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Ladder climbing and multiphoton dissociation of polyatomic molecules excited with short pulses:
Basic theory and applications to HCO

Peter Schwendner, Christian Beck, and Reinhard Schinke
Max-Planck-Institut fu¨r Strömungsforschung, D-37073 Go¨ttingen, Germany

~Received 11 February 1998!

We present a numerically efficient algorithm for multiphoton dissociation of molecules with light pulses in
the infrared frequency regime. The shape of the external electric field can be arbitrary. The method is essen-
tially based on discretizing the continuum; dissociation is simulated by a coordinate-dependent cutoff function.
A substantial reduction of the computer time required for solving the large set of first-order differential
equations in time (N'2000) can be achieved if the interaction with the field can be separated according to
Ŵ(t)5E(t)m̂eff , where m̂eff is an effective coordinate-dependent dipole moment function. We applied this
method to the excitation and dissociation of the triatomic molecule HCO including all three vibrational degrees
of freedom. Comparison with calculations based on the propagation of a wave packet on a three-dimensional
grid yields good agreement, provided the rate of excitation is not too large. The accuracy of classical trajectory
calculations is also tested.@S1050-2947~98!04907-5#

PACS number~s!: 33.80.Wz
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I. INTRODUCTION

The interaction of a molecule with light is one of the mo
fundamental processes in physics and chemistry@1#. If the
intensity of the electromagnetic field is weak and if the lig
source is operated under continuous-wave~cw! conditions,
the interaction can be described by first-order perturba
theory and more or less simple expressions for, e.g.,
population transfer from the initial to a final state as a fun
tion of time or the absorption cross section can be deri
@2,3#. The situation becomes more complicated, howev
when the light pulse is comparably short and/or when
intensity is high. Under such conditions, first-order pertur
tion theory breaks down and either higher-order treatme
must be applied@4# or the time-dependent Schro¨dinger equa-
tion including the molecule-field interaction has to be solv
without any further approximations@5#.

A topic that has attracted a great deal of research ac
ties, is the dissociation of molecules through the absorp
of several photons in the infrared regime@6–9#. In the past,
experiments were performed with cw lasers, and the deg
to which the resonance condition was fulfilled, i.e., the f
quency of the laser had to be very close to one of the fun
mental frequencies of the molecule, essentially determi
the rate of excitation and subsequent dissociation. Today
possible to generate intense laser pulses in the infrared
gime with pulse lengths well below 1 ps@10,11#. These new
technologies allow one to perform studies that were pre
ously not possible or at least very difficult. For example, in
recent experiment Maaset al. @12# observed excitation o
NO up to the fifth excited vibrational level when it is ex
posed to a 150 fs infrared pulse. An obvious question is, h
does the efficiency of this process depend on the ‘‘inter
ladder’’ of the free molecule or the parameters of the pu
such as intensity, frequency, or duration?

Ladder climbing in molecules with more than one vibr
tional degree of freedom offers even more interesting qu
tions to be tackled. Is the ladder climbing process mode s
PRA 581050-2947/98/58~3!/2203~11!/$15.00
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cific or does it progress in a more statistical manner? W
happens when the molecule reaches an energy regime w
the dynamics is irregular~or classically chaotic!? Does the
excitation process terminate because the coupling betw
levels diminishes or does the dissociation rate increase,
cause the resonance condition is better and better fulfille
a consequence of the increased density of vibrational sta
In which way does internal energy redistribution influen
the excitation process? How is the absorbed energy dis
uted among the various degrees of freedom of the produ

The present paper is the first in a series of publications
which we will investigate ladder climbing and dissociation
small polyatomic molecules such as HCO or HNO. The
ternal dynamics of these molecules is well understood
therefore they are ideally suited to investigate their respo
to strong external fields. Moreover, they are sufficien
small to allow a rigorous numerical treatment without the u
of approximations. In the present paper we outline the ba
numerical tools, present some of the results for HCO, a
discuss these results in terms of the characteristic feature
this simple molecule. More applications will be publishe
elsewhere.

II. METHODS OF CALCULATIONS

In the following, Ĥ0 specifies the time-independen
Hamiltonian of the free molecule and the corresponding s
tionary eigenfunctions are denoted byc i with energiesEi .
The interaction with the electric field is described semicl
sically, i.e., Ŵ(t)52EW (t)•mW , where mW is the coordinate-
dependent dipole-moment vector andEW (t) is the time-
dependent electric field vector. The excitation of t
molecule through the coupling with the external field is d
termined by the time-dependent Schro¨dinger equation

i
]

]t
F~ t !5@Ĥ01Ŵ~ t !#F~ t !; ~1!
2203 © 1998 The American Physical Society
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the explicit dependence of the wave function on the inter
coordinates of the molecule is suppressed in order to s
plify notation. The initial condition for the wave function i
F(t)5c i when initially the molecule was in thei th state.

One way of solving Eq.~1! is the direct propagation o
F(t) on a suitable multidimensional grid@13#. This method
is numerically exact provided the mesh size is sufficien
small. Furthermore, it is rather general and can be used
in principle, arbitrary fieldsEW (t) @14#. Ample examples of
grid propagations have been reported in the literature@15#
~see also the exquisite review by Manz for a comprehen
list of references@16#!. However, there is one severe draw
back, namely the computer time increases quickly with e
additional vibrational degree of freedom. Especially if t
pulse duration is long (.1 ps), the computation time may b
too long for obtaining converged results. As a conseque
there are actually only very few applications for syste
with more than two modes@17–22#. Despite the exceedingly
long computer times, a few ‘‘exact’’ calculations on a gr
have been performed by us and the results will be prese
in Sec. IV; details will be given below. Because of the
purely technical problems, wide variations of the pulse
rameters are basically prohibited for all practical purpos
However, the grid calculations can be utilized for testing
alternative but approximate method, which is considera
faster.

If all the eigenfunctions of the molecular Hamiltonian a
known, an expansion of the time-dependent wave func
according to

F~ t !5(
i

ci~ t !c i ~2!

is computationally more convenient than propagation of
wave packet on a grid, provided the number of states is
unmanageably large. Inserting Eq.~2! into the Schro¨dinger
equation and utilizing the orthonormality of thec i leads to
the well known set of first-order differential equations,

i
d

dt
cI ~ t !5@H= 01W= ~ t !#cI ~ t !, ~3!

whereH= 0 is a diagonal matrix with elementsHii 85Eid i i 8 .
~In what follows, underbars indicate vectors and double
derbars indicate matrices.! The coupling matrix is given by

W= ~ t !52EW ~ t !•m=W , ~4!

with the elements of the dipole moment matrix being defin
by mW i i 85^c i umW uc i 8&. The initial conditions for the expansio
coefficients readci(t)5d i i 8 . In the following we will refer
to the expansion of the wave function in terms of the eig
functions as thematrix methodin contrast to thegrid method
mentioned above.

The matrix method is completely analogous to a g
propagation provided only the bound states ofĤ0 are ex-
cited. However, if the molecule absorbs more and more p
tons, the mean molecular energy gradually approaches
dissociation threshold and eventually the molecule can
sociate. In order to allow for the rupture of one of the bon
one has to include also continuum states in the expan
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basis. There are, however, two basic problems. First, the
culation of continuum wave functions, although possib
even for a triatomic molecule@23#, is computationally very
demanding. Second, there are in principle infinitely ma
continuum states.

In the present work we proceed in the following wa
First, we artificially hinder the molecule to dissociate b
placing an infinitely high barrier at some value of the diss
ciation coordinate,Rmax. This distance must be sufficientl
large to warrant that the molecule practically is dissocia
when the bond distance has reached this value. Su
quently, we calculate the bound states of the free molec
within this multidimensional ‘‘box’’ and include all of them
up to some maximum energyEcut in the basis. By shifting
the boundary to larger distances, one can decrease the m
energy spacing between the ‘‘discretized’’ continuum stat
In the limit thatRmax approaches infinity, the number of bas
functions also becomes infinite and this procedure would
exact. Of course, that is impossible.

Since all basis functions are confined to the box, the m
ecule cannot dissociate. In order to simulate dissociation,
use the same trick as is employed in normal grid calcu
tions; they are also performed on a finite grid and theref
cannot represent dissociation. After every time step
evolving wave packet is multiplied by a coordinat
dependent split functionf split . This function is equal to one
in the inner region of the potential, where the bound sta
are localized, and smoothly diminishes towards the end
the grid @24#. Its purpose is to suppress those parts of
evolving wave packet that approach the border of the fin
grid as the time is increased fromt to t1Dt. Without this
function the wave packet would reappear at the other sid
the grid and thus lead to spurious numerical effects.

In the matrix propagation scheme we proceed in
equivalent way. Multiplication of the wave packet with
coordinate-dependent function f split corresponds to
multiplying—from the left—the coefficient vectorcI (t) with
the matrix f

=
having elements

f i i 85^c i u f splituc i 8&. ~5!

Becausef split is one in the region over which the true boun
state wave functions extend,f i i 85d i i 8 for the true bound
states. The element is zero if one state is a true bound s
and the other one is a discretized continuum state. Howe
when both wave functions are discretized continuum sta
f i i 8 is different from zero. Thus, the matrixf

=
has the follow-

ing structure:

f
=
5S 1=

0
0
a= D ,

wherea= is a full matrix with dimension equal to the numbe
of discretized continuum states@25#. In general, the values o
the diagonal elementsaii decrease withi and the nondiago-
nal elements decrease withu i 2 i 8u. Multiplying the coeffi-
cient vectorcI with this matrix has the result that the coeffi
cients for the true bound states remain unaffected, whe
the coefficients belonging to the continuum states
coupled and damped. The damping is more efficient the
ther the wave functions extend into the product channel
this way, the norm of the wave packet gradually diminish
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PRA 58 2205LADDER CLIMBING AND MULTIPHOTON . . .
when continuum states are populated. Splitting the w
packet is equivalent to introducing an imaginary absorb
potential at large distances@26#. However, the splitting
method has the advantage that the part of the wave pa
that has been removed can be further propagated on
asymptotic grid, in order to calculate final state distributio

Since only a limited number of states are included in
basis, this procedure is an approximation. In order to ch
its general applicability, we performed one-dimensional t
calculations~for a one-dimensional model of HCO dissoci
tion! and compared the results from the matrix method w
the results obtained from propagating a wave packet o
grid. For a system with only one degree of freedom, one
shift the boundaryRmax to very large distances and includ
states up to high energies, thereby making the approxima
better and better. Indeed, perfect agreement between the
approaches was obtained for the dissociation probabi
This encouraged us to apply the method also to systems
more than one internal degree of freedom. These explora
calculations were also used to define an appropriate
function. Of course, the final result, i.e., the dissociat
probability, does not depend on the particular form off split .

The integration of the set of differential equations~3! is
straightforward. The method that is mostly used, for tim
dependent Hamiltonians, is the so-called split-operator te
nique @27,28#. However, in the present applications we i
clude up toN52000 wave functions in the basis, whic
makes these calculations very time consuming too, with
consequence that extensive variations of parameters su
frequency, intensity, and duration of the pulse are prohibit
The reason is that at each time step anN3N matrix has to be
diagonalized in order to apply the time evolution operat
Under certain conditions, which are met in the present c
culations, a drastic reduction of the computer time can
achieved by applying a transformation to a new basis.

Let us assume that the molecule-field interaction can
written as

Ŵ~ t !5E~ t !m̂eff , ~6!

i.e., that the time-dependent part and the coordina
dependent parts are separated. In the present applica
this is the case for linear polarization of the electric fie
Diagonalizing the corresponding matrix for the dipole ope
tor, m= eff , by a matrixT= leads to the new Schro¨dinger equa-
tion

i
d

dt
cĨ ~ t !5@T= tH= 0T= 1E~ t !m=̃ eff#cĨ ~ t !, ~7!

where the vector of new coefficients is given by

cĨ ~ t !5T= tcI ~ t !. ~8!

Note that after the transformation the new dipole matr
m=̃ eff , is diagonal whileT= tH= 0T= is a full matrix.

The short-time propagator for a time stept→t1Dt, in
matrix notation, is then given by
e
g
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exp@2 iH= ~ t !Dt#5exp$2 i @T= tH= 0T= 1E~ t !m=̃ eff#Dt%

'expF2 iE~ t !m=̃ eff

Dt

2 G@T= texp~2 iH= 0Dt !T= #

3expF2 iE~ t !m=̃ eff

Dt

2 G . ~9!

The advantage of the basis transformation is obvious: S
the matrix

T= texp~2 iH= 0Dt !T=

is independent of time, it has to be calculated only once
the beginning of the propagation. In particular, only a sin
matrix diagonalization is required in the entire calculatio
Thus, during the propagation only one matrix-vector mu
plication has to be performed for each time step. Applicat
of the other two exponential functions is trivial, becausem=̃ eff
is a diagonal matrix. The matrix of the split function,f

=
, also

has to be transformed, i.e., the vectorcĨ has to multiplied—
from the left—withT= t f

=
T= rather thanf

=
.

III. CALCULATIONS FOR HCO

A. Potential and dipole moment

In the present paper we apply the theory outlined in
preceding section to the formyl radical, HCO, in its ele
tronic ground stateX̃2A8. The spectroscopy and unimolecu
lar dissociation of this simple triatomic molecule have be
amply studied in recent years, both experimentally and th
retically @29#, and therefore HCO is a good candidate f
investigating excitation and dissociation with strong las
fields. A very accurateab initio potential energy surface
~PES! exists, which has been used in several recent dynam
calculations@30,31#. Figure 1 shows contour plots of the PE
as a function ofR and r for fixed angleg and as a function
of R andg for fixed r . Here,R, r , andg are the usual Jacob
coordinates for the fragmentation into H and CO:R is the
distance from H to the center of mass of CO,r is the CO
vibrational coordinate, andg is the angle betweenR and r
with g50 corresponding to linear HCO. These coordina
are used throughout our calculations. Figure 2~a! shows a cut
through the PES along the dissociation path. In what follo
energy is normalized so thatE50 corresponds to
H1CO(r e). With this normalization the threshold for disso
ciation is atE50.134 eV.

The characteristic features of HCO can be summarized
follows. ~i! The PES has a shallow well of 0.834 eV wit
respect to H1CO(r e) and a small barrier separates the w
region from the product channel.~ii ! Because of the smal
well depth there are only 15 bound states, a number tha
extremely small for a triatomic molecule.~iii ! The CO de-
gree of freedom is very weakly coupled to the other tw
modes, especially the dissociation coordinateR. ~iv! As a
consequence of this weak coupling there exists a long p
gression of resonances, i.e., quasibound states embedde
the continuum, with relatively long lifetimes up to very hig
energies above the threshold. The dynamics calculation
Keller et al. @30,31# reproduce the measured energy lev
and resonance widths for both HCO@32# and DCO@33# very
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2206 PRA 58SCHWENDNER, BECK, AND SCHINKE
well over a large range of energies, which underlines
high accuracy of the calculated PES.

In addition to the PES, one also needs the dipole mom
function mW and its dependence on the coordinates. Like
PES,mW has been calculated by anab initio method using the
MOLPRO program package@34#. It lies in the molecular plane

FIG. 1. Two-dimensional contour plots of the HCO potent
energy surface for fixed angleg5140° ~upper panel! and fixed CO
distancer 52.20a0 ~lower panel!. The highest contour is 3 eV with
respect to the H1CO (r e) asymptote and the spacing is 0.25 eV
-

e

nt
e

and has two components,mW 5(mx,0,mz). The z axis is cho-
sen to be parallel to the CO bond and thex axis is perpen-
dicular to it; they axis is chosen to be perpendicular to t
molecular plane. The present calculations have the chara
of ‘‘realistic model calculations’’ and therefore it was no
our goal to employ a most accurate dipole moment funct
in the dynamics calculations. For this reason we calcula
the dipole momentsmx andmz for a limited number of co-
ordinate points only and fitted them to simple analytical e
pressions according to

l

FIG. 2. ~a! Cut along the minimum energy path of the HC
potential energy surface as a function of the dissociation coordi
R; r andg are optimized for each value ofR. The horizontal lines
indicate the energies of the 15 bound states.~b! Probabilitiesuci u2

with which the bound and the continuum states are populated a
end of the pulse. The parameters of the field are the same as in
9.
mx~RHC,RCO,a!520.012 263 906 958 558 8711.391 453 253 479 689 exp~21.2RHC!10.071 563 961 513 985 04

3exp@2~a2100!2/1000#20.089 676 589 964 959 2 exp@2~a260!2/100#

20.061 899 700 726 940 98 arctan@10.0~RHC23!#10.398 432 144 156 406 8 arctan@0.5~RCO22.1!#,

~10!

mz~RHC,RCC,a!520.616 498 481 764 975 511.038 715 052 345 678 exp~3/52a/100!

10.121 834 867 711 874 4 arctan@2~RHC23!#10.762 275 202 366 669 5 arctan~RCO22!

10.169 491 196 659 661 4 arctan~a/5022!. ~11!
RHC andRCO are the HC and CO bond distances~in units of
a0! and a is the HCO bond angle~in degrees!. The dipole
moments are given in atomic units.

B. Numerical details

Using Jacobi coordinatesR, r , andg and the transforma
tion c(R,r ,g)5c̃(R,r ,g)/(Rr) for the wave function, the
Hamilton operator for the free HCO molecule reads~the total
angular momentum quantum number isJ50!

Ĥ05T̂~R,r !1B~R,r ! ĵ 21V~R,r ,g!, ~12!

where

T̂~R,r !52
1

2m

]2

]R2
2

1

2m

]2

]r 2
~13!
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is the kinetic energy operator for the motion inR and r ,
B(R,r )51/(2mR2)11/(2mr 2) is the coordinate-dependen
rotational constant of the CO moiety,ĵ is the rotational an-
gular momentum operator of CO, andV(R,r ,g) is the po-
tential energy surface.m and m are the reduced masses f
H-CO and CO, respectively.

The calculation of the bound state energies and co
sponding wave functions proceeds in the same way as
scribed in Ref.@35#. In short, first we define primitive base
in R, r , andg. Subsequently, the resulting 3D basis is int
nally contracted to yield a more appropriate basis and t
this new basis is truncated, that is, only states with ener
below a certain value are included. Diagonalization of
Hamiltonian in this contracted-truncated basis gives both
energies and the wave functions. The primitive bases in
two stretch coordinates are series of equally spaced
points ~Fourier discrete variable representation, DVR!; the
grids range fromRmin51.8144a0 to Rmax59a0 with NR
544 and fromr min51.8678a0 to r min53.2a0 with Nr522.
The primitive basis functions in the angular coordinate
Legendre polynomials, i.e., the eigenfunctions ofĵ 2; the
number of polynomials included isNg576. The cutoff en-
ergy is chosen to be 1.75 eV resulting in a total basis
dimensionNtot58987.

The large value forRmax guarantees that most of th
bound-state wave functions in the box have the qualita
character of continuum wave functions despite the fact
they are finite and do not extend to infinity. The main co
puter time is spent before the propagation for diagonaliz
the Hamiltonian and for calculating the matricesm= eff and f

=

needed in the propagation of the wave packets in the s
space.

In order to test the matrix method, we performed also
few calculations in which the wave packet is propagated
the 3D grid in coordinate space. The time propagation
done using the split-operator technique@27,28#, i.e., the
short-time evolution operator is approximated by

exp@2 i ~ T̂1B ĵ21V1Ŵ!Dt#

'expS 2 i T̂
Dt

2 Dexp@2 i ~V1B ĵ21Ŵ!Dt#

3expS 2 i T̂
Dt

2 D , ~14!

whereT̂1B ĵ2, V, andŴ(t) are the kinetic energy operato
the potential energy, and the coupling operator, respectiv
Similar to the calculation of the bound states, the kine
e-
e-
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energy operators inR and r are evaluated by fast-Fourie
transform@13#. The angular degree of freedom is treated
expanding the wave packet in terms of the eigenfunctions
ĵ 2, that is, the Legendre polynomialsPj (g). In order to
avoid the calculation of large time-dependent matrices
many grid points (R,r ), one can make a transformation to
new basis, in which the operator for the angleg is diagonal
~Gauss-Legendre DVR! @36,37#. The matrix for the operator
ĵ 2, which was diagonal in the original basis, now becom
nondiagonal. The corresponding propagator becomes a f
dimensional data structure indexed byR, r , j , and j 8. In
each time step, two fast-Fourier transforms of the thr
dimensional wave packet and a multiplication of the fou
dimensional angular momentum propagator with the wa
packet is necessary, which makes the propagation very
pensive.

Note that the transformation used in the matrix propa
tion and the angular-DVR transformation in the grid prop
gation are completely different. The grid propagation meth
uses exactly the same grid parameters as in the calculatio
the stationary wave functions in the box.

In addition to the two types of quantum-mechanical c
culations, we also performed classical mechanics calc
tions for comparison. The exact quantal approaches are
ceedingly time consuming and therefore only applicable
the smallest systems. The classical calculations are much
demanding and therefore they can be used for studying
ger systems~provided the potential is available!. This re-
quires, however, that one assesses their accuracy by com
son with exact calculations. The trajectory calculatio
require three steps@3#. ~i! The definition of the initial condi-
tions for the three coordinatesR, r , and g and for their
conjugate momentaPR , Pr , and Pg , respectively. In the
present work the initial values are randomly selected fr
normal distributions, which resemble the quantu
mechanical distributions in coordinate space and momen
space, respectively~see, for example, Chap. 5 in Ref.@3#!.
Only those points in the six-dimensional phase space
accepted, which roughly match the zero-point energy of
ground vibrational state.~ii ! Integration of Hamilton’s equa-
tions of motion; in the present work this is done by a Rung
Kutta algorithm.~iii ! Monte Carlo averaging over many tra
jectories; typically, 3000 trajectories are run for each pul

In the present work we assume that the electric field
polarized along the body-fixedz axis of HCO, i.e., W
5Ez(t)mz(R,r ,g). Except where otherwise stated, we u
an envelope for the electric field pulse that grows like s2

within 605 fs, reaches a plateau of length 2420 fs, and fin
decreases again like sin2:
E~ t !55
sin2S tp

1210 fsD sin~vt ! for 0<t,605 fs,

sin~vt ! for 605 fs<t,3025 fs,

sin2S tp

1210 fsD sin~vt ! for 3025 fs<t,3630 fs.

~15!
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2208 PRA 58SCHWENDNER, BECK, AND SCHINKE
For comparison, a few calculations are also performed wi
pure sin2 function with a peak at 302.5 fs and without
plateau, i.e.,

E~ t !5sin2S tp

605 fsD sin~vt !. ~16!

IV. RESULTS

In order to understand the subsequent discussion, we
pict in Fig. 3 the vibrational energy spectrum of HCO a
the corresponding assignment.v1 andv2 are the HC and the
CO stretching quantum numbers basically related to mo
in R and r , respectively, andv3 is the bending quantum
number. We first discuss the general accuracy of the ma
propagation method and then show examples for excita
of the molecule with different frequencies, intensities, a
pulse lengths.

A. Convergence tests

There are basically two parameters that are important
the accuracy of the matrix propagation method, the den
of states with which the continuum is approximated and
number of states included in the expansion of the w
packet. The density is determined by the size of the box,
is, Rmax. The total number of states is essentially dictated
the computer time required for calculating the states, th
wave functions, and the various matrices. In the present
plications the lowest 2000 energy levels have been de
mined and this number represents the maximum of states
can be included.

The general applicability of the method to describe dis
ciation of HCO into H and CO and the density of states
particular has been tested in the following way. We assu
that HCO is initially excited to a particular resonance statei ,
i.e., a quasibound state whose wave function is localize
the region of the potential well and exponentially deca
towards the boundary of the box. The initial coefficients a
such thatci(0)51 for this single state and zero otherwise.
we then propagate the system of linear equations, igno
the external field (Ŵ50), probability is slowly transferred
to other nearby states. This coupling is introduced throu
the cutoff functionf split(R) as described above. Without th
cutoff function, the norm of the initial state would rema
constant, because all states in the basis—by constructio
are orthogonal to each other. Multiplying the wave functio
with f split(R) destroys the orthogonality and thus flow
probability from the initial state to other states becomes p
sible. Plotting the logarithm of the norm of the wave pack
as a function of time yields—after some ‘‘induction
period—a perfectly straight line. The rate of dissociation e
tracted from the slope of this line was found to be in ve
good agreement with the rate obtained from the Lorentz
resonance widths in the time-independent calculations
Ref. @30#. This check has been performed for several re
nance states. The largest deviation found was of the orde
25% and very likely can be attributed to the quite differe
grid sizes used in the two calculations~the grid in the time-
independent calculations of Ref.@30# was denser and there
fore more appropriate for the purely spectroscopic purpos!.
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If the density of ‘‘continuum’’ states was not sufficientl
large, the dissociation would yield dissociation rates in d
agreement with the time-independent calculations.

Once the discretized continuum states are fixed, the m
convergence parameter is the number of states and thu
highest state included in the expansion of the wave pac
When the external field excites the molecule, higher a
higher vibrational levels become populated, i.e., the expe
tion value of the molecular Hamiltonian on average stead
increases. Once states in the continuum are excited, the
ecule begins to dissociate. If the states close to the h
energy limit of the basis become excited, artificial effec
caused by the finite number of expansion functions are
pected and the results cannot be trusted any longer.
scenario is believed to happen with very intense elec
fields.

In order to test the convergence with respect to the nu
ber of states, we performed several calculations with re
tively strong fields. Since the grid calculations are extrem
time consuming, the short laser pulse of Eq.~16! is used in
these calculations. The central frequency equals the fun
mental frequency of the bending mode~see Fig. 3!. In Fig.
4~a! we show the norm of the wave packet calculated with
the box, N(t)5^F(t)uF(t)&, for two different intensities.
The dissociation probability is given byP(t)512N(t). For
the smaller intensity of 1013.7 W/cm2 the excitation is modes
and only;55% of the wave packet dissociates. In this ca

FIG. 3. Energy spectrum of HCO with assignment (v1 ,v2 ,v3),
wherev1 , v2 , andv3 are the number of quanta in the HC stretchi
mode, the CO stretching mode, and the bending mode, respecti
The outermost column on the right-hand side contains all st
irrespective of the assignment. The broken horizontal line marks
dissociation threshold. The assigned levels above the threshold
resent resonance states as calculated in Ref.@30#. The vertical ar-
rows illustrate the multiphoton excitation as described in the te
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the matrix calculation with the maximum of 2000 leve
agrees perfectly with the grid propagation. The small un
lations superimposed onN(t) reflect the oscillations of the
field. When the intensity is increased by a factor of ab
2.5, the dissociation probability increases to about 80%
this case the agreement between the grid calculation and
calculation with 2000 states is good, but not perfect; sm
deviations occur early on. However, comparing calculatio
with 1500, 1700, and 2000 states included in the basis sh
a systematic convergence towards the result obtained
the grid propagation, which is assumed to be numeric
exact. A basis size with presumably 2500 states is expe
to yield good agreement with the exact grid calculation. T
dissociation probability obtained from the classical calcu
tions is in very good accord with the quantum results.

Figure 4~b! shows for the higher intensity the expectati
value of the molecular Hamiltonian,^H0&, as a function of
time. The external field excites the molecule very rapid
from the ground-state level to an energy high above the
sociation energy. When the pulse reaches its maxim
around 300 fs,̂H0& also comes to a maximum. Beyond th
maximum the excitation through the external field begins
decrease. Since at the same time the states above thre
dissociate, more and more of the high-energy states are
moved from the wave packet, which has the net effect t

FIG. 4. ~a! The norm of the wave packet,N(t), for two inten-
sities. I 51013.7 W/cm2: the results of the grid propagation~thick
solid line! and of the matrix propagation with 2000 basis functio
are almost indistinguishable; for clarity of the figure the two curv
are shifted upward by a value 0.1.I 51014.1 W/cm2: comparison of
the grid propagation~thick solid line!, three different matrix propa-
gations with 1500, 1700, and 2000 basis functions~thin curves!,
and the classical trajectory calculation~dashed curve!. The short
pulse of Eq.~15! is used and the frequency is the fundamen
frequency of the bending mode,v3 . ~b! The expectation value o
the molecular Hamiltonian. All other details are the same as in~a!.
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the molecular energy decreases below the threshold ene
When the pulse is switched off at 605 fs and when all co
tinuum states are dissociated,^H0& becomes constant again
The maximum of about 0.7 eV is not too far away from t
energy of the highest state in the basis~1.2 eV! and thus it is
not surprising that the result obtained with theN52000 basis
does not perfectly agree with the grid propagation. The c
culations with the reduced basis sizes agree even less
with the exact calculation. Again, the result of the classi
approach is in surprisingly good agreement with t
quantum-mechanical propagations for the entire duration
the pulse.

B. Mode-specific ladder climbing

In this section we compare the multiphoton excitation a
dissociation caused by excitation in the three fundame
modes, i.e., the central frequency of the pulse is equal to
fundamental energy spacing in each mode~see Fig. 3!. The
long pulse of Eq.~15! is used and the intensity is 1013 W/cm2

in all cases. Figure 5 shows the results for the H-CO stre
ing mode. The three lower panels depict the expectation
ues of the Jacobi coordinates.^R& shows a pronounced os
cillatory motion, whereaŝr & and^g& remain almost constan
except for some small undulations. This means that, as
pected, essentially the laser excites motion alongR, or ex-
pressed differently, only states of the type (v1,0,0) are popu-
lated. The expectation value of the energy of the molec
^H0&, shown in the upper part of Fig. 5, has a perfect sin
soidal behavior, but on the average remains quite small. T

s

l

FIG. 5. Expectation values of the molecular HamiltonianH0 ~in
eV! and the three internal coordinatesR, r ~in a0!, andg ~in de-
grees! as functions of time. The dashed curve is the average en
as obtained from the trajectory calculation. The long pulse defi
in Eq. ~15! is used withv50.302 eV corresponding to the firs
excitation in then1 mode (v1); the intensity is 1013 W/cm2.



e
t
rs

o
p
ity
tio
ith
h

,

is

en

gi
n
a
io
fo

ffi
ly

x
s
th

pr

a
ro
o

fo
,

is
of

u-
the
sfer
he
the
t the
r-

tch-

d
of a

la-

eral

ack
p-

by
ce’’
illa-
o a
he
af-
s-

s

ion

rm

from

2210 PRA 58SCHWENDNER, BECK, AND SCHINKE
behavior is reminiscent of Rabi oscillations in a two-lev
system driven by an external field@2#. Here, the states tha
are involved are the ground vibrational state and the fi
excited state of then1 mode, ~1,0,0!. The minima and
maxima of ^H0& agree well with the energies of these tw
states. Without showing further results, we note that the
riod of the oscillations decreases with increasing intens
The very fast oscillations superimposed on the expecta
values reflect the oscillations of the external force w
which the molecule is driven. They do not change with t
field intensity.

Because of the large anharmonicity in then1 mode, the
next ‘‘staircase,’’ ~2,0,0! is significantly out of resonance
and therefore its excitation is exceedingly small~see Fig. 3!.
Thus, as the pulse is driving the molecule, probability
reshuffled between the two states~0,0,0! and~1,0,0!, despite
the fact that many more states are present. As a consequ
the norm of the wave packet,N(t), remains almost unity for
the entire period, i.e., the dissociation probability is negli
bly small. The ladder climbing stops at the first step a
therefore the molecule can never reach the continuum
dissociate, although it is directly excited in the dissociat
mode. The ladder climbing can be made more efficient,
example, by detuning the excitation frequency. Ifv is ad-
justed so that 2v approximately corresponds to the~0,0,0!-
~2,0,0! transition, the continuum can be reached more e
ciently and the dissociation probability is significant
enhanced. Figure 6 shows an example for an intensity
1013.5 W/cm2; the same calculation for the fundamental e
citation frequencyv1 yields a dissociation probability that i
almost zero. Also shown in this figure, for comparison, is
result from a~short! grid propagation.

The classical result for the mean energy does not re
duce the oscillations of̂H0& in Fig. 5. This is what one
would expect, especially since only two quantum states
significantly populated. However, the average is well rep
duced. The classical dissociation probability is also alm
zero, just like its quantum-mechanical counterpart.

Figure 7 shows the same quantities as in Fig. 5 but
excitation with the fundamental in then2 mode. As expected
the molecule is now excited along the CO bondr as indi-
cated by the large oscillations of^r &. HCO has a surprisingly
long progression of pure states (0,v2,0), in the bound part of
the potential as well as in the continuum@30#. Since this
progression is remarkably harmonic~see Fig. 3!, the laser

FIG. 6. The expectation value of the molecular HamiltonianH0

~in eV! and the norm of the wave packetN(t) as functions of time.
The frequency of the pulse isv50.286 eV roughly corresponding
to half of the ~0,0,0!-~2,0,0! transition energy. The intensity i
1013.5 W/cm2. The dashed curve is the result from a~short! grid
calculation in order to test the accuracy of the matrix propagat
l
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can efficiently drive the molecule up this ‘‘staircase.’’ This
manifested by the large amplitude of the expectation value
the molecular Hamiltonian, which oscillates in a quite reg
lar manner between the maxima and minima. Although
pulse is exactly the same as in Fig. 5, the energy tran
from the field to the molecule is much larger. However, t
dissociation probability is again extremely small, despite
effectiveness of the excitation process. The reason is tha
motion in r is only weakly coupled to the dissociation coo
dinateR, which is manifested by the small amplitude of^R&.
In other words, the dissociation rates for the pure CO stre
ing resonances are very small@30#. Thus, the laser strongly
excites the molecule in ther direction, but this does not lea
to noticeable dissociation, at least not on the time scale
few picoseconds.

In contrast to the results in Fig. 5, the classical calcu
tions reproduce the strong oscillations of^H0& remarkably
well, at least for the first part of the pulse. Because sev
states (0,v2,0) are excited, the wave functionF(t) has the
behavior of a localized wave packet, which bounces b
and forth between the inner and the outer turning point. A
parently, this classical-like behavior is well reproduced
the classical calculations. As time elapses, the ‘‘coheren
is gradually destroyed with the consequence that the osc
tions are damped. The classical calculations give rise t
dissociation probability that is significantly larger than in t
quantum calculations. The deviation becomes significant
ter about 1 ps; we suspect it is the ‘‘dephasing’’ of the ‘‘cla

.

FIG. 7. Expectation values of the molecular HamiltonianH0 ~in
eV! and the three internal coordinatesR, r ~in a0!, andg ~in de-
grees! as functions of time. The upper panel also contains the no
of the quantum-mechanical wave packet inside the ‘‘box,’’N(t).
The two dashed curves are the corresponding data obtained
the trajectory calculation. The long pulse defined in Eq.~15! is used
with v50.231 eV corresponding to the first excitation in then2

mode (v2); the intensity is 1013 W/cm2.
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PRA 58 2211LADDER CLIMBING AND MULTIPHOTON . . .
sical wave packet’’ that causes the failure of the class
calculation.

The ladder climbing is additionally illustrated in Fig. 8
where we show the probabilitiesuci(t)u2 of the pure CO
stretching states (0,v2,0) as functions of time. All probabili-
ties show a pronounced oscillatory structure, which is sim
to the oscillatory structures in Fig. 7. Details of these os
lations, however, depend strongly on the particular lev
When the laser begins to act on the molecule, it drives
quantum system rapidly up the ladder of pure CO stretch
states. The excitation follows basically a sequential step
mechanism, i.e., the molecule climbs from~0,0,0! to ~0,1,0!,
from ~0,1,0! to ~0,2,0!, etc. The oscillations with a period o
about 0.6 ps are again the Rabi-like oscillations mentio
already in Fig. 5. However, while in the latter case only tw
states were involved, here several states are embraced
note again that the period becomes smaller with increa
intensity of the field, as predicted by the simple two-st
model @38#.

Finally, we show in Fig. 9 results for excitation in th
bending moden3 . This ladder is also quite harmonic an
therefore can be climbed easily. In contrast to then2 mode,
however, the bending motion is more strongly coupled to
dissociation mode—manifested by the relatively large exp
tation value of̂ R&—with the result that breaking apart int
H and CO is much more probable. The mean molecular
ergy is significantly smaller than when ther mode is excited;
nevertheless, the dissociation probability is considera
larger. In this case we also performed a calculation on
grid. The two dissociation probabilities and expectation v
ues ofĤ0 agree perfectly. In view of the convergence tests
Fig. 4, this agreement is expected, because the degre
excitation, reflected by the maxima of^H0&, at all instants is
well below the highest state in the basis. The classical ca
lations reproduce the average of^H0& quite well but again
significantly overestimate the dissociation probability. As

FIG. 8. Time dependence of the populationsuci(t)u2 for the pure
CO stretching bound and resonance states (0,v2,0). The parameters
are the same as in Fig. 7.
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Fig. 7, the deviations become significant after about 1
when the dephasing of the classical calculation sets in.

C. Distributions at the end of the pulse

The matrix propagation method also allows us to anal
the distribution of states~including both the true bound state
and the states in the continuum! at the end of the pulse, i.e
which states are populated and which are only margin
excited. This is achieved in the following way. After eac
time step the coefficient vectorcI is multiplied with the ma-
trix f

=
in order to mimic the dissociation. The vectorDcI

[(1=2 f
=
)cI is thereby removed from the wave packet. As t

calculation continues, each component ofDc is separately
propagated by the time evolution operator exp(2iEit). At the
end of the pulse, the part ofcI , which has not yet been re
moved, and allDcI are coherently summed.

In Fig. 2~b! we show one example of such a ‘‘final sta
distribution’’; the corresponding time-dependent picture
given in Fig. 9~excitation with the bending frequencyv3!.
Since in this case the dissociation is comparatively sm
mainly the bound states are populated with state~0,0,2! hav-
ing the maximum probability. Nevertheless, the continuu
states are clearly populated however small their probabili
are. The resonant ladder climbing, which started in the bo
manifold, clearly persists into the continuum. Although t

FIG. 9. Expectation values of the molecular HamiltonianH0 ~in
eV! and the three internal coordinatesR, r ~in a0!, andg ~in de-
grees! as functions of time. The upper panel also contains the no
of the quantum-mechanical wave packet inside the ‘‘box,’’N(t);
the solid line results from the grid propagation and the line with
short dashes is the result of the matrix propagation. The two cu
with the long dashes are the corresponding data obtained from
trajectory calculations. The long pulse defined in Eq.~15! is used
with v50.134 eV corresponding to the first excitation in then3

mode (v3); the intensity is 1013 W/cm2.
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2212 PRA 58SCHWENDNER, BECK, AND SCHINKE
density of quasicontinuum states is very high~right-hand
column in Fig. 3!, only relatively few of them are populate
as manifested by the deep minima between the diffe
clumps separated by\v3 . The fact that the molecule ab
sorbs more photons than required for breaking the bon
calledabove threshold dissociationand has been observed
several theoretical studies of diatomic molecules@39#.

With decreasing pulse duration, the resonance condi
becomes less and less fulfilled with the consequence tha
clumps become gradually broader and smeared out. The
fluence of the pulse length on the clump structure of the fi
state distribution is illustrated in Fig. 10. Shown are the fi
values of the probabilitiesuci u2 for three different pulses hav
ing envelopes as defined in Eq.~16! with pulse lengths of
600, 300, and 150 fs, respectively. The shorter the pulse
less well fulfilled is the resonance condition and the m
blurred is the clump structure. While for the longest tw
pulses states up to the energetic cutoff are populated, fo
150 fs, pulse the population rapidly diminishes towards
highest state in the basis.

V. SUMMARY AND OUTLOOK

We have described a practicable method for studying
brational excitation with subsequent dissociation of m
ecules driven by an—in principle—arbitrary external elect
field. The cornerstone of the method is the expansion of
wave function in terms ofall bound-state wave functions o
the free molecule and a large set of discretized continu

FIG. 10. Probabilitiesuci u2 with which the bound and continuum
states are populated at the end of the propagation for three diffe
pulse durations. The pulses have the form as given in Eq.~16! and
the intensity is 1014.1 W/cm2.
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states. The latter are bound states defined in a box, whic
so large that the wave functions have the character
continuum-state wave functions. Provided the coupling
erator factorizes into a time-dependent part, which is in
pendent of the coordinates, and a coordinate-dependent t
which does not depend on time, an efficient algorithm for
propagation can be applied, which requires only one mat
vector multiplication per time step.

We have applied the method to the multiphoton excitat
and dissociation of HCO in its ground electronic state. Co
parisons to numerically exact calculations on a thr
dimensional grid have shown that, first, the state-expans
method is considerably faster than the traditional grid pro
gation and, second, it is very accurate provided the degre
excitation is not too large. The main convergence param
is the number of states included in the basis. If the molec
climbs up the ladder of vibrational states too quickly, sta
at the upper end of the ladder become significantly popula
and spurious effects can occur. Thus, the expansion me
is the method of choice for small or medium couplin
strengths.

We also tested the accuracy of the classical traject
method. The agreement with the results of the exact g
propagation is very good for short but intense pulses. T
holds true both for the average molecular energy and
dissociation probability. The agreement is less good for
weaker but longer pulses. Thus, the classical calculations
trustworthy only when the interaction time is short, below
ps or so in the present case.

The internal dynamics of HCO is mainly regular and th
is reflected by the quite regular behavior of the expectat
values of the coordinates and the average molecular ene
they show clear-cut Rabi-type oscillations over the entire
ration of the pulse. The regular dynamics is also manifes
by the pronounced mode specificity of the ladder climbi
and the dissociation probability. For example, excitation w
the fundamental of the CO stretching mode does not lea
noticeable dissociation. In contrast, excitation with the fu
damental frequency in the bending mode does result i
significant bond rupture, although the bending frequency
roughly half of the CO frequency, that is, more photons
required to break the bond. In a second publication we w
present results for HNO. The HNO potential well is rough
three times deeper than the HCO well with the result t
there are many more bound states and a considerably hi
density of states. As a consequence, the dynamics is m
irregular and that is clearly shown by the dissociation pro
ability.
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