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Atom dynamics between conducting plates
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The dynamics of atoms subject to laser light propagating between perfectly conducting parallel plates is
investigated. In the semiclassical approximation the motion of atoms in this context is governed by a van der
Waals—type potential, together with a dynamic dipole potential that comes into play as soon as a cavity mode
is excited. In addition, the atoms become subject to an average dissifstorganeoysforce associated with
the cavity mode that always acts parallel to the plates. We show that, by a suitable choice of field intensity and
detuning, the total transverse potential can be used to confine atoms in transverse vibrational states, while their
motion in the parallel direction is controlled by the dissipative force. Significant variations of the characteris-
tics of the system with atom velocity, dipole orientation, and type of excited cavity mode are emphasized.
These features are illustrated using typical parameters for the case of sodium atoms between parallel plates
with subwavelength separatio$1050-294{@8)03709-3

PACS numbes): 32.80.Pj, 32.80.Lg, 42.50.Vk

[. INTRODUCTION Sukeniket al. [12] on a similar system, the potential on at-
oms between conducting plates was investigated experimen-
Recent research on the motion of atoms in spatially varytally. In contrast to the evanescent parallel-plates guide sug-
ing light fields has led to remarkable advances in atom coolgested by Dowling and Gea-Banaclochg|, where the
ing and trappind1] and has culminated in the emergence ofevanescent fields at a dielectric/vacuum interface arise due to
atom optics as a new field of research. The ultimate goal othe penetration of light through the interface into the vacuum
atom optics is to achieve the routine generation of coherentgion, the perfect conductor walls do not support evanescent
atomic beams by means of atom lasers and be able to maiodes but act to totally confine all fields introduced into the
nipulate them using quantum atom optical elements such agacuum region. Because of its relative simplicity as a con-
beam splitters and atom mirrgr]. Atom guides potentially fining structure, the perfect conductor parallel-plate system
form another important class of atom optical elements that ifias a distinguished history as a testing ground for the con-
currently receiving considerable attention. finement effects in quantum electrodynam(ds3]. Cavity
The operation of a typical atom guide makes use of spaguantum electrodynamics between dielectric surfaces have
tially varying light fields either in free spad8] or confined also been discusséd4] and the effects of atomic motion on
within metallic or dielectric interfacef2] and relies on the the spontaneous emission within a Fabrye®ecavity has
principle that appropriately detuned atoms are either atbeen examinedl15]. However, as far as we know, the dy-
tracted to or repelled from regions of high intensity. Recenthamics of atoms in such a fundamental system have not pre-
work by Rennet al.[4] has demonstrated the action of atom viously been investigated. It is the primary purpose of this
guides that take the form of hollow cylindrical waveguides paper to examine the essential ingredients of the theory lead-
based on the configuration suggested earlier by OI'Shaniing to the description of atom dynamics between perfectly
Ovchinnikov, and LetokhoV5]. In this kind of atom guide, conducting parallel plates. Such a study should provide the
to be referred to as the first kind, electromagnetic modes anmitial steps towards a more comprehensive understanding of
set up in which field intensities are either maximum or mini-the nature of the forces in operation within atom guides in
mum on the axis and so can be made to attract appropriatelyeneral.
detuned atoms to the axial region as they are guided along Most of the atom guides that have been examined experi-
the structure. The second kind of atom guide is based omentally to date have relatively large dimensions, so that the
evanescent fields at the guide wdlis-8] and the operation guide operation has been multimode and consequently spon-
of this type of guide too was demonstrated by Renal.[9]. taneous emission has been effectively that in free space.
The evanescent fields at the dielectric walls of hollow cylin-Little work has been done on atom guides with subwave-
drical waveguides generate mirror action, repelling atomdength dimensions. As we emphasize later, in the subwave-
away from the walls as they move along the axis. Morelength range the presence of a cutoff means that spontaneous
recent experimental work on evanescent mode guiding o&émission can only be mediated by one or two possible modes
atoms through single-mode hollow optical fibers was donend can be completely suppressed. The parallel-plate system,
by Ito et al. [10]. however, does not preclude a diffusive motion of atoms in
In addition, planar waveguide structures have been condirections parallel to the plates. The undesirable diffusive
sidered. An evanescent mode parallel plate atom guide hamotion can be eliminated by closing the plates system so that
been suggested by Dowling and Gea-Banacld@jewhile it forms a cylindrical structure. Spontaneous emission in cir-
Sandoghdaet al.[11] have succeeded in controlling atomic cular cylindrical structures has recently been considered by
motion within a gold two-plate microcavity of typical dimen- Rippin and Knight{16] and by Nha and Jhgl7]. Here we
sions in the subwavelength regime. In earlier work byconcentrate on the parallel-plate system and emphasize the
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subwavelength cavity dimension in the parallel-plate contextplates. Assuming that the parallel plates are positionex at
Our aims are to describe the forces that act on the atom, the 0 andL we have the mode functions
manner in which such forces change with the state of motion,

and the role of the Casimir-Polder and van der Waals—type _ Soon i VT2 ikt
potentials between parallel plates with subwavelength sepa- Fs(ky.n,r,t)=C(k .k, <z sm( T)e o ”
rations. (©)]

In Sec. Il we write down the Hamiltonian for an atom
coupled to the quantized field between the plates. We outlingnd
how this leads to the position-dependent dipole decay rate )
and to the evaluation of the potential acting on the atom in - (Ky.nur ) = —icC(k;,n) ik (”_77) sin( E)
the absence of an excited electromagnetic cavity mode. In PRI w(k;,n) L L
Sec. lll we evaluate the forces acting on the center-of-mass
motion of the atom when a cavity mode is excited at a fre- ok cos(E
guency appropriately detuned from the atomic transition fre- !
guency. We emphasize the importance of the dependence of ] )
the dipole potentiafassociated with the excited cavity mode Where carets denote unit vectors and we have written
on the velocity of the atom parallel to the plates. For any=(ry,2); C(k;,n) is a normalization factor given by
given parallel velocity this dynamic dipole potential com-
bines with the van der Waals—type potential to form the total C(ky,n)= hw(k.n)
potential that determines the transverse motion of the atom. I €oALT,
The characteristics of the motion subject to this potential,
together with the translational effects of the longitudinal dis-With fo=2 andf,=1 for n>0. Ais the(largg surface area
sipative force, are examined in some detail in Secs. IV and \of the plates. Throughouty(k;,n) is the mode frequency
for two cases of dipole orientations, namely, dipole parallesuch that
and dipole normal to the plates. Section VI discusses the

gikin—iok mt - (g)

1/2

: ®)

. . . 2.2

dynamic potential and illustrates the changes of the system w?(ky,n)=c? K>+ n“m 6)

characteristics with the motion of the atom parallel to the " I L? |

plates. Section VII contains conclusions and further com-

ments. A plot of w versusk, gives rise to a series of branches, one
for eachn, and it is easy to see that the minima of these

Il. ATOM PLUS EIELD SYSTEM b_ragﬁrz)eioccurrmg atk,=0) are separated by frequentyw
agiv y
The system consists of an atom of total md&scharac-
terized by its electric dipole moment of oscillation fre- _Cm
guency wq interacting with the electromagnetic field. The A“’_T' (@)

effective Hamiltonian can be written as
The branch separation therefore increases with decrehsing
The large value ofAw will be emphasized as a special fea-
ture here for cavities with typically subwavelength dimen-
sions.
whereP andR are the momentum and position vectors of the In the absence of any external influence, the atom inter-
atomic center of mass, which is assumed to be subject to &ts with the vacuum fields that are now constrained by the
general potentiaU(R). In the two-level approximation of Pplates, leading to two types of physical effect. First, the
the internal motion of the atom, the operatarand =" are ~ spontaneous dipole emission rate of the atom is modified to
lowering and raising operators for internal atomic sta@s I'(R) and, second, the atom experiences energy shifts to both
and|g) such thatu=(p)eq(7+ 71); E is the electric field levels. The shift in the excited-state energy amounts to a shift
operator andH; is the electromagnetic field Hamiltonian. ~ Of the transition frequenci, and this modifies the detuning.
The quantized fields between perfecﬂy Conducting p|ate§—h|5 Sh|ft, albeit pOSition dependent, introduces small modi-
are well knowr[18] and can be written in terms of transverse fications to the large value of detuning parameter assumed in
electric (s-polarized and transverse magnetip-polarized  this paper. The ground-state shift, on the other hand, is

modes satisfying the electromagnetic boundary conditions g&quivalent to a potentidl4(R), which is specified below.
the plates. We write foE The emission ratd’ can be calculated straightforwardly

using the golden rule based on the formalism above. The
results emerge in the following form. For a dipole oriented

2

H=om

+U(R)+hwom'm— m-E(R)+H;, (1)

E(r,t)= Esp ; dki{a,(k;,n)F,(k;,n,r.t)+H.c}, parallel to the plates the emission rate can be written as
n=s,
@) [13,18
where a, (k,,n) is the boson operator for the field mode S e A\ 2 na
A r(z)=r — (14| 5| sifl—2Z|, (8
characterized by the quantum numberwave vectork,, 1(2)=To HZO 4L ZL) ]S' ( L ) ®

polarization , and mode functiorsm, (k;,n,r,t) satisfying
electromagnetic boundary conditions at the conductingvherel’ is the free-space dipole emission rate
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w3|<ﬂ>eg|2 Ill. DYNAMICS
Fo=0m——=. 9 .
0" 3mhienc © The state of the motion of the atom between the plates can

be altered by the excitation of one or more cavity modes.
A=2mclw, is the wavelength of the dipole transition and With one of_ the mode_s gxcited with sufficient inte'n.sity_, the
[2L/\] is the integer part of the bracketed quantity. atom experiences radiation forces of the type familiar in the
For a dipole oriented normal to the plates we have case of atoms subject to spatially varying light in free space
[20,21]. In general, the average radiation forces emerge in
[2L/\] ) the adiabatic approximation using the optical Bloch equa-
3\ 3A N\ nar ; ; ; ; ; ;
R _‘1_(_> ]co§(—z tions for the .|_nternal atomic density matrix elements in
4 =1 2L 2L L which the position and momentum of the center of mass are
(100  replaced by their expectation values. The validity of this
semi-classical approximation requires that the spatial extent
However, the potentidll, cannot be calculated on the basis Of the atomic wave packet be much smaller than the wave-
of the two-level approximation implicit in the Hamiltonian in length of the radiation field. This is assumed to hold in this
Eq. (1) and the theory should incorporate contributions frompaper. The solution of the optical Bloch equations shows that
all transitions involving the entire energy spectrum of thethe dipole moment and hence the forces acting on the atom
atom. For a dipole oriented parallel to the plates the potentidielax to steady-state values within a time of the orfiert
can be written a$18] from the instant at which the light field is switched on. Since
this time is typically much shorter than observation times

I (2)=r,

() ig|2 involved in the channeling of atoms through the structure,
Ug(Z)=~2 B—LJg_ we need only concentrate on the steady state forces.
] €o In the steady state, the atom is subject to a dissipative
27 force (F;), which can be written ag22]
x%osl{ X 1 ) \ )
Xf dx a1 g (Fe(K;,n,2))=24T (Z)Q%(ky ,n,2)
0 sinh(7x) 2L )’
y Vo
(12) A2(kg V) +20%(Kk,.n,2)+ T%2) |’
where\ 4 is the wavelength associated with the transition (14

between theth level and the ground state. This potential has

. o whereé is either| or L, depending on the dipole orientation,
been analysed carefully by Sukergk al. [12], who distin- : :
guished two regimes of variation. The first regime is suchande s the mode phase. In view of E¢(8) and(4) we have

that L>\/2w, where X is the wavelength of the 'O & modes
325, 3%pg, transition in sodium. This corresponds to the VO—k 15
Casimir-Polder regime in whicbl ; assumes the form I

This immediately fixes the direction of the dissipative force

T as parallel to the plates in the direction of mode propaga-
o2 whca, | 272 cos| - (Z-L12) tion. A(k,,n,V) is the dynamic detuning, defined by
gle) == Z ,
imelt | geod g (Z—L/Z)} Ak, V)=w(k;,n)—wy=VO-V=4,-kV,. (16

(12 QgKk,n,2) is a position-dependent Rabi frequency associ-
ated with the cavity mode of typg and is defined by
where a4 is the atomic polarizability. The second case cor-
responds to the quasistatic image regiiie van der Waals i (k) 0,Z)=[(Weg F (ki N2, (17

limit) L<N/27r, whereU, is . . . . .
where F,, is eithers polarized orp polarized, as given in

| 2 1 1 Egs.(3) and(4).
Uy (2)=— (M)eg ( n ] In the presence of a cavity mode the atom also becomes
9 6meol® ofdn |(N—2Z/L)° * (n+2Z/L)3 subject to a light-induced force derivable from the dipole
(13 potential associated with the cavity mode. This too depends
on the dipole orientation as well as the type of cavity mode
This form of potential has been confirmed experimentally byand can be written g23]
Sandoghdaet al. [19] for the case of a micrometer-sized )
cavity. Since our main concern here will be with the snhall |\ hA(ky,n,V) N 20(ky,n,2)
(van der Waalgsregime, specifically in the subwavelength gky.n.z)= 2 n [Az(ku,n,V)H"?(Z)] :
range, we adopt the form given in E@L3) in our illustra-
tions of the theory and comment briefly on the modifications (18)
that are likely to arise in the larde-(Casimir-Poldeyr re-  The classical motion of the center of mass of the atom is
gime. determined by the solution of the equation of motion
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d’R .
M(W) =(Fy)—VU«2), (19 X(t):JOV(t)dt_ (26)
¢
with Ut(Z) the total potential With the help of Eq(24), Eq. (26) yields straightforwardly
UrdZ2)=U«Z)+Uy(2), (20) x(t)=3a,V*+2a,V3+tasV2. 27)

The parameters needed for the evaluation of the velocity and
the distance traveled are in fact fixed by the requirement of
pping, as we explain in Sec. V.

whereU,(Z) and Uy(Z) are given by Eqgs(18) and (13).
Strictly speaking, the atom “feels” different van der Waals
potentials associated with the ground state and the excitettﬁ‘ﬂjl
state. We have appealed to the semiclassical approximation
on including in Eq.(20) the ground-state van der Waals po- V. TRANSVERSE TRAPPING
tential Ug in the total potential. This is consistent with the A. Typical parameters
approximations discussed above where the position and mo-
mentum of the center of mass are replaced by their expectae-1
tion values.

Since (F,) always points in a direction parallel to the
plates, the equation of motion decouples naturally into tw
separate equations, corresponding to the parallel and normip"-

. 2 g .
components of the atom position veckr (r,,Z). We have e therefore consider the§y, — 3%pyy, transition in so-
dium (A=589 nm) and assume that the cavity mode is ex-

2r, cited by a laser of intensity comparable to that adopted by
M( ) =(Fy), (21 Rennet al. [4] in their experiment. We define a free-space
£

For a negatively detuned atom and for low velocities, Eq.
8) should provide a quasi-harmonic potential that confines
the atoms in the region of the minimum Of;,. In order to

oee this, it is instructive to focus on a typical physical situa-

vl
dt Rabi frequency(), by
d’z dUr; 2 |<I~">eg|2|
M(W T dz- (22 Qo= 2h%e,C (28)

. . ) . N 72 . . .
Note, however, tha¥, , the magnitude of the velocity in the With 1~10" W m™2 the intensity of the laser used to excite
parallel direction, appears in the second equation of motiofis mode and(m)eq~2.6e85, Whereag is the Bohr radius.
due to the explicit dependence Bf(Z) on A(k;,n,V). This dipole matrix element is consistent with the free-space
lifetime of 16.3 ng[24]. With 1~10" W m™2 the free-space

Rabi frequency is obtained &%,=8.56x10° s 1.
For the plate separation we assume the subwavelength
The solution of Eq(21) can be obtained analytically once value adopted by Sandoghdeairal. [11]

we observe that we can write

IV. PARALLEL MOTION

L =500 nm=0.85\. (29)

M dV—ZﬁmZ K
dt (Ag—kV)Z+ 202+ T2

(23)  There are two immediate consequences of this subwave-
length plate separation. First, the branch frequency separa-
tion, defined in Eq.7), is very large: Aw=cm/L=1.89
X 10' s71, This is of the same order of magnitude ag.
Second, the sum ovar in Egs. (8) and (10) terminates at
n=1. The first manifestation of small permits large detun-
ing and so facilitates single-mode performance; the second
indicates that spontaneous emission is effected by a single
branch for the parallel dipole orientation. For the normal
(24) dipole orientation spontaneous emission receives an addi-
tional contribution from the fundamental mode. We may

where thea coefficients are given by therefore assume a large vglue for thg detuning= w
—wgo. We consider first negativa, and write

where we have dropped tlidabel of the mode. Without loss
of generality, we have assumed propagation along ties
and setv,=V. If the mode is excited at=0 when the atom
is stationanyf V(t=0)=0] at the space point)Z), Eq.(23)
can be integrated straightforwardly. At tinie-0 the longi-
tudinal velocity emerges from the solution of the equation

a1V3 + a2V2 + a3V =t y

ak koM
a,= 38, ~ 3FQ7T o5 Aog=—6.0x10°T, (30)
whereTl' is given by Eq.(9), yielding I'p~6.13x 10" s,
ToM(A§+20%+T?) This corresponds thA o| =36.78 GHz.
a3= I'Fy0? ' Finally, it is convenient to define two scaling parameters:

a scaling force-, and a scaling potential enerdy,. With
with Fo=2%KI",, a convenient scaling force for this system. Ao defined in Eq.(30) and with w, corresponding to\
The distance traveled by the atom after tinteas elapsed =589 nm, it is straightforward to deduce the magnitude of
is obtained by integrating the velocity(t). We have for- the parallel wave vectds, using Eq.(6). The scaling param-
mally eterF, depends ork; and is defined by
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0.05 from these figures that, from a quantum-mechanical point of
view, the ground state of the transverse motion will corre-
0.04 - spond to a solution of the one-dimensional Sclmger
equation with only the van der Waals potential and so the
0.03 - vibrational ground-state distribution should peak near the
(£ plate_s. Atoms in t_helr ground vibrational state are thus Ioc_al-
T | ized in the potential well near the plates. However, a solution
0 0.02 of the one-dimensional Schdimger equation wittJ,(z) as
the potential must also exist for which the atomic wave func-
0.01 tion peaks in the vicinity of the central minimum associated
with the dipole potential shown in Fig. 2. This is an excited
0.00 , , : state of the vibrational motion. It can be seen from Fig. 2 that
000 025 050 075 1.00 for the parameters assumed above, the central well depth is

Z/L

approximately 48,~220.5 MHz. This is sufficiently deep
to allow several quasiharmonic trappifigbrationa) states.

FIG. 1. Variation across the plates of the quasistatic dissipativeThe vibrational frequencyw; can be estimated simply us-

force acting on a sodium atom when the=1 p-polarized cavity

ing the parabolic approximation

mode is excited. Here the electric dipole matrix element is oriented

parallel to the plates; see the text in Sec. V A for the parameters

used.

Fo=2fik [y=~1.38<10 19 N,

while for the scaling potential enerdy, we write

Uo=3Al=3.23x10 % J.

5 { 2 dZU”] 1/2 (34)
w1= 7 a52 .
M dz Z=L/2

We have explicitly

(35

4w 02A |2
5(1)1: )

(A%+20Q°)L°M

Z=L/2

This value ofU, is equivalent to about 4.9 MHz. In the |t s not difficult to check that with the above parameter

figures below, force is measured in unitskef and potential

energy in units olU,.

B. Dipole parallel to the plates

values for sodium in th@=1 p-polarized mode within the
parallel plate system described above we have

Sw,;~1.96x10" s, (36)

With the dipole oriented parallel to the plates and with theThe precise details of the vibrational energy levels can be
n=1 p-polarized mode excited we have a position-pptained straightforwardly by the numerical solution of the

dependent Rabi frequency given by

N\ [wZ
Qp(2)=v2Q, AL

one-dimensional Schdinger equation involving the full
U (Z,V) potential.

C. Dipole normal to the plates

QpL:‘/iQO

The quasistatic dissipative force on the atom is given by Eq. With the dipole oriented normal to the plates and the
(14). With the dipole oriented parallel to the plates and in a=1 p-polarized cavity mode excited, the Rabi frequency is
situation corresponding to the above choice of parameters a

dissipative force field is set up with variation across the _ A2\ 12 wZ

plates as shown in Fig. 1. It can be seen from this figure that 1 412 co L) (37)
atoms located at the center of the guide receive the strongest

force parallel to the plates. The corresponding potential proThe quasistatic dissipative force corresponding to the same
files are depicted in Figs.(@ and 2b). It can be deduced choice of parameters as in Sec. V A is shown in Fig. 3 and

0

-10

(a) (b)
-10 4 .20 -
..20 4
v Yri 30 |
U
Ug 30 4 0
-40 -
-40 -
-50 T T T -50 T v 7
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 1.00
Z/L Z/L

FIG. 2. Potentials of the sodium atom between the plates under the conditions of Fig. 1 when the gipmdlato the plates(a) the
dipole potentialdotted curve and the van der Waals potentid@lill curve) and (b) the total potential.
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0.5 tral region of the structure while being driven in the parallel
direction by the dissipative force. It therefore depends on the
0.4 - depth of the central well associated with the dipole potential.
In the preceding section we have explored the low-velocity
0.3 - properties of this potential and it is important now to exam-
(F)) ’ ine how this varies with changing velocity.
R In Figs. 5a) and 8b) we display the variation of the
0.2 1 parallel potentialU,(L/2,t) with time, which is measured
from the instant the mode is excited. It can be seen that the
01 - depth of the well decreases with time as the velocity in-
creases, reaching a small depth at largehen the dipole
well becomes too shallow to trap the atoms. They are then
0.0 r 7 T . . )
susceptible to falling in the ever-present deep well near the
0.00 0.25 0.50 0.75 1.00

plates due to the van der Waals—type potential. Figu(as 6
and @b) display the changes in the dipole potentials with
FIG. 3. Variation across the plates of the quasistatic dissipativé/€/0City for negative and positive detuning, respectively,
force acting on a sodium atom when the=1 p-polarized cavity ~POth when the dipole orientation is normal to the plates. It
mode is excited. Here the electric dipole matrix element is oriente@n be seen that in Fig.(# the potential increasingly be-
normal to the plates; see the text in Sec. V A for the parameters£ome shallower with increasing velocity, with the relevant
used. variations occurring closer and closer to the plates, while in
) _ _ ) ) _ Fig. 6b) the central potential well becomes deeper with in-
the corresponding potential profildy, (Z) is depicted in  creasing velocity.
Fig. 4. In contrast to the case of parallel dipole orientation, Figure 7 displays the evolution of the longitudinal dissi-
the negative detuning dipole potential has no minimum at theyative force acting on the atom and the corresponding veloc-
center of the guide. It in fact enhances the effects of the val y when the dipole is parallel to the plates and negative
der Waals potential, which t‘?”ds to attract Fhe atoms t(.)V\”’mjaetuning. It can be seen that the longitudinal dissipative
the plates. Clearly, the solutions of the Salimger equation ¢, .o asymptotically approaches vanishing values while the
with U+, (Z) as the potential will always have the atomic velocity tends to a constant value.
vibrational ground-state distribution peaking in the vicinity
of the plates. A reversal of the sign of detuning, however,
leads to a dipole potential of the opposite sign to that shown VIl. COMMENTS AND CONCLUSIONS

in Fig. 4@). On adding the van der Waals potential to this we From the cases illustrated above, it is clear that the rel-

have F_|g. 4o). Itis easy to_ see th_at transv_erse trapping Ofevant characteristics of the system depend not only on the
atoms in the central region is possible for this case too. How-

L . ; magnitude and sign of the parameters but also on the dipole
ever, in this situation the central region for dipoles normal to

the interf . dark reai the at biect t orientation. In order to maintain the central transverse trap-
€ Interface IS a dark region, so the atoms are Subject 10 g, \hile heating initially slow atoms with negative detun-

minimum of the dissipative force and channeling can Onlying and parallel dipole orientation between the plates, appro-

oceur ffor atc;)ms W:th E’}?} ":'“alt Ionglrt]udllr(;allj veloctlty. tTZ'S priate parameters should be chosen in order to maintain a
case of a subwavelengin structure should be contrasted Wil et central well depth with increasing parallel velocity.

the. case of str'uctures. of much Iarge_r dimensions Whgre thIgor initially energetic atoms channeling can be achieved by
emission rate is practically equal I&, in the central region an opposing force due to a mode propagating in an opposite
of the structure. direction to the atomic velocity, in which case the atoms
V1. DYNAMIC POTENTIAL gxperience an increasingly deeper central well as their veloc-
ity decreases. For the same parameters, we have seen that the
The main desirable feature of atom dynamics in this consame mode does not give rise to a central potential well for
text relies on the ability to confine the atoms within the cen-dipoles normal to the plates and the atoms tend to be at-

Z/L

150
0 s 0
SN (c) 1
-20 4 / (b)
-40 50 4 100 -
-60 ;
U U 7L
= . T1 ] —£= 50 A
I 80 —Un—-mo U
-100
-120 -150 - 01
-140
-160 . 1 -200 . ‘ ‘ -50 » ; :
0.00 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
Z/L Z/L z/L

FIG. 4. Potential of the sodium atom between the plates for the case of dipwlalto the plates(a) the dipole potential with negative
detuning(dotted curvg and the van der Waals potenti@lll curve), (b) the total potential for the negative detuning case, @dhe total
potential for the positive detuning case.
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(a)
.30 | -10 A
-20
U.
Uy T
Uo -a0 0 .30
-40 -
-50 T T T '50 T T T
0 5 10 15 20 0.00 0.25 0.50 0.75 1.00
Tot x 10 Z/L

FIG. 5. Dipoleparallel to the plates(a) Dynamic dipole potential at the center of the guide as a function of timéandriation of the
potential across the plates for different values of the parallel velocity. The labels 0-5 stak@-fh6, 0.1, 0.25, 0.5, 1.0, and 2.0
X 10* ms™L,

tracted to the plates. Once the atoms are in the vicinity of the It is important to note that the atoms confined transversely
walls, they may then interact strongly with the wall, becomein the parallel-plate system are prone to a diffusive increase
adsorbed to it, or be ejected with a thermal velocity. of the atomic momentum parallel to the plates. Translated
In the parallel dipole orientation with negative detuning, into spatial coherence, this means that a single spontaneous
the van der Waals potential becomes the dominant trappingmission event reduces the atomic longitudinal coherence
potential when the velocity of the atom is too high and thelength to a wavelength, in a fashion similar to the situation
dipole potential is too shallow to trap the atom. The atomarising in the experiment by Pfaet al. [25], who studied
then tends to be localized near the walls. coherence in the diffraction of atoms by a standing light
For dipoles normal to the plates and positive detuning thavave. This is the main reason why a parallel-plate system
atoms can be confined within the centtdhrk) region, ex-  cannot in general be employed as an efficient atom guide.
periencing a minimum longitudinal force. They would then  The fact that the transverse atomic motion is describable
tend to drift in a plane parallel to the plates while confined inin terms of vibrational states and that the spontaneous emis-
a vibrational state. The atoms encounter an increasinglgion is modified due to the discrete mode structure between
deeper potential well as their velocity increases. the plates suggest that atomic coherence may be preserved
In the case of plate separatiohs>\/27, the Casimir- along this direction. This issue may be investigated along the
Polder force given by Eq12) replaces the van der Waals lines of Castin and Dalibarf26], who considered Sisyphus
potential. Sukeniket al. [12] have shown that, despite the cooling in one-dimensional optical molasses and took ac-
differences between the potentials in these two regimes, theount of the vibrational states of the atom in the potential
relevant variations of potential in the vicinity of the plates associated with the standing wave. Theoretical work on Si-
are quite similar. We therefore expect a similar behavior insyphus cooling in the context of evanescent fields has been
the Casimir-Polder limit as regards trapping between paralleflone by Nha and Jhe7].
plates. The main feature distinguishing the two regimes is In this paper we have separated the cases of parallel and
that for largeL the structure is multimode in principle and in transverse dipole orientations. However, for slow atoms the
the axial region spontaneous emission is practically that irorientation of the dipole moment is determined by the polar-
free space. In contrast, the smhltegime offers single-mode ization of the driving field. For motion perpendicular to the
operation in addition to the inherent limitations in the num-walls different orientations of the dipole moment can be
ber of modes that can contribute to spontaneous emission abnadiabatically coupled due to changing mode polarisation.

subwavelength separations. This problem will not be pursued any further here.
0 250 .
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FIG. 6. Dipolenormalto the plates. Variation of the potential across the plates for different values of the parallel veémaitggative
detuning andb) positive detuning. The labels 0-5 stand ¥6+0.0, 0.1, 0.25, 0.5, 1.0, and XA.0* ms ™1,
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0.3 0.05 are restricted to a relatively narrow region near the walls and
x10* that the main trapping features are determined by the driving

L 0.04 fields. This conclusion has been reached only following the
evaluations illustrated here where use of typical parameters

— 021 | 0.03 has allowed the dipole potential and the van der Waals po-
by ) ) (F) tential to be compared and their regions of variations estab-
L S S lished.

S a7 T - 0.02 70 The general features explored here for the case of the
) parallel-plate system are relevant for the case of atoms mov-

0.01 ing within cylindrical structures. In fact, the above consider-

ations of the parallel-plate system have now paved the way

0.0 : : 0.00 for considering subwavelength cylindrical structures that

0 10 15 20 could be used as efficient atom guides. Work along these

FIG. 7. Dipole parallel to the plates with negative detuning:
evolution with time of the parallel velocityfull curve) and the

ot % 10

dissipative force acting on the atofdashed curve

lines is now in progress and the results will be reported in
due course.
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