From this definition, it is obvious that single-mod
density coherent states are the familiar number states.
the situation is more complex for multimode fields, to whi
we return in Sec. IV.

C. Ionization

1. Physical model

The reason resonance fluorescence and off-resonant i
ing yield signals proportional to correlation functions of b
linear products of components of the Schro¨dinger field is of
course that the electric dipole interaction is itself bilinear
the Schro¨dinger field operators. This raises the question a
whether it is possible to measure correlation functions

Ĉ(r ,t) itself, as in the case of optical fields. This can
achieved if instead of making measurements on the radia
field, one detects the atoms directly@5,6#. One possible
scheme that achieves this goal is the ionization method
we now discuss.

Consider a detector consisting of a tightly focused la
beam that can ionize atoms by inducing transitions from th
ground electronic levelug& to a continuum levelu i &. We are
interested in measuring properties of the ground-state c
e
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ponentĈg(r ) of this field, which is electric dipole-coupled

to continuum statesĈ i(r ).
In contrast to the preceding measurement schemes, w

no longer interested in the dynamics of the light field, who
role is merely to ionize the atoms. Rather, one extracts in

mation about the state of the Schro¨dinger fieldĈg(r ,t) by
standard atomic physics methods, such as, e.g., the dete
of the quasifree electrons of the continuum states. It is the
fore sufficient to describe the light field via its~possibly
time-dependent! classical Rabi frequenciesV i between the
levels ug& and u i &, so that the atom-field interaction reduc
to

V5\(
i
E d3rV i~r ,t !Ĉ i

†~r !Ĉg~r !e2 ivLt1H.c. ~16!

For ground-state atoms cooled well below the recoil te
perature and tightly focused laser beams, the spatial siz
the atomic wave function is much larger than the laser s
and we can approximate the electric fieldE(r ) by E(r )
.Ed(r2r0), so that Eq.~16! becomes

V5\(
i

V i~r0 ,t !Ĉ i
†~r 0!Ĉg~r 0!e

2 ivLt1H.c. ~17!

We assume for simplicity that the center-of-mass wa
functions of the continuum states of the atoms are well
scribed by plane waves of momentumq, so that the single-
atom HamiltonianH0 may be expressed as

H05Hg1(
iq
Hiq , ~18!

where

Hiq5\v iqbi ,q
† bi ,q . ~19!

Here we expandedĈ i(r ) in plane waves as

Ĉ i~r !5(
q

fq~r !bi ,q ~20!

with @bi ,q ,bi 8,q8
†

#5dqq8d i i 8 , andv iq5\q2/2M1v i .
In the following we take the atomic system to be initial

in the state

uc&5u$c i ,q%,cg&. ~21!

To first order in perturbation theory and for cw beams, t
transition probability away from that state during the tim
interval Dt is
w. (
i ,q,i 8,q8

uV i~r0!u2E
t

t1Dt

dtE
t

t1Dt

dt8@eivL~ t2t8!^cguĈg
†~r0 ,t!Ĉg~r0 ,t8!ucg&

3^$c i ,q%uĈ i~r0 ,t!u$f i 8,q8%&^$f i 8,q8%uĈ i
†~r0 ,t8!u$c i ,q%&1e2 ivL~ t2t8!^cguĈg~r0 ,t!Ĉg

†~r0 ,t8!ucg&

3^$c i ,q%uĈ i
†~r0 ,t!u$f i 8,q8%&^$f i 8,q8%uĈ i~r0 ,t8!u$c i ,q%&#, ~22!
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where the sum is over all final statesu$f i 8,q8%& in the excited
state manifold. In this expression, we have neglected co
butions involving the product of two creation or annihilatio
operators, a result of the implicit assumption that any atom
the continuum will be removed from the sample instan
neously. In addition, we explicitly carried out the sum ov
all final states of the ground-state field, but not for the e
cited fields manifold. This is because we want to allow
the possibility of selective detection of the ionized atom
Following Ref.@1#, this can be easily achieved by replacin
the sum over final states in Eq.~22! by a weighted sum

(
i 8,q8
→(

i 8,q8
R~ i 8,q8!, ~23!

whereR( i 8,q8) is the detector sensitivity to atoms in sta
uf i 8,q8&. In practice, we have in mind energy-selective det
tors, R( i 8,q8)→R(v), and the degeneracy of the leve
must then of course be accounted for.

There is a fundamental distinction between the situatio
hand and Glauber’s photodetection theory, because in
present case both the detected and detector fields cons
matter waves. There is a complete symmetry between th
two fields so far, and their roles are interchangeable. In o
to break this symmetry and to truly construct a detector,
now make a series of assumptions on the state of the det

fields Ĉ i(r ,t). Physically, this amounts to making a stat
ment about the way the detector is prepared prior to a m
surement. Specifically, we assume that all atoms are in
ground state,C i(r0,0)u$c i ,q%&50, and that any atom in an
ionized state will be removed from the sample instan
neously, as already mentioned. In that case, the second
in Eq. ~22! vanishes.

2. Energy-selective detectors

To illustrate this result, we consider the situation
energy-selective detectors, and discuss the limits ofnarrow-
band and broadbanddetection@1,7#. In the first case the
detector bandwidthDEd is assumed to be much narrow
than the energy widthDEg of the ground-state Schro¨dinger
field, which is determined solely by the spread in center-
mass momentum~temperature! since all atoms occupy th
same internal state. The reverse is true in the second c
We note that in contrast to the detection of optical fiel
where the center-of-mass motion of the detector is igno
the narrowband regime can now be achieved only by m
nipulating the detector sensitivityR(E). This is because
even a monochromatic excitation of the atomic fields res
in equal bandwidthsDEg5DEd of the detected and detecto
fields, due to atomic center-of-mass dispersion.

For a narrowband detector and long enough detec
timesDt@\/DEg , the substitution of Eq.~23! into Eq. ~22!
yields readily
ri-
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`

dte2 i ~v2vL!tGA~ t,t1t;r0 ,r0!1c.c. ~24!

Here\v is the energy of the registered photoelectrons, a
we introduced the ionization rater nb(v)5wnb(v)/Dt and
the normally ordered first-order correlation function of t
ground-state Schro¨dinger field GA(t,t8;r0 ,r0)

5^Ĉg
†(r0 ,t)Ĉg(r0 ,t8)&. In this limit, the detector measure

the Fourier component of the atomic correlation functi
GA(t,t8;r0 ,r0). For stationary fields, the Wiener-Khintchin
theorem implies that tuning the detector sensitivityR(E)

yields the spectrum of the Schro¨dinger fieldĈg(r ,0).
In the case of broadband detection, in contrast, the ene

distributionDEd of the ionized states is much broader th
DEg . This situation can be realized, e.g., by exciting t
ground state with a broadband laser pulse and detecting
resulting electrons~or ions! with a broadband detecto
R(E). const. Assuming that the spectrum of the grou

atoms Schro¨dinger field is centered atv̄, we find

r bb.h~r0!GA~ t,t;r0 ,r0!, ~25!

where we have introduced in prevision of the following d
cussion the ‘‘detector cross-efficiency’’

h~r1 ,r2!5(
i

V i~r1!V i
!~r2!

3E
0

Dt

dt^Ĉ i~r2 ,t1t!Ĉ i
†~r1 ,t !&e2 i ~v̄2vL!t,

~26!

from which the usual detector efficiency is simply recover
as h(r0)[h(r0 ,r0). As expected, a broadband detector
not able to resolve any spectral feature of the Schro¨dinger
field, and only measures the local atomic density, like o
resonant imaging.

3. Higher-order correlations

The detection of higher-order correlations of the Sch¨-
dinger field can be achieved by a straightforward general
tion of the ionization detector. For instance, second-or
coherence measurements can be carried out by focusing
laser at two locationsr1 and r2, in which case

V5\ (
m51,2

(
j

V j~rm!Ĉ j
†~rm!Ĉg~rm!e2 ivLt1H.c.

The joint probability to ionize an atom atr1 and another one
at r2 is then
w2. (
$ j i %$qi %

E
t

t1Dt

dt1E
t

t1Dt

dt2E
t

t1Dt

dt3E
t

t1Dt

dt4e2 ivL~t11t22t32t4!V j 1

! ~r1!V j 2

! ~r2!V j 3
~r2!V j 4

~r1!

3^Ĉ j 1
~r1 ,t1!Ĉ j 2

~r2 ,t2!Ĉ j 3

† ~r2 ,t3!Ĉ j 4

† ~r1 ,t4!&^Ĉg
†~r1 ,t1!Ĉg

†~r2 ,t2!Ĉg~r2 ,t3!Ĉg~r1 ,t4!&. ~27!
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It involves two detected atoms, hence it is now necessary to properly account for the quantum statistics of the m
particles. For this purpose, we describe the ionized atoms as ion-electron pairs, whereby the electrons are describ
creation and annihilation operatorscks

† andcks satisfying Fermi commutation relations@cks ,ck8s8
†

#15dss8dkk8 . Heres labels
the electron spin andk its momentum. We similarly introduce ion creation and annihilation operatorsaks

† ,aks , also satisfying
Fermi commutation relations~for bosonic atoms.! For a spin-zero atom, the atomic mode operatorsbj ,q can be expressed in
terms of the ion and electron operators as

bj ,q[u j q&^0u5 (
kk8ss8

ukk 8ss8&^kk 8ss8u j q&^0u

5(
ks

w j~k!aqsck2s5(
s

aqscj 2s , ~28!

wherew j (k) are electron wave functions ink space,cjs5(kw j (k)cks , and we have assumed that the center-of-mass w
function iseiq•r with r being the ion~or atomic center-of-mass! position. Due to spin conservation the values of electron
ion spins are clearly opposite.

Substituting this result into Eq.~27! yields, in the case of broadband detection,

w25h~r1!h~r2!E
t

t1Dt

dt1E
t

t1Dt

dt2^Fg
†~r1 ,t1!Fg

†~r2 ,t2!Fg~r2 ,t2!Fg~r1 ,t1!&

1h~r1 ,r2!h~r2 ,r1!E
t

t1Dt

dt1E
t

t1Dt

dt2^Fg
†~r1 ,t1!Fg

†~r2 ,t2!Fg~r2 ,t1!Fg~r1 ,t2!&

1hx~r1 ,r2!E
t

t1Dt

dt1^Fg
†~r1 ,t1!Fg

†~r2 ,t1!Fg~r2 ,t1!Fg~r1 ,t1!&, ~29!

where the detector sensitivityhx(r1 ,r2) to processes involving electron exchange is

hx~r1 ,r2!5E
t

t1Dt

dt2E
t

t1Dt

dt3E
t

t1Dt

dt4e2 ivL~t11t22t32t4! (
abkq

@ei [vk~t12t3!1vq~t22t4!1va~t12t4!1vb~t22t3!]

3uVa~r1!u2uVb~r2!u2fk
!~r1!fk~r2!fq

!~r2!fq~r1!1Va
!~r1!Va~r2!Vb

!~r2!Vb~r1!ufk~r1!u2ufq~r2!u2

3ei [vk~t12t4!1vq~t22t3!1va~t12t3!1vb~t22t4!] #. ~30!
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The first term in Eq.~29! is familiar from double photo-
detection, with the usual exchange contributions from
detectedfield. The second term is an additional exchan
term due to the fact that the detector field is a single Sch¨-
dinger field. Its origin is the interference of thedetectorfield
at pointsr1 and r2. It is absent in conventional photodete
tion theory, a result of the implicit assumption that the tw
detectors used are distinguishable.1 Finally, the term propor-
tional to hx results from the fact that electrons do not kno
from which atom they originate. We note that these last t
terms can be eliminated by using a gated detection sch
@7# that eliminates the contribution of the exchange terms
the detector field. In practice, such gating can be achieve
using nonoverlapping short laser pulses to ionize the ato

1A similar comment can be made about the position measurem
scheme discussed in Refs.@5,6#. In that case, the absence of th
detector exchange contribution can be traced back to the ass
tion that the sets of states excited at different locations are dis
guishable. While this approximation is usually reasonable, it
comes questionable in situations involving quantum degene
gases such as Bose-Einstein condensates.
e
e

o
e

n
by
s.

In that case, the ionization scheme simply yields norma
ordered correlation functions of the Schro¨dinger field

G~n!~x1 , . . . ,xn!5^Ĉ†~x1!•••Ĉ†~xn!Ĉ~xn!•••Ĉ~x1!&,
~31!

in complete analogy with the optical situation. This also ju
tifies defining a Schro¨dinger field asfield coherent to order
N if its normally ordered correlation functionsG(n) factorize
for all n<N.

III. EXAMPLE: BOSE-EINSTEIN CONDENSATION

A. Hartree description

To illustrate the ideas developed in the preceding sect
we consider a quantum-degenerateN-particle bosonic sys-
tem described by the state

uc~ t !&N5
1

AN!
E d$r i% f N~$r i%,t !P iĈ

†~r i !u0&, ~32!

where theN-body wave functionf N($r i%,t) is totally sym-
metric in its arguments. If the sample forms a condensat
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is described to an excellent degree of approximation b
Hartree wave function, whereby theN-body wave function
f N($r i%,t) factorizes as a product of the formf N($r i%,t)
5P ifN(r i ,t). That is, all atoms in the condensate are d
scribed by the same Hartree wave functionfN(r ,t) and the
N-particle state reduces to

uc~ t !&N5
1

AN!
S E drfN~r ,t !Ĉ†~r ! D N

u0&. ~33!

The equation of motion forfN(r ,t) is obtained from the
variational principle

d

dfN
! ~r !

FN^cu i\
]

]t
2Huc&NG50, ~34!

whereH is a many-body Hamiltonian.
We expand then the Schro¨dinger field as2 @8#

Ĉ†~r !5fN
! ~r !a†1dĉ†~r !, ~35!

wherea† is the creation operator for a particle with the Ha

tree wave functionfN(x) and the operatordĉ†(r ) creates
particles in all other states. Further assuming that the c
densate state is stationary

fN~r ,t !5fN~r !e2 imNt/\ ~36!

with mN being the chemical potential, the state of the syst
is simply

uc~ t !&N5
e2 imNt/\

AN!
~a†!Nu0&[uN&, ~37!

where we have used the orthogonality of the condensate
to all other modes, i.e.,*drfN(r )dc†(r )u0&50. Hence the
Hartree approximation is equivalent to the assumption
the condensate is in a number state of the self-consis
Hartree ‘‘mode.’’ In this description the condensate is in
density coherent state~37!. Indeed,uc(t)&N is easily seen to

be an eigenstate of the field density operatorr̂(r ),

r̂~r !uc~ t !&N5Nr~r !uc~ t !&N , ~38!

wherer(r )5ufN(r )u2 is the local Hartree density of the con
densate. It is straightforward to see that this state is den
coherent to all orders. However, just like single-mode nu
ber states of the electromagnetic field, it does not exh
field coherence past first-order coherence.

B. Wave-packet description

For small systems containing a finite number of atom
the assumption that all particles are in the condensate sta
actually not realistic. Rather, the particle number in a c

2Note that this representation of the Schro¨dinger field operator is
different from the Bogoliubov description, a consequence of
fact that the system isnot taken to be in a field coherent state.
a
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densate fluctuates, so that only the mean number of atom
the condensate is known. In this picture it is appropriate
describe the condensate as a wave packet in Fock space
assume that the particle number distribution is shar

peaked aroundN̄. Following Ref. @8# we assume a Poisso
nian particle number distribution, and thus, the state o
condensate reads

uc~ t !&5e2N̄(
N

N̄N/2

N!
e2 iNmNt/\~a†!Nu0&. ~39!

In contrast to a pure condensate state with a fixed numbe
atoms in the Hartree ground state, this state can be cha
terized with a nonzero ‘‘order parameter’’ defined by@8#

F~r ,t ![^c~ t !uC~r !uc~ t !&5AN̄f N̄~r !e2 imt/\FN~ t !,
~40!

wherem5m N̄1N̄m
N̄
8 , m

N̄
8 []mN /]NuN5N̄ and

FN~ t !5e2N̄(
N

N̄~N21!

~N21!!
e22im

N
8̄ ~N2N̄!t/\. ~41!

This order parameter exhibits periodical collapses and re
als due to the dispersion of the chemical potential over
particle number variance. Physically, this is a conseque
of the fact that while the initial state of the condensate
field ~Glauber! coherent, it does not remain so in the cour
of time. Hence, the state~39! is neither field nor density
coherent.

Interestingly, it turns out that theone-timefield coherence
functions measured in ionization experiments~Sec. II C! are
factorizable. Indeed, the first-order field coherence funct
in this case reads

G~1!~r ;0!5N̄uf N̄~r !u2

and the second-order field coherence function is

G~2!~r ,r 8;0!5N̄2uf N̄~r !u2uf N̄~r 8!u2,

so that the normalized second-order coherence func
g(2)(0)51.

C. Spontaneous symmetry breaking description

As a final possible description of the condensate, we c
sider the standard spontaneous symmetry breaking appr
whereby the Schro¨dinger field operator is replaced by ac
number@9#,

Ĉ~r ,t !→F~r ,t !. ~42!

This description is equivalent to the assumption that the s
of the system is an eigenstate of the Schro¨dinger field opera-

tor Ĉ(r ,t)uc&5F(r ,t)uc&, or, in other words, that the con
densate is in a Glauber coherent state. This state can be
tained from the previous wave packet description in
thermodynamic limit when the dispersion ofm over the par-

e
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ticle number variance becomes negligible andmN can be
approximated bym N̄ . In that case

F~r ,t !uc&5AN̄e2 imNt̄f N̄~r !uc&, ~43!

the condensate remains in a Glauber coherent state a
times. It is field coherent, but not density coherent since
that state one finds easily that

D ~2!~r ,r 8;0!5D ~1!~r !D ~1!~r 8!1D ~1!~r !d~r2r 8!.
~44!

These results illustrate how different descriptions of
condensate make different implicit assumptions about its
herence properties. These models are amenable, at lea
principle, to experimental tests. We note finally that all d
scriptions reviewed in this section become equivalent in
thermodynamic limit as far as their coherence properties
concerned, despite the fact that their order parameters
different.

IV. MULTIMODE DENSITY CORRELATIONS

A. Density-coherent states

In this section we further develop the notion of dens
coherence and introduce density-coherent states for a m
mode Schro¨dinger field.3

From the definition~15! of the nth-order density correla
tion function, we have readily that

D ~n!~x1 , . . . ,xn!5D ~n!~xn , . . . ,x1!* . ~45!

If all xi are taken at the same time,D (n) is real. Similarly to
the case of field correlation functions@10# one can derive the
inequality

D ~2n!~x1 , . . . ,xn ,xn , . . . ,x1!

3D ~2m!~ym , . . . ,y1 ,y1 , . . . ,ym!

>uD ~m1n!~x1 , . . . ,xn ,y1 , . . . ,ym!u2. ~46!

The state of a system is said to beNth-order density coheren
if all density correlation functions up to orderN factorize,
i.e.,

D ~n!~x1 , . . . ,xn!5D ~1!~x1!•••D ~1!~xn!, n<N,
~47!

3The discussion in this section can also be applied to a m
general class of density correlation functions. To this end, cons
a one-particle observableB with ~discrete or continuous! eigenval-
uesbn and eigenvectorsubn&. One might chooseB5p, for example.

In analogy to Ĉ†(r ,t) and r̂(r ,t) one can construct operator

Ĉ†(bn ,t) and r̂(bn ,t). In terms of these operators one defines
density correlation functions according to Eq.~15!. The subsequen
derivations then apply similarly to these correlations functions
case ofB having a discrete spectrum, the mathematical proble
connected with the normalizability of the density-coherent states
not arise.
all
r

e
o-
t in
-
e
re
re

lti-

where we recall thatD (1)(x) is nothing but the expectation
value of the Schro¨dinger field density, see Eq.~15!.

Disregarding mathematical rigor, states that are den
coherent if allxi are taken at the same time can be co
structed as follows. Define

uym , . . . ,y1&5
1

AC
Ĉ†~ym!•••Ĉ†~y1!u0& ~48!

with C5^0uĈ(y1)•••Ĉ(ym)Ĉ†(ym)•••Ĉ†(y1)u0&.4 This
state describes a system ofm particles that are localized a
pointsy1 , . . . ,ym . For this state the density correlation fun
tions are of the form~47! with

D ~1!~x!5(
i 51

m

d~x2yi !, ~49!

which is a direct consequence of the relation

r̂~x!uym , . . . ,y1&5F(
i 51

m

d~x2yi !G uym , . . . ,y1&. ~50!

Due to dispersion the statesuym , . . . ,y1& will not remain
density coherent in the course of time.5

For the sake of comparison we also compute the eq
time first-order correlation function for a general two-partic
state

uf&5
1

A2
E dx1dx2f~x1 ,x2!Ĉ†~x1!Ĉ†~x2!u0& ~51!

with symmetric two-particle wave functionf(x1 ,x2). De-
noting the marginal distribution*dx2uf(x1 ,x2)u2 by p(x1)
one obtains

D ~1!~x1 ,x2!52uf~x1 ,x2!u212p~x1!d~x12x2!, ~52!

compared with Eq.~44!. This correlation function is not fac
torizable in general.

B. Thermal fields

A simple system that can be discussed in the contex
density correlations is provided by the thermal multimo
Schrödinger field. Here for the sake of simplicity we con
sider an ideal thermal Bose gas of atoms without conden
fraction ~i.e., above the Bose condensation transition te
peratureTc)

6 in which case the state of the system is d
scribed by the density operator

re
er

n
s
o

4The normalization constantC is not well defined mathematically
of course. This is due to the continuous nature of the eigenva

spectrum of the position operatorr̂ . If one considered density cor
relation functions for a discrete operatorB ~as outlined in the pre-
vious footnote! these problems would not arise.

5However, the momentum eigenstates will be ‘‘momentum d
sity coherent’’ at all times for free particles, i.e., ifH5p2/2m.

6The calculation of the second-order field coherence function
the thermal Bose gas with both interactions and condensate fra
present can be found in@11#.
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r̂T5
1

Z
e2(

k
~ek2m!ak

†ak /kBT, ~53!

whereek is the eigenenergy of thekth mode,kB the Boltz-
mann constant,T is temperature,m the chemical potential
andZ the partition function. The equal-time first-order fie
coherence function of this system is

G~1!~x!5Tr@ r̂TĈ†~x!Ĉ~x!#5(
k

nkūfk~x!u2, ~54!

where we have expanded the Schro¨dinger field operator in
terms of mode annihilation operators in the usual way

Ĉ(x)5(kfk(x)ak
† , and the mean number of atoms in mo

k is n̄k5Tr( r̂Tak
†ak). Similarly, the equal-time second-orde

field coherence function is

G~2!~x1 ,x2!5Tr@ r̂TĈ†~x1!Ĉ†~x2!Ĉ~x2!Ĉ~x1!#

5 (
k1k2

n̄k1
n̄k2

@ ufk1
~x1!u2ufk2

~x2!u2

1fk1

! ~x1!fk1
~x2!fk2

! ~x2!fk2
~x1!#.

~55!

These correlation functions are not factorizable. The o
point normalized second-order coherence function is

g~2!~x![G~2!~x,x!/G~1!~x!G~1!~x!52. ~56!

The equal-time second-order density coherence function

D ~2!~x1 ,x2!5Tr@ r̂TĈ†~x1!Ĉ~x1!Ĉ†~x2!Ĉ~x2!#

5G~2!~x1 ,x2!1G~1!~x1!d~x12x2! ~57!

and is likewise not factorizable. Thus the thermal Sch¨-
dinger field is neither field nor density coherent.

V. FIELD VERSUS DENSITY COHERENCE
IN A DYNAMICAL SYSTEM:

THE BINARY-COLLISION ATOM LASER

In order to illustrate how differently the field and densi
coherence of a Schro¨dinger field can behave in a dynamic
system, we compute these properties for a model of a bin
collision atom laser. We show in particular that elastic co
sions, while being extremely detrimental to the field coh
ence, and hence to the linewidth of the laser, have almos
influence on its density coherence.

This binary-collision atom laser has been investigated
various publications@12–17#. One considers a resonator fo
atoms, realized, e.g., by optical fields, in which only thr
atomic center-of-mass modes are taken into account ex
itly ~cf. Fig. 1!. Bosonic atoms in their ground electron
state are pumped into an atomic resonator level of ‘‘interm
diary’’ energy~mode 1!. They then undergo binary collision
that take one of the atoms involved to the tightly bound la
mode 0, whereas the other one is transferred to the hea
damped loss mode 2. This latter atom leaves the reson
quickly, thereby providing the irreversibility of the pumpin
process. A macroscopic population of the laser mode
s

-

y-
-
-
no

n

ic-

-

r
ily
tor

n

build up as soon as the influx of atoms due to pump
compensates for the losses induced by the damping.

For the master equation of this atom laser model o
makes the ansatz

Ẇ52 i @H01Hcol ,W#1k0D@a0#W1k1~N11!D@a1#W

1k1ND@a1
†#W1k2D@a2#W ~58!

with \51. In this equation, the second quantized formali
is used in which each center-of-mass atomic mode is ass
ated with an annihilation operatorai , and W denotes the
atomic density operator.7 The free Hamiltonian is given by

H05 (
i 50,1,2

v iai
†ai ,

v i being the mode frequencies. For the following we s
v01v252v1. This condition can be fulfilled, e.g., if the
atomic cavity is realized by time-modulated optical fiel
@15#.

The operation of the atom laser relies on binary collisio
between the atoms in the resonator. The general form of
corresponding interaction Hamiltonian is

Hcol5 (
i< j ,k< l

Vi jkl ai
†aj

†akal , ~59!

whereVi jkl are the matrix elements of the two-body intera
tion responsible for the collisions. However, for the pres
investigation we restrict our attention to the simplified for

Hcol5V0211a0
†a2

†a1a11V1102a1
†a1

†a0a21V0000a0
†a0

†a0a0
~60!

in which ~besides the pumping collisions! only collisions in-
volving ground-state atoms are retained. The damping r
of the cavity modes are given by the coefficientsk i , and the
strength of the external pumping of mode 1 is characteri
by the parameterN, which is the mean number of atoms
which mode 1 would equilibrate in the absence of collisio
The superoperatorD is of the Lindblad form and is defined
by

7Since we consider ground-state atoms only, they are fully
scribed by their center-of-mass quantum numbers.

FIG. 1. Schematic three-mode atom laser model.
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D@c#P5cPc†2
1

2
~c†cP1Pc†c! ~61!

with arbitrary operatorsc andP.
In order to achieve a sufficiently high degree of irreve

ibility, it is necessary thatk2 is much larger than the damp
ing rates of the other modes. This suggests to adiabatic
eliminate this mode, an approximation that leads to the s
plified master equation@12–14#

ṙ52 i @Hc ,r#1k0D@a0#r1k1~N11!D@a1#r

1k1ND@a1
†#r1GD@a0

†a1
2#r. ~62!

Equation~62! is written in the interaction picture with re
spect toH05v0a0

†a01v1a1
†a1, and the reduced density ma

trix r is r5Trmode 2@W#. The reduced collision Hamiltonian
Hc is

Hc5V0000a0
†a0

†a0a0 , ~63!

andG54uV0211u2/k. Consistently with Ref.@13# we call the
limiting casesG!k0 and G@k0 the weak- and strong
pumping regimes, respectively.

A. Linearized fluctuation analysis

In order to obtain analytical approximations for the cor
lation functions
e
s

r

-

lly
-

-

Gj
~2!~t !5^aj

†~0!aj
†~t!aj~t!aj~0!&, ~64!

and

D j
~2!~t !5^aj

†~t!aj~t!aj
†~0!aj~0!& ~65!

in the two-mode sytem a linearized fluctuation analysis c
be performed@10,18#. To this end the master equation~62! is
converted to a Fokker-Planck equation using theP-function
representation as described in@13#. This equation can be
transformed to polar coordinatesa j5Anje

if j , wherea j de-
notes the complex amplitudes originally appearing in
Fokker-Planck equation@19,20#. This leads to stochastic dif
ferential equations

dn05@Gn1
2~n011!2k0n0#dt1dSn0

, ~66!

dn15@k1~N2n1!22Gn1
2~n011!#dt1dSn1

, ~67!

df05@2V0000~2n021!2V0101n1#dt1dSf0
, ~68!

df15@2V1111~2n121!2V0101n0#dt1dSf1
. ~69!

The correlation matrix for the stochastic forcesdST

5(dSn0
,dSn1

,dSf0
,dSf1

) is given by
D5S 2Gn1
2n0 22Gn1

2n0 22V0000n0 2V0101n0

22Gn1
2n0 2k1Nn122Gn1

2n0 2V0101n1 22V1111n1

22V0000n0 2V0101n1 Gn1
2/~2n0! Gn1/2

2V0101n0 22V1111n1 Gn1/2
k1N

2n1
1

Gn0

2

D . ~70!
rder
In the limit n0@1 one obtains from Eqs.~66! and ~67! the
above-threshold semiclassical steady-state populations@13#

n̄05
1

2

k1

k0
~N2n̄1!, ~71!

n̄15Ak0

G
, ~72!

the threshold condition beingN.Ak0 /G. The drift terms in
Eqs. ~66!–~69! and the correlation matrixD do not depend
on the phasesf j . This means that the time evolution of th
atom numbersnj is not influenced by the phase dynamic
and is thus completely determined by Eqs.~66! and ~67!
alone. To proceed further we introduce the fluctuation va

ablesdnj5nj2n̄ j . In the linear approximation their time
evolution is given by

ddn52kdndt1dSn , ~73!
i-

wherednT5(dn0 ,dn1) and the matrixk is obtained by lin-
earizing the drift terms in Eqs.~66! and ~67! around the

steady-state valuesn̄ j . The correlation matrixDn for the
stochastic forcesdSn

T5(dSn0
,dSn1

) is given by the upper left

232 minor of the matrixD of Eq. ~70! after replacingnj by

n̄ j .

B. Second-order correlation functionG„2…

In the linear approximation the steady-state second-o
correlation function for modej is given by@10,18#

Gj
~2!~t !5~e2kts! j j 1n̄ j

2 ~74!

(t>0), wheres is the steady-state covariance matrix

s5
DDn1~k2S!Dn~k2S!T

2SD
~75!
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with D5detk and S5Tr k ~we use the numbers 0,1 as in
dices for the 232 matrices!. For the matrix elements ofs
one obtains the expressions

s005@ n̄0
2~2k02k0 /n̄1!1n̄0~k1n̄11k01k1!

1k1
2n̄1 /~4k0!#/~4Gn̄1n̄01k1!, ~76!

s115
k0~2n̄121!n̄01k1n̄1

21k0n̄1

4k0n̄0 /n̄11k1

, ~77!

s015s1052n̄1/2. ~78!

In the far-above-threshold limitn̄0@1 the covariances can b

approximated ass00'
1
2 (n̄12 1

2 )n̄0 and s11'
1
2 (n̄12 1

2 )n̄1,

respectively. Forn̄1.1/2, i.e., in the weak-pumping regime
the second-order correlation functions thus show bunch

whereas forn̄1,1/2, i.e., in the strong-pumping regime, th
linearized fluctuation analysis — which is, however, not e
pected to be fully reliable in that case — predicts antibun
ing. The normalized second-order correlationg0

(2)(0)

5G0
(2)(0)/n̄0

2 goes to 1 with 1/n̄0 for large n̄0. In contrast,

g1
(2)(0)→3/221/(4n̄1). For the case ofn̄1@1 the results for

s00 and s11 are in agreement with the conclusions of R
@13#. To illustrate the physical contents of Eqs.~76! and~77!

in Fig. 2 the dependence ofs00 on n̄0 is shown for the weak-
and strong-pumping regime and different values ofk1.

An expansion ofe2kt in the parametern̄0 /n̄1 yields the
approximate result

Gj
~2!~t !5sj j e

2qjt1n̄ j
2 ~79!

for the time dependence of the correlation functions~74!.
Thereby, theqj are the two eigenvalues of the matrixk. For

n̄0 /n̄1.1 they are approximately given by

FIG. 2. Dependence ofs00 on n̄0. The curves are calculate
using Eq.~76! for parameter valuesG50.07k0 ~ascending curves!
and G515k0 ~descending curves!, k1520k0 ~full !, k15100k0

~dashed!. The single points show numerical results forG50.07k0,
k1520k0 (d), andk15100k0 (L), respectively.
g,

-
-

.

q05
4k0

2

4k01k1n̄1 /n̄0

, ~80!

q15k114k0n̄0 /n̄1 . ~81!

Their inverses can be interpreted as the relevant time sc
for the dynamics of the atom number fluctuations. Numeri
comparison to Eq.~74! shows that the approximation~79! is
very accurate, in general. The time dependence of
second-order correlation functions is thus purely exponen
The correlation functionG0

(2) decays on a time scale of th
order ofk0, whereas the time evolution ofG1

(2) is much more
rapid.

C. Density-correlation function D „2…

Using Eq.~10.5.28! of Ref. @19# we find that in the linear
approximation the steady-state density-correlation funct
D j

(2) for mode j is given by

D j
~2!~t !5n̄ j~e2kt! j j 1Gj

~2!~t !. ~82!

From Eqs.~76! and~77! it follows thatD j
(2)(0).n̄ j

2 . In anal-
ogy to Eq.~79! one obtains the expression

D j
~2!~t !5~ n̄ j1sj j !e

2qjt1n̄ j
2 ~83!

for the explicit time dependence ofD j
(2) . The intensity fluc-

tuation spectrum, i.e., the Fourier transform ofD j
(1)(t)2n̄ j

2 ,
is thus a Lorentzian.

It should be noted that all results of this section are in
pendent of the rate of elastic collisions~as quantified by
V0000) between atoms in the laser mode. This means tha
the two-mode description the atom laser is second-order
herent@at least in the sense ofg0

(2)(t)'1 for all t# even if
V0000 is large. In such cases the first-order correlation fu
tion G(1) will decay very rapidly so that the laser is no
first-order coherent, and is characterized by a large linew
@17#.

D. Numerical examples

As discussed in detail in Ref.@16#, the master equation
~58! and ~62! may be solved numerically with the help o
quantum Monte Carlo techniques@21,22#. The correlation
functions G(2) and D (2) can be calculated within this ap
proach according to the description given in Ref.@22#. In the
following we compare some numerical results with the a
lytical predictions of Secs. IV B and IV C.

Strong-pumping regime.Figure 3~a! depicts a typical re-
sult for the calculation ofD0

(2) and G0
(2) in the strong-

pumping regime. In this example, the parametersG515k0,
k1520k0, and N51.2 were chosen yielding a numeric

equilibrium population of n̄059.0 ~9.4 analytically!. As

should be expected,D0
(2)(0)2G0

(2)(0)'n̄0. The behavior of
D0

(2)(t) is very well approximated by an exponential dec
with time constant 1/q0, as predicted in Eq.~83!. From the
behavior ofG0

(2)(t) it can be inferred thatug0
(2)(t)21u!1

for all t. However, even after a very large number of Mon
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Carlo simulations, numerical noise prevents any further
tails of the time dependence ofG0

(2)(t) to be identified. This
observation applies to most calculations in the stro
pumping regime. In particular, it could not be unambig
ously determined whether antibunching actually occurs

larger values ofn̄0. On the other hand, these numerical r
sults are compatible with the fact that Eq.~76! predicts a
small value ofug0

(2)(t)21u ~compare with Fig. 2!.
It should be noted that a small amount of antibunching

G0
(2) could be observed in calculations for the three-mo

model in cases in whichV0000 is large compared toV0211.
Under these conditions, however, the main effect to be
served is a significant decrease in the equilibrium popula

n̄0.
Weak-pumping regime.In contrast to the previous cas

for the weak-pumping regime it can be expected on
grounds of the linear analysis thatg0

(2)(0) is significantly

different from 1 if n̄0 is not too large~cf. Fig. 2!. As exem-
plified in Fig. 3~b!, this prediction is indeed confirmed by th
numerical calculations. There the correlation functionsD0

(2)

and G0
(2) are shown for the parameter valuesG50.07k0,

k1520k0, and N53.9. Unfortunately, the quantitative re
sults of the linear analysis in the weak-pumping regime

not very accurate for low values ofn̄0 ~to which the numeri-
cal computations have to be restricted due to time c
straints!. For example, for the above parameters Eq.~71!

yields n̄051.2, which is much smaller than the numeric
value of 11. However, Eq.~80! still constitutes a good ap
proximation to the decay rate of the correlation functions i

is used with the numerically determined values ofn̄0 andn̄1.
This is demonstrated by the dashed curve in Fig. 3~b!, which
depicts an exponential decay with a time constant calcula

FIG. 3. Numerical calculation ofD0
(2)(t) and G0

(2)(t) for pa-
rameter valuesG515k0, k1520k0, N51.2 ~a! and G50.07k0,
k1520k0, N53.9 ~b!. Dashed curves: exponential decay with co
responding time constant 1/q0.
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in this way. A similar agreement was also found in oth
examples.

In Fig. 2 the results of several numerical calculations

s00 are shown as a function of the numerical value ofn̄0 for
the parameters G50.07k0, k1520k0 (d), and k1

5100k0 (L). The numerical values ofs00 should be un-
derstood as having an error margin of at least610-15%. The
results depicted agree in order of magnitude with the pre
tions of Eq.~76! and also demonstrate a dependence ofs00

on n̄0 andk1 similar to the analytical one.
Second-order correlation function for the pumping mod

An example of the behavior of the second-order correlat
functionG1

(2)(t) in the weak-pumping limit is shown in Fig
4. There, the parameter valuesG50.07k0, k1520k0, and
N53.9 were used. The order of magnitude ofG1

(2)(0) as
well as the temporal decay rate ofG1

(2) ~which is much larger
than the decay rate ofG0

(2)) are in good agreement with th
analytical predictions. It should be noted that the time e
lution of the mean population of the pumping mod
^a1

†(t)a1(t)& starting from an initial vacuum state contain
both characteristic time scales 1/q0 and 1/q1. This is quite
different from the behavior ofG1

(2) , which is characterized
by 1/q1 alone. In the strong pumping limit the time depe
dence ofG1

(2) could again not be recognized due to nume
cal noise. This is consistent with the fact that the lineariz
fluctuation analysis predicts a small value ofug1

(2)(0)21u for
the parameter values investigated. Furthermore, the calc
tions indicated that Eq.~72! ceases to be valid for largeG. It

was not possible to reducen̄1 to very small values in which
case a more pronounced antibunching would be expecte

In conclusion, we see that the results obtained from
linear fluctuation analysis describe well the essential asp
of the behavior of the correlation functionsD0

(1) and G0
(2)

and may be used as a first quantitative estimate.

VI. CONCLUSION AND OUTLOOK

In this paper, we have adopted an operational approac
introduce several classes of coherence of the Schro¨dinger
field. Of particular importance are density coherence, wh
is connected to far-off-resonance imaging measureme
and field coherence, which can be measured in ionizat
type measurements. One can readily imagine further cla
of coherence associated with other types of measureme

FIG. 4. Numerical calculation ofG1
(2)(t) for parameter values

G50.07k0, k1520k0, N53.9. Dashed curve: exponential deca
with time constant 1/q1.
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but they are probably not as important as field and den
coherence.

One question of considerable significance in the fut
will be to quantify the usefulness of various sources
Schrödinger fields for specific applications. In optics, one
the most important characteristic of lasers is their spec
width, and higher-order coherence plays a limited role
most cases. By analogy, past studies of atom lasers
concentrated on their spectral width, as determined by t
first-order field correlations. It has been found that this lin
width can be quite broad, especially in the presence of ela
collisions. Indeed, things can be so bad that the atom l
linewidth is broader than the natural linewidth of the ato
cavity, in sharp contrast to the optical situation where,
course, the reverse is true. It is not clear, however, whe
this is a useful way to determine the quality and usefuln
n,
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of an atom laser. While this is likely to be the case in so
interferometric applications, other possible uses of atom
ser beams, such as coherent lithography, may well req
only a high degree of density coherence, in which case
we have seen, elastic collisions do not play a detrimen
role. Hence, we believe that it is important at this point
start analyzing in detail the coherence requirements of s
cific atom laser applications, so as to optimize their desig
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