
PHYSICAL REVIEW A SEPTEMBER 1998VOLUME 58, NUMBER 3
Ionization of many-electron atoms by a quasistatic electric field
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~Received 2 December 1997!

We present a general expression for the field ionization probability of atoms and ions under a quasistatic
external electric field. While the treatments available as yet are only for the case of a single electron in the
outernl subshell, the expression obtained here is applicable to atoms and ions with any number of electrons in
the outer subshell and with partially filled inner subshell~s!. We also present a more accurate method to
determine the prefactor in the expression for the field ionization probability. Ionization probabilities are cal-
culated using the WKB approximation; therefore, the results become exact in the weak-field limit. It is shown
that in certain cases the field ionization probability depends significantly on the projection of the total orbital
angular momentum in the direction of the field. A proper way to normalize the optical-electron wave-function
asymptotics is explained and the difficulties in the use of Hartree-Fock routines for that purpose are discussed.
The general expression obtained is used to calculate field ionization probabilities for several states of some
atoms and ions that are of special interest for spectroscopic diagnostics: CI, Li I, and BaII. We also discuss the
case of a significant spin-orbit interaction, treating the ionization of the BaII 6p level as an example. For the
Li I 2p level, the present calculations disagree with previously published calculations based on the use of
Hartree-Fock wave functions; possible reasons for the discrepancy are discussed. For this level and the 3d
level of Li I, our results are compared with experimental data available in literature and are found to be in
agreement.@S1050-2947~98!08208-0#

PACS number~s!: 32.80.2t, 31.15.Gy
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I. INTRODUCTION

Ionization of atoms1 by an external electric field is a fun
damental atomic process that plays an important role in
formation of the charge-state distribution in plasmas un
strong fields, which may occur, for example, in relative
dilute plasmas@1,2# and in shock wave fronts@3# in denser
plasmas. Calculations of the field ionization~FI! probability
for various atomic states are thus essential for proper m
eling of the plasma charge-state composition, transport c
ficients, and emission spectrum in both lines and continu
Field ionization, studied from observations of tempo
variations in the line intensities, can serve as a valuable
for spectroscopic determination of the macroscopic-field d
tribution in plasmas. Since the FI probability grows rapid
with the field, it allows for an accurate determination of t
electric field strength.

The FI of atoms and positive ions has been studied th
retically since 1930@4#; however, it is still a subject of an
active research@5–11#. As yet, to the best of our knowledge
the theoretical treatments have been limited to the cas
atoms~ions! with a single electron in the outernl subshell
and filled inner subshells. For such systems, there is a w

1By ‘‘atom’’ in this study we mean a particle that is either
neutral atom or a positive ion, i.e., in which the most weakly bou
electron is confined to a potential well, which for large distanc
has asymptotics of an attractive Coulomb potential:V;r 21.
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known prediction for the quasistatic field ionization probab
ity given by Smirnov and Chibisov@12#. The prefactor for
this expression was later corrected by Perelomovet al. @13#.
The expression has been derived in the framework of
WKB approximation, thus becoming exact in the limit o
weak ~in comparison to atomic fields! external fields. Al-
though a single-outer-electron system is the simplest c
ionization probabilities computed numerically@9# and ana-
lytically @5,10# differ by orders of magnitude. In Sec. II w
explain the likely reason for this disagreement. We a
show a proper way to determine the single-electron wa
function asymptotic amplitude that appears in the prefac
in the expressions for the one-electron FI probability@12,13#.

In this paper we generalize these single-electron result
the case of atoms that have several equivalent electron
the outernl subshell and/or holes in the inner subshell~s!.
The expressions we present make it possible to accoun
different ionization rates from different components of t
LS term and into different parent terms.

We focus here on the effects of an electric field th
is weak (F!uEu3/2, whereuEu is the binding energy of opti-
cal electron in the atom under consideration andF is the
external field intensity; atomic units are used throughout t
work!. We also assume that the electric field is quasista
@see condition~2! below# and homogeneous over the atom
scale, i.e., this study concentrates on the FI due
macroscopic-scale fields in plasma rather than due to lo
fields @17#. We consider the atomic potential~as seen by the
electron being removed! to be spherically symmetric and w
ignore relativistic effects, unless otherwise mentioned. C
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PRA 58 2215IONIZATION OF MANY-ELECTRON ATOMS BY . . .
sequently, a single-electron state may be described by or
and spin quantum numbersl ,l z ,s,sz , wherez is taken in the
direction of the external electric field.

The paper is structured as follows. In Sec. II we disc
the one-electron result and ways for an accurate assess
of the escaping-electron wave-function amplitude at large
dii. In this section we also compare our calculations w
theoretical and experimental results available in publicatio
In Secs. III and IV we present the generalization of the o
electron result to the case of several electrons in the outenl
subshell and give several examples of the numerical calc
tions using the general expression obtained.

II. THE SINGLE-ELECTRON CASE

We consider a homogeneous electric fieldF52F ẑ di-
rected along thez axis; the total potential drops towardsz
→`. We denote the outer classical turning point byb, i.e.,
z.b is a classically allowed region for the electron. In t
weak-field limit, the actionA across the barrier is muc
larger than unity and the penetrability of the barrier is p
portional to exp(22A) @14#, which means that the electro
can only escape along thez axis, where the barrier is thin
nest. In parabolic coordinates (j5r 1z, h5r 2z; h!j
along the escape path!

A5E
;0

2b

ukj~j!udj.AuEub.
uEu3/2

F
@1, ~1!

where b.uEu/F is the barrier thickness andukj(j)u
5A 1

4 @E2V(j)#. This condition guarantees that th
escaping-electron wave-function inside the barrier, far fr
the turning points, may be described quasiclassically.
more precise condition@condition ~6!# is given below.

In the present quasistatic treatment, the characteristic
quencyv of the field fluctuation must be sufficiently low, i
order for the Keldysh adiabaticity condition

vuEu1/2

F
5g!1 ~2!

to be fulfilled; see Refs.@15,16#.
The escape rateG is expressed as

G5E dx dy jz~x,y,z!5E dx dy ds ImH c
]

]z
c* J ,

~3!

where j z is the flux in the direction of escape,c[c(r ,s) is
the wave function, ands is the spin coordinate. The escap
rateG has a meaning ofthe probability per unit timefor the
atom under consideration to be ionized by the external e
tric field2 ~both the terms ‘‘probability’’ and ‘‘rate’’are com-
monly used to denoteG!.

2For simplicity, our derivations below will be performed under t
assumption of a static field (v!G), which is stricter than condition
~2!. When the conditionv!G fails, the probability for the electron
to stay in the potential well, given by exp(2Gt), becomes exp
@2*0

t G(t8)dt8#.
tal
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For the case of a single electron in the outernl subshell
over closed subshells, quasiclassical calculations@12,13#
yield3

GE,l ,m5B2
~2l 11!~ l 1m!!

2m11kmm! ~ l 2m!!
S 2k2

F D 2ZP /k2m21

3expH 2
2k3

3F J , ~4!

where B[Bnl is the amplitude of the asymptotics of th
optical-electron wave function at larger , which is

fnl~r !5Bnlr
ZP /k21exp~2kr !. ~5!

HereZP is the charge of the parent ion andk5A2uEu. Ex-
pression~4! is valid for a weak electric fieldF that fulfills

F!
k4

2ZP
. ~6!

Further on we denote the one-electron escape probabil
calculated using expression~4! by GE,l ,m

(1) .
As said above, the constantB is determined from the

asymptotic behavior of the radial part of the unperturb
outer-electron wave function at large distances. It is th
unique for each energy state of every species. As yet, th
probability calculations have been performed using appro
mate values ofB ~see, for example, Ref.@5#!. A way to
determineB more reliably is shown in the following subsec
tion, along with a discussion on the applicability of the for
~5!.

A. The asymptotic behavior of the unperturbed
wave function at large radii

Sufficiently far from the core, the behavior of the unpe
turbed wave function is semiclassical and the potential
comes Coulombic; the radial part of the wave function
then determined by a~well-defined! value of the binding
energy and thus has the form~5! precisely. The condition~6!
guarantees that on such intermediate distances from the
the external electric field can still be neglected.

The purity of the angular part, on the other hand, is n
completely precise due to the noncentral component of
electron-electron interaction. Therefore, one expects
there should be a small admixture of other spherical harm
ics to the leading one. However, these admixtures should
affect the one-electron FI probability significantly since t
dependence on the angular quantum numbers in expres
~4! is sufficiently weak.

The constantBnl is different for different one-electron
states, but is the same for all magnetic componentsl z of the
state. We have calculatedBnl for each one-electron state o
interest using the computer codeATOM, which has been de

3There are actually some inaccuracies in expressions~7! and~11!
of the original paper@12#. The correct expression for a single
electron FI rate is given in Ref.@13#. Also note that the coefficien
Ck l in Ref. @13# relates to B in the following way: B
5kZP /k11/2Ck l .
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TABLE I. Coefficients~7! for the one-electron escape rates from the atomic states with a single outer electron.

Initial-state term ZP l k B C1(m50) C1(m51) C2(m50) C2(m51) C3

Ba II 6s 2S 2 0 0.857 48 0.7676 2.421 23.665 0.4203
Ba II 6p 2P 2 1 0.735 08 9.91731022 2.08231022 5.24231022 24.442 23.442 0.2648
Li I 2s 2S 1 0 0.629 51 0.9313 0.2614 22.177 0.1663
Li I 2p 2P 1 1 0.510 36 0.2271 1.15331022 4.33731022 22.919 21.919 0.088 62
C I 2s22p3s 1P 1 0 0.513 17 0.4036 1.27131022 22.897 0.090 09
C I 2s22p3s 3P 1 0 0.527 22 0.4236 1.74031022 22.793 0.097 70
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veloped by Shevelko and Vainshtein@18#. The code yields
the radial part of the atomic wave function,4 the asymptotic
part of which ~for r @ZP /k2) may then be fitted using ex
pression~5! in order to findBnl . We actually fitted ln@f(r)#
rather thanf(r ) to allow for a wide range of magnitudes o
f(r ) at larger . Both k andB may be fitted simultaneously
in which casek must not differ from its table value~which is
inputted intoATOM! by more than 0.1%.

It is important to mention that theATOM code differs from
the standard Hartree-Fock routines~say, the code by Cowan
@19#! in its procedure. InATOM @18,20# the energy of any
term is taken from the data tables rather than calculated
ternally. The Schro¨dinger equation is then solved for the r
dial part of the optical-electron wave function correspond
to the term of interest. The asymptotic form of the radial p
at larger is thus guaranteed to be given by expression~5!
with the correct value ofk ~see Sec. 5.4 in Ref.@20#!, which
is highly important for the FI probability calculations. On th
contrary, in the standard Hartree-Fock~HF! treatments, one-
electron wave functions obtained for the central part of
potential are used as a basis, which is then truncated for
feasibility of numerical calculations. The noncentral part
the potential (LS coupling! is then calculated in this trun
cated basis, and the eigenstates of the total Hamiltonian
found. This standard method is generally preferable for
determination of energy levels, but it yields an asympto
result inconsistent with expression~5! due to the incomplete
basis. This may give rise to a large error in the evaluation
the FI probability via the following mechanism. Instead
the form given by expression~5!, the asymptotic result tha
the standard HF method yields is a superposition of
asymptotic forms for the one-electron states, including hi
lying ones. Since the basis is incomplete, the asymptotic
high-lying states do not cancel each other properly. At s
ficiently large r these high-state asymptotic tails domina
thus, instead of the correct asymptotic result~5! that decays
according to the true binding energy of the term consider
the standard treatment yields an asymptotic result that de
according to the binding energy of the highest one-elect
state left in the basis. Since the FI probability is extrem
sensitive to the asymptotic behavior the resulting error m
be huge.

There is another subtlety in using the Hartree-Fock p
cedure for the calculations of the FI probability besides

4ATOM actually outputsP(r )5rf(r ), normalized by the condi-
tion *0

`P2(r )dr51. It also uses Coulomb~rather than atomic!
units.
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problem of the basis truncation. It has been shown by Ha
et al. @21# ~see also@22–24#! that if one uses the basis o
wave functions with well-defined angular parts for a gene
Hartree-Fock procedure, then one observes that each
electron wave function at large distances does not have
asymptotic form~5! corresponding to its binding energy, bu
rather a superposition of forms~5! corresponding to binding
energies of everyoccupiedorbital. Since the binding energ
that appears in the asymptotic form determines the expon
tial factor in the FI probability, this observation means th
the use of such HF wave functions is expected to give
probability for the FI of the core electrons~leaving an ion
with a hole in the inner shell! comparable to that for the
optical electron, which is unrealistic. In reality, as alrea
said, wave functions with well-defined angular parts are
exactly the eigenstates of the atomic Hamiltonian. An eig
state of the total atomic Hamiltonian may be obtained o
as a superposition of these basis wave functions with w
defined angular parts and such a superposition at large
tances does not have the form~5!. The true eigenstates of th
atomic Hamiltonian have well-defined binding energies a
thus, at large distances, well-defined radial asymptotics
the form~5!, although they do not have well-defined angu
quantum numbers. The latter may only result in correctio
to the preexponent@but not to the exponential factor in ex
pression~4!#, yielding that the core electrons’ escape is e
ponentially suppressed in comparison to that of the ou
electrons, as expected.

It should also be mentioned that in the numerical e
mates performed using our method, the error originating
the exponential factor is small if condition~1! is obeyed. The
error originating at the preexponent~i.e., from the evaluation
of B2 and from thel ,m-containing factor! depends on the
purity of the leading angular component of the true eige
state and is also small unless there is a significant mixin

B. Numerical results for a single outer electron

We have conducted FI probability calculations for t
Li I 2s, 2p, and 3d and BaII 6s and 6p states. In all these
states there is a single outer electron over closed subsh
so expression~4! is directly applicable. The coefficientB has
been rigorously evaluated, as described above. Table I g
the coefficients of the one-electron escape rates from th
states.

The coefficientsC1 , C2 , andC3 are parameters for the
numerical evaluation of the one-electron escape rate~4!:

Gnlm
~1! 5C1FC2expH 2

C3

F J ~7a!
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where

C15B2
~2l 11!~ l 1m!!

2m11kmm! ~ l 2m!!
~2k2!2ZP /k2m21, ~7b!

C252
2ZP

k
1m11, ~7c!

C35
2

3
k3. ~7d!

The numerical results forG are given in atomic units~to
obtain G in units of s21 one must multiply it by 4.136
31016).

The accuracy of the calculations ofG is limited by the
terms of the next order inF ~corrections to the WKB ap-
proximation and Stark corrections@17#!. These terms are
small as long as the applicability condition~6! is obeyed.
The accuracy ofB, evaluated using theATOM code, is usu-
ally a few percent, or up to 20–30 % for atoms with a co
plicated structure. This determines the accuracy ofG in the
weak-field limit.

The one-electron WKB calculations found in the literatu
~see, for example, Ref.@10#! are also performed using th
expression~4! for the FI rate. In these calculations, the c
efficientB is, however, approximated by its value for hydr
gen, with the quantum numbersnl substituted by their effec
tive valuesn* l * . A comparison performed in the prese
study for several states of LiI shows that the values ofB so
derived are accurate to within a factor of 2~i.e., giving FI
probabilities accurate to within factor 4). It should be note
however, that due to the very strong dependence ofG on F,
an error of factor 4 in the FI rate corresponds to an erro
only about 20% inF, at the characteristic valueA510 of the
action across the barrier.

Numerical results for the FI probability for the lithium
atom are available in the literature@9#. Figures 1 and 2 give
a comparison between the present calculation results an
results quoted in Ref.@9# for the Li I 2s and 2p levels, re-
spectively. There is a substantial disagreement for the res
for the Li I 2p level at the weaker fields.

FIG. 1. Field ionization rates for the LiI 2s level.
-

,

f

the

lts

In Ref. @9# numerical calculations have been perform
by solving the time-dependent Schro¨dinger equation using a
truncated basis of Hartree-Fock functions. These calculat
are good for stronger fields, but do not generally agree w
the Gamov formula in the weak-field limit, particularly fo
the m50 component of the 2p state. We believe that the
reason for this discrepancy is the following: Since in Ref.@9#
a truncated basis was used, the asymptotic form of the w
function may not be of the type~5!, as we have said in the
Sec. II A. In the weak-field limit the outer classical turnin
point is located very far from the core, so the incomple
cancellation of the weakly bound components in the Hartr
Fock wave function at large radii may lead to significan
inaccurate results, as it is explained in Sec. II A.

The Li I 2p-2s emission line has been observed
Bailey and collaborators in experiments conducted on
high-voltage ion diode@2#. The 2p-2s line emission showed
no significant field ionization of the 2p level on the time
scale of tens of nanoseconds for electric fields up
10 MV/cm. Our calculations for the FI rate for the LiI 2p
level show practically no FI for fields up to 13 MV/cm
consistent with this experimental finding.

The calculations in Ref.@9#, however, suggest a signifi
cant FI at those fields. The FI probabilities given in@9# are
about 1010 s21 for the 2p0 and 108 s21 for 2p61 compo-
nents. We note that these calculations, in fact, imply a FI r
for the 2p61 components also comparable to 1010 s21 due to
spin-orbit-interaction mixing of the 2p61 and 2p0 compo-
nents. The fast depletion of the 2p level due to such high FI
rates@in particular since the mechanisms populating thep
level in the low-density (1013 cm23) plasma in that experi-
ment are much too slow# would have reduced the 2p-2s line
intensity much below the observability threshold on a tim
scale much shorter than the experimental time~which is tens
of nanoseconds!. Thus, if the FI rates given in Ref.@9# were
correct, the LiI 2p-2s emission line would not have bee
observed, which was not the case.

As for the Li I 3d level, also considered in the prese
work, our calculations show that this level has a FI rate
about 1010 s21 at 4 MV/cm field, in agreement with the
calculations given in Ref.@9#. This implies the disappearanc
of emission lines originating at the LiI 3d level for fields
exceeding this value. As pointed out by Baileyet al., this is

FIG. 2. Field ionization rates for the LiI 2p level components.
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consistent with the absence of the 3d-2p line emission in the
experimental observations in the high-voltage ion diode@1#.

Finally, before we give the derivation of the general e
pression, we would like to point out that the one-electr
result may also be used in some simple cases of a si
electron above a nonclosed shell. The configuration 2p3s of
C I is an example. For this configuration, the FI rate is sim
Gn53,l 50,l z50

(1) since the escape occurs from a one-elect

state 3s. However, in this case there is a subtlety that do
not occur in the case of closed lower subshells: The te
1P and 3P of the initial configuration have different bindin
energies and thus different FI rates. The coefficients~7! for
the calculation of the FI probability for the CI 2p3s1P and
3P terms are also given in Table I.

III. GENERAL EXPRESSION FOR THE FIELD
IONIZATION PROBABILITY

In this section we generalize the treatment for a sin
electron to the case of an atom of an arbitrary electro
structure. To do so, we have to consider a many-elec
wave function @14,25# describing all the electrons in th
atom, instead of a one-electron wave function that was u
in previous considerations. The approximation of indep
dent electrons still applies, so we present our many-elec
wave function as a linear combination of products of sing
electron wave functions corresponding to all occupied o
electron states in the atom. It is rather obvious that the re
~4! could have been derived using a many-electron w
function too for an atomic configuration in which there is
single electron in the outermost subshell and no holes in
lower subshells. A simple way to show this is given in t
Appendix. We now use the approach we show in the App
-
n
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n

s
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e
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ed
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n
-
-
lt
e

e
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dix for the case of several electrons in the outernl subshell
and fractional parentage. All the lower closed subshells m
be ignored, and thus we may present~see, for example,@26#!
the wave function~A5! of K electrons in the outer subshell i
the form

FLS
LzSz~r1s1•••rKsK!

[u~nl !KLLzSSz&

5 (
SP,LP

GSPLP
SL

~21!K21 (
Sz

Psz ,
(

Lz
P ,l z

FSP 1/2 S

Sz
P sz Sz

G
3FLP l L

Lz
P l z Lz

G u~nl !K21LPLz
PSPSz

P&u~nl !1l l z
1
2 sz&.

~8!

Here u(nl)K21LPLz
PSPSz

P& is a parent wave function

u(nl)1l l z
1
2 sz&[c

nl
1
2

l zsz
(r1s1) is the one-electron wave func

tion, and the square brackets denote Clebsh-Gordan co
cients.GSPLP

SL are the fractional parentage coefficients; tab
for them are given in Ref.@27# along with detailed explana
tions.

Having established this, we have also automatically es
lished the norm

^~nl !K21LP8Lz
P8SP8Sz

P8u~nl !K21LPLz
PSPSz

P&

5dLPLP8 dL
z
PL

z
P8 dSPSP8 dS

z
PS

z
P8,

which allows us to calculate the integral~A4! given in the
Appendix. We first evaluate the expression~A3!
G r1

LLzSSz5E dx1dy1ds1E dr2ds2•••E drNdsNImH F~r1s1•••rNsN!
]

]z1
F* ~r1s1•••rNsN!J

z1.b

5 (
SP,LP

(
Sz

P ,sz

(
Lz

P ,l z

(
S8P,L8P

(
Sz8

P ,sz8
(

Lz8
P ,l z8

E dx1dy1ds1ImH c
nl

1
2

l zsz
~r1s1!

]

]z1
c

nl
1
2

* l z8sz8
~r1s1!J

z1.b

3GSPLP
SL FSP 1/2 S

Sz
P sz Sz

GFLP l L

Lz
P l z Lz

GGS8PL8P
SL F S8P 1/2 S

Sz8
P sz8 Sz

GF L8P l L

Lz8
P l z8 Lz

G
3^~nl !N21L8PLz8

PS8PSz8
Pu~nl !N21LPLz

PSPSz
P&

5 (
SP,LP

~GSPLP
SL

!2(
Sz

P
(
Lz

P
(
sz

(
l z

FSP 1/2 S

Sz
P sz Sz

GFLP l L

Lz
P l z Lz

G(
sz8

(
l z8

FSP 1/2 S

Sz
P sz8 Sz

GFLP l L

Lz
P l z8 Lz

G
3E dx1dy1ds1ImH c

nl
1
2

l zsz
~r1s1!

]

]z1
c

nl
1
2

* l z8sz8
~r1s1!J

z1.b

.

The Clebsh-Gordan coefficient@J
z
(1) J

z
(2) Jz

J(1) J(2) J
# is nonzero only ifJz5Jz

(1)1Jz
(2) ; thus the double summations onsz ,sz8 andl z ,l z8

are removed (sz5sz8 and l z5 l z8). We are then left with
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G r1

LLzSSz5 (
SP,LP

~GSPLP
SL

!2(
Sz

P
(
Lz

P
(
sz

(
l z

S FSP 1/2 S

Sz
P sz Sz

G D 2S FLP l L

Lz
P l z Lz

G D 2

3E dx1dy1ds1ImH c
nl

1

2

l zsz
~r1s1!

]

]z1

c
nl

1

2

* l zsz
~r1s1!J

z1.b

5 (
SP,LP

~GSPLP
SL

!2(
Sz

P
(
Lz

P
(
sz

(
l z

S FSP 1/2 S

Sz
P sz Sz

G D 2S FLP l L

Lz
P l z Lz

G D 2

Gnll z
~1! ,
lle
-

b

sult

s
ron

cal

e of
where

Gnll z
~1! [*dx dy ds Im$cnl~1/2!

l zsz ~rs!~]/]z!c
nl

1
2

* l zsz
~rs!%z.b .

Obviously, Gnll z
(1) cannot depend onSz

P and Lz
P , and in the

nonrelativistic limit it also does not depend onsz . Thus the
summation onsz may be explicitly performed, to yield the
final expression for the ionization probability

G total
LLzSSz5KG r1

LLzSSz

5K (
SP,LP

~GSPLP
SL

!2(
Lz

P
(
l z

S FLP l L

Lz
P l z Lz

G D 2

Gnll z
~1! .

~9!

Note thatGnll z
(1) depends~via the binding energy! on SP and

LP. The total FI probabilityG total
LLzSSz does not depend onSz

~the projection of the total spin!.

IV. APPLICATIONS OF THE GENERAL RESULT

Let us first note that the general expression~9! becomes
identical to Gnll z

(1) for a single outer electron (K51) and

closed inner subshells (SP50, LP50), i.e., for the single-
electron case. For a single electron above a partially-fi
subshell, like the CI 2p3p configuration, one should obvi
ously apply the result~9! to find the ionization probability of
the state with a certain projectionLz of the total orbital an-
gular momentum, and the expression~4! to find the ioniza-
tion probability of the state with a certain projectionl z of the
orbital angular momentum of the optical electron. In the a
sence of fractional parentage, expression~9! turns into a
simple angular component weighting rule

G total
LLzSSz5K(

Lz
P

(
l z

S FLP l L

Lz
P l z Lz

G D 2

Gnll z
~1! . ~10!
d

-

In particular, for the closed outer subshell, the general re
~9! gives

G total
closed subshell52~2l 11!(

Lz
P

(
l z

S FLP5 l l 0

Lz
P l z 0G D 2

Gnll z
~1!

52~2l 11!(
l z

S F l l 0

2 l z l z 0G D 2

Gnll z
~1!

52~2l 11!(
l z

S 1

A2l 11
D 2

Gnll z
~1!

52(
l z

Gn,l ,l z
~1! [(

l z,sz

Gnll z
~1! .

This is an intuitively expected result that simply follow
from the fact that the escape probability for any one elect
does not involve its correlations with the others.

A result similar to expression~9! also follows for thej l
~alias jK) coupling scheme. In this case there is one opti

electron u(nl) l l z
1
2 sz& over a parent ion state

u(nPl P)NP
LPSPJPJz

P&. For j l coupling (nPl P)Þ(nl); thus it
is essentially a one-electron escape case. DenotingK5JP

1 l, we may present the total wave function in the form

u~nPl P!NP
JP~nl !KKzsz&

5(
Jz

P
(
l z

FJP l K
Jz

P l z Kz
G

3u~nPl P!NP
LPSPJPJz

P&u~nl !l l z
1
2 sz&.

Here the radial part ofu(nl) l l z
1
2 sz& depends implicitly~via

the binding energy! on JP, but does not depend onK, i.e.,
one should use the specific binding energy for each valu
JP, averaged over allK possible for thatJP. The FI rate is
then
TABLE II. Coefficients~7! for the one-electron escape rates from the ground configuration terms of the neutral carbon atom.

Initial-state term ZP l k B C1(m50) C1(m51) C2(m50) C2(m51) C3

C I 2s22p2 1D 1 1 0.857 30 0.839 1.766 1.402 21.3329 20.3329 0.4201
C I 2s22p2 3P 1 1 0.909 87 1.033 2.931 1.946 21.1981 20.1981 0.5022
C I 2s22p2 1S 1 1 0.794 11 0.711 1.080 1.078 21.5185 20.5185 0.3338
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GJPKKz5(
Jz

P
(
l z

S FJP l K
Jz

P l z Kz
G D 2

Gnll z
~1! , ~11!

wheresz is omitted from the notation since it has no effe
on the FI probability.

We now give numerical examples for the FI probabil
calculations using the general result~9!. For all calculations,
the expression~4! for one-electron escape ratesGnll z

(1) is used.

The constantsBnl are determined as discussed in Sec. II
The binding energies are taken from atomic data tables g
in Refs.@28–30#.

A. Application to a few species of interest for spectroscopy

1. TheC I 2s22p2 configuration: Occasional
discrimination of certainL z components

Here we are using expression~10! to calculate the FI
probabilities. First we would like to emphasize the followin
interesting feature: In some cases, a certainLz component of
the term should ionize much slower than the others. T
reason for that is as follows: The one-electron FI probabi
Gnll z

(1) is highest for the smallestm[u l zu, i.e., for l z5m50.

The one-electron FI probability for certain value ofm is
roughly (uEu3/2/F)m times smaller than form50. Thus, if in

expression~10! the Clebsh-Gordan coefficient@Lz 0 Lz

LP l L # is

zero, then the entire component2S11LLz
ionizes uEu3/2/F

times more slowly than the others. Thus a discriminat
may occur between the components of a certain term~e.g.,
the components of the CI 2p2 3P term, as illustrated be
low!. In dilute plasmas~in which a probability of collision-
induced transition between components of the same ter
low! under static electric fields this effect may be manifes
by higher relative abundance of the components that fi
ionize more slowly.

The total escape probabilities for the terms of the CI 2p2

configuration are derived from the one-electron escape p
abilities using expression~10!:

G total

1D6252G2p1

~1!1D ,

G total

1D615G2p0

~1!1D1G2p1

~1!1D ,

G total

1D0 5
4

3
G2p0

~1!1D1
2

3
G2p1

~1!1D ,

G total

3P615G2p0

~1!3P1G2p1

~1!3P ,

G total

3P0 52G2p1

~1!3P ,

G total

1S0 5
2

3
G2p0

~1!1S1
4

3
G2p1

~1!1S .

It is seen, as said above, thatG total

1D62!G total

1D0,61 sinceG2p1

(1)1D

!G2p0

(1)1D andG total

3P0 !G total

3P61 sinceG2p1

(1)3P!G2p0

(1)3P . The coef-

ficients ~7! for the calculation of the one-electron esca
probabilitiesG (1) are given in Table II. The total FI prob
abilities are presented in Fig. 3.
.
n

e
y

n

is
d
ld

b-

2. TheC I 2s2p3 configuration: Features of the case
of a fractional parentage

The configuration 2s2p3 produces the following terms
5So, 3So, 3Po, 1Po, 3Do, and 1Do. We will now consider
5So and 3Do; the rest are autoionizing.

The 3Do term of 2s2p3 is actually a2Do term of the 2p3

configuration over a vacancy 2s 2S. The 2s electron does
not participate in the escape, so all that is required to
known is the probability of the FI of the 2p3 2Do term com-
ponents into the 2p2 1D and 3P parent terms. Hence all th
angular factors are the same for the 2s2p3 3Do and 1Do

terms; they both ionize5 like 2p3 2Do. Their binding ener-
gies are different, however; thusk andB must be evaluated
for the 3Do and 1Do terms independently. There is also a
other subtlety we would like to emphasize in particular: D
to the exchange interaction, all the true parent ter
2s2p2 2D, 2P, and 4P have different binding energies. Thi
means that in the present calculations differentk should be
used for different parents, even thoughthe sameinitial term
is ionized.

The FI probabilities for the components of 2p3 2Do ~and
thus for the 2s2p3 3Do and 1Do terms! are calculated di-
rectly from the general expression~9!. For the sake of sim-
plicity, 2s2p2 2P and 4P are considered to have the sam
energy. The result is

G
total

sD62
o

53~G
3P

2D
!2G2p1

~1!sD→2,4P

1~G
1D

2D
!2$2G2p0

~1!sD→2D1G2p1

~1!sD→2D%,

G
total

sD61
o

5
3

2
~G

3P

2D
!2$G2p0

~1!sD→2,4P1G2p1

~1!sD→2,4P%

1
1

2
~G

1D

2D
!2$G2p0

~1!sD→2D15G2p1

~1!sD→2D%,

G
total

sD0
o

5~G
3P

2D
!2$2G2p0

~1!sD→2,4P1G2p1

~1!sD→2,4P%

13~G
1D

2D
!2G2p1

~1!sD→2D ,

wheres51 or 3.G
3P

2D
51/A2 is a fractional parentage coe

ficient for np3 2D→np2 3P andG
1D

2D
521/A2 is a fractional

parentage coefficient fornp3 2D→np2 1D. Note that, as dis-
cussed in Sec. IV A 1, a discrimination~lower FI rate! of
certain term components occurs also here: for1,3D62

o ioniza-
tion into the 2,4P parent term and for1,3D0

o ionization into
the 2D parent term.

The calculation for the terms5So and 3So is simpler since
there is no fractional parentage. Both terms ionize
2p3 4So into 2p2 3P. Thus it is readily observed that

G
total

sS0
o

5G2p0

~1!sS→2,4P12G2p1

~1!sS→2,4P ,

5This is simply an illustration. In reality, the CI 2s2p3 1Do term
is autoionizing and there is very little sense in assessing its
probability.
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FIG. 3. Field ionization rates for the terms of the CI 2s22p2 configuration. The insets emphasize the discrimination~lower field
ionization rates! of the LZ50 component of the3P term and of theLZ562 component of the1D term.
e
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e

s
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at,
on
wheres53 or 5. It is important to note that although th
C I 2s2p3 5So and 3Do terms are not autoionizing, they ca
still undergo a forced autoionization@31#. The results pre-
sented here are only for direct field ionization; therefore, th
should be treated as partial decay rates into the CII 2s2p2

configuration~while forced autoionization produces the CII

ground-state configuration 2s22p).
Table III gives the coefficients~7! for the one-elec-

tron escape probabilitiesG (1) for the terms5So and 3Do of
the CI 2s2p3 configuration. The total FI rates for the term
C I 2s2p3 5So and 3Do are presented in Fig. 4.

3. BaII 6p: The case of a significant spin-orbit interaction

For atoms with a high nuclear charge the spin-orbital
teraction becomes significant. In this case, sincel z is no
longer conserved, it is not appropriate to consider the rate
FI from l z components of the levelnl occupied by the optica
electron. The FI rates in this case must be evaluated forj j z
components of the levelnl, where j equals l 2 1

2 or l 1 1
2

unlessl 50.
To evaluate the one-electron FI ratesG ls j j z

(1) from j j z com-

ponents of the levelnl, we start again from expression~3!,
and take the one-electron wave function in the form
y

-

of

c ls j j z
~r ,s!5(

l z,sz
F l 1

2 j

l z sz j z
Gc lslzsz

~r ,s!.

The operator]/]z commutes with bothl z andsz , so expres-
sion ~3! immediately yields

G ls j j z

~1! 5 (
l z ,sz

S F l 1
2 j

l z sz j z
G D 2

Gnll z
~1! , ~12!

where, for consistency, the FI ratesGnll z
(1) from l z-components

of the levelnl must all be evaluated with an average bindi
energy of the levelnl rather than with the specific bindin
energies of thej components.

The BaII 6p level may serve as an example for such
case. For this level, the splitting between thej 5 1

2 and j
5 3

2 components is approximately 531013 s21 , which
means that for FI rates comparable to or lower than th
mixing betweenl z components is important and expressi
~12! must be used.

One may also notice thatG l 51,j 53/2,j z563/2
(1) 5G l 51,l z561

(1)

!G l 51,l z50
(1) and thus the (j 5 3

2,j z563
2! component should
TABLE III. Coefficients~7! for the one-electron escape rates from the terms3D and 5S of the CI configuration 2s2p3. In the fractional
parentage case, the arrow points to the final term of the CII 2s2p2 configuration.

Initial-state term ZP l k B C1(m50) C1(m51) C2(m50) C2(m51) C3

C I 2s2p3 3D→2,4P 1 1 0.916 83 0.8517 2.010 1.304 21.181 20.1814 0.5138
C I 2s2p3 3D→2D 1 1 0.962 47 1.154 3.884 2.178 21.078 20.0780 0.5944
C I 2s2p3 5S 1 1 0.955 08 1.215 4.275 2.453 21.094 20.0941 0.5808
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ionize much more slowly than the (j 5 3
2 , j z56 1

2 ) and

( j 5 1
2,j z561

2! components. The coefficients~7! for the
evaluation ofGnll z

(1) for the BaII 6p level are given in Table

I.

V. SUMMARY AND CONCLUSIONS

As yet, the probability of ionization by an electric fiel
could only be calculated for the outer electron of ato
~ions! that have a single electron in their outernl subshell
and no inner-subshell vacancies. In this study, a genera
pression is presented for the probability of field ionization
atoms~ions! with an arbitrary electron configuration. In th
limit of a single outer electron over closednl subshells, the
present expression for the FI probability coincides with pu
lished results@13#. In addition, we have given a recipe for
more accurate determination of the amplitudeB of the
single-electron wave-function asymptotics at large ra
which appears in the prefactor of the expressions for the
probability. We have also pointed out the need for cautio
ness in the application of the Hartree-Fock method of ato
structure modeling for the determination of the FI rates. T
general expression we present predicts a nontrivial dep
dence of the FI probability onLz ~the projection of the tota
orbital angular momentum in the direction of external fiel!.
Furthermore, we point out the subtlety arising from possi
FI into different terms of the parent ion in the fraction
parentage case and show the way to account for it. The
of significant spin-orbit interaction is also analyzed.

In our treatment we use the WKB approximation; thus o
expression is exact in the weak-external-field limit. Ho
ever, calculating the FI probability under this limit is suffi
cient for most of the practical purposes since the ionizat
of atoms and ions, for fields within this limit, is already fa
relative to the time scales of the radiative processes an
most of the plasma experiments.

The general expression derived was used to calculate
field ionization probability of several atoms and ions that
of interest for spectroscopic investigations, namely, for
ground and excited states of neutral carbon and lithium,
of singly ionized barium. Our results for the LiI 2p and 3d
levels were found to be in agreement with results availa

FIG. 4. Field ionization rates for the nonautoionizing terms
the CI 2s2p3 configuration.
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from experiments on high-voltage ion diodes@1,2#.
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APPENDIX

We write down anN-electron wave function as a Slate
determinant:

F5
1

AN!
(
i 51

N!

~21! i P̃i$ca1
•••caN

%@~r1s1!•••~rNsN!#,

~A1!

where P̃ is a permutation operator acting on the arr
a1•••aN of one-electron wave functions. These one-elect
wave functions are orthonormal:

E dr ds ca1
ca2

* 5da1 ,a2
. ~A2!

Any one of the electrons atr1•••rN has a finite probabil-
ity to escape. The escape probability of the electron atr1, for
example, is

G r1
5E dx1dy1ds1ImH E dr2ds2•••E drNdsN

3F~r1s1 . . . rNsN!
]

]z1
F* ~r1s1 . . . rNsN!J

z1.b

.

~A3!

The total FI rate is therefore

G5E dx1dy1J~x1y1z1!1E dx2dy2J~x2y2z2!1•••

1E dxNdyNJ~xNyNzN!

5E dx1dy1ds1ImH E dr2ds2•••E drNdsN

3F~r1s1•••rNsN!
]

]z1
F* ~r1s1•••rNsN!J

z1.b

1•••

1E dxNdyNdsNImH E dr1ds1•••E drN21dsN21

3F~r1s1•••rNsN!
]

]zN
F* ~r1s1•••rNsN!J

zN.b

.

~A4!

f
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We can regroupF to separate the part corresponding to t
electron with the coordinatesr1s1, i.e.,

F~r1s1•••rNsN!

5
1

AN!
(
i 51

N!

~21! i P̃i$ca1
•••caN

%@~r1s1!•••~rNsN!#

5
1

AN!
(
k51

N

~21!kcak
~r1s1!

3 (
j 51

~N21!!

~21! j P̃ j$ca1
•••cak21

cak11
•••caN

%

3@~r2s2!•••~rNsN!#. ~A5!

Let us now consider this expression for largez1. As already
said in Sec. II, only the optical electron wave functioncopt
81

v.

o
r

.
d

has a non-negligible amplitude outside the barrier~i.e., only
such an electron may escape!. Therefore, forz1.b, only one
termak , the term proportional tocopt (r 1,s1), survives out
of all the terms. Thus, for largez1,

F~r1s1•••rNsN ;z1.b!

5
1

AN!
~21!koptcopt~r1s1!

3 (
j 51

~N21!!

~21! j P̃ j$cp1
•••cpN21

%

3@~r2s2!•••~rNsN!#, ~A6!

wherecpn
is thenth one-electron parent wave function.

We can now calculate~A3!, i.e., the first term in expres
sion ~A4!:
G r1
5E dx1dy1ds1ImH E dr2ds2•••E drNdsNF~r1s1•••rNsN!

]

]z1
F* ~r1s1•••rNsN!J

z1.b

5
1

N! E dx1dy1ds1ImH copt~r1s1!
]

]z1
copt* ~r1s1!J

3E dr2ds2•••E drNdsNU (
j 51

~N21!!

~21! j P̃ j$cp1
•••cpN21

%@~r2s2!•••~rNsN!#U2

5
1

N! E dx1dy1ds1ImH copt~r1s1!
]

]z1
copt* ~r1s1!J ~N21!! 5

1

N
G~1!.

The otherN21 terms in expression~A4! will yield precisely the same result; thus

G5NG f irst term[G~1!.
-
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