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Accurate ionization thresholds of atoms subject to half-cycle pulses
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The evolution of Rydberg states of hydrogen and alkali-metal atoms subject to short half-cycle pulses is
studied. The convergence of the numerical solutions of the time-dependent Schro¨dinger equation based on an
expansion of the electronic wave function in a finite basis set of Sturmian functions is analyzed in detail. It is
shown that the accuracy of such calculations can be established by investigating the stabilization of the
transition probabilities with respect to the parameters that define the basis set. The dependence of the quantum
and classical ionization thresholds on the pulse shape is investigated. The calculations are compared with
experimental data for various pulse profiles, which feature slow or fast rise times. The results show that the
ionization thresholds for long pulses are very sensitive to the rise time of the electric field.
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I. INTRODUCTION

During the last few years, the ionization and excitation
Rydberg atoms by pulsed unidirectional electric field
termed half-cycle pulses~HCPs!, have been investigated ex
tensively. Experiments have reached the regime in which
effective duration of the pulsesTp and the peak fieldsFp are
of the order of the classical electron orbital periodTni

52pni
3 and the Coulomb electric fieldFni

5ni
24 in the

atom, respectively~whereni is the initial principal quantum
number of the Rydberg atom and atomic units are u
throughout! @1–5#. This has been accomplished, for examp
by using subpicosecond pulses and relatively low Rydb
levels (ni;30) @1# or, alternatively, by using nanosecon
pulses and very-high-n states (ni;400) @3#.

The experimental advances have stimulated a large n
ber of theoretical investigations using quantum and class
approaches@6–10#. In exploring the dynamics of Rydber
states, classical scaling invariances have proven to be a
useful tool@11#. Suppose that a pulseF(t) interacts with a
Rydberg atom with quantum numbersni ,l i ,m during an ef-
fective period of timeTp . For a given pulse shape, classic
scaling laws imply that transition probabilities are a functi
of only the scaled variablesL05 l i /ni , m05m/ni , F0
5Fp /Fni

, andT05Tp /Tni
. Thus, deviation from classica

scaling invariances provides a signature of nonclassical
namics. For typical experimental conditions whereL0!1
and um0u!1, it has been found that the threshold fields
ionizationF0

thr , expressed as a function ofT0, lie on a uni-
versal, classical scaling invariant curve connecting the a
batic (T0@1) and sudden regimes (T0!1). For long dura-
tion pulses, ionization results primarily from the escape o
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the potential barrier, generated by the atomic and app
fields, whose height is determined by the value ofF0. The
threshold field for such ionization is proportional toni

24 . In
contrast, application of a very short electric-field pulse w
duration T0!1 lowers the Coulomb barrier only momen
tarily. Ionization can still occur, however, if the impulse d
livered to the excited electron by the pulsed fieldDp
52*F(t)dt is sufficient to increase its energy by an amou
that is greater than its original binding energy. Consequen
the electric-field dependence of the ionization thresh
crosses over from theni

24 scaling characteristic of the adia
batic limit to a ni

21 scaling in the sudden, ultrashort puls
T0!1 limit. Recent experimental studies have succeede
employing short HCPs to examine the time evolution of t
momentum of the electron associated with the developm
of coherent atomic wave packets@12–14#.

The first ionization thresholds measured experimenta
using short HCPs@1# were found to disagree with classic
and quantum scaling invariant results@15#, raising questions
as to the validity of the theory. However, it was subsequen
found @2# that this disagreement resulted from difficulties
both the calibration of experimental peak fields and in
determination of the pulse shape. More recently, the sca
invariant results were found to be in excellent agreem
with the experimental measurement of Freyet al. @3# under-
taken at very highni;400;500. The use of such values o
ni offers the advantage that the ultrashort pulse regime
be examined using pulses of a few nanoseconds in dura
which can be readily generated and accurately measu
However, new experiments by Kristensenet al. @4# using
long pulses withT0*4 suggest departures from the scali
invariant results. In the following, we show that this can,
least in part, be explained by the fact that in the long pu
regime the threshold ionization fields depend quite se
tively on the exact shape of the HCPs, particularly on th
rise times.
i-
2229 © 1998 The American Physical Society
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2230 PRA 58S. YOSHIDA et al.
Here we present a comprehensive description of our qu
tum calculations, the results of which have been briefly d
cussed in earlier publications@6–8#. These calculations em
ploy an expansion of the electronic wave function using
finite Sturmian basis set. The main focus of this paper is
the extension of theory to longer duration pulses where c
vergence with respect to basis size becomes an increas
critical issue. In order to establish convergence we apply
method of stabilization. The stabilization method has be
well-established for time-independent problems, in particu
for the calculation of the position and width of resonanc
@16#. Also, early accurate calculations of scattering ph
shifts in e-H collisions @17# used the stability of the resu
with respect to a control parameter in the basis to verify
accuracy of the compared phase shifts. In the following,
discuss the application of this method to the solution of
explicitly time-dependent Schro¨dinger equation. Here, th
stability of transition amplitudes is required. Because of
implicit dependence on the different sectors of Hilbert spa
in which the initial and final states reside, stability must
established on a state-to-state basis for each transition
cannot be expected to hold globally.

We show that the stability analysis with respect to t
Sturmian parameter provides a good test for the converge
and accuracy of the solutions with a finite basis size. As
application, we extend our previous calculations to lon
pulse lengths and consider various pulse shapes. We dis
the correspondence between classical and quan
mechanical results and we present experimental data
corroborate the calculations. A brief description of our cla
sical approach is included in the Appendix. The present d
are able to resolve, at least partially, the issue of the appa
breakdown of scaling invariance reported by Kristens
et al. @4#.

II. PROBLEM

We shall be concerned with time evolution of an electr
in an atom with HamiltonianHat , which is subject to a time-
dependent perturbationV(t) during the interval 0,t,T.
The dynamics of the electron is governed by the tim
dependent Hamiltonian

H~ t !5Hat1V~ t !5Hat1zF~ t !, ~1!

Hat5
p2

2
1Vat~r !, ~2!

wherer5(x,y,z) and p are the position and momentum o
the electron, respectively, andF(t) is a time-dependent elec
tric field whose direction defines the positivez axis. For
hydrogen,Vat521/r . For alkali-metal atomsA, the interac-
tion of the electron with the coreA1, can be represented i
terms of a parametrized model potential that yields accu
quantum defects and satisfies the correct boundary co
tions at small (Vat→2Z/r , Z being the nuclear charge! and
large distances (Vat→21/r ). Clearly, electron-correlation
effects are neglected in this approach.

The time evolution of the wave functionuC(t)& of the
electron is governed by the Schro¨dinger equation
n-
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]uC~ t !&

]t
5H~ t !uC~ t !& ~3!

with the boundary condition

uC~ t !&→
t→0

uw i&. ~4!

The transition probability from this initial statew i to a final
statew f at t5T is given by

Pi , f~T!5 z^w f uC~T!& z25 z^w f uU~T,0!uw i& z2, ~5!

whereU(T,0) is the time evolution operator. By analyzin
the effects of pulse shape, we characterize the pulse by t
parameters: a peak fieldFp , a full-width half-maximum du-
ration Tp , and a momentum transferDp52*0

Tdt F(t). In
the limit of ultrashort pulses, the sudden approximati
yields

U~T,0! →
T→0

exp~ iz Dp!. ~6!

In this limit only the momentum transferDp enters. How-
ever, with increasing pulse duration the ionization proc
also becomes a function ofFp and Tp . We analyze the ef-
fects of pulse shape by introducing the following prototy
shape functions:~a! a rectangular pulse,

F~ t !5Fp , Tp5T, Dp52FpTp ; ~7!

~b! a triangular pulse,

FS t,
T

2D52Fp

t

T
, FS t.

T

2D52FpS 12
t

TD ,

Tp5
T

2
, Dp52FpTp ; ~8!

~c! a Gaussian pulse,

F~ t !5FpexpF @ t2~T/2!#2

s2 G , T55.01s, Tp51.67s,

Dp521.06FpTp ; ~9!

and ~d! various experimental nanosecond pulse shapes
model the sudden rise time of~a! and the slow rise time of
~b!. We note that the idealized pulse-shape functions~a!, ~b!,
and ~c! can only be approximately realized experimental
While for the present experiments with nanosecond puls
the pulse shape can be accurately measured, reliable p
in the subpicosecond range have proven to be more diffic

In order to compare transition amplitudes with differe
initial quantum levelsni , we display results in terms o
scaled variables:

F05Fp /Fni
5ni

4Fp , T05Tp /Tni
5Tp /~2pni

3!,

Dp05Dp/pni
5niDp, ~10!
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PRA 58 2231ACCURATE IONIZATION THRESHOLDS OF ATOMS . . .
whereFni
, Tni

, andpni
are the average electric field, classic

orbital period, and momentum associated with the ini
state of the electron.

A. Sturmian basis set

Suppose that$ufk
l&, k51,2, . . . ,̀ % is a complete basis

set of orthonormal wave functions, which depends on a
rameterl ~i.e., each value ofl provides a different complete
set!. The Schro¨dinger equation can be solved using an e
pansion of the wave function

uC~ t !&5 (
k51

Nmax

ak~ t !ufk
l&, ~11!

which transforms Eq.~3! into an infinite set of coupled equa
tions (Nmax5`) for the expansion coefficients

i
dak~ t !

dt
5 (

j 51

Nmax

^fk
luHuf j

l&aj~ t !. ~12!

In practice, only a finite number of coupled equations can
solved simultaneously and, therefore, the basis must be t
cated; i.e.,Nmax is finite.

Our orthonormal basis set is constructed from a non
thonormal Sturmian basis set@18–21#, which is defined by
the complete set of functions obeying

S p2

2
2

nl

r D ucl&52
l2

2
ucl&, ~13!

wheren51,2, . . . ,̀ , and the parameterl defining the set is
called the Sturmian parameter. In general, this parameter
be taken to be a complex number@20,21#. In this paper, we
assume thatl is a positive real number. Note that Eq.~13! is
identical to the eigenvalue equation for a hydrogenic atom
a quantum leveln for an effective nuclear chargeZe f f5nl.
Thus, this equation can easily be solved using standard m
ods for separation of the variables in either spherical@r
5Ax21y21z2, u5cos21(z/r), f5tan21(y/x)] or parabolic
(j5r 1z, h5r 2z) coordinates. The solutions of Eq.~13!,
in spherical and parabolic coordinates, are given by

^ruxn,l ,m
l &5

2

An
l3/2S ~n2 l 21!!

~n1 l !! D 1/2

~2rl! l

3e2lrLn2 l 21
2l 11 ~2lr !Yl

m~u,f!, ~14!

^ruxn1 ,n2 ,m
l &5

emf

Apn
S n1!n2!

~n11m!! ~n21m!! D
1/2

3l~m13/2!e2l/2~j1h!~jh!m/2Ln1

m ~lj!

3Ln2

m ~lh!, ~15!

wheren, l , andm are spherical quantum numbers,n1 , n2,
and m are parabolic quantum numbers@n5n11n21m11,
n1,250,1, . . . ,(n2umu21)], Ln

m denotes a Laguerre polyno
mial, andYl

m is a spherical harmonic. In Eq.~15!, m>0 is
assumed. For negativem, we have ^ruxn1 ,n2 ,m

l &5
l
l

a-

-

e
n-

r-

an

n

th-

(21)m^ruxn1 ,n2 ,2m
l &* . A complete and countable basis s

for the full Hilbert space is generated by changingn, l , and
m ~or n1 , n2, andm). Because the Hamiltonian in Eq.~1!
has cylindrical symmetry,m is a constant of motion. In prac
tice, we use 1<n<nmax, which, form50, corresponds to a
number of statesNmax5nmax(nmax11)/2.

Since Sturmian functions are not orthogonal, we defi
the basis set$ufk

l&, k51,2, . . . ,Nmax%, entering Eq.~11!, as
the set of orthonormal eigenvalues of the finite Sturm
representation ofHat . Namely,

ufk
l&5 (

i 51

Nmax

bi
kuxni ,l i ,m

l &, ~16!

Ĥatb̂
k5EkŜb̂k, ~17!

whereEk is the eigenenergy of an electron in the stateufk
l&,

Ŝ is the overlap matrix (Si j 5^xni ,l i ,muxnj ,l j ,m&), andb̂k and

Ĥat are the column vector and matrix representation ofufk
l&

and Hat in the Sturmian basis set, respectively. Using t
orthonormal basis set that diagonalizesĤat greatly simplifies
the evaluation of physical transition probabilities. For e
ample, the ionization probability att5T is simply given by

Pion~T!512 (
Ek<0

z^fk
luC~T!& z2. ~18!

By definition, a bound hydrogenic state can be written
un,l ,m&5uxn,l ,m

l & if l5Z/n. For this reason, it is convenien
to introduce the alternative Sturmian parameterns51/l. For
hydrogen (Vat521/r ) the value ofns determines whether a
given n shell is exactly reproduced by the basis~i.e., when
ns5n). In general,ns takes a real value. Understandin
which other physical energy levels can be properly descri
within a finite basis requires additional analysis.

Figure 1 shows the norm of the projection of a hydroge
bound state on a finite subspace,

(
k51

Nmax

z^n1 ,n2 ,mufk
l& z2, ~19!

for different values ofns andnmax. A basis set that provides
a good representation of the bound state should yield a n
very close to unity. This is an obvious prerequisite for c
culating the evolution in the presence of the field. As e
pected, the norm becomes closer to unity for a larger ra
of n levels, as the basis size increases. Note, however,
the n levels, which are well represented, strongly depend
the value ofns . High n levels are clearly described bette
using higher values ofns ~herens510) rather than the lowe
value~herens51) and vice versa. Since both basis sets c
tain the same number of states, this indicates that the b
with the lower value ofns involves a larger number of con
tinuum states (Ek.0) and, hence, provides a more suitab
representation of the continuum.

Because Sturmian functions decay exponentially in
limit r→` @see Eq.~15!#, continuum states cannot be e
actly reproduced. It is, however, possible to find a good r
resentation of continuum wave functions in a limited ran
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2232 PRA 58S. YOSHIDA et al.
r &R, which is proportional to the maximum average rad
of a Sturmian function with n5nmax, i.e., R}r max
5nsnmax. An accurate solution of the Schro¨dinger equation
can be obtained as long as the wave function is localize
this region of coordinate space. Figure 2 shows a compar

FIG. 1. Norm of the projection of a hydrogenic state withn1

5m50 onto different Sturmian basis sets as a function of the p
cipal quantum number of the hydrogenic state. The different S
mian basis sets are characterized bynmax515,25,35,45 andns51
or ns510.

FIG. 2. Comparison of the exact and approximate continu
wave function times the radius using different basis sizes fo
spherical continuum state withE50.0032 a.u.,l 5m50. The Stur-
mian parameter for the Sturmian functions has been chosen t
ns55 and all of the wave functions are normalized to the sa
value at the first minimum.
s

in
on

of a spherical continuum state calculated from a finite St
mian basis set with the exact continuum state given by

^ruK,l ,m&5A2

p
ep~h/2!

uG~11 l 1 ih!u
~2l 11!!

~2Kr ! le2 iKr

31F1@11 l 1 ih,2l 12,2iKr #Yl
m~u,f!,

~20!

whereh5Z/K and 1F1 is a confluent hypergeometric func
tion. The wave function in the figure has an energyE
5K2/250.0032 a.u.,m50, and l 50. The approximate
wave functions have been calculated usingns55 and, there-
fore, r max575,125,225,275 a.u. fornmax515,25,45,55, re-
spectively, which contains the range ofr values in the figure.
The larger the basis size, the larger the range of radii
which the approximate wave function agrees with the ex
one. Note that the precise radius up to which a basis set
reproduce a continuum state is a function of not onlyr max
but also the wave numberK. The maximum wave vector tha
can be represented properly in a finite Sturmian basis is
portional to;ns

21 . This is illustrated in Fig. 3, which show
a spherical continuum state withE50.0016 a.u.,l 5m50,
obtained as the Sturmian parameter is changed while m
taining the basis size fixed. As expected, the smaller thens ,
the better the agreement between the approximate and
exact wave functions. Thus, a finite Sturmian basis set
approximate continuum wave functions within certain rang
of both wave number and radius, which depend onns and
nmax.

-
r-

a

be
e

FIG. 3. Comparison of the exact and approximate continu
wave function times the radius using various Sturmian parame
ns for a spherical continuum state withE50.0016 a.u.,l 5m50.
The finite basis size isNmax51540 ~i.e., nmax555) and all of the
wave functions are normalized to the same value at the first m
mum.
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B. Numerical solution of the time-dependent Schro¨dinger
equation

Instead of directly solving the set of coupled equations
Eq. ~12!, the Schro¨dinger equation~3! is integrated using a
more efficient approach usually called the split opera
method@22#. Briefly, the time evolution operator fromt50
to t5T is broken down into a product ofN evolution opera-
tors for time intervalsdt5T/N5tk112tk ,

U~T,0!5 )
k50

N21

U~ tk11 ,tk!, ~21!

wheret050 andtN5T. In each step the evolution operator
split at the midpoint

U~ tk11 ,tk!.expS 2
i

2
Hatdt Dexp~ izdpk!expS 2

i

2
Hatdt D ,

~22!

dpk52E
tk

tk11
F~ t ! dt, ~23!

which has anO„(dt)3
… error. The error arises from the fac

that the commutators @Hat ,z#Þ0 and, in general,
@H(t),H(t8)#Þ0. The resulting evolution operator becom

U~T,0!5expS 2
i

2
Hatdt D F )

k50

N21

exp~ izdpk!exp~2 iH atdt !G
3expS i

2
Hatdt D , ~24!

which contains simpler operators of the form exp(2iHatdt),
representing a free evolution, and exp(izdpk), representing
the effect of the perturbation. The latter is equivalent to
livering a momentum transfer~or boost! dpk to the electron.

In order to calculate the time evolution of the wave fun
tion, the operators exp(2iHatdt) and exp(izdpk) are replaced
by their unitary matrix representations within the basis s
exp(2iĤatdt) and exp(iẑdpk), respectively, whereÂ denotes a
finite matrix representation of the operatorA in our ortho-
normal basis. Since our basis set diagonalizesĤat ,
exp(2i Ĥatdt) is also diagonal with matrix element
exp(2i Ekdt) k51,2, . . . ,Nmax. The boost matrix exp(iẑdpk)
can be evaluated using a unitary transformation

exp~ i ẑdpk!5Ôzexp~2 iD̂ zdpk! Ôz
t , ~25!

where Ôz is a unitary matrix that diagonalizes the dipo
matrix ẑ, andD̂z is a diagonal matrix whose elements are t
eigenvalues of the dipole matrix. Finally, the vector conta
ing the expansion coefficients of the wave function Eq.~11!

is given byâ(T)5Û(T,0)â(0).
For a rectangular pulse@Eq. ~7!#, the evolution operator

Û(T,0)5exp@2i(Ĥat1ẑFp)T# can be calculated by diagona
ization, since, in this case, the total Hamiltonian is tim
independent between 0 andT. Therefore, the numerical erro
of the split operator method associated with the multipli
tion of many large matrices can be checked by compa
n

r

-

-

t,

-

-

-
g

results from the split operator method with the exact o
from full evolution operator diagonalization. Figure 4 illus
trates the convergence of the split operator method for
ferent scaled durations as a function of the number of sp
N of the evolution operator. Clearly, the longer the pulse,
larger the number of splits required to reach convergen
For short HCPs, convergence is reached after about ten s
per classical orbital period~i.e., see the result forT051).

III. THE STABILIZATION METHOD

Since the number of basis statesNmax is finite, two im-
portant questions arise:~i! how large should the basis set b
in order to obtain an accurate result, and~ii ! what value
should the Sturmian parameter have in order to get an a
rate result with the smallest basis set.

In order to answer these questions we apply the so-ca
stabilization method to the time-dependent Schro¨dinger
equation. The time-dependent stabilization method can
viewed as an extension of the time-dependent variatio
principle, very much like the case of the stationary Sch¨-
dinger equation@16#. While the variational principle assure
that the solution of the form@Eq. ~12!# is an exact result
within the given basis size, the stabilization method go
beyond that by providing information as to how accurate
solution is within the whole Hilbert space. The standard fo
of stabilization is associated with the convergence of a gi
transition probabilityPi , f with respect to the basis sizeNmax
~in the limit Nmax→`, Pi , f stabilizes!.

A more useful stabilization property exists with respect
the parameterl, which defines the basis set for a fixed val
of Nmax. This fact can be understood using the schema
picture in Fig. 5. Suppose that the full Hilbert space is re

FIG. 4. Probability of ionization of H(n154, n250, m50)
atoms by rectangular HCPs of various scaled durationsT0 as a
function of the number of splits of the evolution operator. For ea
value ofT0 the scaled field strengthsF0 have been chosen such th
the ionization probability is 10%. The basis size is set toNmax

51035 ~i.e., nmax545) and the Sturmian parameter tons55.
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2234 PRA 58S. YOSHIDA et al.
resented by the plane such that the ‘‘exact’’ evolution of
wave function is given by a trajectory in the plane~e.g.,
trajectories A, B, and C!. Two finite Hilbert subspaces, gen
erated by bases with parametersl1 andl2, are represented
in the figure by triangular regions. These regions can be c
sen to provide a good representation of the initial wave fu
tion ~open circle! but may not always contain the exact fin
wave function~solid circles!. If a trajectory such as A is
contained in the overlap of both triangular regions, the c
culation of the evolution of the wave function should
stable with respect to a change froml1 to l2, i.e., the solu-
tion should be ‘‘exact.’’ In turn, if a trajectory such as B or
leaves the finite subspaces subtended, the approximate
culations in each basis set will yield, in general, differe
nonconverged results. There could be, of course, rare ex
tions such that convergence is reached~not necessarily to the
correct limit! even if trajectories corresponding to these
sults leave the finite subspace. Thus, an accurate calcul
of a transition probability should be stable with respect
variations of the basis set, i.e.,l. Note, however, that stabi
lization of a given transition probability does not imply st
bilization for other transition probabilities~i.e., some trajec-
tories may leave the domain subtended!.

Figure 6 demonstrates the applicability of the stabilizat
method for calculating the ionization probability for hydr
gen atoms in theun159, n250, m50& parabolic state by a
rectangular HCP. For a fixed value ofNmax, the calculated
ionization probability as a function of the Sturmian para
eter exhibits a characteristic plateau. Moreover, the size
the plateau increases for increasing values ofNmax. This is
precisely the behavior expected; i.e., ifNmax is large enough,
the calculation must be stable with respect to variations
the basis set. Therefore, the value of the plateau corresp
to a converged ionization probability. The results in Fig
can be compared with the work of Schwartz@17# who under-
took the first accurate time-independent calculations fore-H
scattering employing a similar method. However, becaus
limited computing power available at that time, the platea

FIG. 5. Schematic picture of the full Hilbert space. The traje
tories A, B, and C represent different exact solutions of the tim
dependent Schro¨dinger equation starting from the same initial sta
~represented by an open circle! but with different final wave func-
tions ~represented by solid circles!. The triangular regions denot
two finite Hilbert spaces. See text.
e

o-
-

l-

al-
t
p-

-
ion

n

-
of

f
ds

of
s

appeared as shallow minima. The stabilization method
not only provide accurate results, but also furnish a tool t
can be used to learn how to choose the most approp
Sturmian parameter. The stabilization plateau starts to
velop atns&10 even for a small basis size. This is partly d
to the fact that a basis set withns.10 can provide a very
good representation of the initial electronic state. Howev
for the finite subspace to cover the entire time developm
of the wave function it must also be able to provide a go
description of the intermediate and final states. As discus
above, the smallerns , the better the representation of co
tinuum states. This is the reason why the optimum Sturm
parameter is slightly smaller than 10.

Whether or not an accurate calculation of the ionizat
can be performed depends on both the duration and
strength of the HCP. Clearly, for large enough values ofTp
or Fp the exact wave function can spread out into regions
coordinate and momentum space that are not properly
scribed by a finite basis set. This is illustrated in Fig.
which shows the time evolution of the probability dens
associated with finding the electron with a given energyE;

dP

dE
~E!5~dE!21 (

E2~dE/2!<Ek<E1~dE/2!
z^fk

luC~T!& z2,

~26!

wheredE is a fixed energy interval. The figure is displaye
in scaled units and, therefore, att50 the energy distribution
peaks atE0522ni

2E521. For longer times, the probability
distribution spreads out in energy, much like a wave pac

-
-

FIG. 6. Ionization probability of H(n159, n250, m50) sub-
ject to a rectangular HCP withF050.3 andT050.5 as a function of
ns5l21. The various curves in the figure correspond to basis s
of Nmax5325,1035,2701. The larger the basis, the broader the
bilization plateau.
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Eventually, the wave packet is reflected@Fig. 7~a!# as it
reaches a region beyond the effective range that is prop
described by the basis. Figures 7~b! and 7~c! show that for
increasing basis size the reflection occurs at later times
eventually disappears.

Using the present approach employing up to 4000 b
states and restricting the ionization probabilities to less t
15%, stabilization can be typically found for scaled duratio
T0&3. Figure 8 illustrates this practical limit for the calcu
lation of the scaled momentum transfers necessary to io
10% of Rydberg hydrogen atoms in the extreme parab
states. Because both extreme parabolic states within a g

FIG. 7. Time evolution of the probability density for finding th
electron with a given scaled energyE0. The initial electronic state is
n55, m50, n250 ~i.e., a downhill Stark state!. The calculations
were performed usingns53 and a restricted basis set ofn250
downhill Sturmian states and, therefore,nmax5Nmax for this case.
The quasi-one-dimensional~1D! atom is subject to a rectangula
pulse withF054 and a variable durationT0. The basis-set sizes ar
~a! nmax5100, ~b! nmax5200, and~c! nmax5500.
rly

nd

is
n
s

ze
ic
en

n manifold possess identical momentum distributions,
ionization thresholds agree with each other in the limit
ultrashort HCPs (T0!1). For pulses with a finite duration
‘‘downhill’’ ( n250, or redshifted! parabolic states are mor
easily ionized than ‘‘uphill’’ (n150, or blueshifted! states
since their corresponding wave functions are localized n
the top of the potential barrier generated by the pulse. Th
the reason why the static field ionization threshold for hyd
genic downhill states is smaller than that for uphill states t
are localized near the repulsive potential wall~see, e.g.,
@23#!. For the same reason, fully converged calculations
uphill states can be carried out for longer times~i.e., ionized
electrons from a downhill state reach the boundaries of
basis set more rapidly!. Figure 8 also shows, however, th
calculations for extreme downhill states can be extended
ing a restricted basis set of extreme downhill Sturmian sta
i.e., a quasi-one-dimensional~1D! calculation. This indicates
that the electronic dynamics leading to ionization develops
a quasi-one-dimensional space along the reaction coordi
across the saddle, the parabolic coordinateh5r 2z @8#. All
of the results in the following section are fully converge
according to the stabilization criteria discussed above.

IV. RESULTS AND DISCUSSION

In the limit of ultrashort HCPs, the results of our finit
basis-set expansion can be tested against exact calcula
That is, matrix elements of the evolution operator in th
limit @Eq. ~6!# are given by well-known inelastic form factor
~see, e.g.,@24#!. Figures 9 and 10 display a comparison of t
results of our finite basis-set calculation with exact calcu
tions for the spectrum of energy states that become popul

FIG. 8. Scaled momentum transfer for 10% ionization thresh
of hydrogen atoms in various parabolic states as function of
scaled pulse duration for rectangular pulses. Also included for
tial (n250) downhill states are results obtained using a quasi-o
dimensional~1D! basis set of only downhill Sturmian states calc
lated with and without the split operator method.
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by a HCP@Eq. ~26!#. The exact calculation for continuum
states (E5K2/2.0) is given by

dPUSP

dE
5KE dV z^cK

2ueiDp zuw i& z2, ~27!

where cK
2 is an incoming continuum Coulomb state wi

FIG. 9. Distribution of final energy states resulting from t
interaction of an ultrashort HCP of various strengths with a hyd
gen atom in the initial parabolic staten55, n150, m50: exact
results~thick curve!; finite basis-set expansion withnmax565 ns

53 ~thin curve!.

FIG. 10. Distribution of final energy states resulting from t
interaction of an ultrashort HCP of various strengths with a hyd
gen atom in the initial spherical staten55, l 51, m50: exact re-
sults ~thick curve!; finite basis-set expansion withnmax565 ns

53 ~thin curve!.
wave numberK (E5K2/2). Due to Coulomb threshold law
for the population of near-threshold states (E.0), in the
limit E→0, Eq.~27! should tend to the corresponding resu
for bound states,E52Z2/(2n2),0, which is given by

dPUSP

dE
5

n3

Z2(l ,m z^n,l ,mueiDp zuw i& z2. ~28!

Figures 9 and 10 show that the results obtained usin
finite basis expansion are in very good agreement with
exact calculations. The marked differences between the
ergy distributions for an extreme parabolic state and a sph
cal state can be traced back to differences in their ini
momentum distributions along the direction of the puls
That is, the electronic wave function, immediately after a
plication of an ultrashort HCP, corresponds to the initial st
shifted in momentum space byDp. Therefore, Figs. 9 and 10
roughly correspond to the averaged projection of a shif
momentum distribution onto thez axis ~i.e., the Compton
profile!. The oscillatory behavior of the energy distribution
for an initial n55, l 51, m50 state is related to the noda
structure of the initial momentum distribution and is n
present in classical simulations. The structureless spect
of the initial parabolic state (n55, n150, m50) is a direct
reflection of the fact that the momentum space probabi
density @25# of extreme parabolic states is node free. T
momentum wave function of a parabolic state is given by

^pun1 ,n2 ,m&}S 2p0
2

p21p0
2D 2

3d~n22n11m!/2,~n12n21m!/2
~n21!/2 ~2j!eimfp,

~29!

where p,up ,wp are spherical coordinates in momentu
space,p05Z/n, j5cos21@2pp0 /(p21p0

2)sinup#, anddj ,k
i is a

matrix element of a finite rotation. Form50 extreme para-
bolic states

d6~n21!/2,7~n21!/2
~n21!/2 ~2j!5d7~n21!/2,6~n21!/2

~n21!/2 ~22j!

}S p0
41p412p0

2p2cos2up

~p0
21p2!2 D n21

5S p0
41p412p0

2pz
2

~p0
21p2!2 D n21

, ~30!

and, therefore,z^pun1 ,n2 ,m& z2 is node free.
The position of the absolute maximum of the final-sta

energy distribution for a given largeDp can be understood
from the fact that the expectation value of the energy after
ultrashort HCP is given by

-

-
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^E&5^eiDpzw i uHatueiDpzw i&

5^w i uHatuw i&1
~Dp!2

2
1Dp^w i upzuw i& ~31!

5Eni
1

~Dp!2

2
, ~32!

or, equivalently,^E0&5211(Dp0)2. The energy distribu-
tions in Figs. 9 and 10 are seen to peak at approximately
energy. The peak is a direct manifestation of the Bethe ri
in atomic collision physics@26#.

Figure 11 shows that structures in the energy spectrum
the ejected electrons are not always evident in the total
vival probability

Psur512Pion512E
0

`

dE
dP

dE
~33!

as a function of the peak field. In scaled units, quantum
sults forni55 andni510 are in very good agreement wit
each other, illustrating that the scaling invariant limit is a
ready reached using only moderately high quantum lev
~departures from scaling invariance are only expected to
cur for very small ionization probabilities@6#!. The quantum
calculations~for rectangular pulses! are in good agreemen
with classical calculations and experimental data forni
5388 obtained using HCPs with a very short rise time.

FIG. 11. Survival probability as a function of the scaled pe
field for two effective pulse durations. Quantum calculations us
rectangular pulses for H(n510, l 51) and H(n55, l 51) are
compared with experimental data and classical calculations@3# for
the K(388p) atom. The classical calculations use the experim
tally determined pulse shapes that feature a very fast rise time
is
e

of
r-

-

ls
c-

In view of the very good agreement between our quant
calculations and our previously published measurements
classical results, the disagreement recently reported by K
tensenet al. @4# for pulse durationsT0.2 is surprising. In
the following we analyze three possibilities that may infl

g

-

FIG. 12. Scaled momentum transfer for 10% ionization of h
drogen atoms in various spherical states as a function of the sc
pulse duration for rectangular pulses. The values ofn used in these
quantum calculations are as indicated.

FIG. 13. Ionization probability ofm50 states produced by a
ultrashort HCP withDp050.54 as a function of the scaled angul
momentum. The values ofn used in the quantum calculations are
indicated.
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ence the ionization thresholds:~i! the statistical combination
of l 50 ~25%! and l 52 ~75%! initial states in the experi-
ments,~ii ! core effects, and~iii ! the actual shape of the ex
perimental pulses.

Figure 12 displays the scaled momentum transfer requ
to produce 10% ionization of hydrogen atoms in states w
various well-defined initial angular momenta. Clear diffe
ences in the thresholds for different states are observed
short pulses. Figure 13 shows that the quantum ioniza
probability, as a function ofL05 l /n, is scaling invariant for
increasingn value and, moreover, that it agrees with t
classical predictions. Form50 there exists a sharp discont
nuity between the results forl 50 and l 51, which can be
easily understood geometrically from the differences in
projection of the momentum distributions fors and p (m
50) states along thez axis. In fact, the results forl 50
coincide with the statistical average overm50,61,62 of l
52 states~not shown!. Note, however, that the differenc
betweenl 50 andl 52 states cannot even partly explain t
discrepancies between theory and the experiment of K
tensenet al. @4#, since the largest differences between diffe
ent states occur in the ultrashort pulse limit. For long du
tion HCPs the angular momentum rapidly increases du
Stark precession around the electric field.

Figure 14 illustrates the effect of a finite-size core on
ionization thresholds. The calculations were performed
Na(5p) states, which should overemphasize the core effe
to be expected for highern levels. Clearly, core effects pla
only a minor role in determining the ionization threshold, t
difference being on the order of the experimental uncerta
ties. This agrees with the experimental observation of K
tensenet al. @4# that the ionization thresholds for alkali-met

FIG. 14. Scaled peak field for 10% ionization threshold
H(n55, l 51, m50) and Na(n55, l 51, m50) atoms as a
function of the scaled pulse duration for rectangular and triang
pulses.
d
h
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n

e

s-
-
-
to
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atoms with quite different quantum defects~Li, Rb! are in
very good agreement with each other.

The data of Kristensenet al. @4# were obtained using
HCPs with a long rise time. One may therefore suspect
they cannot be properly modeled using rectangular pul
This is illustrated in Fig. 15, where the results of classi
and quantum calculations for rectangular, triangular, a
Gaussian pulses@Eqs. ~7!–~9!# are displayed. As expected
the results converge in the short pulse limit because the
ization probability depends solely on the integral of the pu
~i.e., the momentum transferDp). However, sizable differ-
ences exist for long pulses. Note that the differences
larger for the extreme downhill parabolic state than for ap
~or d) state. The origin of this difference lies in the differe
degree of adiabaticity displayed by parabolic and spher
states. Since parabolic states diagonalize the Stark pertu
tion within a given shell, nonadiabatic effects require d
namical coupling to different shells. ForT0.1, i.e., when
the rise time is large compared to the orbital period, extre
parabolic states evolve approximately adiabatically, beca
of the absence of a large number of avoided crossings, w
leads to an increased stability against ionization. Spher
states, on the other hand, show much stronger nonadia
couplings forT0.1 due to both intrashelll mixing and cou-
pling to other manifolds. In contrast, HCPs with a sudd
turn-on dynamically couple the initial Stark state to othern
levels, which can be ionized more easily than the adiab
cally shifted state.

Classically, the ratio of rise time to orbital period provid
the criterion for the adiabaticity of the evolution. If this rat

f

r
FIG. 15. Scaled peak field for 10% ionization of~a! H(n

55, n250, m50) and ~b! H(n55,l 51,m50) calculated classi-
cally ~cl! and quantum mechanically~qm! as a function of the
scaled pulse duration for various pulse shapes~see text!.
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is large, the unperturbed Kepler orbit evolves adiabatica
into a field perturbed orbit. The classical sudden limit, on
other hand, is characterized by the dependence of the en
of the perturbed orbit on the local position of the electron
the time of the turn-on of the field. On the quantum lev
there exists an additional time scale in terms of the ratio
the nonadiabatic coupling strength to the size of the avoi
crossings through which the evolution from the zero-fie
energy levels to the high-field levels proceeds. To the ex
that these avoided crossings are isolated and the coup
involves only few states, this is an intrinsically nonclassi
process. The fact that hydrogen and alkali-metal atoms
play the same rise-time dependence indicates that the na
avoided crossings between different Stark states due to
nonhydrogenic core in the alkali-metal atoms do not pla
significant role. They are traversed completely diabatica
Hydrogen displays a different type of avoided crossin
sometimes termed ‘‘hidden’’ crossing@27#. It corresponds to
an interaction between the most redshifted Stark state
adjacent manifolds and is characterized by a width that
considerable fraction of the zero-field level spacing. Tra
lated into classical dynamics, this amounts to a time scal
a few zero-field orbital periods. The avoided crossing occ
above the field ionization threshold in the region of overla
ping resonances@28#. The observed rise-time dependence
related to the inverse level density of resonances near
above the ionization threshold.

In order to corroborate the theoretical predictions,
have performed a series of measurements using appa
and techniques described elsewhere. In the experiments,
ization of K(np) Rydberg atoms with (n;388) was inves-
tigated using pulses having essentially the same peak am
tude and full width at half maximum but different puls

FIG. 16. Survival probability of K(388p) atoms as a function o
the scaled peak field~lower axis! or peak field in mV/cm~upper
axis!: experimental data~open squares and open triangles!; classical
calculations for K(388p) atoms~solid lines!; and quantum calcula
tions for H(5p) states scaled to H(388p) ~dashed lines!. The insets
show the experimentally determined rectangular and triang
pulse profiles that have FWHM durations of;29 ns (T053.3) and
31 ns (T053.5), respectively. The survival probabilities on th
right ~left! are associated with the triangular~rectangular! pulse.
Both measurements and calculations correspond to a statistica
tribution of m substates.
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shapes, i.e., different rise and fall times. Results obtai
using the extremes of these pulse shapes, namely a n
rectangular pulse with a fast rise time and a ‘‘chirped’’ pul
with a slow rise time and fast fall~srff! are presented in Fig
16, which shows the measured survival probability as a fu
tion of the peak amplitude of the pulse for a relatively lo
pulse,T0.3. For reference, the experimentally determin
pulse profiles are included in the figure as insets. The d
show that, indeed, the survival probability is quite sensit
to the rise time and that the ionization threshold increases
increasing rise time. Figure 16 also includes the results
quantum and classical calculations undertaken using the
perimental pulse profiles. Quantum calculations for H(5p)
exhibit a similar, but slightly reduced, shift of the ionizatio
threshold. Because the measurements were performed
K(388p), the differences in the shift possibly provide a
indication that the scaling invariant limit (n→`) has not yet
been reached forn55. Unfortunately we have been unab
to obtain converged quantum calculations forn.5 levels
with these long pulses. However, classical calculations
K(388p) atoms are found to be in good agreement with
measurements.

In Fig. 17 we compare our quantum and classical thre
olds for 10% ionization by rectangular and triangular puls
acting on hydrogen atoms with the present experime
measurements and previously published data. Note that
experimental profiles do not exactly agree with the theor
cal pulse shapes. Clearly, the dependence of the ioniza
thresholds on the rise time explains, at least in part, the
agreement between the data of Kristensenet al. @4# and clas-

ar

is-

FIG. 17. Scaled peak field for 10% ionization of hydrogennp
atoms as a function of the scaled pulse duration. The theore
calculations for rectangular and triangular pulses are compared
the present measurements using pulses with a fast rise time~rect! or
a slow rise time~srff!, as well as with the data of Joneset al., scaled
by a factor of 2.5@1#, Freyet al. @3#, and Kristensenet al. @4#.
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2240 PRA 58S. YOSHIDA et al.
sical calculations for rectangular pulses. The measurem
of Frey et al. @3# agree with these calculations because
experimental pulses in this case featured a short rise time
was smaller than the orbital period of the Rydberg atoms
that approximated the rectangular shape quite well. T
present measurements using pulse profiles with a long
time are indeed much closer to the data of Kristensenet al.
For short pulses, the calculations are seen to be in g
agreement with the data of Freyet al. @3# and the normalized
data of Joneset al. @1#. The differences between classical a
quantum calculations for the entire range of pulse durati
are found to be much smaller than typical experimental
certainties.

V. CONCLUDING REMARKS

We have described in detail a quantum-mechan
coupled-channels approach to study the ionization of ato
by half-cycle pulses. We have shown that the accuracy of
calculations can be established using the stabiliza
method. Presently, our calculations are limited to short du
tions (T0&4). Work is underway to extend these to long
pulses using a nonunitary representation of the evolution
erator.

We have shown that quantum calculations are scaling
variant and are in very good agreement with classical ca
lations even for levels with relatively low principal quantu
numbers. Moreover, we have presented independent ex
mental data that are also in very good agreement with
calculations. Thus, the disagreement recently reported
Kristensenet al. @4# between classical calculations and e
periment is largely due to the shape of these pulses. In
ticular, we have shown that when the duration of the puls
longer than the orbital period of the atom, the ionizati
thresholds become sensitive to the rise time of the elec
field.
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APPENDIX: THE CLASSICAL LIMIT

In the classical limit, the time evolution of the electron
wave function is modeled using an ensemble of class
et
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particles that mimic the initial quantum state. That is, t
quantum wave functionC(r,t) is replaced by a classica
probability density in phase spacef (r,p,t). Formally, the
time evolution of this density is governed by the classi
Liouville equation for the HamiltonianH(t) in Eq. ~1!,

] f

]t
5@H, f #, ~A1!

with the boundary condition

f ~r,p,t !→
t→0

f i~r,p!, ~A2!

where@ ,# denotes a Poisson bracket andf i is the initial state.
Since phase-space points evolve in time independently,
Liouville equation can be easily solved using a Monte Ca
technique. The resulting method is usually referred to as
classical trajectory Monte Carlo approach@11#.

There exists no unique way of determining the init
phase-space state so that it mimics the initial quantum s
The most common choice of initial conditions, which w
adopt here, is a subset of a microcanonical ensemble,

f i~r,p!5CidFEi2
p2

2
2Vat~r !G*i , ~A3!

whereCi is normalization constant,Ei is the initial quantum-
mechanical binding energy, and*i is a characteristic function
representing the other quantum numbers of the initial st
This type of initial state yields the exact quantum
mechanical probability density of the momentum for a s
tistical average of states within a givenn manifold.

For a hydrogenic initial spherical stateuni ,l i ,m&,

*l i ,mi
5Q~L2 l i !Q~ l i112L !QS Lz2

L~2mi21!

2l i11 D
3QS L~2mi11!

2l i11
2LzD , ~A4!

where L5r3p is the classical angular momentum andQ
denotes a step function. In turn, for a hydrogenic parab
state with quantum numbersni ,n1i ,n2i , we use

*n1i ,n2i
5Q~N1

c2n1i1
1
2 !Q~2N1

c1n1i2
1
2 !

3Q~N2
c2n2i1

1
2 !Q~2N2

c1n2i2
1
2 !, ~A5!

N1,2
c 5 1

2 @ni ~17Az!2~ uLzu11!#, ~A6!

whereA5p3L2 r̂ is the Runge-Lenz vector.
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