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Accurate ionization thresholds of atoms subject to half-cycle pulses
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The evolution of Rydberg states of hydrogen and alkali-metal atoms subject to short half-cycle pulses is
studied. The convergence of the numerical solutions of the time-dependenti@geroequation based on an
expansion of the electronic wave function in a finite basis set of Sturmian functions is analyzed in detail. It is
shown that the accuracy of such calculations can be established by investigating the stabilization of the
transition probabilities with respect to the parameters that define the basis set. The dependence of the quantum
and classical ionization thresholds on the pulse shape is investigated. The calculations are compared with
experimental data for various pulse profiles, which feature slow or fast rise times. The results show that the
ionization thresholds for long pulses are very sensitive to the rise time of the electric field.
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[. INTRODUCTION the potential barrier, generated by the atomic and applied
fields, whose height is determined by the valueFgf The
During the last few years, the ionization and excitation ofthreshold field for such ionization is proportionalrp®. In
Rydberg atoms by pulsed unidirectional electric fields,contrast, application of a very short electric-field pulse with
termed half-cycle pulsedCPg, have been investigated ex- duration Ty<1 lowers the Coulomb barrier only momen-
tensively. Experiments have reached the regime in which thearily. lonization can still occur, however, if the impulse de-
effective duration of the pulsek, and the peak field, are  livered to the excited electron by the pulsed fieldp
of the order of the classical electron orbital peridg = — [F(t)dt is sufficient to increase its energy by an amount
:27Tni3 and the Coulomb electric ﬁeI(Fnizni‘4 in the  thatis greater than its original binding energy. Consequently,
atom, respectivelywheren; is the initial principal quantum the electric-field dependence of the ionization threshold
number of the Rydberg atom and atomic units are usegrosses over from the;” 4 scaling characteristic of the adia-
throughou} [1-5]. This has been accomplished, for example,batic limit to ani’1 scaling in the sudden, ultrashort pulse,
by using subpicosecond pulses and relatively low Rydberd,<1 limit. Recent experimental studies have succeeded in
levels (n;~30) [1] or, alternatively, by using nanosecond employing short HCPs to examine the time evolution of the
pulses and very-high-states (;~400) [3]. momentum of the electron associated with the development
The experimental advances have stimulated a large nungf coherent atomic wave packdts2—14.
ber of theoretical investigations using quantum and classical The first ionization thresholds measured experimentally
approache$6-10]. In exploring the dynamics of Rydberg ysing short HCP§1] were found to disagree with classical
states, classical scaling invariances have'proven to pe a VeRhd quantum scaling invariant resyliss], raising questions
useful tool[11]. Suppose that a pulge(t) interacts with @ 5 {9 the validity of the theory. However, it was subsequently
Rydberg atom with quantum numbers,|; ,m during an ef-  ¢,,1412] that this disagreement resulted from difficulties in
fective period of timeT,. For a given pulse shape, classical pih the calibration of experimental peak fields and in the
scaling laws imply that trgnsmon probabilities are a funCt'ondetermination of the pulse shape. More recently, the scaling
of only the scaled variabledo=I;/n;, mo=m/n;, Fo jqyariant results were found to be in excellent agreement
=Fp/Fq , andTo=T,/T,. Thus, deviation from classical it the experimental measurement of Feyal. [3] under-
scaling invariances provides a signature of nonclassical dytaken at very higm;~400~500. The use of such values of
namics. For typical experimental conditions wheérg<1l  n; offers the advantage that the ultrashort pulse regime can
and|mo| <1, it has been found that the threshold fields forbe examined using pulses of a few nanoseconds in duration,
ionization F{"", expressed as a function ®f, lie on a uni-  which can be readily generated and accurately measured.
versal, classical scaling invariant curve connecting the adiaHowever, new experiments by Kristensenal. [4] using
batic (To>1) and sudden regimed {<1). For long dura- long pulses withTy=4 suggest departures from the scaling
tion pulses, ionization results primarily from the escape oveinvariant results. In the following, we show that this can, at
least in part, be explained by the fact that in the long pulse
regime the threshold ionization fields depend quite sensi-
*Present address: Institute for Theoretical Physics, Technical Unitively on the exact shape of the HCPs, particularly on their
versity of Vienna, A-1040 Vienna, Austria. rise times.
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Here we present a comprehensive description of our quan- 9| (1))
tum calculations, the results of which have been briefly dis- at
cussed in earlier publicatiorjf6—8]. These calculations em-
plqy an expansion_of the eIectronic wave fun_ction using 3ith the boundary condition
finite Sturmian basis set. The main focus of this paper is on
the extension of theory to longer duration pulses where con- W (1)) — | o). (4)
vergence with respect to basis size becomes an increasingly t—0
critical issue. In order to establish convergence we apply the
method of stabilization. The stabilization method has beefThe transition probability from this initial statg; to a final
well-established for time-independent problems, in particulastatee; att=T is given by
for the calculation of the position and width of resonances
[16]. Also, early accurate calculations of scattering phase Pi (T =Ked T (THP=KeeU(T,0) 0%, (5)
shifts in e-H collisions[17] used the stability of the result
with respect to a control parameter in the basis to verify thevhereU(T,0) is the time evolution operator. By analyzing
accuracy of the compared phase shifts. In the following, wehe effects of pulse shape, we characterize the pulse by three
discuss the application of this method to the solution of arparameters: a peak fiel,, a full-width half-maximum du-
explicitly time-dependent Schdinger equation. Here, the ration T,, and a momentum transfefp=—fgdt F(t). In
stability of transition amplitudes is required. Because of thehe limit of ultrashort pulses, the sudden approximation
implicit dependence on the different sectors of Hilbert spaceyields
in which the initial and final states reside, stability must be
established on a state-to-state basis for each transition and U(T,0) — expiz Ap). (6)
cannot be expected to hold globally. T-0

We show that the stability analysis with respect to the
Sturmian parameter provides a good test for the convergence In this limit only the momentum transferp enters. How-
and accuracy of the solutions with a finite basis size. As agver, With increasing pulse duration the ionization process
application, we extend our previous calculations to longe@!so becomes a function &f, andT,. We analyze the ef-
pulse lengths and consider various pulse shapes. We discu§sts of pulse shape by introducing the following prototype
the correspondence between classical and quantunghape functionsta) a rectangular pulse,
mechanical results and we present experimental data that
corroborate the calculations. A brief description of our clas- F()=Fp, Tp=T, Ap=—FTy; @)
sical approach is included in the Appendix. The present data )
are able to resolve, at least partially, the issue of the apparefp) @ triangular pulse,
breakdown of scaling invariance reported by Kristensen

=H()[¥ (1)) ()

T t T t
et al. [4]. = _ _|= __
F t<2 2FpT, F(t>2) 2Fp(1 T)’
Il. PROBLEM T
We shall be concerned with time evolution of an electron Tp:} Ap=—FpTy; ©®)
in an atom with Hamiltoniam ,;, which is subject to a time-
dependent perturbatioR(t) during the interval 6<t<T.  (c) a Gaussian pulse,
The dynamics of the electron is governed by the time-
dependent Hamiltonian [t—(T/2)]2
F()=Fpexg ————|, T=5.01, T, =167,
H(t) =Ha+ V(1) =Har+ ZF(1), (1) 7
Ap=—1.06F,Ty; (9)
2
p
Ha=7% +Valr), (20 and(d) various experimental nanosecond pulse shapes that

model the sudden rise time ¢ and the slow rise time of
-~ (b). We note that the idealized pulse-shape functi@ns(b),
wherer=(x,y,z) andp are the position and momentum of 51 (c) can only be approximately realized experimentally.
the electron, respectively, afd(t) is a time-dependent elec- \yhjle for the present experiments with nanosecond pulses,
tric field whose direction defines the positizeaxis. For  the pulse shape can be accurately measured, reliable pulses
hydrogenVg= — 1/r. For alkali-metal atom#, the interac- i the subpicosecond range have proven to be more difficult.
tion of the electron with the cora™, can be represented in | order to compare transition amplitudes with different

terms of a parametrized model potential that yields accuratgjtial quantum levelsn;, we display results in terms of
guantum defects and satisfies the correct boundary condicgled variables:

tions at small ¥ ,,— —Z/r, Z being the nuclear chargand
large distances \(;;— —1/r). Clearly, electron-correlation Fo=Fp/Fn= ni4|:
effects are neglected in this approach. :

The time evolution of the wave functiop(t)) of the
electron is governed by the Schiinger equation

oy To=Tp/To=Tyl/(2mn}),

Apo=Ap/py, =NiAp, (10
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whereF, , T, , andp,, are the average electric field, classical (—1)m(r|xﬁl,n2’_m>*. A complete and countable basis set
orbital period, and momentum associated with the initialfor the full Hilbert space is generated by changimgl, and

state of the electron. m (or n;, n,, andm). Because the Hamiltonian in E¢f)
has cylindrical symmetrym is a constant of motion. In prac-
A. Sturmian basis set tice, we use £n=<n,,,, which, form=0, corresponds to a

number of statedl,.x= Nmax{Nmaxt 1)/2.

Since Sturmian functions are not orthogonal, we define
e basis sef| ¢}), k=1,2, ... Nmay, entering Eq(11), as
the set of orthonormal eigenvalues of the finite Sturmian
representation ofl ;.. Namely,

Suppose thaf|¢k), k=1,2, ...} is a complete basis
set of orthonormal wave functions, which depends on a pat-h
ramete (i.e., each value of provides a different complete
se). The Schrdinger equation can be solved using an ex-
pansion of the wave function

N Nmax
max N _ k Y
|W(t))= kzl a ()| k), (11) | i) 21 b X, 1 m) (16)
which transforms Eq3) into an infinite set of coupled equa- I:|at6k= Ekéﬁk, 17

tions (N;,a,=°) for the expansion coefficients
whereE, is the eigenenergy of an electron in the sﬂaﬁé),

da(t) e Sis the overlap matrix$; = (. | 1 m)), andbk and
! dt - j§=:1 <¢Q|H|¢J)\>aj(t) (12) P $iJ <Xl'1|,||,m|)(nJ YIJ,m>)

H., are the column vector and matrix representatiofi¢ef

and H,; in the Sturmian basis set, respectively. Using the

In practice, only a finite number of coupled equations can be . . L~ S
. ) orthonormal basis set that diagonalizég greatly simplifies
solved simultaneously and, therefore, the basis must be trun;: : : o I
the evaluation of physical transition probabilities. For ex-

cated; i.e. Ny is finite. L L o )
Our orthonormal basis set is constructed from a nonorfimple’ the fonization probability at=T is simply given by

thonormal Sturmian basis sgt8-21], which is defined by

the complete set of functions obeying Pion(T)=1— > [k ¥ (T)) (18
Ex=<0
p> A2 - _ _
RS |y =— 7| oy, (13 By definition, a bound hydrogenic state can be written as

In,l,m)y=|x} m if X\=2Z/n. For this reason, it is convenient
wheren=1,2, . . . s, and the parameter defining the set is to introduce the alternative Sturmian param_et@# 1/\. For
called the Sturmian parameter. In general, this parameter c4lydrogen Va=—1/r) the value ofns determines whether a
be taken to be a complex numb@0,2. In this paper, we 9/Venn shell is exactly reproduced by the bagi®., When_
assume thak is a positive real number. Note that E43)is ~ "s=")- In general,n, takes a real value. Understanding
identical to the eigenvalue equation for a hydrogenic atom ifVhich other physical energy levels can be properly described
a quantum leveh for an effective nuclear chargg, ;= n. W|th!n a finite basis requires addltlongl anaIyS|s. _
Thus, this equation can easily be solved using standard meth- Figure 1 shows the norm of the projection of a hydrogenic
ods for separation of the variables in either spherjgal Pound state on a finite subspace,

=X2+yZ+ 722, 6=cos Y(zr), p=tan 1(y/x)] or parabolic Niax
(§=r+2z, »=r—2) coordinates. The solutions of E(L3), > [(ny.ny,m )2, (19)
in spherical and parabolic coordinates, are given by k=1
2 (n—1—1)1\12 for different values ohg andny,,. A basis set that provides
<r|Xﬁy|’m>=—)\3’2< ﬁ) (2rn)! a good representation of the bound state should yield a norm
\/ﬁ (n+h)! very close to unity. This is an obvious prerequisite for cal-
xe M2 o\r)YM(g, ) (14) culating the evolution in the presence of the field. As ex-
n-i-1 PR pected, the norm becomes closer to unity for a larger range
omé Nl 12 of n levels, as the basis size increases. Note, however, that
<r|X>‘ = / 12 ) then levels, which are well represented, strongly depend on
2™ Lol (N m)H(ny+m)! the value ofng. High n levels are clearly described better

using higher values aig (hereng=10) rather than the lower
value(hereng=1) and vice versa. Since both basis sets con-
tain the same number of states, this indicates that the basis
with the lower value ohg involves a larger number of con-
tinuum states ,>0) and, hence, provides a more suitable
wheren, |, andm are spherical quantum numbeni,, Ny, representation of the continuum.

andm are parabolic quantum numbgns=n;+n,+m+1, Because Sturmian functions decay exponentially in the
n1,=01,...,00—|m[—1)], L denotes a Laguerre polyno- |imit r—o [see Eq.(15)], continuum states cannot be ex-
mial, andY|" is a spherical harmonic. In E¢15), m=0 is  actly reproduced. It is, however, possible to find a good rep-
assumed. For negativem, we have <r|X}r;1,n2,m>= resentation of continuum wave functions in a limited range

X )\(m+3/2)e—)\/2(§+ n)(gﬂ)m/Zan ()\g)
1

XL (A7), (15
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FIG. 1. Norm of the projection of a hydrogenic state with
=m=0 onto different Sturmian basis sets as a function of the prin-
cipal quantum number of the hydrogenic state. The different Stur-

mian basis sets are characterizedriy,,= 15,25,35,45 anahs=1
or ng=10.
r(a.u.)

FIG. 3. Comparison of the exact and approximate continuum
wave function times the radius using various Sturmian parameters
ng for a spherical continuum state with=0.0016 a.u.J=m=0.

r=<R, which is proportional to the maximum average radius
of a Sturmian function withn=nq,,, i.e., Ry

=NgNmay- An accurate solution of the Schtimger equation @ \cal cor _
can be obtained as long as the wave function is localized iff € finite basis size ibly,=1540(i.e., Npai=55) and all of the

this region of coordinate space. Figure 2 shows a Compariso\ﬁave functions are normalized to the same value at the first mini-
mum

T T of a spherical continuum state calculated from a finite Stur-
""" Nmax=15 mian basis set with the exact continuum state given by
100 } ——— Nmax=25

50 [y N

]
]
]
0.0 '
i
1
!
)

2 C(1+1+in) A
<I’|K,| ,m): \/;EW(”/Z)%(ZKr)le_lKr
X Fq[1+1+i9,21+2,2Kr Y6, ¢),

(20

—
e

wheren=Z/K and 1F; is a confluent hypergeometric func-
tion. The wave function in the figure has an energy
=K?/2=0.0032 a.u.,m=0, and |=0. The approximate
wave functions have been calculated using 5 and, there-
fore, rna=75,125,225,275 a.u. fan,, = 15,25,45,55, re-
spectively, which contains the rangerofalues in the figure.
The larger the basis size, the larger the range of radii for
which the approximate wave function agrees with the exact
one. Note that the precise radius up to which a basis set can
reproduce a continuum state is a function of not onyy
but also the wave numbé&r. The maximum wave vector that
can be represented properly in a finite Sturmian basis is pro-
-100 L . portional to~ns‘1. This is illustrated in Fig. 3, which shows

0 100 @) 200 800 a spherical continuum state wife=0.0016 a.u.J]=m=0,

- obtained as the Sturmian parameter is changed while main-

FIG. 2. Comparison of the exact and approximate continuuni@ining the basis size fixed. As expected, the smallenthe
wave function times the radius using different basis sizes for 4dhe better the agreement between the approximate and the
spherical continuum state wii=0.0032 a.u.]=m=0. The Stur-  €Xact wave functions. Thus, a finite Sturmian basis set can
mian parameter for the Sturmian functions has been chosen to B&PProximate continuum wave functions within certain ranges
ns=5 and all of the wave functions are normalized to the sameof both wave number and radius, which dependngrand

b~

r<rlK I, m>(a.u.)

——

LY —cuntuill

value at the first minimum. Nmax-
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B. Numerical solution of the time-dependent Schrdinger

equation
Instead of directly solving the set of coupled equations in 06t 0 .
Eg. (12, the Schrdinger equatior(3) is integrated using a Fo =o.1o1\\
more efficient approach usually called the split operator \
method[22]. Briefly, the time evolution operator froin=0 \
tot=T is broken down into a product & evolution opera- > ‘.\
tors for time intervalsst=T/N=t, ;—t,, § o4 \
a 8 o I\ N
N-1 g \
U(T,0= 11 Ultis,t), (2D & \
k=0 g To=1 4
5 Fo=0.142 \
wheret,=0 andty=T. In each step the evolution operator is AN \
. . . l To=0.5 _\ \ 4
split at the midpoint 0.2 F0°=0_222\\ N
i _ i AN
U(ts 1.t =exp — EHat& explizépy)exp — EHatét . oxact SeNm e
(22)
tet1 00 1 m 100
opy=— F(t) dt, (23 Number of segments, N
ty

] 3 ) FIG. 4. Probability of ionization of H{;=4, n,=0, m=0)
which has anO((4t)") error. The error arises from the fact atoms by rectangular HCPs of various scaled duratibpsas a

that the commutators[H.at ,z]#0 _and, ingeneral, function of the number of splits of the evolution operator. For each
[H(t),H(t")]#0. The resulting evolution operator becomesvalue of T, the scaled field strengtig, have been chosen such that

N-1 the ionization probability is 10%. The basis size is setNiQ,y
i ) ) =1035(i.e., npa=45) and the Sturmian parameterrig=5.
U(T.0=exp — 5 Hadt 1T expiizopexp —iH 4ot)
k=0

results from the split operator method with the exact one
i from full evolution operator diagonalization. Figure 4 illus-

XeXF{EHat&)v (24 trates the convergence of the split operator method for dif-

ferent scaled durations as a function of the number of splits

which contains simpler operators of the form exj o), N of the evolution operator. Clearly, the longer the pulse, the
representing a free evolution, and eixpp,), representing larger the number of splits required to reach convergence.
the effect of the perturbation. The latter is equivalent to deFor short HCPs, convergence is reached after about ten splits

livering a momentum transféor boos} op, to the electron.  Per classical orbital period.e., see the result foFy=1).
In order to calculate the time evolution of the wave func-

tion, the operators exp(iH ) and expizdp,) are replaced [Il. THE STABILIZATION METHOD
by the& unitary matr.le representa’gons W|th|nAthe basis set, Since the number of basis statiis,... is finite, two im-
exp(—iH &) and expizdp,), respectively, wherd denotes a

i . X X portant questions ariséi) how large should the basis set be
finite matrix representation of the operatarin our o[tho- in order to obtain an accurate result, afij what value
normal basis. Since our basis set diagonalizg;,  should the Sturmian parameter have in order to get an accu-
exp(—i Hyd) is also diagonal with matrix elements rate result with the smallest basis set.

exp(—i Exdt) k=1,2, ... Npax. The boost matrix expf(épk) In order to answer these questions we apply the so-called
can be evaluated using a unitary transformation stabilization method to the time-dependent Sdimger
equation. The time-dependent stabilization method can be
expizop) =0,exg —iD,op,) O (25) viewed as an extension of the time-dependent variational
Al

principle, very much like the case of the stationary Sehro

where O, is a unitary matrix that diagonalizes the dipole dinger equatiqrﬁl6]. While the variational principle assures
- P ' ) that the solution of the formiEq. (12)] is an exact result

matrix z, andD, is aqllagonal matrix whose elements are t_hewithin the given basis size, the stabilization method goes
_e|genvalues of _the dlpol_e_matnx. Finally, the vector Comam'beyond that by providing information as to how accurate the
ing the expansion coefficients of the wave function Bd)  gojytion is within the whole Hilbert space. The standard form
is given bya(T)=U(T,0)a(0). of stabilization is associated with the convergence of a given
_ For a rectangular pulsgeg. (7)], the evolution operator  transition probabilityP; ; with respect to the basis Sidéyay
U(T,0)=exfd —i(Hyt2zFp)T] can be calculated by diagonal- (in the limit N, a—c, P; ¢ stabilizes.
ization, since, in this case, the total Hamiltonian is time- A more useful stabilization property exists with respect to
independent between 0 aiid Therefore, the numerical error the parametek, which defines the basis set for a fixed value
of the split operator method associated with the multiplica-of N,,,. This fact can be understood using the schematic
tion of many large matrices can be checked by comparingicture in Fig. 5. Suppose that the full Hilbert space is rep-
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A1 finite subspace 0

Full Hilbert 10 ;
space B
C
A 2701 states
_ Nl

Z10" | RN ]
“h 3 v
finite subspace '8 ‘. |
= \ |
a : |
c ! |
S i
© i ‘
N : !

i

c_% 10° | i } 1
FIG. 5. Schematic picture of the full Hilbert space. The trajec- ! :
tories A, B, and C represent different exact solutions of the time- 325 states! ||
dependent Schdinger equation starting from the same initial state || |
(represented by an open cirtleut with different final wave func- i :
tions (represented by solid circlesThe triangular regions denote i }
two finite Hilbert spaces. See text. i }

1 -3 1 i
0 1 10 100

resented by the plane such that the “exact” evolution of the
wave function is given by a trajectory in the plafe.g., o N
trajectories A, B, and € Two finite Hilbert subspaces, gen- ~ FIG- 6. lonization probability of Hf; =9, n,=0, m=0) sub-
erated by bases with parametargand\,, are represented jectto Sll rectangular HCP witkhy,=0.3 andT,=0.5 as a function of
: - : : [ =\"". The various curves in the figure correspond to basis sizes
in the figure by triangular regions. These regions can be cho-$ N )
sen to provide a good representation of the initial wave func-o.f Nmax= 325,1085,2701. The larger the basis, the broader the sta-
. - : . bilization plateau.
tion (open circlg but may not always contain the exact final
wave function(solid circles. If a trajectory such as A is . N
contained in the overlap of both triangular regions, the Cal_appeared as_shallow minima. The stab|l|zat|0|_"| method can
culation of the evolution of the wave function should be not only provide accurate results, but also furnish a tool that
stable with respect to a change from to \,, i.e., the solu- can b? used to leamn how to p_hoqse the most appropriate
tion should be “exact.” In turn ifatrajectozrg/ such asBor C Sturmian parameter. The stabilization plateau starts to de-
leaves the finite subspaces subtended, the approximate c%(Eltohp aftnsts tﬁotevetl)ﬁ foir 2 S?] v%!l bisllf)gzi T:] If/itdS par'illyrd .
culations in each basis set will yield, in general, different 0 the fact that a basis set .m_ can provide a very
nonconverged results. There could be, of course, rare exce ood representation of the initial electronic state. However,
tions such that convergence is reacl(m;t necessar,ily tothe 'O the finite subs_pac_e to cover the entire time d(_evelopment
correct limit) even if trajectories corresponding to these re-Of the. wave functlpn It must also be. able 1o prowde_a good
sults leave the finite subspace. Thus, an accurate calculaticﬂ?scr'pt'on of the intermediate and final states, AS discussed
of a transition probability should be stable with respect toa}bove, the Sma"ens.’ the better the represen_tatmn of con-
variations of the basis set, i.e., Note, however, that stabi- tinuum states. Th's is the reason why the optimum Sturmian
lization of a given transition probability does not imply sta- pa@wettﬁr IS sllghttly smaller ;han IlOII " f the ionizati
bilization for other transition probabilitie§.e., some trajec- ether or not an accurate caiculation ot the ionization
tories may leave the domain subtenged can be performed depends on both the duration and the
Figure 6 demonstrates the applicability of the stabilizationStrin%Lh of thet HCP. fC'eatF'y' for large egougt;h }[/alueg'pf f
method for calculating the ionization probability for hydro- or=p the exact wave function can spread out into regions o
gen atoms in thén; =9, n,=0, m=0) parabolic state by a coqrdlnate ano! momentum space that_ are not p_rope_rly de-
rectangular HCP. For a fixed value bf,,,, the calculated scr_|bed by a f|n|te_ basis set. This is |Ilustrateq_ in F'g‘.7'
ionization probability as a function of the Sturmian param-Wh'Ch.Sth%WS.ttk??. t('j'.“e (tak\]/olultlor: of th.(tahpropablhty density
eter exhibits a characteristic plateau. Moreover, the size gssociated with finding the electron with a given enegy
the plateau increases for increasing valuedgf,,. This is
precisely the behavior expected; i.e.Nif, 5, is large enough, —(E)=(8E) 1 |<¢ﬁ|‘I'(T)>|2’
the calculation must be stable with respect to variations of dE E— (SE/2)<E <E+(5E/2)
the basis set. Therefore, the value of the plateau corresponds (26)
to a converged ionization probability. The results in Fig. 6 _ _ _ _ o
can be compared with the work of SchwdtZ] who under-  where JE is a fixed energy interval. The figure is displayed
took the first accurate time-independent calculationsefer  in scaled units and, therefore, tat O the energy distribution
scattering employing a similar method. However, because gbeaks aEy= —2ni2E= —1. For longer times, the probability
limited computing power available at that time, the plateaudistribution spreads out in energy, much like a wave packet.

ns=1/)\.
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10 T T

dP/dE (a.u.) On=5, downhill

<>1D for n=5, downhill

A 1D for n=5, downhill (no split operator)
O n=5, uphill

(a) N max =100
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To

FIG. 8. Scaled momentum transfer for 10% ionization threshold
of hydrogen atoms in various parabolic states as function of the
scaled pulse duration for rectangular pulses. Also included for ini-
to tial (n,=0) downhill states are results obtained using a quasi-one-
dimensional(1D) basis set of only downhill Sturmian states calcu-
lated with and without the split operator method.

dP/E (a.u) n manifold possess identical momentum distributions, the
100 (@) nmax =600 ionization thresholds agree with each other in the limit of

ultrashort HCPs Tp<<1). For pulses with a finite duration,
“downhill” ( n,=0, or redshifteg parabolic states are more
easily ionized than “uphill” (h;=0, or blueshifted states
since their corresponding wave functions are localized near
the top of the potential barrier generated by the pulse. This is
the reason why the static field ionization threshold for hydro-

0 genic downhill states is smaller than that for uphill states that
are localized near the repulsive potential wedee, e.g.,
[23]). For the same reason, fully converged calculations for

FIG. 7. Time evolution of the probability density for finding the uphill states can be Carr'.ed out for longer tinfes., lo.mzed
electron with a given scaled enerBy. The initial electronic state is eleqtrons from a dQW”h!” state reach the boundaries of the
n=5, m=0, n,=0 (i.e., a downhill Stark staje The calculations basis S?t more rapidly Figure 8_also shows, however, that
were performed usingi,=3 and a restricted basis set pf=0 palculatlor_]s for ext_reme downhill states can be ext_ended us-
downhill Sturmian states and, thereforg, =N, for this case. INg a restricted basis set of extreme downhill Sturmian states;
The quasi-one-dimensionglD) atom is subject to a rectangular I-€., @ quasi-one-dimensiondD) calculation. This indicates
pulse withF,=4 and a variable duratioh,. The basis-set sizes are that the electronic dynamics leading to ionization develops in
(@) Npax=100, (b) Npa,=200, and(c) Ny a=500. a quasi-one-dimensional space along the reaction coordinate

across the saddle, the parabolic coordinater —z [8]. All
Eventually, the wave packet is reflect¢fig. 7(a)] as it  ©f the 'results in the fplloyving _sec'tion_ are fully converged
reaches a region beyond the effective range that is properfgccording to the stabilization criteria discussed above.
described by the basis. Figurethyand 7c) show that for
increasing basis size the reflection occurs at later times and
eventually disappears.

Using the present approach employing up to 4000 basis In the limit of ultrashort HCPs, the results of our finite
states and restricting the ionization probabilities to less thaasis-set expansion can be tested against exact calculations.
15%, stabilization can be typically found for scaled durationsThat is, matrix elements of the evolution operator in this
To=3. Figure 8 illustrates this practical limit for the calcu- limit [Eq.(6)] are given by well-known inelastic form factors
lation of the scaled momentum transfers necessary to ionizesee, e.g[24]). Figures 9 and 10 display a comparison of the
10% of Rydberg hydrogen atoms in the extreme parabolicesults of our finite basis-set calculation with exact calcula-
states. Because both extreme parabolic states within a giveions for the spectrum of energy states that become populated

50

IV. RESULTS AND DISCUSSION
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FIG. 9. Distribution of final energy states resulting from the
interaction of an ultrashort HCP of various strengths with a hydro-for an initial n=5. | =

gen atom in the initial parabolic state=5, n;=0, m=0: exact
results(thick curve; finite basis-set expansion with,,,=65 ng
=3 (thin curve.

by a HCP[EQq. (26)]. The exact calculation for continuum
states E=K?2/2>0) is given by
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wave numbeK (E=K?/2). Due to Coulomb threshold laws
for the population of near-threshold statds=0), in the
limit E—0, Eq.(27) should tend to the corresponding result
for bound statesE = — 72/(2n?) <0, which is given by

d PUSP
dE

n3 .
=;§ [(n,1,m[e'4P 7 ;) [2. (28)

Figures 9 and 10 show that the results obtained using a
finite basis expansion are in very good agreement with the
exact calculations. The marked differences between the en-
ergy distributions for an extreme parabolic state and a spheri-
cal state can be traced back to differences in their initial
momentum distributions along the direction of the pulse.
That is, the electronic wave function, immediately after ap-
plication of an ultrashort HCP, corresponds to the initial state
shifted in momentum space p. Therefore, Figs. 9 and 10
roughly correspond to the averaged projection of a shifted
momentum distribution onto the axis (i.e., the Compton
profile). The oscillatory behavior of the energy distributions
1, m=0 state is related to the nodal
structure of the initial momentum distribution and is not
present in classical simulations. The structureless spectrum
of the initial parabolic staten(=5, n;=0, m=0) is a direct
reflection of the fact that the momentum space probability
density [25] of extreme parabolic states is node free. The
momentum wave function of a parabolic state is given by

dpYsP .
=K dokude® ao)r, @
2p2 \?
0
where ¢ is an incoming continuum Coulomb state with (p|n1,n2,m)0<( 2 2)
p=+pPo
0.5
-1)/2 i
04 | Apo=1 XdERZ—r)11+m)/2,(n1—n2+m)/2(2§)elm¢p,
03 | (29)
02
0.1 p
0.0 : ; where p,6,,¢, are spherical coordinates in momentum
-10 0 10 20 Ay 5 o L
spacepo=2/n, £=cos [2ppy/(p°+pg)sin 6], andd; , is a
08 A matrix element of a finite rotation. Fan=0 extreme para-
el Po= bolic states
- 03 F
E 02 |
® (n—1)/12 (n—1)/2
oy A= 2s(-12(28) =d5 1 212+ (n—1y2( — 28)
0.0 -
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FIG. 10. Distribution of final energy states resulting from the and, thereforel(p/ny ,n,,m)|* is node free.

interaction of an ultrashort HCP of various strengths with a hydro-

gen atom in the initial spherical state=5, 1=1, m=0: exact re-
sults (thick curve; finite basis-set expansion with,,,,=65 ng
=3 (thin curve.

The position of the absolute maximum of the final-state
energy distribution for a given larg&p can be understood

from the fact that the expectation value of the energy after an

ultrashort HCP is given by
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FIG. 12. Scaled momentum transfer for 10% ionization of hy-
drogen atoms in various spherical states as a function of the scaled
FIG. 11. Survival probability as a function of the scaled peakpulse duration for rectangular pulses. The values aked in these
field for two effective pulse durations. Quantum calculations usingquantum calculations are as indicated.
rectangular pulses for WE10, 1=1) and HH=5, I=1) are
compared with experimental data and classical calculafighfor In view of the very good agreement between our quantum
the K(38%) atom. The classical calculations use the experimentga|culations and our previously published measurements and
tally determined pulse shapes that feature a very fast rise time. |assical results, the disagreement recently reported by Kris-
tensenet al. [4] for pulse durationsIy>2 is surprising. In

(E)y=(e"*P?p;|Hyyl€'*P%p;) the following we analyze three possibilities that may influ-
(Ap)? . : : :
=(@ilHade) + ——+Ap(eilpde) (3D _
classical
) 0O n=2
(4p) xn<5
= Eni + T, (32) An=10

or, equivalently,(Eq)=—1+ (Apg)?. The energy distribu- ozl |
tions in Figs. 9 and 10 are seen to peak at approximately this Z
energy. The peak is a direct manifestation of the Bethe ridge §
in atomic collision physic$26]. e

Figure 11 shows that structures in the energy spectrum of s
the ejected electrons are not always evident in the total sur- 7
vival probability <

= 01 1
> dP
Psurz:l-_Pionz:l-_JAo dEE (33

as a function of the peak field. In scaled units, quantum re-
sults forn;=5 andn;=10 are in very good agreement with
each other, illustrating that the scaling invariant limit is al- 00 . . : . :
ready reached using only moderately high quantum levels 01 0.1 03 L0(=IC/’-rf) 0.7 08
(departures from scaling invariance are only expected to oc-
cur for very small ionization probabilitig$]). The quantum FIG. 13. lonization probability om=0 states produced by an

C§|CU|ati0n_S(f0r reCtaanaV pulsesare i'f‘ good agreement yitrashort HCP withA p,=0.54 as a function of the scaled angular
with classical calculations and experimental data fr momentum. The values ofused in the quantum calculations are as
=388 obtained using HCPs with a very short rise time. indicated.
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FIG. 14. Scaled peak field for 10% ionization threshold of 10° 10
H(n=5, I=1, m=0) and Na(=5, I=1, m=0) atoms as a T
function of the scaled pulse duration for rectangular and triangular
pulses. FIG. 15. Scaled peak field for 10% ionization ¢) H(n

=5, n,=0, m=0) and (b) H(n=5]=1m=0) calculated classi-
cally (cl) and quantum mechanicalligm) as a function of the

ence the ionization thresholds) th istical combination
ation thresholds) the statistical combinatio scaled pulse duration for various pulse shafsee text

of =0 (25% andl=2 (75% initial states in the experi-

ments,(ii) core effects, andiii) the actual shape of the ex-

perimental pulses. atoms with quite different quantum defedls, Rb) are in
Figure 12 displays the scaled momentum transfer requiredery good agreement with each other.

to produce 10% ionization of hydrogen atoms in states with The data of Kristenseret al. [4] were obtained using

various well-defined initial angular momenta. Clear differ- HCPs with a long rise time. One may therefore suspect that

ences in the thresholds for different states are observed f¢f€y cannot be properly modeled using rectangular pulses.

short pulses. Figure 13 shows that the quantum ionizatior] his is illustrated in Fig. 15, where the result; of classical
probability, as a function of ,=1/n, is scaling invariant for and quantum calculations for rectangular, triangular, and

increasingn value and, moreover, that it agrees with theGaUSS'an pulsefEgs. (7)~(9)] are displayed. As expected,

classical predictions. Fan=0 there exists a sharp disconti- }Qgtigsns ulrtgbc;obr?l\i{{erg(ea '2,}2? ;?gf %L;,Istﬁe“?r}![tebfglagfstiéheullgg-
nuity between the results fd.=0 andl =1, which can be P y aep y g P

. : : . (i.e., the momentum transfexp). However, sizable differ-
easily understood geometrically from the differences in theences exist for long pulses. Note that the differences are

projection of the momentum distributions ferandp (M |5r46r for the extreme downhill parabolic state than fqu a
=0) states along the axis. In fact, the results for=0 (4 q) state. The origin of this difference lies in the different
coincide with the statistical average over=0,~1,=2 of | gegree of adiabaticity displayed by parabolic and spherical
=2 states(not shown. Note, however, that the difference states. Since parabolic states diagonalize the Stark perturba-
between =0 andl =2 states cannot even partly explain the tion within a given shell, nonadiabatic effects require dy-
discrepancies between theory and the experiment of Krisnamical coupling to different shells. Fdi,>1, i.e., when
tenseret al. [4], since the largest differences between differ-the rise time is large compared to the orbital period, extreme
ent states occur in the ultrashort pulse limit. For long duraparabolic states evolve approximately adiabatically, because
tion HCPs the angular momentum rapidly increases due tof the absence of a large number of avoided crossings, which
Stark precession around the electric field. leads to an increased stability against ionization. Spherical
Figure 14 illustrates the effect of a finite-size core on thestates, on the other hand, show much stronger nonadiabatic
ionization thresholds. The calculations were performed forcouplings forT>1 due to both intrashell mixing and cou-
Na(5p) states, which should overemphasize the core effectpling to other manifolds. In contrast, HCPs with a sudden
to be expected for higher levels. Clearly, core effects play turn-on dynamically couple the initial Stark state to other
only a minor role in determining the ionization threshold, thelevels, which can be ionized more easily than the adiabati-
difference being on the order of the experimental uncertaineally shifted state.
ties. This agrees with the experimental observation of Kris- Classically, the ratio of rise time to orbital period provides
tenseret al.[4] that the ionization thresholds for alkali-metal the criterion for the adiabaticity of the evolution. If this ratio
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FIG. 16. Survival probability of K(388) atoms as a function of
the scaled peak fieldower axig or peak field in mV/cm(upper
axis): experimental datéopen squares and open triangjedassical ,
calculations for K(388) atoms(solid lineg; and quantum calcula- 107
tions for H(5p) states scaled to H(3®3 (dashed lines The insets . .
show the experimentally determined rectangular and triangular 107 10° 10"
pulse profiles that have FWHM durations 29 ns (T,=3.3) and T,

31 ns (Ty=3.5), respectively. The survival probabilities on the
right (left) are associated with the triangulérectangular pulse.
Both measurements and calculations correspond to a statistical di
tribution of m substates.

FIG. 17. Scaled peak field for 10% ionization of hydrogem
atoms as a function of the scaled pulse duration. The theoretical
Ralculations for rectangular and triangular pulses are compared with
the present measurements using pulses with a fast riseticor
is large, the unperturbed Kepler orbit evolves adiabatically2 slow rise timgsrff), as well as with the data of Jonesal, scaled
into a field perturbed orbit. The classical sudden limit, on thePy 2 factor of 2.91], Freyet al.[3], and Kristenseret al. [4].
other hand, is characterized by the dependence of the energy
of the perturbed orbit on the local position of the electron atshapes, i.e., different rise and fall times. Results obtained
the time of the turn-on of the field. On the quantum level,using the extremes of these pulse shapes, namely a nearly
there exists an additional time scale in terms of the ratio ofectangular pulse with a fast rise time and a “chirped” pulse
the nonadiabatic coupling strength to the size of the avoidewith a slow rise time and fast falbrff) are presented in Fig.
crossings through which the evolution from the zero-field16, which shows the measured survival probability as a func-
energy levels to the high-field levels proceeds. To the extertion of the peak amplitude of the pulse for a relatively long
that these avoided crossings are isolated and the coupligiise, To=3. For reference, the experimentally determined
involves only few states, this is an intrinsically nonclassicalpulse profiles are included in the figure as insets. The data
process. The fact that hydrogen and alkali-metal atoms disshow that, indeed, the survival probability is quite sensitive
play the same rise-time dependence indicates that the narrd@ the rise time and that the ionization threshold increases for
avoided crossings between different Stark states due to tHecreasing rise time. Figure 16 also includes the results of
nonhydrogenic core in the alkali-metal atoms do not play guantum and classical calculations undertaken using the ex-
significant role. They are traversed completely diabaticallyperimental pulse profiles. Quantum calculations for pi(5
Hydrogen displays a different type of avoided crossing.exhibit a similar, but slightly reduced, shift of the ionization
sometimes termed “hidden” crossing7]. It corresponds to threshold. Because the measurements were performed for
an interaction between the most redshifted Stark states d€(388p), the differences in the shift possibly provide an
adjacent manifolds and is characterized by a width that is é&ndication that the scaling invariant limih{-<c) has not yet
considerable fraction of the zero-field level spacing. Transbeen reached fon=5. Unfortunately we have been unable
lated into classical dynamics, this amounts to a time scale db obtain converged quantum calculations for5 levels
a few zero-field orbital periods. The avoided crossing occursvith these long pulses. However, classical calculations for
above the field ionization threshold in the region of overlap-K(388p) atoms are found to be in good agreement with the
ping resonancel28]. The observed rise-time dependence ismeasurements.
related to the inverse level density of resonances near and In Fig. 17 we compare our quantum and classical thresh-
above the ionization threshold. olds for 10% ionization by rectangular and triangular pulses

In order to corroborate the theoretical predictions, weacting on hydrogen atoms with the present experimental
have performed a series of measurements using apparatogeasurements and previously published data. Note that the
and techniques described elsewhere. In the experiments, ioaxperimental profiles do not exactly agree with the theoreti-
ization of K(np) Rydberg atoms withi{~388) was inves- cal pulse shapes. Clearly, the dependence of the ionization
tigated using pulses having essentially the same peak ampliRresholds on the rise time explains, at least in part, the dis-
tude and full width at half maximum but different pulse agreement between the data of Kristeneeal.[4] and clas-
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sical calculations for rectangular pulses. The measuremenpsarticles that mimic the initial quantum state. That is, the
of Frey et al. [3] agree with these calculations because thequantum wave function?’(r,t) is replaced by a classical
experimental pulses in this case featured a short rise time thatobability density in phase spadér,p,t). Formally, the
was smaller than the orbital period of the Rydberg atoms antime evolution of this density is governed by the classical
that approximated the rectangular shape quite well. Theiouville equation for the Hamiltoniaii (t) in Eq. (1),
present measurements using pulse profiles with a long rise of

time are indeed much closer to the data of Kristenseal. —=[H,f], (A1)
For short pulses, the calculations are seen to be in good ot

agreement with the data of Frey al.[3] and the normalized

data of Jonest al.[1]. The differences between classical andWith the boundary condition

guantum calculations for the entire range of pulse durations f(r,p,t) — fi(r,p), (A2)
are found to be much smaller than typical experimental un- t—0
certainties.

where[,] denotes a Poisson bracket ands the initial state.
Since phase-space points evolve in time independently, the
Liouville equation can be easily solved using a Monte Carlo
We have described in detail a guantum-mechanicatechnique. The resulting method is usually referred to as the
coupled-channels approach to study the ionization of atomslassical trajectory Monte Carlo approgdi].
by half-cycle pulses. We have shown that the accuracy of the There exists no unique way of determining the initial
calculations can be established using the stabilizatiopphase-space state so that it mimics the initial quantum state.
method. Presently, our calculations are limited to short duraThe most common choice of initial conditions, which we
tions (To=<4). Work is underway to extend these to longeradopt here, is a subset of a microcanonical ensemble,
pulses using a nonunitary representation of the evolution op- p2
erator. fi(rp)=Ci8 Ei— 5 —Vadr)
We have shown that quantum calculations are scaling in- 2
variant and are in very good agreement with classical calcu-

' 4 . o whereC; is normalization constanE; is the initial ntum-
lations even for levels with relatively low principal quantum ereC; is normalization constank; is the initial quantu

numbers. oreouer, we e presened ncependent expel1o101C b energy, s s ittt
mental data that are also in very good agreement with th P 9 q '

calculations. Thus, the disagreement recently reported b%@ih%?cil Ofrollarggﬁlilt Sc’:Z‘:]esityl(e)lfdtshetrr]:orr?ér?fl}mqfl:)?n;usr?e-l-
Kristensenet al. [4] between classical calculations and ex- P Y y

. : istical average of states within a givenmanifold.
periment is largely due to the shape of these pulses. In paF For a hydrogenic initial spherical stalw; | ,m),

ticular, we have shown that when the duration of the pulse is

V. CONCLUDING REMARKS

Oj, (A3)

longer than the orbital period of the atom, the ionization L(2m;—1)
thresholds become sensitive to the rise time of the electric Ui, m=O(L=1)O(i+1-L)O| L~ ————
field. '
(L(Zmi +1) Al
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APPENDIX: THE CLASSICAL LIMIT ¢ - Un (1FA) — (L + 1)1, (A6)
In the classical limit, the time evolution of the electronic R

wave function is modeled using an ensemble of classicavhereA=pXL—r is the Runge-Lenz vector.
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