PHYSICAL REVIEW A VOLUME 58, NUMBER 3 SEPTEMBER 1998
Statistical mechanics of ideal Bose atoms in a harmonic trap
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For ideal Bose atoms in an isotropic harmonic trap, we consider thermodynamic variables obtained from
microcanonical, canonical, and grand canonical ensembles, each with certain variables specified and other
variables fluctuating. For the first two of these ensembles, we derive recursion relations that link partition
functions for different dimensions. We discuss fluctuations in general, and obtain expressions for variances of
the atom numbeN, the chemical potentigk, and the temperatur€ for small, Gaussian fluctuations in the
grand canonical ensemble. Then from our recursion relations and others given elsewhere, we obtain probability
distributions forN, for ground-state occupation numbrey; for u, and forT. Below the critical temperature, the
shape of the distributions fa¥, ny, andu are definitely not Gaussian for the grand canonical ensemble. For
given temperature and small, we find that the chemical potential values pertaining to the three ensembles
differ. We compare the specific-heat functiGp(T) for the three ensembles and propose to use the minimum
of dCy /dT to define the critical temperature to facilitate comparisons with similar configurations of interacting
atoms.[S1050-29478)01309-2

PACS numbes): 03.75.Fi, 05.30.Jp, 05.30.Ch

I. INTRODUCTION gquantities with mean values, most probable values, or some
other type of statistical average.

There are many different statistical ensembles used in sta- For this reason, it seems to us of interest to compute the
tistical mechanics; nevertheless, only one thermodynamics i€levant thermodynamical quantities exactly in the standard
known. The equivalence of the results given by the differenensembles, and also some nonthermodynamical quantities
ensembles describing this thermodynamics is exhibited asuch as occupation numbers and fluctuations. We will there-
the “thermodynamic limit” [1], which is equivalent to the fore compare results in three Gibbsian ensemfiédor an
saddle-point approximation. If the system is homogeneoudgeal Bose gas confined in an isotropic harmonic potential
the convergence of the viewpoints of the different ensemblewhen the particle numbers are small.
occurs through a limiting process in which the number of For a microcanonical ensemt@-5], the total number of
particles and the volume both tend to infinity, in such a man{particlesN and the total energ¥ are prescribed, and all
ner that their ratio, the density, is constant. configurations satisfying the giveN and E are considered

For inhomogeneous systems the usual argument for thequally probable. Explicit enumeration of these configura-
universal equivalence of different statistical ensembles need#ns is possible if the number of particles is less than 100 or
to be reconsidered. Of course, there are special cases of iae. Using recursion relations given below, computation of
homogeneous systems when the equilibrium system can B&(N,K), the number of configurations, is possible up to
divided into (essentially homogeneous layers, and eachN=1000 or so. For the canonical ensemble, the system is
layer can be subjected to its own limiting process. This, howassumed to be in thermal contact with a heat bath of given
ever, requires that the volume of each homogeneous layéemperaturel, so that the prescribed parameters becdme
can be made infinite without changing the physical situationand N. For the grand canonical ensemble, the system ex-
For example, in a constant gravitational field, the system canhanges particles as well as energy with a bath. The chemical
be divided into thin layers by planar equipotential surfacespotentialux andT of the bath itself are now the control vari-
The thin layers between the planes can be made infinite iables. This simplifies the analysis immensely, and therefore
extent, enclosing regions of uniform density without alteringthe grand canonical ensemble is the most convenient and
the physics of the problem. If a finite number of particles ismost commonly used statistical ensemble.
confined in a harmonic potentighusnotin a finite volume However, atoms confined in a trap exchange neither par-
independent of dynamigsthe problem must be analyzed ticles nor energy with a surrounding heat bath, after evapo-
anew. Here the system contains only a finite number of parrative cooling is turned off(Loss of atoms due to collisions
ticles. It is also inhomogeneous, and the regions of approxiwith background gas atoms cannot be considered an equili-
mately constant density are finite. The usual limiting procesdrating proces$.With no heat bath, the total energy, rather
cannot be applied. Of course, this is of small consequence than T, andN, rather thanu, are the experimentally deter-
we do not wish to have a thermodynamic description. Thenmined variables, as in the microcanonical ensemeen if
however, thermodynamic variables can no longer be used. not accurately known, the energy and total atom number of

If we insist on a statistical mechanical description of ther-an isolated system will not fluctuateThough long known
modynamic variables, immediate difficulties arise. The quan{6,4], there has been increasing concern with this point, and
tities used in the constructions of thermodynamical variables number of authors have recently considered the canonical
will in general fluctuate, and their statistics will be different ensemble(CE) [7,8], microcanonical ensembiCE) [9-
for different Gibbsian ensembles. Moreover, there is a quest2], as well as a newly defined “Maxwell Demon” en-
tion whether we should associate the physically observedemble[13,12] in which particles, but not energy, are ex-
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changed with an infinite reservoir of ground state atoms+1,9,(3)=(k+1)(k+2)/2. An allowed configuration is
New and useful results have been obtained, but these esempletely characterized by an occupation number set
sembles remain difficult to work with, and the properties ofng,nq,n,, . .., denoted by{n;}, which satisfy the side con-
these ensembles for finite numbers of atoms in an inhomaditions
geneougharmonig potential warrant further study.

Grossmann and Holthaus have examined these questions N=> n 1)
on several levelf14,9,12,1%. They initially used asymptotic =
expressions to consider the microcanonical ensemble in one
dimension, and more recenti2,15 have used the MD
ensemble and the low-temperature properties of the microca- Ezzk ”kszzk: nhok=foK, or K:; nk. (2)
nonical ensemble to obtain results for three dimensions.
Chase, Mekjian, and Zamidi 6] have derived recursion re- |y the present case the value of the total enefigis an
lations for the CE(actually obtained earlier by Landsberg jnteger,K, timesfiw.
[17]) and the MCE, and made comparisons of the specific The microcanonical partition function fod atoms with
heat, and of the mean ground-state occupation nUTRQr  total energyE = K% w in d dimensionsW(d,N,K), is a func-
for the three ensembles. Weiss and Wilk¢hs] have pre-  tion of N andK only, and is given by a sum over all allowed
sented the distribution over, as well as the fluctuation of configurations:

n, for the three primary ensembles. Although for givéror

N), the average valugng) is nearly the same in the differ- "
<ent> ensembles, belowf?hé shape of the distribution ovay W(d'N'K):{; l_k[ C(d,ny), )

is quite different, and the fluctuation is much less for the CE '
than for the GCE, and less for the MCE than for the CE.where C(d,n,)=[n,+g,(d)—1]!/n![g.(d)—1] is the
Also it has been established that for the 7] and MCE  number of ways, atoms can be placed intg, states. The
[9,13,17, the fluctuation ofn, goes to zero withT, as one  summation is over all possible occupation number sets
would expect. Gajda and Rzazew$k0] obtained analytic g n,,n,, ... that satisfy the side conditions, EfL) and
results for the MCE for a 3D harmonic trap from the saddle-(2), indicated by the two primes on the summation sign.
point approximation, replacing the sum over eigenenergies The canonical partition functionZ(d,N,v), where v
by an integral and the Euler-McLaurin expansion. There are=exp(-g), =% w/kT, is a function ofN andT. The grand
various possibilities for expanding these results atioa0  canonical partition function,R(d,u,v), depends on the
or aboutT= (or about 1IT=0), or even about some inter- chemical potentialy, and onT as independent variables via
mediate value. the parameters=exp(8u) (the fugacity andv. (Note that

As are many of the above cited works, this study is confyothy <1 andu<1 for an ideal Bose gasThus
cerned exclusively with ideal, noninteracting atoms in an iso-

tropic harmonic potential. We use the previously derived re- W(d,N,K) is the microcanonical partition function,
cursion relations, and also present new recursion relations for (4)
both the CE and the MCE that link the partition functions in
one, two, and three dimensioriSec. I). In Sec. lll, we K
discuss average values and fluctuations in general, and obtain Z(d,N,v)= KZ: v"W(d,N,K)

variances of temperature and chemical potential in the GCE

point of view. We then in Sec. IV use the CE and MCE is the canonical partition function, (5)
recursion relations to obtain distributions owrn,, w, and

T. These distributions highlight the contrasting natures of the
different ensembles. Finall§Sec. \j, we consider the spe- R(d,u,0)= > uMZ(d,N,v)
cific heat obtained from the various ensembles, especially as N=0

oo

©

a means of establishing a definition for the critical tempera- is the grand canonical partition function.
ture T, that may be extended from ideal to real gases.

A secondary goal of interest would be to assess the accu- ©®)
racy of the analytic approximations developed for the MCE
in [10], and the “Maxwell Demon” ensemblg13,12, but A. Grand canonical ensemble
because of the multitude of possibilities, we will not address | he standard wayR(d,u,v) can be obtained from Egs.
these questions in this report. (3) and (6) after summing oveN so that the constraints are

removed. For an isotropic harmonic oscillator, a relatively
II. PARTITION FUNCTIONS S|mple expression results:

We consideiN identical Bose particles in a harmonic os-
cillator potential of frequencw/27. For dimensiord>1, we
will consider only the simplest case in which the potential is

R(d,u,v)=§( uNoKW(d,N,K)

isotropic. If the ground-state energy is taken to be zero, then o kn 1
the single-particle energies, are integral multiples ofiw; :l_k[ nE:O u'ky kC(d,nk)=l_k[ (1wl u®
e=khw k=0,1,2,3... . Thedegeneracy of each levieis :

g (d)=(k+d—1)1/kI(d—1)!. Thus g (1)=1g.(2)=k @



PRA 58 STATISTICAL MECHANICS OF IDEAL BOSE ATOMS . .. 2361

sinceu andv are less than unityR can also be considered a C. Microcanonical ensemble

generatmg fgncnon aslsomated witil For the speqal case Analogous to Eq(9), recently[16,11 the following re-
of an isotropic harmonic oscillator, the degeneracies are suck\;rsion relation has been obtained:

as to yield the relation

N K/k
R(d,uv,v)R(d—1u,v)=R(d,u,v), (8 W(d,N,K)= gl; gk (d)W(d,N—k,K—kj), (15)

Z| -

which will play an important role in the following discus-
sion. The properties of the grand canonical ensemble for atrih the conditionW(d,0K) = 8(0,K). From this condition
oms in a harmonic potential have been studied in detail re C '

it follows thatZ(d,0p)=1 for all d, as above.
cently by Grossmann and Holthals1]. To obtain a recursion relation joining/(d,N,K) for dif-

ferent values ofl, we recognize thatV(1,N,K) is the num-

ber of partitions ofK into N parts and is given by the coef-
Recursion relations lead to computationally -efficientficients of the expansion of

methods for computing(d,N,v) andW(d,N,K). The fol-

lowing recursion relation has been known for some time

[17], and recently rediscovergd8,16,12,11:

B. Canonical ensemble

N 1 LS
Z(LN)=11 - =2 VWLNK) (19

N
1
Z(d,N,v)==2, Z(d,1p%Z(d,N—k,v). 9
(d:N.2) Nk§=:1 (@1292( v) © and thusz(1,N,v)=Z(1,N—1p)/(1—ov"N). Therefore, for
N>0,
Another recursion relation that connects #(@,N,v) for
differentd can be developed by substituting E§) in Eq.

o)

(8): - ,
(1—o™M D vkW(L,N,K)= > oK' W(L,N-1,K")
o o K=0 K'=0
7 ’ 1
> uNz(d,N,v)= >, uNoN'Z(d,N',v) (7
N=0 N'=0
- or
x > uN'Z(d—1,N"v). (10
N"ZO © ©
K — K’ _ ’

The coefficient ofuN on both sides is KZO v W(l'N'K)_K,EZO v W(L,N-1,K")

N
Z(d,N,v)= > ovN'Z(d,N",0)Z(d—1,N=N’,v).

N'=0
(13)

+ > v*W(L,N,K"—N). (18
K"=N

) ) o . By equating coefficients of¥ in Eq. (18), we find that
In order to use this result, we recognize that it is consistengg|ow the diagonal in th&l—K plane,W(1,N,K) is inde-

with Eq. (7) to take pendent of\:
1 N
R(O,u,v)=m='\lzou Z(0,N,v), (12 W(1,N,K)=W(1,N-1,K), N>K. (19
which impliesZ(0N,v)=1, forN=0,1,2, ... . As a check, On the diagonal,
the following identity may be confirmed by takingy
=0,1,...:
\ W(1,N,N)=W(1,N—1,N)+W(1,N,0)=W(1,N—1,N)
Z(L,N,v)= > oN'Z(1,N'v). (13) +1 (20)
N'=0

Taking into account also the result for no atorg¢d,0p)  and, above the diagonal,
=1 (below), the above recursion relation may be written

N-1 W(1,N,K)=W(1,N—1,K)+W(1,N,K—N), K>N.
Z(d,N,v)= =2 vNZ(dN'v)Z(d-1,N=-N"v), (21
—UN'=0

To develop analogous recursion relations €br1, we
d=1,... . (14)  substitute Eq(6) into Eq.(8):
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> (1-0v™MZ(d,N,v)
N'Z(d—1,N’,
N’EZO " ( v)

P (uv)NZ(d,N,v)} |
=M21 oNMZ(dN=M,v)Z(d—1M,v).

- 2 uN'Z(d,N",v). (22) (23
N"=0
Equating terms iruN, we have Substituting from Eq(5),
9] [ N ) )
> oKW, N,K) = D oK N NLK D) = D oNME Y oK' Wd—1 M KM || D oK W(d,N=M,K") |.
= K'=0 M=1 K”=0 K’'=0
(24)
Equating terms inX,
N K+M-N
W(d,N,K)=W(d,N.K—=N)+ >, >  W(d,N=M,K)W(d—1M,K+M—-N—-K"). (25)
M=1 k’=0

Once W(d,N,K) has been compute&(d,N,v) can be chanics, we hav&=In[Q(E,N)], the logarithm of the phase
obtained from Eq(5). However, we have found numerically space density,Q)(E,N), or, in quantum mechanicsS

that Eq.(5) is sensitive to round-off error, even for smdll = |n[W(E, N)], whereW(E,N) is the degeneracy at the total

whereas Eq(14) is not. energyE for N particles. Consequently in the microcanonical
ensemble, no thermodynamical quantity, extensive or inten-

Ill. AVERAGES AND FLUCTUATIONS sive, can fluctuatg Nonthermodynamical quantities, such as

the occupation numbers of the single-particle energy states in
a noninteracting gas, can fluctuate.

In the different ensembles, different thermodynamical In the canonical ensemblthe energy becomesrandom
quantities can fluctuate. Since these fluctuations are impokariable with a probability distribution. Thus the energy will
tant if the number of particles is small, it is useful to study fluctuate. Physically we interpret this as a consequence of the
these differences. We present two approaches to fluctuationystem being attached to a heat bath. For example, in a clas-
in the next two subsections. To simplify the discussion, thesical gas, the probability distribution will b€ (E,N)exp
classical phase space densifyE,N), will be considered in  (—BE)dE/C,whereC=[dE Q(E,N)exp(—BE). (8is a char-
place of the quantum degeneray(E,N), discussed above. acteristic parameter associated with the heat bath to which
Discretization is by no means a trivial step and will be dis-the system is attachedThe reciprocal temperature of the
cussed in Sec. IVC 1. system in the microcanonical description iBgystem

Thethermodynamicadlescription admits no fluctuation of = (1/T)gen=d In Q/GE. Its average in a canonical en-
thermodynamical quantities. The fundamental thermodysemble is
namical quantities are the extensive ones, since the combined
first and second laws establish a linear relation between
them; the intensive quantities are the coefficients in the linear <BSVS“3"}B'N_f dE(J In O/5E)Qexp(— BE)/C
relation. For atoms in a harmonic trap, the mechanical work

terms are missing, and thus this relation is simply :f dE(9Q/JE)exp( — BE)IC=B, (28
dS=(UT)dE— (u/T)dN. (26)

A. Classical ensemble averages

where in the last step we performed an integration by parts.
Then 1T and u/T are given as derivatives of the function Thus the physical meaning of the bath param@és given

S(E,N): as theaverageof the reciprocal system temperature, which is
a fluctuating quantity. The usughermodynamicakquilib-

‘7_5 _E ‘7_5 _ M 27) rium condition for combined systems, the equality of the
JE N_T ' N E_ T temperature of its parts, is then to be interpreted forahe

erage (The bath temperature does not fluctuate, since the
In the microcanonical ensembleno thermodynamical bath is supposed to be large.
variable fluctuates. Statistical mechanics simply specifies the The mean square fluctuation @ .rnin the canonical
entropy in terms of mechanical quantities. In classical meensemble is given as
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((Bsyste ) gn={(d In Q/(?E)2>E,N:j dE(Q'/Q)(Q'1Q)Qexp(—BE)/C
:f dE Q'[(Q'/Q)exp — BE)]/C= —f dE Q[(Q'/Q)exy — BE)]'/C

:—f dE Q[(Q’/Q)]’exp(—,BE)/CJrBf dE Q(Q'1Q)exp(— BE)/C= —(3(UTgyeen)l IE) g+ B2

(The primes indicate derivatives with respectig B. Gaussian fluctuations in a grand canonical ensemble

The dispersion around the Meaf(A(L/sysen”) o Consistent with the above discussion and with, for ex-
=((Bsysteni~ B)*) g,y becomes ample, Ref[5], we take the point of view that with the grand
2\ 2 canonical ensemble, the system values of not only extensive
((Bsystenl") g~ (B) (9 Boysient/ 9B) - (29 variables, such ag, N, andS but also the intensive vari-
The calculation was simple because we computed thablesT and w will fluctuate about their mean values. To
fluctuation of thereciprocal temperature. If the fluctuations clarify the discussion, we will call the system variables
are small, however, one can reexpress the above result fyseemand pgysiem The mean values of g giemand wsystem

terms of the system temperature fluctuation itself: are precisely the heat bath values. Other authb® have
5 4 5 taken the point of view that intensive variable§, &), do
([A(UTsyste 1) pn={(Bsystem (AT systerd ) g.N not fluctuate. In any case, in the thermodynamic limit, the

= — ((3Beysen] IE) (30 fluctuations become negligible, and furthermore, one often
syste BN considers the thermodynamical equilibrium conditiofis
If we approximate in this relation the averages of theConstant,u constank to hold, neglecting fluctuations. How-

products with the averages of the factors we obtain immedi€ver for smallN, we find that the fluctuations are substantial.
ately For atoms confined in a harmonic trap, the GCE does not

precisely apply, as discussed in the Introduction, and there-
2y _ 2 fore the fluctuations discussed here will not be observable.
((ATsystent) pn= (LB IC, ) Furthermore, it has been emphasiZ&{ithat atom-atom in-
whereCy is the specific heat for a given number of atoms.teractions will diminish fluctuations, at least in ground-state
This is the usual result for Smdﬂind thereby also Gauss)an OCCUpation number. Our interest in fluctuations with the
fluctuations. GCE derives from the goal of understanding the statistical
In the grand canonicalensemble botiE and N become implications of the various model ensembles, and in particu-
random variables with the joint probability distribution lar of the ensemble that is most commonly used in theoreti-
Qexp(- BE+aN)/C, whereC is another normalizing factor, cal work. Also, it may be that future experiments with Bose
and « is a new bath or reservoir parameter, controlling theatoms will involve processes that resemble equilibration of
coupling with the particle reservoir. Its physical meaningParticles and energy with a heat bath, as assumed for the
must be identified by a suitable average. If we tidaas a  GCE.
continuous variable we can follow the previous discussion Thermodynamical fluctuation theory as presentedSh
for temperature fluctuations, replacing th&reith N, gwith ~ has yielded useful expressions for the variances when the
—a, and introducing agysten=(— 1/ T) sysier= @ In Q/aN. quctqatlons are small and Gau55|an.. It is implicit |n.the dis-
Consequently the bath parametemust be identified with ~cussions ||_’1[5] that th.e grand canon[cal ensemble is under
the grand canonical averagé— u/T)gsen .., While the con_S|derat|on. _F_oII_owm_g a much earI|e_r mo@ﬁg][,/'fhe fluc-
mean square fluctuation Ofrsyiem <(Aasysten)2>,8,ﬂis tuatlpn probability is said to be proportional¢d%’%, where
(01l T)systenf IN) 5., . Breaking the correlations for small AS; is the change of total entropy of the system plus bath.
fluctuations, this results iB(au/dN) for the dispersion of ~This is restated ad S=—Rpn/T, whereRy,, is the mini-
a. Here, too, the thermal equilibrium condition needs to holdMum work required to carry out such a change. Since the
only for the averaged intensive variable, i.e.,Further dis- concept of minimum work is inapplicable to trapped atoms,
cussion of the GCE appears in the next subsection. we will derive expressions for the variance of thermody-
In the above discussion, it was assumed fandN are  namic quantities by considering the grand canonical distribu-
continuous variables. Whehis quantized and is discrete, ~tion function. _ S
one can imagine various procedures for translating the de- !n the grand canonical distribution,
rivative to a differences expression, and it will be shown
below that the results can vary greatly, especially dosand P(E,N;a,,8)=Ce~S<E'N)‘BE+“NdE dN, (32)
a=ulT. However, it will be shown in Secs. IVC 1 and
IV D that with one particular discretization of the partial de- _ ) ]
rivatives, the grand canonical average of the microcanonicar andN are random variables, while and g arefixedbath
variablesu=exp(u/T) andv =exp(—1/T) are exactly equal variables.S(E,N) is the microcanonical entropy, which is a
to the GCE quantity. monotonic nondecreasing function Bf Hence we can solve
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whereE and S denote functions of andN, which are dif-
ferent from the function§(E,N) andE(S,N) defined above.
An expansion to second order ih and N will yield the
results we desire. However, we will here follow a slightly
shorter route closer to that in R¢g]. In Eq. (39) we substi-

it for E=E(S,N), where the tilde stresses thtis now a
function, andSis now considered a random variable:

- dE
P(S,N;a,B8)dS dN=CeS‘ﬁE(S'N)+“N(d—S)dS dN

(33 tute
We will now expand the exponent about its maximum, _ (7_:“ ‘9_:“
which occurs at $,N*), at which Aw (&T NAT+ N TAN (41)
) B( fE)* 0 B( oE *+ 0 34 and
- iy =V, - 1 a=V.
” " AS_(as) AT+(0S) an=MaT (a“) AN
But since “\aT " aNJ_ -7 aT) SN
- - (42)
JE JE o
-5 =Toysterk SN), N = Usysenk SSN), (35 in which we have used
the maximum occurs at suctS{,N*) for which Tggem (a_s :_i(f) :_(a_'“) ) (43)
=1/B, andﬂﬂsystem:av or Msysten{Tsystem: a. We now in- N T IN\ T N al N

troduce the random variableAS,AN, such that S . . v .
=S*(a,B)+AS,N=N*(a,8)+ AN, and expand the expo- Then for the exponent in the probabilitywece”, we obtain

nent up to quadratic terms. In what follows, all increments

will be relative to the maximum of the exponent. In view of Y~ — '[_3 &(AT)ZJF(&_’“ (AN)?]. (44)
Eq. (34), the linear terms vanish, only the quadratic terms 2| T INJ
survive, and thea,8 dependence becomes partly implicit. . . )
For the exponent, labeled one now has From this the variances follow directly:
- - kT2 N
Bl [ *E\* 5 #E |* ((AT)?)=—, ((AN)2>=kT(—) , (ATAN)=0.
=3 (E (AS)2+2 SN ASAN Cn du)
(45
=\ *
+ 192_E (AN)2 (36) Thus in this approximation, the fluctuations Bfand N are
IN2 ' not correlated. By contrast, if we tak&and x as indepen-

If we now consider incrementsS andAN in SandN at S*

andN*, the increments of the derivative&/4S and9E/IN
will be

JE [ PE * 9’E \* B
-5 L = ASt| oxos| AN=ATggen
’ (37
JE 9°E \* 2E\*
A N = 9SIN AS+ T AN:AMsystem
S* N*
(39

in terms of which the exponent becomes

Y —g[ASAT+ANA,u], (39)

where all quantities refer to thgystemand the increments
are changes about the maximum &t (N*). A similar ex-
pression occurs if5] with APAV in place of AN(A ).

To derive variances fofl and N, we could immediately

takeT andN to be independent variables, and write the prob-

ability distribution in Eq.(32) as

P(T,N)dT dN=CeSTN-BETN+aN§T dN,  (40)

dent variables,

AN= m AS o A 46
=75 + o) A (46)
" S
and
AT—({?T AS+ aT) Au= TAS m A
=135 I H=C A>T\ gg] A%
M S # “

(47
where we have introducedA=E—uN, dA=T dS
—N du, such that

JT _ d [ dA _ oN 48
ap S_r?,u aS ,u_ aS u (48)
and, therefore, the exponent becomes
Bl T N
Y~ -S| (A9)%+ —) (Ap)? (49
2/1C, ) g

and the variances are

J
(A9 =kC,, <<Au>2>=kT(£), (ASAu)=0.
) (50
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The above expressions fOfAx)?) as well as((AT)?) will

be compared with the widths of the corresponding probabil-

ity distributions in Secs. IV C 2 and IV D.

By selecting the other possible variable pairs, we deter-

mine that, to terms of second order,

(ATAw)#0,

The above fluctuations have been derived with the as-;
sumption that the probability distributions are Gaussian. In‘?‘e
the following section, we will show that this is not the case

below T, for N and .

IV. PROBABILITY DISTRIBUTIONS

A. Atomic number

For the grand canonical ensemble, it is well known tha

the mean valueéN) and(n;) can be obtained from

(ASAN)#0. (51)
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500

 <52N>12

400
------- <&N> - <Ng>? - <N>

300 -

200 -

2 <8N> - <Ng>2 - <N>

100 |

FIG. 1. The mean fluctuatiod,52N)*2 of the total atom num-
ber, forN=500(solid line) from the grand canonical ensemble. The
dashed line shows that the major contributions(&N) are the

tterms(no)2+(N>, except neall ., when the contribution of excited

states to the last term of E¢G5) becomes significant.

B 1 aInR(u,v)_ dlnR(u,v) 9\2
{ >_E w4 <(AN)2>=<(N—<N>)2>=<U£) In[R(u,v)]
= g() - i i
=Zom=izo (ni), (52 =(N)+ >, 9 (55)

=) [eﬁ<i*m_1]2'

whereu=e*=e*#, (Except where noted, the following dis-
cussion applies to any value df and we will normally omit
this variable in the following.When computing thén;) for
a given atom numbeN, u is adjusted so as to fulfill the § X o
conditionN=(N) to the desired precision. =0 2term in the final sum of Eq(55), Whl(_:h is equal to
Various approximations have been used for the GCE fofNo)"» While for T>T,, the (N) term dominates. The re-
atoms in a harmonic trap. One approach is to replace thB1&ining terms in the sum are shown as the dashed line in
above sum by a term for the ground state plus an integrdl'9- 1. These equations and plots emphasize again that for

overE [14]. The first three terms faN) for the 3D isotropic the GCE, the total atomic number is a fluctuating quantity.
harmonic trap are then As is widely recognized4,14,9, as T—0, {(6N)?)¥2 ap-

proachegN) (hence is not small compared &), in contrast
with the actual physical situation for a collection of trapped
atoms. Although the total number is not exactly known, it
cannot fluctuate if the trapped cloud does not exchange par-
ticles with a surrounding bath.

Going beyond the mean value and the fluctuatioiNpit
where the first term i$No), andg,(z2)=={_,2/I". A defi-  is interesting to consider the probability distribution
nition for T. is obtained by making the approximatian  P(N|u,v) over N, for givenu andv. For this purpose, we
=1 and setting{No)=0 in the above approximate expres- return to Eq.(6) and obtain
sion[14,21]. This leads to the result

Figure 1 shows (AN)?2)Y2 as a function ofT obtained from
Eqg. (55) by adjustingu (or u) at each value off so that
(N)=500 atoms. At lowT, ((6N)?) is dominated by thé

u 1 3
<N>ZE+E§]3(U)+ 2_,6292(11), (53

P(N|u,v)=uNZ(N,v)/R(u,v). (56)
{(2)?
4§(3)5/3N1/3

ﬂ_( N )1/3_ §(2)
ho | L(3) 2{(3)

=0.94050N"%—0.684216+ 0.4977N "3, (54)

The partition function for the canonical ensembgN,v),
thus provides a distribution oved for the grand canonical
ensemble. Numerical calculations B{N|u,v), shown for
N=500 in Fig. 2, display qualitatively different behavior
where{(n) is the Riemanri function. This expression gives over three regimes of temperature. Abolg (for N=500,
a usefulN-dependent critical temperaturg,, that we will KT./Aw=6.78053), the distribution is Gaussian, centered
use in the following discussion. However, for valueshdf on (N); P(N)=~exg(N—(N))/oJoym with o?~2(°N).
such as will be of interest below, neither approximation Slightly belowT, (Fig. 2), the peak occurs substantially be-
=1 or Ny=0 is precisely correct af=T,, as is fully rec- low the mean, and there is a long tail at high Near T
ognized in[14]. =0, the peak occurs &, a very small value oN, and the
The mean square of the fluctuation Iéfis distribution is found to have the form
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P(N)/Pmax

. In[P{N})/Prmax]

(b)

0 1000 2dooN 3000 4000 5000

FIG. 2. Probability distributions fo{N)=500 atoms for three
values of /T, for the GCE, normalized to unity at the maximum.
Above T, the distribution is a Gaussian centered @). For
T/T.<1, the distribution is exponentially decreasin@) Linear
scale.(b) Log scale. The straight lines fof/T.=0.15 and 0.74

This pathological situation does not arise with the canoni-
cal or microcanonical ensembles. For general leyvel

Pr(n|N,v) = Z(ni|N,v)/Z(N,v). (60)

For the canonical ensemble, we invoke the definitions, which
involve a single constraint:

Z(Nw) =11 2" cngo*™, > ne=N (6D
k Kk k=0
and
z(m|Nw)=Ccn)o™[] X' C(ngo*™ (62
k#i Tk
Then we can write

Z Pr(n|N,v)Z(N,v)uM

=% Z(niIN,u)uN=C(n)u"ip™[] > u™C(n)v

k#i  ng

show that the exponential decrease at these temperatures is nearly

exact.

P(Nlu,v)%ﬁe(NNl)/<N>’ (57)

an exponential decrease. Thus 1o T, IN[P(N)] exhibits a
linear decrease, as shown in FigbR consistent with Eq.

(55). Clearly, the shape of this probability distribution must
be taken into account when considering any property of the (

ensemble that depends ¢gN) in a nonlinear way.

B. Occupation numbers

The distribution function for occupation numbens, and

for ny in particular is especially relevant for Bose-Einstein

=C(npuiv™]] !

k#i (1—upk)%
=C(ni)u”ivi”i(1—UUi)gi% Z(N,v)uN. (63

Equating coefficients ofiN, we obtain

?i Z(N=n,— )i+,
(64)

Pr(ni|N,v)=

C ni) 9i I(
z<N,U>.§o (=1

For the ground state,

condensation phenomena. It is interesting to observe that Pr(ng|N,v)=[Z(N—ng,v)—Z(N—ny—1v)]/Z(N,v),

while the averages of; are not thermodynamical quantities,

(65

nevertheless they can be obtained with the help of the parti-

tion functions alone. For general for givenu and v, the
probability thatn; assumes a particular value is

Pr(n;|u,v)=R(n;|u,v)/R(u,v)=u"iv™i(1—uv")%C(n;).
(58

Fori=0, this assumes a particularly simple form;
Pr(noju)=u"0(1—u). (59

Note that sincau<1, Pr(nyu) for the GCE is always a de-
creasing function oh,, and does not peak a=N even as
T—0. From Eq.(59) one obtains the standard resullty

(ny=u/(1-u) and  ((Ang)?)={((ng—(Nng))?=(nj)

where it is understood that Fr{=N|N,v)=1/Z(N,v).
Equation (65) can be used in conjunction with the above
recursion relations.

For the microcanonical ensemble, we againriixo have
the valuen/ . The sum over the thus reduced total number of
allowed statesV(n/|N,K) is now given by

W(ni'|N,K)={%"1;[ C(nys(n;—n’), (66)

where the Kronecker delta assures that now the allowed oc-
cupation number sets satisfy the previous constraints with
alson;=n; . Then the probability that;=n; , Pr(n{|N,K),

—(ng)?=u/(1—u)? Here again is the so-called “fluctua- is given by

tion catastrophe’[9], in that nearT=0, both the average
value and the fluctuation afy are on the order o, which

Pr(n/ [N,K)=W(n/|N,K)/W(N,K). (67)

is inconsistent with the assumption that the number of atoms

is fixed atN.

From this it follows tha{the primes are no longer needed



PRA 58 STATISTICAL MECHANICS OF IDEAL BOSE ATOMS . .. 2367

Z 2 uNy PN, K)W(N,K) = uMp™MC(n; )H > uMkpkC(ny) = u”'v”"C(n)H [1/(1— up k) ]%

k#1 ny
. . 1 . 4
=uMvMC(n)[(1-uo")]¥]] ————=u""™MC(n)[(1~-ur")]%R(u.v),
K (1—uv®)%
(68)
or
% ; quKPr(ni|N,K)W(N,K)=u“ivi"iC(ni)[(l—UUi)]gi% ; uNo X W(N,K), (69)

replacingR(u,v) by its defining sum on the right-hand side.
Consider now the single-particle ground state, for which the energy vanishes and the degeneracy is one. Hence

% ; quKPr(no|N,K)W(N,K)zu”o[(l—u)]% ; uNoKW(N,K). (70)

Comparing equal powers afandv, we immediately obtain  Pr(ny|N,v), because of the additional constraint. Also, the
most probable values afy [peak values of Pr(,)] differ
Pr(ng|N,K)=[W(N—ng,K)—W(N—ny—1K)]/W(N,K). between the CE and MCE. For sufficiently low, both
(7D)  Pr(ng|N,K) and Prgg/N,v) approach distributions peaked
at ng=~N. On the other hand, abovEk., all three distribu-
An expression analogous to Eq65) and(71) has been de- tions have nearly the same shape. These conclusions do not
rived in Ref.[10] by a different line of reasoning. depend on(N).

Probability distributions of, for the three ensembles are  Given the probability distribution we now compute aver-
shown in Fig. 3. The GCE distribution, P{u,v), de- ages for the ground and first excited state occupation num-
creases witmy and thus belowl ., has a radically different bers. An elementary computation yields
form from the other two. Belowl;, the MCE distribution,

Pr(ng/N,K), is narrower than the CE distribution, N~ 1
(Noynk= 2 W(i,K)/W(N,K). (72
0.20f. i=1
015
010 e Also for the first excited state, a reasonably simple expres-

005\ T/T,=0.19 } TRRTLL sion results:

1
0'000 200 400 600 800

N

0.03 i 3

A 077 (MoK =i 2 WN-I KD, (73

0.01 /Q\ e

000 A More complicated expressions can be found(fag) « , for
’E : 0 200 400 600 k>l
[ 00 From Eg.(72), we obtain therecursion relation

N (oY k=[W(N—1K)/W(N,K)]

0.004 o e 10 N—2

010

sosf x| 1+ > W(i, K)/W(N—1K)

ooef 1.05 =t

22: \\\ = ea(N’K)[ 1+(ng)n- 1,K] , (74

0005555 a0 30 80

No by shiftingN into N—1 to specify(ng)n_1x , and observing

_— — aS(N—1K)/k—S(N,K)/k
FIG. 3. Probability distributions for the ground-state occupationthai(,\?ym definition [W(N—1)/W(N)]= @SN LRSI
number, Pr,) for N=500 atoms, for several values offor the ~ — € """ wherea = u/T. _ _ _ )
three ensembles. BeloW, the shape of the GCE distribution dif- If Nis large compared to unity this results in tagproxi-
fers drastically from that of the CE and MCE. The MCE distribu- Mation
tion exhibits a slightly narrower Gaussian than the CE. Abdye
the three distributions have a similar shape. (no)nk=~1l(e®MNK) —1), (75)
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100+ 0.0 = : 0
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7 s . q10 K=Eho
00 02 04 06 08 10 12 14 1.6
T/Te FIG. 5. Various possible discretizations for computings/T

=dS/oN for the MCE, as compared with the GCE val(olid

FIG. 4. Values forng) vs T for (a) 50 and(b) 500 atoms, for line). (a) 50; (b) 500 atoms, showing the convergence with

the three ensembldteft axis). The curves peaking nedr, are the
ratios of the GCE and CE results to the MCE res(light axis.

C. Chemical potential and fugacity
This is the same as the GCE expression provided we can 1. Mean values of iT and u

replace the grand canonical averagg@$) and(K), with N Th anificant diff i th . d rol
and K. Thus the microcanonical result differs two ways ereé are signimcant difierences in the meaning and role

from the grand canonical one; the averages are replaced wiff] the chemical potentigi in the three different ensembles.
actual values oN and K, and the recursion relation is ap- These differences are often ignored because it is usually as-

proximated. sumed, in the homogeneous situation, that the sample as well

A more direct comparison between E@4) and Eq.(75)  @s the bath is to be taken to the thermodynamical limit of
is obtained by repeated application of the recursion relationarge N, with N/V finite. A small number of atoms in a

which yields harmonic trap cannot be considered to be at the thermody-
namical limit, and these differences become appreciable.
(oY = €7 NK) 4 gla(N.K) Fa(N=1K)] Before comparing results for the different ensembles, we

discuss discretization procedures, a topic raised at the end of
Sec. Il A. For example, for the microcanonical ensemble,
the partial differential expression in E7) for — /T can
be interpreted a$1/W(N,K)J[W(N+1,K)—W(N,K)] or
_ i ) ) other similar expressions, or a$(N,K)—S(N—-1K)
with N terms. altogether on the right-hand su_je. This may be:In[W(N,K)]—In[W(N—l,K)]:In[W(N,K)NV(N—l,K)], or
compared with an expansion of the denominator of the apgjmjjarly. We compare results with these different forms in
proximate result: Fig. 5. Especially foT>T., the AW/W forms differ widely
from the AInW forms, and the differences do not diminish
(No)n k=6 +e2e(NK) @3N oo (77 rapidly asN increases, as seen by comparing Figs) &nd
5(b). In this figure, the solid line gives the value of
In fact, the MCE averag€no)y « , is quite close to the —(u/T)gce for which (N) equals the givemN in the grand
equivalent GCE average, except fbmearT. for small N. canonical sum, Eq52). It is seen that the twd In W forms
Figure 4 shows(ng) values for all three ensembles, for narrowly bracket-(u/T)gce, With the differences decreas-
N=50 and 500(For the MCE,T is obtained from Eq(27), ing approximately as N. So this indicates a clear prefer-
(0S/9E)y=1/T, whereS=kIn[W(N,E)].) As is well known ence for this form. Belowl;, — (u/T)gce exhibits devia-
[21,8,14, the effect of the BEC transition for finitl is not  tions proportional to ™ from every one of these
abrupt. ForN=50 and 500, Fig. 4 shows that the relative discretizations. For the quantityTl# JS/JE, the differences
extent of the transition region decreasedNaimicreases. We are relatively smaller, and largest @s- 0.
also plot in Fig. 4(right-hand scalethe ratio between the A comparison of the values fqu obtained as above for
GCE and the MCE values fdny) and the ratio between the the three ensembles is one measure of the degree to which
CE and the MCE values. Both of these ratios exhibit a maxithese three approaches lead to a consistent thermodynamics.
mum nearT., and these maxima decrease slowlyNain-  Figure 6 shows such a comparison. For the GGigan
creases. However, the width of the ratio curves does dimin={(usysem g,n» Which is the value ofx for which the sum in
ish sharply with increasingyl. Eq. (52) equals the givelN exactly. For the CE,

+ ela(NK) +a(N=1K)+a(N=2K)] 4 ...

+ glaNK)+---+a(1K)] (76)
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FIG. 7. For the GCEwpah is fixed, but there is a probability

FIG. 6. Values of the chemical potential for the three ensemblediStribution overs,e,as shown in these curves for several values

for (a) 50 and(b) 500 atoms. Solid lines: MCE; short dashed lines:
CE; long dashed lines: GCE.

dF

dIN[Z(N,v)]
Msystem:é,_N =—T—

dN

(78

whereF is the free energy, and for the MC@aking the
discrete  form explicitt w=IN[W(N,K)/W(N-1K)]/
IN[W(N,K)/W(N,K—1)]. There are indeed differences for
small N, especially forT<T.. An obvious example occurs
for T near zero. For the MCE fd{=<N the number of con-
figurations,W, is independent oN, hence from the second
Eq. (27) u=0 exactly, whereas this is not true for the GCE.
Note also that the large discrepancies rEadiminish with

N.

Also from Fig. 6, it is evident that in no ensembleus-0
(oru=1) at T=T,, although this condition is most nearly
satisfied for the MCE and for larger values [¢f

Although values for for givenN andT for the different
ensembles do not agree, if one considers the fugaaity,
=expup), rather thanu, the appropriateaverageof the

MCE quantity agrees exactly with the GCE quantity pro-
vided that specific conventions are adopted for the partial

derivatives. If the second of Eq&7) is interpreted as

W(N,K)
W(N—1K)

(_ﬁ> =S(N,K)—S(N—1,K)=In(
T MCE

(79

Then the GCE average does indeed equal the fugacity e

actly:
<e(”/T)(MCE)>u,u

0 ©

1

B W(N'—1K")
R(U,U)Nr:() K'=0

uN oK W(N',K")
W(N’,K")

u

= Ruo) > > W(N',K)uN'vK' =u,

N'=0 K'=0

(80)

of T/T., for (a) 50 and(b) 500 atoms. The insets show the variance
((Au)?) as compared witi (du/dN)s.

where the second equality follows becaus#—1,K)=0.
The form of the derivative used here is consistent with the
discussion above concerning Fig. 5. Equati{8f) suggests
that the fugacityy, rather tharu, is the fundamental param-
eter.

2. Fluctuations of u

As stated in Sec. Il A, for the microcanonical ensemble,
N andK (or E) are fixed parameters, and therefore the chemi-
cal potential, obtained from E27) with S=k In[W(N,K)],
is also a sharply defined quantity. For tleanonical en-
sembleN is given and therefore agajnis fixed, and may be
determined from Eq(78). For the GCE, the system is con-
sidered to be in thermal equilibrium with a heat bath and
particle reservoir for whichl'= Ty, and w= ppa, and (or
equivalently, the given variables ave=uv y, andU=Upyy) -
We will discuss the probability distribution Qfgygem CON-
sider((AMSystenf}, and make comparisons with the esti-
mates for a Gaussian distribution in Sec. Il A.
The probability distribution ofugem may be obtained
from Eq.(6). For givenu andv or Ty, and ppam, for each
pair of (discrete valuesN and K, with probability P(N,K)
=uMoKW(N,K)/R(u,v), we have pgysedN,K)/T=
—IN[W(N,K)W(N—1,K)] [in accord with Eg.(79)] and
therefore  P[ugyse(N,K)]=P(N,K).  We  compute
P[ 1systenkN,K) ] over the relevant range of andK values,
ind sum the probabilities within each binAu<u<
(n+1)Au.

Examples ofP(/LSystenLu,u) are shown in Fig. 7. Above
Tc, there is a nearly Gaussian distribution oyggemwith
a peak close tQup,. However, belowT ., the long tail in
P(N|u,v) as shown in Fig. 2 implies that a large fraction of
the atom distribution will be associated with a very small
value of| ugysten)- Hence there is a peak P(usystenfu,v) at
Msysteni=0, OF, more precisely, in the bid weysen< Lsystem
=<0. The shape of this peak will depend on the bin size
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FIG. 9. The specific hea€y=d(E)/dT for (a) 50 and(b) 500

FIG. 8. For the CET . is specified, but there is a distribution atoms. The insets shodCy/dT. The minimum in the slope pro-
over E values of the systerttop). In view of this distribution, there  vides a possible definition fdr, that is close to Eq(54) but may be
is a corresponding distribution ovéiyen values (bottom. The  extended to interacting atoms.
results are for 500 atoms, for whidtil. /% w=6.7805. The indi-
vidual distributions in the bottom plot correspond to the temperathem agree well with the expressiéA T)2)=T?/Cy given
tures indicated above. The irregulB(Tgysern) distribution for T above[Egs. (31) and (45)], as shown in Fig. &) (inse}.
=hwlk arises because of odd-even asymmetryKinThe inset  Note that the fluctuation i systemiS MiNimumat T=T,.
shows a comparison ¢{AT)?) as compared with the analytic ex-  Analogous to Eq(81) for the fugacity, the grand canoni-

pressionT?/Cy. cal average of the microcanonicak exp(—g) [whereT is
_ _ obtained from the first of Eq$27)] equals the grand canoni-
A prgysemused in computind® (systenhU,v).- cal bath parametep,. If one defines the partial derivative as

In Sec. Ill B [Eq. (50)], we obtained the result that the in Eq. (79),
variance( (A u)?)=T(dul IN)s. We have numerically com-
puted this partial derivative by obtainingcp,{E,N)
= usyster E,N) to satisfy(N)=N in Eq. (52), and S(E,N) -
=[S(dE'/T)N+In(N)+1/2N+--+), where the terms irN
are constructed to ensure the®/dN=u/T as T—0. We
have found that with this construction 8(E,N), the desired
condition wpam/ T= Usysten! T=—3S/IN, is obtained to a

1) ~ (W(N,K))
? MCE——m m , (83)

then the GCE average is

. . i 1 oo oo
high degree of accuracy. The fitted variances from the (,, =——— > D> W(N,K' —1)uNvK =yp.
P(usystenhll,v) agree well but not exactly with the analytic (omee)u R(U,v)\=o K20
expression, as shown in the inset of Fig. 7. (84)

Hence the average of the MCE variables the GCE bath
_ ) parameter, while this is not precisely true fBror T. This

In the grand canonical ensemble, for given bath paramgggests that is a more fundamental parameter tHgar g.
etersu andv, or upanandTpay, there is a distribution over  ypjike the fugacity traditionally has no name but perhaps
N andK, given by could be called the “thermicity” or “hotness.”

P(N,K]|u,v)=uNv*W(N,K)/R(u,v). (81)

D. Energy and temperature

V. SPECIFIC HEAT
SinceK, like N, is a non-negative quantity, the distributions i
exhibit similar non-Gaussian behavior when the probability FOr trapped atomsl\ rather than volume or pressure is
of K=0 or N=0 becomes significant. to be considered constant. Thus for the specific heat, one

For the canonical ensembH fixed), To.pis given andk  1aS Cn=(dE/dT)n—const for the MCE, or Cy=(d(E)/

fluctuates. The probability distribution fdt is given by dT)N=constfor the CE, or ((E)/dT))-constthe GCE. Fig-
ure 9 shows the results, again f¥) =50 and 500, for the
P(K|N,v)=vXW(N,K)/Z(N,v). (82 three ensembles considered here. The differences between

the peak position for the different ensembles show that the
Examples are shown in Fig(8. For each value ok, Ty em  different assumed conditions—whether there is a heat bath,
is determined from the first Eq27), so there is also a dis- and whether there is exchange of particles as well as energy
tribution overTgygem Shown in Fig. 8). When the distri-  with it—do make a difference in the value Gf;, especially
butions are essentially Gaussian, the widths deduced frorhe point at whichCy reaches its maximum. The peak@y,
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sharpens ahl increases and the differences between the three

ensembles diminish.

Possible definitions forT

- [N/C(3)]1 /8

A precise value for the BEC critical temperatufe,, of-
fers one way to characterize a Bose system. For example,
there have been several recent discusd§id@s-25 regarding

KTo/ho

the change ifT; between ideal and real Bose gases. In recent ___ gﬁ{‘#;g&"m”m
quantum Monte Carlo calculatioi5] for a box potential, | ™% ™~Sx TUe——o
T. was identified as the point at whith'3p/p(T) is inde- s ‘ it A S e
pendent ofN, where ps/p is the superfluid fraction. This 2 4 6 8 11/30 12 14 16

N

definition, based on the divergence of the correlation length

in such a homogeneous thou_gh finite System’ ma_.y not be FIG. 10. Variation of the critical temperature with atomic num-
easy to apply to Bose atoms in a harmonic potential. Alsoper for the three ensembles. The plotted curves arekTar% w

for finite N, the smoot, versusT curve (Fig. 4) does not  —[N/¢(3)]*3 vs N3, The short-dashed line represents Esg).
provide an unambiguous, precise definition Tqr. Further-  The long-dashed lines represent the minimumd@h(T)/dT for
more, as pointed out above, the definitionTgfin Refs.[14]  the three ensembles, and the solid lines represent the peak of
and[21] [Eq. (54) abovd is based on the fictitious assump- Cn(T). GCE, CE, and MCE results are denoted by GC, C, and MC,
tions that the fugacity is exactly unity and tha is exactly respectively. Note that th_e MCE results extend onl\Nte500, CE

zero atT,, and that the GCE expressions apply to trapped_esuns toN=5000. The inset extends the GCE results upNto
atoms. In any case, this definition is difficult to extend to the™
case of interacting atoms. In R¢R4], the critical tempera-
ture for atoms in a harmonic trap is taken to be the tempera-
ture at which the density at the origin is equal to the free- For ideal Bose atoms in a harmonic potential, we have
space critical densityp’>=2.612A3 [3], where \ is the  Obtained recursion relations linking the distributions for dif-
thermal de Broglie wavelength. We have found that ags ferent dimensions and also we have used previously derived

defined in Eq(54), the density at the center of an isotropic recursion relations for the canonical and microcanonical par-
harmonic trap is t’ypically more than twige, so this defi- tition functions. From these we have studied the statistical

nition leads to a higher critical temperature than Es) mechanics and in particular the fluctuations of various pa-
. Y . P ) o rameters for small atom numbers. The three most commonly
(Alternatively, one could consider tlaeragedensity within

h ¢ the classical : s f Bith used ensembles have quite distinct statistical properties. For
t_i_Fan)ge of the classical turning points for an atom &th o GCE, the number of particles in the system fluctuates,
=KT,.

. ) . and correspondingly, the system chemical potential or fugac-
For Bose atoms in a harmonic trap, the specific heat pregy will fluctuate although the bath values are fixed. For the
sents a less ambiguous definitionf that may be applied CE as well as for the GCE, the bath temperature is given, but
to interacting atoms as well as to an ideal gas. The peak ithe total energy of the system fluctuates and thus the tem-
the specific heat function provides one natural benchmarkperature of the system will fluctuate about the bath value. For
The plots in Fig. 9, however, indicate that the pealCjf(T)  the GCE, we have obtained estimates of the fluctuations of
tends to occur where=10% of the atoms are in the ground intensive variablesT and u, as well as extensive variablds
state, hence does not correspond with the onset of finitandE. Although previous discussions have focused primarily
ground state occupation as one expects, and occurs at a tegh the ground-state occupation numbeg, the statistical
perature significantly lower thaf. as defined in Eq(54).  fluctuations of all of these quantities are of interest in char-
The minimum ofdCy/dT offers an alternative benchmark acterizing the different ensembles.
point that corresponds to the discontinuity in thg(T) However, estimates of variances do not tell the full story
function at infiniteN. For an ideal Bose gase, the exact re-because the probability distributions are often non-Gaussian
cursion relation methods discussed in Sec. Il are suited faselow T,. For the GCE withT<T,, the probability distri-
calculations in the region of ., but the large values for bution of total atomic numbei, and ground-state occupa-
W(N,K) limit the MCE methods to 500 or 1000 atoms, andtion numbern,, are close to a simple exponential decrease,
to five times that number faZ(N,v) and the CE. Figure 10 rather than a Gaussian distribution, and the probability dis-
showsT, values from Eq.54) in comparison with results tribution of the chemical potential also decreases from a peak
from the three ensembles deduced from the most negatiwalue atu=0. For the CE and MCE, the, distributions are
slope and the peak of théy(T) function. The inset shows more nearly Gaussian. As recently reported elsewhere
that the difference between these two points for the GCE12,11], the fluctuation oy is less with the microcanonical

VI. CONCLUSION

results remains nearly constant fdrup to 16 atoms, and
that the point at whiclCy(T) has the most negative slope is
close to the value given by E¢p4). When the point of most
negative slope o€y (T) is used to obtain a value fdr, from
the CE resultskT. /% w is about 0.1 less than for the GCE
for 500<N<<5000.

ensemble than with the canonical ensemble, and much less
with the canonical ensemble than with the grand canonical
ensemble. It is pertinent here to note Politzer's conclusion
[7] that fluctuations ofny in the GCE are much reduced
when atom-atom interactions are present. The effect of atom-
atom interactions on other conclusions here is clearly an im-
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portant issue but outside the scope of the present study. been to develop methods for using the microcanonical en-

The specific heat functioiGy(T), provides a useful com- semble. For small numbers of atorité<500 here, possibly
parison between the different ensembles and a test of the rag® to 1000 atomsit is possible to obtain explicit results and
of convergence of the results withor (N). We propose that  study the statistical properties of the microcanonical and ca-
the point of most negative slope Gfy(T) provides an un- nonical as well as the grand canonical ensembles.
ambiguous definition fofl; that is close to values from the
recently proposed definitiofi4,21] [Eq. (54) abovg for an
ideal Bose gas, and extendable to interacting atoms.

Fractional variances or fluctuations typically decrease
with N, and so become less important for large numbers of T. B. gratefully acknowledges support from the NSF,
atoms. Nevertheless, results from this study do highlight th®©NR, The National Computing Facilities Foundation in the
conclusion that the GCE, though most commonly used folNetherlandSNCF), and Cray Research Inc., and he thanks
modeling and computations, is actually inconsistent with theH. Beijerinck, E. Vredenbregt, M. Doery, and H. Stoof for
experimental conditions in which there is no equilibration ofvaluable discussions and for their hospitality during his visits
matter or energy with a heat bath. Thus one of our goals hat® Eindhoven and Utrecht.
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