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Statistical mechanics of ideal Bose atoms in a harmonic trap

N. L. Balazs and T. Bergeman
Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794-380

~Received 9 December 1997!

For ideal Bose atoms in an isotropic harmonic trap, we consider thermodynamic variables obtained from
microcanonical, canonical, and grand canonical ensembles, each with certain variables specified and other
variables fluctuating. For the first two of these ensembles, we derive recursion relations that link partition
functions for different dimensions. We discuss fluctuations in general, and obtain expressions for variances of
the atom numberN, the chemical potentialm, and the temperatureT for small, Gaussian fluctuations in the
grand canonical ensemble. Then from our recursion relations and others given elsewhere, we obtain probability
distributions forN, for ground-state occupation numbern0, for m, and forT. Below the critical temperature, the
shape of the distributions forN, n0 , andm are definitely not Gaussian for the grand canonical ensemble. For
given temperature and smallN, we find that the chemical potential values pertaining to the three ensembles
differ. We compare the specific-heat functionCN(T) for the three ensembles and propose to use the minimum
of dCN /dT to define the critical temperature to facilitate comparisons with similar configurations of interacting
atoms.@S1050-2947~98!01309-2#

PACS number~s!: 03.75.Fi, 05.30.Jp, 05.30.Ch
st
s

en

u
le
o

an

t
e
f

n
ch
w

ay
on
ca
es
e
ng
is

d
a

ox
es
e
en
d

er
an
le
nt
e
ve

me

the
ard
tities
re-

tial

l

ra-
or
of
to

is
ven
e
ex-
ical

i-
fore
and

ar-
po-
s
uili-
er
-

r of

and
ical

-
x-
I. INTRODUCTION

There are many different statistical ensembles used in
tistical mechanics; nevertheless, only one thermodynamic
known. The equivalence of the results given by the differ
ensembles describing this thermodynamics is exhibited
the ‘‘thermodynamic limit’’ @1#, which is equivalent to the
saddle-point approximation. If the system is homogeneo
the convergence of the viewpoints of the different ensemb
occurs through a limiting process in which the number
particles and the volume both tend to infinity, in such a m
ner that their ratio, the density, is constant.

For inhomogeneous systems the usual argument for
universal equivalence of different statistical ensembles ne
to be reconsidered. Of course, there are special cases o
homogeneous systems when the equilibrium system ca
divided into ~essentially! homogeneous layers, and ea
layer can be subjected to its own limiting process. This, ho
ever, requires that the volume of each homogeneous l
can be made infinite without changing the physical situati
For example, in a constant gravitational field, the system
be divided into thin layers by planar equipotential surfac
The thin layers between the planes can be made infinit
extent, enclosing regions of uniform density without alteri
the physics of the problem. If a finite number of particles
confined in a harmonic potential~thusnot in a finite volume
independent of dynamics!, the problem must be analyze
anew. Here the system contains only a finite number of p
ticles. It is also inhomogeneous, and the regions of appr
mately constant density are finite. The usual limiting proc
cannot be applied. Of course, this is of small consequenc
we do not wish to have a thermodynamic description. Th
however, thermodynamic variables can no longer be use

If we insist on a statistical mechanical description of th
modynamic variables, immediate difficulties arise. The qu
tities used in the constructions of thermodynamical variab
will in general fluctuate, and their statistics will be differe
for different Gibbsian ensembles. Moreover, there is a qu
tion whether we should associate the physically obser
PRA 581050-2947/98/58~3!/2359~14!/$15.00
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quantities with mean values, most probable values, or so
other type of statistical average.

For this reason, it seems to us of interest to compute
relevant thermodynamical quantities exactly in the stand
ensembles, and also some nonthermodynamical quan
such as occupation numbers and fluctuations. We will the
fore compare results in three Gibbsian ensembles@2# for an
ideal Bose gas confined in an isotropic harmonic poten
when the particle numbers are small.

For a microcanonical ensemble@3–5#, the total number of
particlesN and the total energyE are prescribed, and al
configurations satisfying the givenN and E are considered
equally probable. Explicit enumeration of these configu
tions is possible if the number of particles is less than 100
so. Using recursion relations given below, computation
W(N,K), the number of configurations, is possible up
N51000 or so. For the canonical ensemble, the system
assumed to be in thermal contact with a heat bath of gi
temperatureT, so that the prescribed parameters becomT
and N. For the grand canonical ensemble, the system
changes particles as well as energy with a bath. The chem
potentialm andT of the bath itself are now the control var
ables. This simplifies the analysis immensely, and there
the grand canonical ensemble is the most convenient
most commonly used statistical ensemble.

However, atoms confined in a trap exchange neither p
ticles nor energy with a surrounding heat bath, after eva
rative cooling is turned off.~Loss of atoms due to collision
with background gas atoms cannot be considered an eq
brating process.! With no heat bath, the total energy, rath
than T, and N, rather thanm, are the experimentally deter
mined variables, as in the microcanonical ensemble.~Even if
not accurately known, the energy and total atom numbe
an isolated system will not fluctuate.! Though long known
@6,4#, there has been increasing concern with this point,
a number of authors have recently considered the canon
ensemble~CE! @7,8#, microcanonical ensemble~MCE! @9–
12#, as well as a newly defined ‘‘Maxwell Demon’’ en
semble@13,12# in which particles, but not energy, are e
2359 © 1998 The American Physical Society
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2360 PRA 58N. L. BALAZS AND T. BERGEMAN
changed with an infinite reservoir of ground state atom
New and useful results have been obtained, but these
sembles remain difficult to work with, and the properties
these ensembles for finite numbers of atoms in an inho
geneous~harmonic! potential warrant further study.

Grossmann and Holthaus have examined these ques
on several levels@14,9,12,15#. They initially used asymptotic
expressions to consider the microcanonical ensemble in
dimension, and more recently@12,15# have used the MD
ensemble and the low-temperature properties of the micr
nonical ensemble to obtain results for three dimensio
Chase, Mekjian, and Zamick@16# have derived recursion re
lations for the CE~actually obtained earlier by Landsbe
@17#! and the MCE, and made comparisons of the spec
heat, and of the mean ground-state occupation number^n0&
for the three ensembles. Weiss and Wilkens@11# have pre-
sented the distribution overn0 as well as the fluctuation o
n0 for the three primary ensembles. Although for givenN or
^N&, the average valuên0& is nearly the same in the differ
ent ensembles, belowTc the shape of the distribution overn0
is quite different, and the fluctuation is much less for the
than for the GCE, and less for the MCE than for the C
Also it has been established that for the CE@6,7# and MCE
@9,13,11#, the fluctuation ofn0 goes to zero withT, as one
would expect. Gajda and Rzazewski@10# obtained analytic
results for the MCE for a 3D harmonic trap from the sadd
point approximation, replacing the sum over eigenenerg
by an integral and the Euler-McLaurin expansion. There
various possibilities for expanding these results aboutT50
or aboutT5` ~or about 1/T50), or even about some inter
mediate value.

As are many of the above cited works, this study is co
cerned exclusively with ideal, noninteracting atoms in an i
tropic harmonic potential. We use the previously derived
cursion relations, and also present new recursion relation
both the CE and the MCE that link the partition functions
one, two, and three dimensions~Sec. II!. In Sec. III, we
discuss average values and fluctuations in general, and o
variances of temperature and chemical potential in the G
point of view. We then in Sec. IV use the CE and MC
recursion relations to obtain distributions overN, n0 , m, and
T. These distributions highlight the contrasting natures of
different ensembles. Finally~Sec. V!, we consider the spe
cific heat obtained from the various ensembles, especiall
a means of establishing a definition for the critical tempe
ture Tc that may be extended from ideal to real gases.

A secondary goal of interest would be to assess the a
racy of the analytic approximations developed for the MC
in @10#, and the ‘‘Maxwell Demon’’ ensemble@13,12#, but
because of the multitude of possibilities, we will not addre
these questions in this report.

II. PARTITION FUNCTIONS

We considerN identical Bose particles in a harmonic o
cillator potential of frequencyv/2p. For dimensiond.1, we
will consider only the simplest case in which the potentia
isotropic. If the ground-state energy is taken to be zero, t
the single-particle energiesek are integral multiples of\v;
ek5k\v,k50,1,2,3, . . . . Thedegeneracy of each levelk is
gk(d)5(k1d21)!/k!(d21)!. Thus gk(1)51,gk(2)5k
.
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11,gk(3)5(k11)(k12)/2. An allowed configuration is
completely characterized by an occupation number
n0 ,n1 ,n2 , . . . , denoted by$ni%, which satisfy the side con
ditions

N5(
k

nk , ~1!

E5(
k

nkek5(
k

nk\vk5\vK, or K5(
k

nkk. ~2!

In the present case the value of the total energyE is an
integer,K, times\v.

The microcanonical partition function forN atoms with
total energyE5K\v in d dimensions,W(d,N,K), is a func-
tion of N andK only, and is given by a sum over all allowe
configurations:

W~d,N,K !5(
$ni %

9)
k

C~d,nk!, ~3!

where C(d,nk)5@nk1gk(d)21#!/nk! @gk(d)21#! is the
number of waysnk atoms can be placed intogk states. The
summation is over all possible occupation number s
n0 ,n1 ,n2 , . . . that satisfy the side conditions, Eq.~1! and
~2!, indicated by the two primes on the summation sign.

The canonical partition function,Z(d,N,v), where v
[exp(2b), b5\v/kT, is a function ofN andT. The grand
canonical partition function,R(d,u,v), depends on the
chemical potential,m, and onT as independent variables vi
the parametersu[exp(bm) ~the fugacity! andv. ~Note that
both v,1 andu,1 for an ideal Bose gas.! Thus

W~d,N,K ! is the microcanonical partition function,
~4!

Z~d,N,v !5 (
K50

`

vKW~d,N,K !

is the canonical partition function, ~5!

R~d,u,v !5 (
N50

`

uNZ~d,N,v !

is the grand canonical partition function.

~6!

A. Grand canonical ensemble

In the standard way,R(d,u,v) can be obtained from Eqs
~3! and ~6! after summing overN so that the constraints ar
removed. For an isotropic harmonic oscillator, a relative
simple expression results:

R~d,u,v !5(
N,K

uNvKW~d,N,K !

5)
k

(
nk50

unkvknkC~d,nk!5)
k

1

~12uvk!gk~d!

~7!
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sinceu andv are less than unity.R can also be considered
generating function associated withW. For the special case
of an isotropic harmonic oscillator, the degeneracies are s
as to yield the relation

R~d,uv,v !R~d21,u,v !5R~d,u,v !, ~8!

which will play an important role in the following discus
sion. The properties of the grand canonical ensemble for
oms in a harmonic potential have been studied in detail
cently by Grossmann and Holthaus@14#.

B. Canonical ensemble

Recursion relations lead to computationally efficie
methods for computingZ(d,N,v) andW(d,N,K). The fol-
lowing recursion relation has been known for some ti
@17#, and recently rediscovered@18,16,12,11#:

Z~d,N,v !5
1

N(
k51

N

Z~d,1,vk!Z~d,N2k,v !. ~9!

Another recursion relation that connects theZ(d,N,v) for
different d can be developed by substituting Eq.~6! in Eq.
~8!:

(
N50

`

uNZ~d,N,v !5 (
N850

`

uN8vN8Z~d,N8,v !

3 (
N950

`

uN9Z~d21,N9,v !. ~10!

The coefficient ofuN on both sides is

Z~d,N,v !5 (
N850

N

vN8Z~d,N8,v !Z~d21,N2N8,v !.

~11!

In order to use this result, we recognize that it is consist
with Eq. ~7! to take

R~0,u,v !5
1

12u
5 (

N50
uNZ~0,N,v !, ~12!

which impliesZ(0,N,v)51, for N50,1,2, . . . . As a check
the following identity may be confirmed by takingN
50,1, . . . :

Z~1,N,v !5 (
N850

N

vN8Z~1,N8,v !. ~13!

Taking into account also the result for no atoms,Z(d,0,v)
51 ~below!, the above recursion relation may be written

Z~d,N,v !5
1

12vN (
N850

N21

vN8Z~d,N8,v !Z~d21,N2N8,v !,

d51, . . . . ~14!
ch
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C. Microcanonical ensemble

Analogous to Eq.~9!, recently@16,11# the following re-
cursion relation has been obtained:

W~d,N,K !5
1

N(
k51

N

(
j 51

K/k

gk~d!W~d,N2k,K2k j !, ~15!

with the conditionW(d,0,K)5d(0,K). From this condition
it follows that Z(d,0,v)51 for all d, as above.

To obtain a recursion relation joiningW(d,N,K) for dif-
ferent values ofd, we recognize thatW(1,N,K) is the num-
ber of partitions ofK into N parts and is given by the coef
ficients of the expansion of

Z~1,N,v !5)
i 51

N
1

12v i
5 (

K50

`

vKW~1,N,K ! ~16!

and thusZ(1,N,v)5Z(1,N21,v)/(12vN). Therefore, for
N.0,

~12vN! (
K50

`

vKW~1,N,K !5 (
K850

`

vK8W~1,N21,K8!

~17!

or

(
K50

`

vKW~1,N,K !5 (
K850

`

vK8W~1,N21,K8!

1 (
K95N

`

vKW~1,N,K92N!. ~18!

By equating coefficients ofvK in Eq. ~18!, we find that
below the diagonal in theN2K plane,W(1,N,K) is inde-
pendent ofN:

W~1,N,K !5W~1,N21,K !, N.K. ~19!

On the diagonal,

W~1,N,N!5W~1,N21,N!1W~1,N,0!5W~1,N21,N!

11 ~20!

and, above the diagonal,

W~1,N,K !5W~1,N21,K !1W~1,N,K2N!, K.N.
~21!

To develop analogous recursion relations ford.1, we
substitute Eq.~6! into Eq. ~8!:
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F (
N50

`

~uv !NZ~d,N,v !GF (
N850

`

uN8Z~d21,N8,v !G
5 (

N950

`

uN9Z~d,N9,v !. ~22!

Equating terms inuN, we have
y

ca
po
dy
tio
th

.
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f
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in
ee
e
or

n
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~12vN!Z~d,N,v !

5 (
M51

N

vN2MZ~d,N2M ,v !Z~d21,M ,v !.

~23!

Substituting from Eq.~5!,
(
K50

`

vKW~d,N,K !2 (
K850

`

vK81NW~d,N,K8!5 (
M51

N

vN2MF (
K950

`

vK9W~d21,M ,K9!GF (
K850

`

vK8W~d,N2M ,K8!G .

~24!

Equating terms invK,

W~d,N,K !5W~d,N,K2N!1 (
M51

N

(
K850

K1M2N

W~d,N2M ,K8!W~d21,M ,K1M2N2K8!. ~25!
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Once W(d,N,K) has been computed,Z(d,N,v) can be
obtained from Eq.~5!. However, we have found numericall
that Eq.~5! is sensitive to round-off error, even for smallN,
whereas Eq.~14! is not.

III. AVERAGES AND FLUCTUATIONS

A. Classical ensemble averages

In the different ensembles, different thermodynami
quantities can fluctuate. Since these fluctuations are im
tant if the number of particles is small, it is useful to stu
these differences. We present two approaches to fluctua
in the next two subsections. To simplify the discussion,
classical phase space density,V(E,N), will be considered in
place of the quantum degeneracy,W(E,N), discussed above
Discretization is by no means a trivial step and will be d
cussed in Sec. IV C 1.

The thermodynamicaldescription admits no fluctuation o
thermodynamical quantities. The fundamental thermo
namical quantities are the extensive ones, since the comb
first and second laws establish a linear relation betw
them; the intensive quantities are the coefficients in the lin
relation. For atoms in a harmonic trap, the mechanical w
terms are missing, and thus this relation is simply

dS5~1/T!dE2~m/T!dN. ~26!

Then 1/T and m/T are given as derivatives of the functio
S(E,N):

S ]S

]ED
N

5
1

T
, S ]S

]ND
E

52
m

T
. ~27!

In the microcanonical ensembleno thermodynamica
variable fluctuates. Statistical mechanics simply specifies
entropy in terms of mechanical quantities. In classical m
l
r-

ns
e

-

-
ed
n

ar
k

e
-

chanics, we haveS5 ln@V(E,N)#, the logarithm of the phase
space density,V(E, N), or, in quantum mechanics,S
5 ln@W(E,N)#, whereW(E,N) is the degeneracy at the tota
energyE for N particles. Consequently in the microcanonic
ensemble, no thermodynamical quantity, extensive or int
sive, can fluctuate.~Nonthermodynamical quantities, such
the occupation numbers of the single-particle energy state
a noninteracting gas, can fluctuate.!

In the canonical ensemblethe energy becomes arandom
variable with a probability distribution. Thus the energy w
fluctuate. Physically we interpret this as a consequence o
system being attached to a heat bath. For example, in a
sical gas, the probability distribution will beV(E,N)exp
(2bE)dE/C,whereC5*dE V(E,N)exp(2bE). ~b is a char-
acteristic parameter associated with the heat bath to w
the system is attached.! The reciprocal temperature of th
system in the microcanonical description isbsystem
5(1/T)system5] ln V/]E. Its average in a canonical en
semble is

^bsystem&b,N5E dE~] ln V/]E!Vexp~2bE!/C

5E dE~]V/]E!exp~2bE!/C5b, ~28!

where in the last step we performed an integration by pa
Thus the physical meaning of the bath parameterb is given
as theaverageof the reciprocal system temperature, which
a fluctuating quantity. The usualthermodynamicalequilib-
rium condition for combined systems, the equality of t
temperature of its parts, is then to be interpreted for theav-
erage. ~The bath temperature does not fluctuate, since
bath is supposed to be large.!

The mean square fluctuation ofbsystem in the canonical
ensemble is given as
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^~bsystem!
2&b,N5^~] ln V/]E!2&b,N5E dE~V8/V!~V8/V!Vexp~2bE!/C

5E dE V8@~V8/V!exp~2bE!#/C52E dE V@~V8/V!exp~2bE!#8/C

52E dE V@~V8/V!#8exp~2bE!/C1bE dE V~V8/V!exp~2bE!/C52^]~1/Tsystem!/]E&b,N1b2.
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~The primes indicate derivatives with respect toE.!
The dispersion around the mean̂(D(1/Tsystem)

2&b,N
5^(bsystem2b)2&b,N becomes

^~bsystem!
2&b,N2~b!252^]~bsystem!/]E&b,N . ~29!

The calculation was simple because we computed
fluctuation of thereciprocal temperature. If the fluctuation
are small, however, one can reexpress the above resu
terms of the system temperature fluctuation itself:

^@D~1/Tsystem!#
2&b,N5^~bsystem!

4~DTsystem!
2&b,N

52^~]bsystem/]E&b,N . ~30!

If we approximate in this relation the averages of t
products with the averages of the factors we obtain imme
ately

^~DTsystem!
2&b,N5~1/b!2/CN , ~31!

whereCN is the specific heat for a given number of atom
This is the usual result for small~and thereby also Gaussian!
fluctuations.

In the grand canonicalensemble bothE and N become
random variables with the joint probability distributio
Vexp(2bE1aN)/C, whereC is another normalizing factor
and a is a new bath or reservoir parameter, controlling t
coupling with the particle reservoir. Its physical meani
must be identified by a suitable average. If we treatN as a
continuous variable we can follow the previous discuss
for temperature fluctuations, replacing thereE with N, b with
2a, and introducing asystem5(2m/T)system5] ln V/]N.
Consequently the bath parametera must be identified with
the grand canonical average^(2m/T)system&b,m , while the
mean square fluctuation ofasystem, ^(Dasystem)

2&b,mis
^](m/T)system/]N&b,m . Breaking the correlations for sma
fluctuations, this results inb(]m/]N) for the dispersion of
a. Here, too, the thermal equilibrium condition needs to h
only for the averaged intensive variable, i.e.,a. Further dis-
cussion of the GCE appears in the next subsection.

In the above discussion, it was assumed thatE andN are
continuous variables. WhenE is quantized andN is discrete,
one can imagine various procedures for translating the
rivative to a differences expression, and it will be show
below that the results can vary greatly, especially form and
a5m/T. However, it will be shown in Secs. IV C 1 an
IV D that with one particular discretization of the partial d
rivatives, the grand canonical average of the microcanon
variablesu5exp(m/T) and v5exp(21/T) are exactly equa
to the GCE quantity.
e

in

i-

.

e

n

d

e-

al

B. Gaussian fluctuations in a grand canonical ensemble

Consistent with the above discussion and with, for e
ample, Ref.@5#, we take the point of view that with the gran
canonical ensemble, the system values of not only exten
variables, such asE, N, andS, but also the intensive vari
ablesT and m will fluctuate about their mean values. T
clarify the discussion, we will call the system variabl
Tsystem and msystem. The mean values ofTsystem and msystem

are precisely the heat bath values. Other authors@19# have
taken the point of view that intensive variables, (T,m), do
not fluctuate. In any case, in the thermodynamic limit, t
fluctuations become negligible, and furthermore, one of
considers the thermodynamical equilibrium conditions(T
constant,m constant! to hold, neglecting fluctuations. How
ever, for smallN, we find that the fluctuations are substanti

For atoms confined in a harmonic trap, the GCE does
precisely apply, as discussed in the Introduction, and th
fore the fluctuations discussed here will not be observa
Furthermore, it has been emphasized@7# that atom-atom in-
teractions will diminish fluctuations, at least in ground-sta
occupation number. Our interest in fluctuations with t
GCE derives from the goal of understanding the statist
implications of the various model ensembles, and in parti
lar of the ensemble that is most commonly used in theor
cal work. Also, it may be that future experiments with Bo
atoms will involve processes that resemble equilibration
particles and energy with a heat bath, as assumed for
GCE.

Thermodynamical fluctuation theory as presented in@5#
has yielded useful expressions for the variances when
fluctuations are small and Gaussian. It is implicit in the d
cussions in@5# that the grand canonical ensemble is und
consideration. Following a much earlier model@20#, the fluc-
tuation probability is said to be proportional toeDSt /k, where
DSt is the change of total entropy of the system plus ba
This is restated asDSt52Rmin /T, whereRmin is the mini-
mum work required to carry out such a change. Since
concept of minimum work is inapplicable to trapped atom
we will derive expressions for the variance of thermod
namic quantities by considering the grand canonical distri
tion function.

In the grand canonical distribution,

P~E,N;a,b!5CeS̃~E,N!2bE1aNdE dN, ~32!

E andN are random variables, whilea andb arefixedbath
variables.S̃(E,N) is the microcanonical entropy, which is
monotonic nondecreasing function ofE. Hence we can solve
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it for E5Ẽ(S,N), where the tilde stresses thatE is now a
function, andS is now considered a random variable:

P~S,N;a,b!dS dN5CeS2bẼ~S,N!1aNS dẼ

dS
D dS dN.

~33!

We will now expand the exponent about its maximu
which occurs at (S* ,N* ), at which

12bS ]Ẽ

]S
D *

50, 2bS ]Ẽ

]N
D *

1a50. ~34!

But since

S ]Ẽ

]S
D 5Tsystem~S,N!, S ]Ẽ

]N
D 5msystem~S,N!, ~35!

the maximum occurs at such (S* ,N* ) for which Tsystem
51/b, andbmsystem5a, or msystem/Tsystem5a. We now in-
troduce the random variablesDS,DN, such that S
5S* (a,b)1DS,N5N* (a,b)1DN, and expand the expo
nent up to quadratic terms. In what follows, all increme
will be relative to the maximum of the exponent. In view
Eq. ~34!, the linear terms vanish, only the quadratic ter
survive, and thea,b dependence becomes partly implic
For the exponent, labeledY, one now has

Y52
b

2F S ]2Ẽ

]S2 D *
~DS!212S ]2Ẽ

]S]N
D *

DSDN

1S ]2Ẽ

]N2D *
~DN!2G . ~36!

If we now consider incrementsDS andDN in SandN at S*
andN* , the increments of the derivatives]Ẽ/]S and]Ẽ/]N
will be

DS ]Ẽ

]SD
S* ,N*

5S ]2Ẽ

]S2 D *
DS1S ]2Ẽ

]N]SD *
DN5DTsystem

~37!

DS ]Ẽ

]ND
S* ,N*

5S ]2Ẽ

]S]ND *
DS1S ]2Ẽ

]N2D *
DN5Dmsystem,

~38!

in terms of which the exponent becomes

Y52
b

2
@DSDT1DNDm#, ~39!

where all quantities refer to thesystem, and the increments
are changes about the maximum at (S* ,N* ). A similar ex-
pression occurs in@5# with DPDV in place ofDN(Dm).

To derive variances forT and N, we could immediately
takeT andN to be independent variables, and write the pro
ability distribution in Eq.~32! as

P~T,N!dT dN5Ce~Ŝ~T,N!2bÊ~T,N!1aN!dT dN, ~40!
,

s

s

-

whereÊ and Ŝ denote functions ofT andN, which are dif-
ferent from the functionsS̃(E,N) andẼ(S,N) defined above.
An expansion to second order inT and N will yield the
results we desire. However, we will here follow a slight
shorter route closer to that in Ref.@5#. In Eq. ~39! we substi-
tute

Dm5S ]m

]T D
N

DT1S ]m

]ND
T

DN ~41!

and

DS5S ]S

]TD
N

DT1S ]S

]ND
T

DN5
CN

T
DT2S ]m

]T D
N

DN,

~42!

in which we have used

S ]S

]ND
T

52
]

]NS ]F

]TD
N

52S ]m

]T D
N

. ~43!

Then for the exponentY in the probabilityw}eY, we obtain

Y'2
b

2FCN

T
~DT!21S ]m

]ND
T

~DN!2G . ~44!

From this the variances follow directly:

^~DT!2&5
kT2

CN
, ^~DN!2&5kTS ]N

]m D
T

, ^DTDN&50.

~45!

Thus in this approximation, the fluctuations ofT and N are
not correlated. By contrast, if we takeS and m as indepen-
dent variables,

DN5S ]N

]SD
m

DS1S ]N

]m D
S

Dm ~46!

and

DT5S ]T

]SD
m

DS1S ]T

]m D
S

Dm5
T

Cm
DS2S ]N

]SD
m

Dm,

~47!

where we have introducedL5E2mN, dL5T dS
2N dm, such that

S ]T

]m D
S

5
]

]mS ]L

]SD
m

52S ]N

]SD
m

~48!

and, therefore, the exponent becomes

Y'2
b

2F T

Cm
~DS!21S ]N

]m D
S

~Dm!2G ~49!

and the variances are

^~DS!2&5kCm , ^~Dm!2&5kTS ]m

]ND
S

, ^DSDm&50.

~50!
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The above expressions for^(Dm)2& as well aŝ (DT)2& will
be compared with the widths of the corresponding proba
ity distributions in Secs. IV C 2 and IV D.

By selecting the other possible variable pairs, we de
mine that, to terms of second order,

^DTDm&Þ0, ^DSDN&Þ0. ~51!

The above fluctuations have been derived with the
sumption that the probability distributions are Gaussian.
the following section, we will show that this is not the ca
below Tc for N andm.

IV. PROBABILITY DISTRIBUTIONS

A. Atomic number

For the grand canonical ensemble, it is well known th
the mean valueŝN& and ^ni& can be obtained from

^N&5
1

b

] lnR~u,v !

]m
5u

] lnR~u,v !

]u

5(
i 50

`
g~ i !

eb~ i 2m!21
5(

i 50

`

^ni&, ~52!

whereu5ea5emb. ~Except where noted, the following dis
cussion applies to any value ofd, and we will normally omit
this variable in the following.! When computing thêni& for
a given atom numberN, m is adjusted so as to fulfill the
conditionN5^N& to the desired precision.

Various approximations have been used for the GCE
atoms in a harmonic trap. One approach is to replace
above sum by a term for the ground state plus an inte
overE @14#. The first three terms for̂N& for the 3D isotropic
harmonic trap are then

^N&5
u

12u
1

1

b3
g3~u!1

3

2b2
g2~u!, ~53!

where the first term iŝN0&, andgn(z)5( l 51
` zl / l n. A defi-

nition for Tc is obtained by making the approximationu
51 and settinĝ N0&50 in the above approximate expre
sion @14,21#. This leads to the result

kTc

\v
5S N

z~3! D
1/3

2
z~2!

2z~3!
1

z~2!2

4z~3!5/3N1/3

50.94050N1/320.68421610.49777N21/3, ~54!

wherez(n) is the Riemannz function. This expression give
a usefulN-dependent critical temperature,Tc , that we will
use in the following discussion. However, for values ofN
such as will be of interest below, neither approximationu
51 or N050 is precisely correct atT5Tc , as is fully rec-
ognized in@14#.

The mean square of the fluctuation ofN is
l-

r-

s-
n

t

r
e

al

^~DN!2&5Š~N2^N&!2
‹5S u

]

]uD 2

ln@R~u,v !#

5^N&1(
i 50

`
g~ i !

@eb~ i 2m!21#2
. ~55!

Figure 1 showŝ(DN)2&1/2 as a function ofT obtained from
Eq. ~55! by adjustingm ~or u) at each value ofT so that
^N&5500 atoms. At lowT, ^(dN)2& is dominated by thei
50 term in the final sum of Eq.~55!, which is equal to
^n0&

2, while for T.Tc , the ^N& term dominates. The re
maining terms in the sum are shown as the dashed lin
Fig. 1. These equations and plots emphasize again tha
the GCE, the total atomic number is a fluctuating quant
As is widely recognized@4,14,9#, as T→0, ^(dN)2&1/2 ap-
proacheŝN& ~hence is not small compared toN), in contrast
with the actual physical situation for a collection of trapp
atoms. Although the total number is not exactly known,
cannot fluctuate if the trapped cloud does not exchange
ticles with a surrounding bath.

Going beyond the mean value and the fluctuation ofN, it
is interesting to consider the probability distributio
P(Nuu,v) over N, for given u and v. For this purpose, we
return to Eq.~6! and obtain

P~Nuu,v !5uNZ~N,v !/R~u,v !. ~56!

The partition function for the canonical ensemble,Z(N,v),
thus provides a distribution overN for the grand canonical
ensemble. Numerical calculations ofP(Nuu,v), shown for
N5500 in Fig. 2, display qualitatively different behavio
over three regimes of temperature. AboveTc ~for N5500,
kTc /\v56.78053), the distribution is Gaussian, center
on ^N&; P(N)'exp@(N2^N&)/s#2/sAp with s2'2^d2N&.
Slightly belowTc ~Fig. 2!, the peak occurs substantially be
low the mean, and there is a long tail at highN. Near T
50, the peak occurs atN1 , a very small value ofN, and the
distribution is found to have the form

FIG. 1. The mean fluctuation,^d2N&1/2 of the total atom num-
ber, forN5500~solid line! from the grand canonical ensemble. Th
dashed line shows that the major contributions to^d2N& are the
terms^n0&

21^N&, except nearTc , when the contribution of excited
states to the last term of Eq.~55! becomes significant.
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P~Nuu,v !'
1

^N&
e2~N2N1!/^N&, ~57!

an exponential decrease. Thus forT,Tc , ln@P(N)# exhibits a
linear decrease, as shown in Fig. 2~b!, consistent with Eq.
~55!. Clearly, the shape of this probability distribution mu
be taken into account when considering any property of
ensemble that depends on^N& in a nonlinear way.

B. Occupation numbers

The distribution function for occupation numbers,ni , and
for n0 in particular is especially relevant for Bose-Einste
condensation phenomena. It is interesting to observe
while the averages ofni are not thermodynamical quantitie
nevertheless they can be obtained with the help of the p
tion functions alone. For generali, for given u and v, the
probability thatni assumes a particular value is

Pr~ni uu,v !5R~ni uu,v !/R~u,v !5univ ini~12uv i !giC~ni !.
~58!

For i 50, this assumes a particularly simple form:

Pr~n0uu!5un0~12u!. ~59!

Note that sinceu,1, Pr(n0uu) for the GCE is always a de
creasing function ofn0 , and does not peak atn05N even as
T→0. From Eq.~59! one obtains the standard results@4#
^n0&5u/(12u) and ^(Dn0)2&5Š(n02^n0&)

2
‹5^n0

2&
2^n0&

25u/(12u)2. Here again is the so-called ‘‘fluctua
tion catastrophe’’@9#, in that nearT50, both the average
value and the fluctuation ofn0 are on the order ofN, which
is inconsistent with the assumption that the number of ato
is fixed atN.

FIG. 2. Probability distributions for̂N&5500 atoms for three
values ofT/Tc for the GCE, normalized to unity at the maximum
Above Tc , the distribution is a Gaussian centered on^N&. For
T/Tc!1, the distribution is exponentially decreasing.~a! Linear
scale.~b! Log scale. The straight lines forT/Tc50.15 and 0.74
show that the exponential decrease at these temperatures is n
exact.
e
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s

This pathological situation does not arise with the cano
cal or microcanonical ensembles. For general leveli,

Pr~ni uN,v !5Z~ni uN,v !/Z~N,v !. ~60!

For the canonical ensemble, we invoke the definitions, wh
involve a single constraint:

Z~N,v !5)
k

( 8
nk

C~nk!v
knk, (

k50
nk5N ~61!

and

Z~ni uN,v !5C~ni !v
ini)

kÞ i
( 8
nk

C~nk!v
knk. ~62!

Then we can write

(
N

Pr~ni uN,v !Z~N,v !uN

5(
N

Z~ni uN,v !uN5C~ni !u
niv ini)

kÞ i
(
nk

unkC~nk!v
knk

5C~ni !u
niv ini)

kÞ i

1

~12uvk!gk

5C~ni !u
niv ini~12uv i !gi(

N
Z~N,v !uN. ~63!

Equating coefficients ofuN, we obtain

Pr~ni uN,v !5
C~ni !

Z~N,v !(l 50

gi

~21! l S gi

l DZ~N2ni2 l !v i ~ni1 l !.

~64!

For the ground state,

Pr~n0uN,v !5@Z~N2n0 ,v !2Z~N2n021,v !#/Z~N,v !,
~65!

where it is understood that Pr(n05NuN,v)51/Z(N,v).
Equation ~65! can be used in conjunction with the abov
recursion relations.

For the microcanonical ensemble, we again fixni to have
the valueni8 . The sum over the thus reduced total number
allowed statesW(ni8uN,K) is now given by

W~ni8uN,K !5(
$ni %

9)
k

C~nk!d~ni2ni8!, ~66!

where the Kronecker delta assures that now the allowed
cupation number sets satisfy the previous constraints w
alsoni5ni8 . Then the probability thatni5ni8 , Pr(ni8uN,K),
is given by

Pr~ni8uN,K !5W~ni8uN,K !/W~N,K !. ~67!

From this it follows that~the primes are no longer neede!

arly
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(
N

(
K

uNvKPr~ni uN,K !W~N,K !5univ iniC~ni !)
kÞ i

(
nk

unkvknkC~nk!5univ rniC~ni !)
kÞ i

@1/~12uvek!#gk

5univ iniC~ni !@~12uv i !#gr)
k

1

~12uvk!gk
5univ iniC~ni !@~12uv i !#giR~u,v !,

~68!

or

(
N

(
K

uNvKPr~ni uN,K !W~N,K !5univ iniC~ni !@~12uv i !#gi(
N

(
K

uNvKW~N,K !, ~69!

replacingR(u,v) by its defining sum on the right-hand side.
Consider now the single-particle ground state, for which the energy vanishes and the degeneracy is one. Hence

(
N

(
K

uNvKPr~n0uN,K !W~N,K !5un0@~12u!#(
N

(
K

uNvKW~N,K !. ~70!
e

,
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Comparing equal powers ofu andv, we immediately obtain

Pr~n0uN,K !5@W~N2n0 ,K !2W~N2n021,K !#/W~N,K !.
~71!

An expression analogous to Eqs.~65! and~71! has been de-
rived in Ref.@10# by a different line of reasoning.

Probability distributions ofn0 for the three ensembles ar
shown in Fig. 3. The GCE distribution, Pr(n0uu,v), de-
creases withn0 and thus belowTc , has a radically different
form from the other two. BelowTc , the MCE distribution,
Pr(n0uN,K), is narrower than the CE distribution

FIG. 3. Probability distributions for the ground-state occupat
number, Pr(n0) for N5500 atoms, for several values ofT for the
three ensembles. BelowTc , the shape of the GCE distribution dif
fers drastically from that of the CE and MCE. The MCE distrib
tion exhibits a slightly narrower Gaussian than the CE. AboveTc ,
the three distributions have a similar shape.
Pr(n0uN,v), because of the additional constraint. Also, t
most probable values ofn0 @peak values of Pr(n0)# differ
between the CE and MCE. ForT sufficiently low, both
Pr(n0uN,K) and Pr(n0uN,v) approach distributions peake
at n0'N. On the other hand, aboveTc , all three distribu-
tions have nearly the same shape. These conclusions do
depend on̂ N&.

Given the probability distribution we now compute ave
ages for the ground and first excited state occupation n
bers. An elementary computation yields

^n0&N,K5 (
i 51

N21

W~ i ,K !/W~N,K !. ~72!

Also for the first excited state, a reasonably simple expr
sion results:

^n1&N,K5
3

W~N,K !(j 51

N

W~N2 j ,K2 j !. ~73!

More complicated expressions can be found for^nk&N,K , for
k.1.

From Eq.~72!, we obtain therecursion relation

^n0&N,K5@W~N21,K !/W~N,K !#

3F11 (
i 51

N22

W~ i ,K !/W~N21,K !G
5ea~N,K !@11^n0&N21,K# , ~74!

by shiftingN into N21 to specify^n0&N21,K , and observing
that by definition @W(N21)/W(N)#5eS(N21,K)/k2S(N,K)/k

5ea(N,K), wherea5m/T.
If N is large compared to unity this results in theapproxi-

mation

^n0&N,K'1/~e2a~N,K !21!. ~75!
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This is the same as the GCE expression provided we
replace the grand canonical averages,^N& and ^K&, with N
and K. Thus the microcanonical result differs intwo ways
from the grand canonical one; the averages are replaced
actual values ofN and K, and the recursion relation is ap
proximated.

A more direct comparison between Eq.~74! and Eq.~75!
is obtained by repeated application of the recursion relat
which yields

^n0&N,K5ea~N,K !1e[a~N,K !1a~N21,K !]

1e[a~N,K !1a~N21,K !1a~N22,K !]1•••

1e[a~N,K !1•••1a~1,K !] , ~76!

with N terms altogether on the right-hand side. This may
compared with an expansion of the denominator of the
proximate result:

^n0&N,K5ea~N,K !1e2a~N,K !1e3a~N,K !1¯ . ~77!

In fact, the MCE average,̂n0&N,K , is quite close to the
equivalent GCE average, except forT nearTc for small N.
Figure 4 showŝ n0& values for all three ensembles, fo
N550 and 500.~For the MCE,T is obtained from Eq.~27!,
(]S/]E)N51/T, whereS5kln@W(N,E)#.! As is well known
@21,8,14#, the effect of the BEC transition for finiteN is not
abrupt. ForN550 and 500, Fig. 4 shows that the relati
extent of the transition region decreases asN increases. We
also plot in Fig. 4~right-hand scale! the ratio between the
GCE and the MCE values for^n0& and the ratio between th
CE and the MCE values. Both of these ratios exhibit a ma
mum nearTc , and these maxima decrease slowly asN in-
creases. However, the width of the ratio curves does dim
ish sharply with increasingN.

FIG. 4. Values for̂ n0& vs T for ~a! 50 and~b! 500 atoms, for
the three ensembles~left axis!. The curves peaking nearTc are the
ratios of the GCE and CE results to the MCE results~right axis!.
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C. Chemical potential and fugacity

1. Mean values of µ/T and m

There are significant differences in the meaning and r
of the chemical potentialm in the three different ensembles
These differences are often ignored because it is usually
sumed, in the homogeneous situation, that the sample as
as the bath is to be taken to the thermodynamical limit
large N, with N/V finite. A small number of atoms in a
harmonic trap cannot be considered to be at the thermo
namical limit, and these differences become appreciable

Before comparing results for the different ensembles,
discuss discretization procedures, a topic raised at the en
Sec. III A. For example, for the microcanonical ensemb
the partial differential expression in Eq.~27! for 2m/T can
be interpreted as@1/W(N,K)#@W(N11,K)2W(N,K)# or
other similar expressions, or asS(N,K)2S(N21,K)
5ln@W(N,K)#2ln@W(N21,K)#5 ln@W(N,K)/W(N21,K)#, or
similarly. We compare results with these different forms
Fig. 5. Especially forT.Tc , theDW/W forms differ widely
from the D lnW forms, and the differences do not diminis
rapidly asN increases, as seen by comparing Figs. 5~a! and
5~b!. In this figure, the solid line gives the value of
2(m/T)GCE for which ^N& equals the givenN in the grand
canonical sum, Eq.~52!. It is seen that the twoD ln W forms
narrowly bracket2(m/T)GCE, with the differences decreas
ing approximately as 1/N. So this indicates a clear prefe
ence for this form. BelowTc , 2(m/T)GCE exhibits devia-
tions proportional to 1/N from every one of these
discretizations. For the quantity 1/T5]S/]E, the differences
are relatively smaller, and largest asT→0.

A comparison of the values form obtained as above fo
the three ensembles is one measure of the degree to w
these three approaches lead to a consistent thermodyna
Figure 6 shows such a comparison. For the GCE,mbath
5^msystem&b,N , which is the value ofm for which the sum in
Eq. ~52! equals the givenN exactly. For the CE,

FIG. 5. Various possible discretizations for computing2m/T
5]S/]N for the MCE, as compared with the GCE value~solid
line!. ~a! 50; ~b! 500 atoms, showing the convergence withN.
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msystem5
]F

]N
52T

] ln@Z~N,v !#

]N
, ~78!

whereF is the free energy, and for the MCE~making the
discrete form explicit!, m5 ln@W(N,K)/W(N21,K)#/
ln@W(N,K)/W(N,K21)#. There are indeed differences fo
small N, especially forT,Tc . An obvious example occur
for T near zero. For the MCE forK<N the number of con-
figurations,W, is independent ofN, hence from the secon
Eq. ~27! m50 exactly, whereas this is not true for the GC
Note also that the large discrepancies nearTc diminish with
N.

Also from Fig. 6, it is evident that in no ensemble ism50
~or u51! at T5Tc , although this condition is most nearl
satisfied for the MCE and for larger values ofN.

Although values form for givenN andT for the different
ensembles do not agree, if one considers the fugacityu
5exp(mb), rather thanm, the appropriateaverageof the
MCE quantity agrees exactly with the GCE quantity pr
vided that specific conventions are adopted for the pa
derivatives. If the second of Eqs.~27! is interpreted as

S 2
m

T D
MCE

5S~N,K !2S~N21,K !5 lnS W~N,K !

W~N21,K ! D .

~79!

Then the GCE average does indeed equal the fugacity
actly:

^e~m/T!~MCE!&u,v

5
1

R~u,v ! (
N850

`

(
K850

` S W~N821,K8!

W~N8,K8!
D uN8vK8W~N8,K8!

5
u

R~u,v ! (
N850

`

(
K850

`

W~N8,K !uN8vK85u, ~80!

FIG. 6. Values of the chemical potential for the three ensemb
for ~a! 50 and~b! 500 atoms. Solid lines: MCE; short dashed line
CE; long dashed lines: GCE.
.
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where the second equality follows becauseW(21,K)[0.
The form of the derivative used here is consistent with
discussion above concerning Fig. 5. Equation~80! suggests
that the fugacity,u, rather thanm, is the fundamental param
eter.

2. Fluctuations of m

As stated in Sec. III A, for the microcanonical ensemb
N andK ~or E) are fixed parameters, and therefore the che
cal potential, obtained from Eq.~27! with S5k ln@W(N,K)#,
is also a sharply defined quantity. For thecanonical en-
semble,N is given and therefore againm is fixed, and may be
determined from Eq.~78!. For the GCE, the system is con
sidered to be in thermal equilibrium with a heat bath a
particle reservoir for whichT5Tbath and m5mbath and ~or
equivalently, the given variables arev[vbath andu[ubath).
We will discuss the probability distribution ofmsystem, con-
sider ^(Dmsystem)

2&, and make comparisons with the es
mates for a Gaussian distribution in Sec. III A.

The probability distribution ofmsystem may be obtained
from Eq. ~6!. For givenu andv or Tbath andmbath, for each
pair of ~discrete! valuesN and K, with probability P(N,K)
5uNvKW(N,K)/R(u,v), we have msystem(N,K)/T5
2 ln@W(N,K)/W(N21,K)# @in accord with Eq. ~79!# and
therefore P@msystem(N,K)#5P(N,K). We compute
P@msystem(N,K)# over the relevant range ofN andK values,
and sum the probabilities within each binnDm,m,
(n11)Dm.

Examples ofP(msystemuu,v) are shown in Fig. 7. Above
Tc , there is a nearly Gaussian distribution overmsystemwith
a peak close tombath. However, belowTc , the long tail in
P(Nuu,v) as shown in Fig. 2 implies that a large fraction
the atom distribution will be associated with a very sm
value ofumsystemu. Hence there is a peak inP(msystemuu,v) at
msystem50, or, more precisely, in the binDmsystem,msystem
<0. The shape of this peak will depend on the bin s

s
:

FIG. 7. For the GCE,mbath is fixed, but there is a probability
distribution overmsystemas shown in these curves for several valu
of T/Tc , for ~a! 50 and~b! 500 atoms. The insets show the varian
^(Dm)2& as compared withT(dm/dN)S .
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Dmsystemused in computingP(msystemuu,v).
In Sec. III B @Eq. ~50!#, we obtained the result that th

variancê (Dm)2&5T(]m/]N)S . We have numerically com
puted this partial derivative by obtainingmbath(E,N)
5msystem(E,N) to satisfy ^N&5N in Eq. ~52!, andS(E,N)
5*0

E(dE8/T)N1 ln(N)11/2N1¯), where the terms inN
are constructed to ensure that]S/]N5m/T as T→0. We
have found that with this construction ofS(E,N), the desired
condition mbath/T5msystem/T52]S/]N, is obtained to a
high degree of accuracy. The fitted variances from
P(msystemuu,v) agree well but not exactly with the analyt
expression, as shown in the inset of Fig. 7.

D. Energy and temperature

In the grand canonical ensemble, for given bath para
etersu andv, or mbath andTbath, there is a distribution ove
N andK, given by

P~N,Kuu,v !5uNvKW~N,K !/R~u,v !. ~81!

SinceK, like N, is a non-negative quantity, the distribution
exhibit similar non-Gaussian behavior when the probabi
of K50 or N50 becomes significant.

For the canonical ensemble(N fixed!, Tbath is given andK
fluctuates. The probability distribution forK is given by

P~KuN,v !5vKW~N,K !/Z~N,v !. ~82!

Examples are shown in Fig. 8~a!. For each value ofK, Tsystem
is determined from the first Eq.~27!, so there is also a dis
tribution overTsystem, shown in Fig. 8~b!. When the distri-
butions are essentially Gaussian, the widths deduced f

FIG. 8. For the CE,Tbath is specified, but there is a distributio
overE values of the system~top!. In view of this distribution, there
is a corresponding distribution overTsystem values ~bottom!. The
results are for 500 atoms, for whichkTc /\v56.7805. The indi-
vidual distributions in the bottom plot correspond to the tempe
tures indicated above. The irregularP(Tsystem) distribution for T
5\v/k arises because of odd-even asymmetry inK. The inset
shows a comparison of^(DT)2& as compared with the analytic ex
pressionT2/CN .
e
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y

m

them agree well with the expression^(DT)2&5T2/CN given
above @Eqs. ~31! and ~45!#, as shown in Fig. 8~b! ~inset!.
Note that the fluctuation inTsystemis minimumat T5Tc .

Analogous to Eq.~81! for the fugacity, the grand canoni
cal average of the microcanonicalv5exp(2b) @whereT is
obtained from the first of Eqs.~27!# equals the grand canon
cal bath parameter,v. If one defines the partial derivative a
in Eq. ~79!,

2S 1

TD
MCE

52 lnS W~N,K !

W~N,K21! D , ~83!

then the GCE average is

^vMCE&u,v5
1

R~u,v ! (
N850

`

(
K850

`

W~N8,K821!uN8vK85v.

~84!

Hence the average of the MCE variablev is the GCE bath
parameter, while this is not precisely true forb or T. This
suggests thatv is a more fundamental parameter thanT or b.
Unlike the fugacity,v traditionally has no name but perhap
could be called the ‘‘thermicity’’ or ‘‘hotness.’’

V. SPECIFIC HEAT

For trapped atoms,N rather than volume or pressure
to be considered constant. Thus for the specific heat,
has CN5(dE/dT)N5const for the MCE, or CN5(d^E&/
dT)N5const for the CE, or (d^E&/dT) ^N&5const the GCE. Fig-
ure 9 shows the results, again for^N&550 and 500, for the
three ensembles considered here. The differences betw
the peak position for the different ensembles show that
different assumed conditions—whether there is a heat b
and whether there is exchange of particles as well as en
with it—do make a difference in the value ofCN , especially
the point at whichCN reaches its maximum. The peak inCN

-

FIG. 9. The specific heat,CN5d^E&/dT for ~a! 50 and~b! 500
atoms. The insets showdCN /dT. The minimum in the slope pro-
vides a possible definition forTc that is close to Eq.~54! but may be
extended to interacting atoms.
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sharpens asN increases and the differences between the th
ensembles diminish.

Possible definitions forTc

A precise value for the BEC critical temperature,Tc , of-
fers one way to characterize a Bose system. For exam
there have been several recent discussions@22–25# regarding
the change inTc between ideal and real Bose gases. In rec
quantum Monte Carlo calculations@25# for a box potential,
Tc was identified as the point at whichN1/3rs /r(T) is inde-
pendent ofN, where rs /r is the superfluid fraction. This
definition, based on the divergence of the correlation len
in such a homogeneous though finite system, may no
easy to apply to Bose atoms in a harmonic potential. A
for finite N, the smoothn0 versusT curve ~Fig. 4! does not
provide an unambiguous, precise definition forTc . Further-
more, as pointed out above, the definition ofTc in Refs.@14#
and @21# @Eq. ~54! above# is based on the fictitious assum
tions that the fugacity is exactly unity and thatn0 is exactly
zero atTc , and that the GCE expressions apply to trapp
atoms. In any case, this definition is difficult to extend to t
case of interacting atoms. In Ref.@24#, the critical tempera-
ture for atoms in a harmonic trap is taken to be the temp
ture at which the density at the origin is equal to the fre
space critical density,rc

fs52.612/lT
3 @3#, where lT is the

thermal de Broglie wavelength. We have found that atTc as
defined in Eq.~54!, the density at the center of an isotrop
harmonic trap is typically more than twicerc

fs , so this defi-
nition leads to a higher critical temperature than Eq.~54!.
~Alternatively, one could consider theaveragedensity within
the range of the classical turning points for an atom withE
5kTc .)

For Bose atoms in a harmonic trap, the specific heat p
sents a less ambiguous definition ofTc that may be applied
to interacting atoms as well as to an ideal gas. The pea
the specific heat function provides one natural benchm
The plots in Fig. 9, however, indicate that the peak inCN(T)
tends to occur where'10% of the atoms are in the groun
state, hence does not correspond with the onset of fi
ground state occupation as one expects, and occurs at a
perature significantly lower thanTc as defined in Eq.~54!.
The minimum ofdCN /dT offers an alternative benchmar
point that corresponds to the discontinuity in theCN(T)
function at infiniteN. For an ideal Bose gase, the exact
cursion relation methods discussed in Sec. II are suited
calculations in the region ofTc , but the large values fo
W(N,K) limit the MCE methods to 500 or 1000 atoms, a
to five times that number forZ(N,v) and the CE. Figure 10
showsTc values from Eq.~54! in comparison with results
from the three ensembles deduced from the most nega
slope and the peak of theCN(T) function. The inset shows
that the difference between these two points for the G
results remains nearly constant forN up to 106 atoms, and
that the point at whichCN(T) has the most negative slope
close to the value given by Eq.~54!. When the point of most
negative slope ofCN(T) is used to obtain a value forTc from
the CE results,kTc /\v is about 0.1 less than for the GC
for 500,N,5000.
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VI. CONCLUSION

For ideal Bose atoms in a harmonic potential, we ha
obtained recursion relations linking the distributions for d
ferent dimensions and also we have used previously der
recursion relations for the canonical and microcanonical p
tition functions. From these we have studied the statist
mechanics and in particular the fluctuations of various
rameters for small atom numbers. The three most commo
used ensembles have quite distinct statistical properties.
the GCE, the number of particles in the system fluctua
and correspondingly, the system chemical potential or fug
ity will fluctuate although the bath values are fixed. For t
CE as well as for the GCE, the bath temperature is given,
the total energy of the system fluctuates and thus the t
perature of the system will fluctuate about the bath value.
the GCE, we have obtained estimates of the fluctuation
intensive variables,T andm, as well as extensive variablesN
andE. Although previous discussions have focused prima
on the ground-state occupation number,n0 , the statistical
fluctuations of all of these quantities are of interest in ch
acterizing the different ensembles.

However, estimates of variances do not tell the full sto
because the probability distributions are often non-Gaus
below Tc . For the GCE withT!Tc , the probability distri-
bution of total atomic number,N, and ground-state occupa
tion number,n0 , are close to a simple exponential decrea
rather than a Gaussian distribution, and the probability d
tribution of the chemical potential also decreases from a p
value atm50. For the CE and MCE, then0 distributions are
more nearly Gaussian. As recently reported elsewh
@12,11#, the fluctuation ofn0 is less with the microcanonica
ensemble than with the canonical ensemble, and much
with the canonical ensemble than with the grand canon
ensemble. It is pertinent here to note Politzer’s conclus
@7# that fluctuations ofn0 in the GCE are much reduce
when atom-atom interactions are present. The effect of at
atom interactions on other conclusions here is clearly an

FIG. 10. Variation of the critical temperature with atomic num
ber for the three ensembles. The plotted curves are forkTc /\v
2@N/z(3)#1/3 vs N1/3. The short-dashed line represents Eq.~54!.
The long-dashed lines represent the minimum ofdCN(T)/dT for
the three ensembles, and the solid lines represent the pea
CN(T). GCE, CE, and MCE results are denoted by GC, C, and M
respectively. Note that the MCE results extend only toN5500, CE
results toN55000. The inset extends the GCE results up toN
5106.
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portant issue but outside the scope of the present study.
The specific heat function,CN(T), provides a useful com

parison between the different ensembles and a test of the
of convergence of the results withN or ^N&. We propose that
the point of most negative slope ofCN(T) provides an un-
ambiguous definition forTc that is close to values from th
recently proposed definition@14,21# @Eq. ~54! above# for an
ideal Bose gas, and extendable to interacting atoms.

Fractional variances or fluctuations typically decrea
with N, and so become less important for large numbers
atoms. Nevertheless, results from this study do highlight
conclusion that the GCE, though most commonly used
modeling and computations, is actually inconsistent with
experimental conditions in which there is no equilibration
matter or energy with a heat bath. Thus one of our goals
d
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en
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ate

e
f
e
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e
f
as

been to develop methods for using the microcanonical
semble. For small numbers of atoms~N<500 here, possibly
up to 1000 atoms! it is possible to obtain explicit results an
study the statistical properties of the microcanonical and
nonical as well as the grand canonical ensembles.
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