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Ladder climbing and multiphoton dissociation of polyatomic molecules excited with short pulses:
Basic theory and applications to HCO
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We present a numerically efficient algorithm for multiphoton dissociation of molecules with light pulses in
the infrared frequency regime. The shape of the external electric field can be arbitrary. The method is essen-
tially based on discretizing the continuum; dissociation is simulated by a coordinate-dependent cutoff function.
A substantial reduction of the computer time required for solving the large set of first-order differential
equations in time N~2000) can be achieved if the interaction with the field can be separated according to
W(t) =E(t) e, Where e is an effective coordinate-dependent dipole moment function. We applied this
method to the excitation and dissociation of the triatomic molecule HCO including all three vibrational degrees
of freedom. Comparison with calculations based on the propagation of a wave packet on a three-dimensional
grid yields good agreement, provided the rate of excitation is not too large. The accuracy of classical trajectory
calculations is also testefi51050-294{®8)04907-5

PACS numbd(s): 33.80.Wz

[. INTRODUCTION cific or does it progress in a more statistical manner? What
happens when the molecule reaches an energy regime where
The interaction of a molecule with light is one of the mostthe dynamics is irregulafor classically chaot)® Does the
fundamental processes in physics and chemiglly If the  excitation process terminate because the coupling between
intensity of the electromagnetic field is weak and if the light!evels diminishes or does the dissociation rate increase, be-
source is operated under continuous-wéee) conditions, ~cause the resonance condition is better and better fulfilled as
the interaction can be described by first-order perturbatiof Consequence of the increased density of vibrational states?

theory and more or less simple expressions for, e.g., thil Which way does internal energy redistribution influence
the excitation process? How is the absorbed energy distrib-

population transfer from the initial to a final state as a func- h ;  t fth 5
tion of time or the absorption cross section can be derive(!i’ted among the various degr_ees_ N ree_dom of the pr(_)duct_s.
The present paper is the first in a series of publications in

[2,3]. The situation becomes more complicated, however, hich we will investiaate ladder climbina and dissociation in
when the light pulse is comparably short and/or when the nich we witl investig Imbing ! ation |
. o2 L : small polyatomic molecules such as HCO or HNO. The in-
intensity is high. Under such conditions, first-order perturba-

tion th breaks d d either hiah der treat tternal dynamics of these molecules is well understood and
lon theory breaks down and either higher-order treatmenty, o oo re they are ideally suited to investigate their response
must be applied4] or the time-dependent Scliinger equa-

o " - . to strong external fields. Moreover, they are sufficiently
tion including the molecule-field interaction has to be solvedgm || 1o allow a rigorous numerical treatment without the use
without any further approximatior(]. ~ of approximations. In the present paper we outline the basic
~ A topic that has attracted a great deal of research activinymerical tools, present some of the results for HCO, and
ties, is the dissociation of molecules through the absorptiogjiscuss these results in terms of the characteristic features of
of several photons in the infrared regif®-9]. In the past, this simple molecule. More applications will be published
experiments were performed with cw lasers, and the degregsewhere.
to which the resonance condition was fulfilled, i.e., the fre-
guency of the laser had to be very close to one of the funda-
mental frequencies of the molecule, essentially determined Il. METHODS OF CALCULATIONS
the rate of excitation and subsequent dissociation. Today it is . A » ) i
possible to generate intense laser pulses in the infrared re- In_the following, Ho specifies the time-independent
gime with pulse lengths well below 1 p&0,11. These new Hamllton!an of the_ free molecule and the_ correspc_mdlng sta-
technologies allow one to perform studies that were previfionary eigenfunctions are denoted By with energiesk; .
ously not possible or at least very difficult. For example, in alhe interaction with the electric field is described semiclas-
recent experiment Maast al. [12] observed excitation of sically, i.e., W(t)=—E(t)-u, whereu is the coordinate-
NO up to the fifth excited vibrational level when it is ex- dependent dipole-moment vector ar(t) is the time-
posed to a 150 fs infrared pulse. An obvious question is, howlependent electric field vector. The excitation of the
does the efficiency of this process depend on the “internamolecule through the coupling with the external field is de-
ladder” of the free molecule or the parameters of the pulsgermined by the time-dependent Sdtlirger equation
such as intensity, frequency, or duration?

Ladder climbing in molecules with more than one vibra- ;
tional degree of freedom offers even more interesting ques- : e " .
tions to be tackled. Is the ladder climbing process mode spe- ! at P()=[HoTW(H]P(V); @)
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the explicit dependence of the wave function on the internabasis. There are, however, two basic problems. First, the cal-
coordinates of the molecule is suppressed in order to simeulation of continuum wave functions, although possible
plify notation. The initial condition for the wave function is even for a triatomic moleculg23], is computationally very

®(t) = ¢; when initially the molecule was in thigh state. demanding. Second, there are in principle infinitely many
One way of solving Eq(1) is the direct propagation of continuum states.
®(t) on a suitable multidimensional gr{d3]. This method In the present work we proceed in the following way.

is numerically exact provided the mesh size is sufficientlyFirst, we artificially hinder the molecule to dissociate by
small. Furthermore, it is rather general and can be used foplacing an infinitely high barrier at some value of the disso-

in principle, arbitrary fieldsE(t) [14]. Ample examples of ~ciation coordinateRma,. This distance must be sufficiently
grid propagations have been reported in the literafafg large to warrant that the molecule practically is dissociated
(see also the exquisite review by Manz for a comprehensivéhen the bond distance has reached this value. Subse-
list of referenceg16]). However, there is one severe draw- duently, we calculate the bound states of the free molecule
back, namely the computer time increases quickly with eachvithin this multidimensional “box” and include all of them
additional vibrational degree of freedom. Especially if theUp to some maximum enerdy,, in the basis. By shifting
pulse duration is long* 1 ps), the computation time may be the boundary to larger distances, one can decr_ease the mean
too long for obtaining converged results. As a consequencé&nergy spacing between the “discretized” continuum states.
there are actually only very few applications for systemsln the limit thatRy,,,approaches infinity, the number of basis
with more than two modelsl 7—23. Despite the exceedingly functions also becomes infinite and this procedure would be
long computer times, a few “exact” calculations on a grid €xact. Of course, that is impossible.
have been performed by us and the results will be presented Since all basis functions are confined to the box, the mol-
in Sec. IV; details will be given below. Because of these€ecule cannot dissociate. In order to simulate dissociation, we
purely technical problems, wide variations of the pulse palise the same trick as is employed in normal grid calcula-
rameters are basically prohibited for all practical purposestions; they are also performed on a finite grid and therefore
However, the grid calculations can be utilized for testing ancannot represent dissociation. After every time step the
alternative but approximate method, which is considerablgvolving wave packet is multiplied by a coordinate-
faster. dependent split functiofi;;. This function is equal to one

If all the eigenfunctions of the molecular Hamiltonian arein the inner region of the potential, where the bound states

known, an expansion of the time-dependent wave functio@re localized, and smoothly diminishes towards the end of
according to the grid [24]. Its purpose is to suppress those parts of the

evolving wave packet that approach the border of the finite
grid as the time is increased fromto t+ At. Without this

()= Z (O (2)  function the wave packet would reappear at the other side of
the grid and thus lead to spurious numerical effects.

is computationally more convenient than propagation of the In the matrix propagation scheme we proceed in an
wave packet on a grid, provided the number of states is ngtquivalent way. Multiplication of the wave packet with a
unmanageably large. Inserting E@) into the Schidinger ~ coordinate-dependent  functionfgy,; corresponds  to
equation and utilizing the orthonormality of the leads to ~ multiplying—from the left—the coefficient vectar(t) with

the well known set of first-order differential equations, ~ the matrixf having elements

fiir = (Wil f spiid i) - 5

Becausd g is one in the region over which the true bound-
state wave functions extend,;, = &;;, for the true bound

whereH, is a diagonal matrix with elements;i: =E;dii . giates. The element is zero if one state is a true bound state

(In what follows, underbars indicate vectors and double Uny . the other one is a discretized continuum state. However,

derbars indicate matricgsThe coupling matrix is given by when both wave functions are discretized continuum states,

d
| gy (0 =[Ho+W(D)]e(b), ®

2 R fii is different from zero. Thus, the matrixhas the follow-
Wt =—E(t)- g, 4) ing structure: )
with the elements of the dipole moment matrix being defined 1 0
by wii=(i| | ¥i,). The initial conditions for the expansion f= (6 al’

coefficients read;(t) = &;;, . In the following we will refer
to the expansion of the wave function in terms of the eigenwherea is a full matrix with dimension equal to the number
functions as thenatrix methodn contrast to theyrid method  of discretized continuum stat€®5]. In general, the values of
mentioned above. the diagonal elements; decrease withi and the nondiago-
The matrix method is completely analogous to a gridnal elements decrease with—i’|. Multiplying the coeffi-
propagation provided only the bound statesHy are ex-  cient vectorc with this matrix has the result that the coeffi-
cited. However, if the molecule absorbs more and more phoeients for the true bound states remain unaffected, whereas
tons, the mean molecular energy gradually approaches thhe coefficients belonging to the continuum states are
dissociation threshold and eventually the molecule can diseoupled and damped. The damping is more efficient the far-
sociate. In order to allow for the rupture of one of the bondsther the wave functions extend into the product channel. In
one has to include also continuum states in the expansiothis way, the norm of the wave packet gradually diminishes
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when continuum states are populated. Splitting the WaVngp[_id(t)At]:exp[_i['=|'t|:|0'=|'+ E(t) Zer] At}
packet is equivalent to introducing an imaginary absorbing
potential at large distancef26]. However, the splitting
method has the advantage that the part of the wave packet
that has been removed can be further propagated on the
asymptotic grid, in order to calculate final state distributions. x exl —iE(t)% E

Since only a limited number of states are included in the Ketf 3
basis, this procedure is an approximation. In order to check
its general applicability, we performed one-dimensional tesifhe advantage of the basis transformation is obvious: Since
calculations(for a one-dimensional model of HCO dissocia- the matrix
tion) and compared the results from the matrix method with )
the results obtained from propagating a wave packet on a Tlexp(—iHoADT
grid. For a system with only one degree of freedom, one can . ) )
shift the boundanR, ., to very large distances and include S mdep_endent of time, it has_ to be calc_ulated only once at
states up to high energies, thereby making the approximatioﬁli‘e peglnn|ng Of th? propagation. In partlculgr, only a smgle
better and better. Indeed, perfect agreement between the tfg2trix diagonalization is required in the entire calculation.
approaches was obtained for the dissociation probability! "US, during the propagation only one matrix-vector multi-
This encouraged us to apply the method also to systems witplication has to be performed for each time step. Application
more than one internal degree of freedom. These explorato§f the other two exponential functions is trivial, becajigg
calculations were also used to define an appropriate spllf @ diagonal matrix. The matrix of the split function, also
function. Of course, the final result, i.e., the dissociationhas to be transformed, i.e., the vectohas to multiplied—
probability, does not depend on the particular formfgf,. ~ from the left—with T'fT rather thart.

The integration of the set of differential equatiof® is
straightforward. The method that is mostly used, for time- IIl. CALCULATIONS EOR HCO
dependent Hamiltonians, is the so-called split-operator tech-
nique [27,28. However, in the present applications we in-
clude up toN=2000 wave functions in the basis, which  In the present paper we apply the theory outlined in the
makes these calculations very time consuming too, with th@receding section to the formyl radical, HCO, in its elec-
consequence that extensive variations of parameters such @gnic ground stateX?A’. The spectroscopy and unimolecu-
frequency, intensity, and duration of the pulse are prohibitediar dissociation of this simple triatomic molecule have been
The reason is that at each time sted\aN matrix has to be  amply studied in recent years, both experimentally and theo-
diagonalized in order to apply the time evolution operator.retically [29], and therefore HCO is a good candidate for
Under certain conditions, which are met in the present calinvestigating excitation and dissociation with strong laser
culations, a drastic reduction of the computer time can beields. A very accurateab initio potential energy surface

[T'exp(—iHoAY)T]

] At
~exX —|E(t)&eﬁ7

. 9)

A. Potential and dipole moment

achieved by applying a transformation to a new basis.  (PES exists, which has been used in several recent dynamics
_Let us assume that the molecule-field interaction can b@a|cu|ation5[30,3:u_ Figure 1 shows contour p|ots of the PES
written as as a function oR andr for fixed angley and as a function
of R andy for fixedr. Here,R, r, andy are the usual Jacobi
\7V(t)=E(t),ZLeff, G coordinates for the fragmentation into H and O®is the

distance from H to the center of mass of QOis the CO
vibrational coordinate, ang is the angle betweeR andr
i.e., that the time-dependent part and the coordinatepith =0 corresponding to linear HCO. These coordinates
dependent parts are separated. In the present applicationge used throughout our calculations. Figuf@ 2hows a cut
this is the case for linear polarization of the electric field.through the PES along the dissociation path. In what follows,
Diagonalizing the corresponding matrix for the dipole opera-energy is normalized so thaE=0 corresponds to
tor, gerr, by @ matrixT leads to the new Schanger equa-  H+CO(r,). With this normalization the threshold for disso-
tion ciation is atE=0.134 eV.
The characteristic features of HCO can be summarized as
d follows. (i) The PES has a shallow well of 0.834 eV with
i aT_:(t):[l'tljol'wL E(t)mer]C(1), (7)  respect to H-CO(r.) and a small barrier separates the well
region from the product channeii) Because of the small
well depth there are only 15 bound states, a humber that is
where the vector of new coefficients is given by extremely small for a triatomic moleculéii) The CO de-
gree of freedom is very weakly coupled to the other two
modes, especially the dissociation coordingte(iv) As a
consequence of this weak coupling there exists a long pro-
gression of resonances, i.e., quasibound states embedded into
Note that after the transformation the new dipole matrix,the continuum, with relatively long lifetimes up to very high
Zeft, IS diagonal whileT'H,T is a full matrix. energies above the threshold. The dynamics calculations of
The short-time propagator for a time step-t+At, in Keller et al. [30,3] reproduce the measured energy levels
matrix notation, is then given by and resonance widths for both HGG2] and DCO[33] very

T(H)=T'c(t). €)
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FIG. 2. (a) Cut along the minimum energy path of the HCO
potential energy surface as a function of the dissociation coordinate
R; r and y are optimized for each value &. The horizontal lines
indicate the energies of the 15 bound statbs.Probabilities|c;|?

2 25 3 35 4 45 5 55 6 with which the bound and the continuum states are populated at the
R [units of ag) end of the pulse. The parameters of the field are the same as in Fig.
9.

FIG. 1. Two-dimensional contour plots of the HCO potential
energy surface for fixed angle=140° (upper paneland fixed CO  and has two componentg,= (u,,0,u,). Thez axis is cho-
distancer =2.20g, (lower panel. The highest contour is 3 eV with sen to be parallel to the CO bond and thexis is perpen-
respect to the HCO (re) asymptote and the spacing is 0.25 eV. djcular to it; they axis is chosen to be perpendicular to the

molecular plane. The present calculations have the character

well over a large range of energies, which underlines theof “realistic model calculations” and therefore it was not
high accuracy of the calculated PES. our goal to employ a most accurate dipole moment function

In addition to the PES, one also needs the dipole momerih the dynamics calculations. For this reason we calculated
function u and its dependence on the coordinates. Like thehe dipole momentg, and u, for a limited number of co-
PES,u has been calculated by aib initio method using the ordinate points only and fitted them to simple analytical ex-
MOLPRO program packagg34]. It lies in the molecular plane pressions according to

x(Ruc,Reo,@)=—0.012 263 906 958 558 871.391 453 253 479 689 ekp 1.2R,c) +0.071 563 961 513 985 04
x exf — (a—100)%/1000]—0.089 676 589 964 959 2 elxp («— 60)%/100]
—0.061 899 700 726 940 98 arcfd0.qQ Ryc—3)]+0.398 432 144 156 406 8 arcf@h5(Reo—2.1)],

(10
o Ruc,Rec, @) = —0.616 498 481 764 975-51.038 715 052 345 678 ef@/5— a/100)
+0.121 834 867 711 874 4 arcf@{R,c— 3)]+0.762 275 202 366 669 5 arct®po— 2)
+0.169 491 196 659 661 4 arcan’50— 2). (11)

Ryuc andRg are the HC and CO bond distand@s units of ~ Hamilton operator for the free HCO molecule reétte total
ao) and « is the HCO bond anglé¢in degrees The dipole  angular momentum quantum numbewdis 0)
moments are given in atomic units.

Ho=T(R,r)+B(R,Nj2+V(R,7), (12)
B. Numerical details where
2 2
Using Jacobi coordinatés, r, andy and the transforma- 'AI'(R r):_i‘?__iﬁ_ (13)

tion Y(R,r,y)=y(R,r,y)/(Rr) for the wave function, the
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is the kinetic energy operator for the motion fhandr, energy operators iR andr are evaluated by fast-Fourier
B(R,r)=1/(2mR%) + 1/(2uur?) is the coordinate-dependent transform[13]. The angular degree of freedom is treated by
rotational constant of the CO moiety,is the rotational an- gxpanding the wave packet in terms of the eigenfunctions of
gular momentum operator of CO, aM{R,r,y) is the po-  j2, that is, the Legendre polynomiaB;(y). In order to
tential energy surfacem and u are the reduced masses for avoid the calculation of large time-dependent matrices for
H-CO and CO, respectively. many grid points R,r), one can make a transformation to a
The calculation of the bound state energies and correnew basis, in which the operator for the anglés diagonal

sponding wave functions proceeds in the same way as d‘%Gauss-Legendre DV 36,37). The matrix for the operator

scribed in Ref[35]. In short, first we define primitive bases *, . . . - .
in R, r, andy. Subsequently, the resulting 3D basis is inter-J , Which was diagonal in the original basis, now becomes

nally contracted to yield a more appropriate basis and thenond|agonal. The corresponding propagator becomes a four-

H H H H 1!
this new basis is truncated, that is, only states with energie |men§|onal data structure '”d?xed Byr,j, andj". In
below a certain value are included. Diagonalization of theef'JlCh “!“e step, two fast-Fourier trar_lsforms of the three-
Hamiltonian in this contracted-truncated basis gives both thdimensional wave packet and a multiplication of the four-
energies and the wave functions. The primitive bases in thimensional angular momentum propagator with the wave

two stretch coordinates are series of equally spaced grif@cket is necessary, which makes the propagation very ex-

points (Fourier discrete variable representation, Dyfhe  PENSIVe. _ _ _

grids range fromR,;;=1.8144, t0 R,,=9% with N Note that the transformation used in the matrix propaga-

— 44 and fromr .. =?n8678a0 toor , :3'"5;0 with N =22R tion and the angular-DVR transformation in the grid propa-
min . min . r " . H 5 H

The primitive basis functions in the angular coordinate argd@tion are completely different. The grid propagation method

Legendre polynomials, i.e., the eigenfunctions ]6)‘ the Uses exactly the same grid parameters as in the calculation of

number of polynomials included is_,=76. The cutoff en- the stationary wave functions in the box.
: poly Yoo . In addition to the two types of quantum-mechanical cal-
ergy is chosen to be 1.75 eV resulting in a total basis of

. . culations, we also performed classical mechanics calcula-
dimensionN,,,=8987. P

The large value forR Larantees that most of the tions for comparison. The exact quantal approaches are ex-
9 max 9 ceedingly time consuming and therefore only applicable for

Eﬁgpad;;?g \év::t?nzuunnﬁtlv?/gielr}utrr:c?tigg)s( gg\slei t:]fhgug;ag:/%he smallest systems. The classical calculations are much less
P emanding and therefore they can be used for studying big-

they are finite and do not extend to infinity. The main com-

puter time is spent before the propagation for diagonalizingger systems(provided the potential is availableThis re-
the Hamiltonian and for calculating the matrices; and f uires, however, that one assesses their accuracy by compari-

) . _ = son with exact calculations. The trajectory calculations
needed in the propagation of the wave packets in the Sta‘i‘aequire three steds]. (i) The definition of the initial condi-
Sp?r?ec;rder to test the matrix method, we performed also fions for the three coordinateR, r, and y and for their
few calculations in which the wave pécketes propagated Oaconjugate moment®g, Pr, andP,, respectively. In the
S : ) ~— ~present work the initial values are randomly selected from
the 3D grld n coorgjmate space. Th_e time pro_pagatlon I‘%ormal distributions, which resemble the quantum-
done using the _spllt-operato_r techmq_n@ié?,ZSl, Le., the mechanical distributions in coordinate space and momentum
short-time evolution operator is approximated by space, respectivelisee, for example, Chap. 5 in Ré8]).
o R Only those points in the six-dimensional phase space are
exg —i(T+Bj?+V+W)At] accepted, which roughly match the zero-point energy of the
ground vibrational statdii) Integration of Hamilton's equa-
tions of mation; in the present work this is done by a Runge-
Kutta algorithm.(iii) Monte Carlo averaging over many tra-
jectories; typically, 3000 trajectories are run for each pulse.
~ At In the present work we assume that the electric field is
><exp(—|T 7)' (14 polarized along the body-fixed axis of HCO, i.e.,W
o ) =E,(t)u,(R,r,y). Except where otherwise stated, we use
whereT+Bj?, V, andW(t) are the kinetic energy operator, an envelope for the electric field pulse that grows like® sin
the potential energy, and the coupling operator, respectivelyithin 605 fs, reaches a plateau of length 2420 fs, and finally
Similar to the calculation of the bound states, the kineticdecreases again like $in

- At A
~exp( —iT 7) exg —i(V+Bj?+W)At]

r

e[ 1™ g for  0=<t<605fs
Sl msm(wt) = )

E(t)=¢ sin( wt) for 605 fs<t<<3025 fs, (15

sin2< il %)sin(wt) for 3025 fs<t<3630 fs.
\

1210 f
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For comparison, a few calculations are also performed with a
pure sirt function with a peak at 302.5 fs and without a
plateau, i.e.,

tm
E(t)=sin2(—s) sin(wt). (16) 0.1 — o —
605 f: o200 ——
A oos 110 —_—
IV. RESULTS 0.0k 012 —
In order to understand the subsequent discussion, we de- 020 . T
pict in Fig. 3 the vibrational energy spectrum of HCO and =
the corresponding assignment. andv, are the HC and the D, 0.1f 003 — 4
CO stretching quantum numbers basically related to motion 3 on —
in R andr, respectively, and 5 is the bending quantum ]
number. We first discuss the general accuracy of the matrix & 02b 100 |
propagation method and then show examples for excitation 002 —_—
of the molecule with different frequencies, intensities, and 010 N
pulse lengths.
-0.3F hm] ~
A. Convergence tests 001 —_—
There are basically two parameters that are important for 0.4t ho, ]
the accuracy of the matrix propagation method, the density ho,
of states with which the continuum is approximated and the
number of states included in the expansion of the wave 05 000 -

packet. The density is determined by the size of the box, that

is, Rmax- The total number of states is essentially dictated by FIG. 3. Energy spectrum of HCO with assignment (v,,v3),

the computer time required for calculating the states, theiwherev,, v,, andv; are the number of quanta in the HC stretching
wave functions, and the various matrices. In the present agnode, the CO stretching mode, and the bending mode, respectively.
plications the lowest 2000 energy levels have been deterthe outermost column on the right-hand side contains all states

mined and this number represents the maximum of states thifespective of the assignment. The broken horizontal line marks the
can be included. dissociation threshold. The assigned levels above the threshold rep-

The general applicability of the method to describe dissofesent resonance states as calculated in [Béf. The vertical ar-

ciation of HCO into H and CO and the density of states inrows illustrate the multiphoton excitation as described in the text.

particular has been tested in the following way. We assumg the density of “continuum” states was not sufficiently
that HCO is initially excited to a particular resonance state |arge, the dissociation would yield dissociation rates in dis-
i.e., a quasibound state whose wave function is localized imgreement with the time-independent calculations.

the region of the potential well and exponentially decays Once the discretized continuum states are fixed, the main
towards the boundary of the box. The initial coefficients areconvergence parameter is the number of states and thus the
such thatc;(0)=1 for this single state and zero otherwise. If highest state included in the expansion of the wave packet.
we then propagate the system of linear equations, ignoringvhen the external field excites the molecule, higher and
the external field W=0), probability is slowly transferred higher vibrational levels become populated, i.e., the expecta-
to other nearby states. This coupling is introduced throughion value of the molecular Hamiltonian on average steadily
the cutoff functionf,(R) as described above. Without the increases. Once states in the continuum are excited, the mol-
cutoff function, the norm of the initial state would remain ecule begins to dissociate. If the states close to the high-
constant, because all states in the basis—by construction-energy limit of the basis become excited, artificial effects
are orthogonal to each other. Multiplying the wave functionscaused by the finite number of expansion functions are ex-
with fgpi(R) destroys the orthogonality and thus flow of pected and the results cannot be trusted any longer. This
probability from the initial state to other states becomes posscenario is believed to happen with very intense electric
sible. Plotting the logarithm of the norm of the wave packetfields.

as a function of time yields—after some “induction” In order to test the convergence with respect to the num-
period—a perfectly straight line. The rate of dissociation ex-ber of states, we performed several calculations with rela-
tracted from the slope of this line was found to be in verytively strong fields. Since the grid calculations are extremely
good agreement with the rate obtained from the Lorentziatime consuming, the short laser pulse of Etg) is used in
resonance widths in the time-independent calculations ithese calculations. The central frequency equals the funda-
Ref. [30]. This check has been performed for several resomental frequency of the bending mo¢eee Fig. 3 In Fig.
nance states. The largest deviation found was of the order d@ia) we show the norm of the wave packet calculated within
25% and very likely can be attributed to the quite differentthe box, N(t)=(®(t)|®(t)), for two different intensities.
grid sizes used in the two calculatioftbe grid in the time-  The dissociation probability is given B(t)=1—N(t). For
independent calculations of R¢B0] was denser and there- the smaller intensity of 76" W/cn? the excitation is modest
fore more appropriate for the purely spectroscopic purposesand only~55% of the wave packet dissociates. In this case
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FIG. 4. (a) The norm of the wave packdu(t), for two inten- FIG. 5. Expectation values of the molecular Hamiltonkd (in
sities. | =10'%" W/cn?: the results of the grid propagatigthick  eV) and the three internal coordinatBs r (in ay), and y (in de-
solid line) and of the matrix propagation with 2000 basis functions gree$ as functions of time. The dashed curve is the average energy
are almost indistinguishable; for clarity of the figure the two curvesas obtained from the trajectory calculation. The long pulse defined
are shifted upward by a value 0l&= 10*** W/cm?: comparison of  in Eq. (15) is used withw=0.302 eV corresponding to the first
the grid propagatiofithick solid ling, three different matrix propa- excitation in thery; mode (,); the intensity is 18 W/cn?.
gations with 1500, 1700, and 2000 basis functigtien curves,
and the classical trajectory calculati¢dashed curve The short
pulse of Eq.(15) is used and the frequency is the fundamental
frequency of the bending modes. (b) The expectation value of
the molecular Hamiltonian. All other details are the same &g)in

t[fs]

the molecular energy decreases below the threshold energy.
When the pulse is switched off at 605 fs and when all con-
tinuum states are dissociated,) becomes constant again.
The maximum of about 0.7 eV is not too far away from the

. : . . energy of the highest state in the badi e\) and thus it is

the matrix calculation with the maximum of 2000 levels ,q ¢\1hrising that the result obtained with fkie 2000 basis
agrees perfectly with the grid propagation. The small undu-dOeS not perfectly agree with the grid propagation. The cal-
lations superimposed oN(t) reflect the oscillations of the ¢ jations with the reduced basis sizes agree even less well

field. Whe_n thg ir_ltensity is _incrgased by a factor of aboulyii the exact calculation. Again, the result of the classical
2.5, the dissociation probability increases to about 80%. In, proach is in surprisingly good agreement with the

this case the agreement between the grid calculation and g5 hv;m-mechanical propagations for the entire duration of
calculation with 2000 states is good, but not perfect; small,o pulse

deviations occur early on. However, comparing calculations
with 1500, 1700, and 2000 states included in the basis shows
a systematic convergence towards the result obtained with
the grid propagation, which is assumed to be numerically In this section we compare the multiphoton excitation and
exact. A basis size with presumably 2500 states is expectedissociation caused by excitation in the three fundamental
to yield good agreement with the exact grid calculation. Themodes, i.e., the central frequency of the pulse is equal to the
dissociation probability obtained from the classical calculafundamental energy spacing in each mdsee Fig. 3. The
tions is in very good accord with the quantum results. long pulse of Eq(15) is used and the intensity is ¥ow/cn?
Figure 4b) shows for the higher intensity the expectation in all cases. Figure 5 shows the results for the H-CO stretch-
value of the molecular HamiltoniafH), as a function of ing mode. The three lower panels depict the expectation val-
time. The external field excites the molecule very rapidlyues of the Jacobi coordinatédR) shows a pronounced os-
from the ground-state level to an energy high above the discillatory motion, whereagr) and(y) remain almost constant
sociation energy. When the pulse reaches its maximunexcept for some small undulations. This means that, as ex-
around 300 fs{H) also comes to a maximum. Beyond this pected, essentially the laser excites motion alBygr ex-
maximum the excitation through the external field begins tgpressed differently, only states of the typs 0,0) are popu-
decrease. Since at the same time the states above threshtdted. The expectation value of the energy of the molecule,
dissociate, more and more of the high-energy states are réHy), shown in the upper part of Fig. 5, has a perfect sinu-
moved from the wave packet, which has the net effect thasoidal behavior, but on the average remains quite small. This

B. Mode-specific ladder climbing
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FIG. 6. The expectation value of the molecular Hamiltortign
(in eV) and the norm of the wave packi{t) as functions of time.
The frequency of the pulse i8=0.286 eV roughly corresponding
to half of the (0,0,0-(2,0,0 transition energy. The intensity is A
105 W/cn?. The dashed curve is the result from(shor) grid v
calculation in order to test the accuracy of the matrix propagation.
behavior is reminiscent of Rabi oscillations in a two-level
system driven by an external fie[@]. Here, the states that 155 ¢
are involved are the ground vibrational state and the first AR
excited state of thev; mode, (1,0,0. The minima and v i
maxima of(Hy) agree well with the energies of these two 135 |
states. Without showing further results, we note that the pe-

riod of the oscillations decreases with increasing intensity. 0 !
The very fast oscillations superimposed on the expectation
values reflect the oscillations of the external force with . . .
. - . : FIG. 7. Expectation values of the molecular Hamiltonkdg (in
}/ivef}ldcfilntf;ﬁsrirt])(/)lecule is driven. They do not change with theeV) and the three internal coordinatBs r (in ay), andy (in de-
’ L grees as functions of time. The upper panel also contains the norm
Becau_se of the Iarge.anharr.n.omcny in the mode, the of the quantum-mechanical wave packet inside the “boki(t).
next “staircase,” (2,0,0 is significantly out of resonance

) SN . . * The two dashed curves are the corresponding data obtained from
and therefore its excitation is exceedingly sniaBe Fig. 3 the trajectory calculation. The long pulse defined in &) is used

Thus, as the pulse is driving the molecule, probability isyjth »=0.231 eV corresponding to the first excitation in the
reshuffled between the two stat@0,0 and(1,0,0, despite  mode (,); the intensity is 18 Wicr?.

the fact that many more states are present. As a consequence,

the norm of the wave packe¥|(t), remains almost unity for can efficiently drive the molecule up this “staircase.” This is
the entire period, i.e., the dissociation probability is negligi-manifested by the large amplitude of the expectation value of
bly small. The ladder climbing stops at the first step andthe molecular Hamiltonian, which oscillates in a quite regu-
therefore the molecule can never reach the continuum andr manner between the maxima and minima. Although the
dissociate, although it is directly excited in the dissociationpulse is exactly the same as in Fig. 5, the energy transfer
mode. The ladder climbing can be made more efficient, fofrom the field to the molecule is much larger. However, the
example, by detuning the excitation frequencywlfis ad-  dissociation probability is again extremely small, despite the
justed so that @ approximately corresponds to tfi@,0,0- effectiveness of the excitation process. The reason is that the
(2,0,0 transition, the continuum can be reached more effimotion inr is only weakly coupled to the dissociation coor-
ciently and the dissociation probability is significantly dinateR, which is manifested by the small amplitude(&).
enhanced. Figure 6 shows an example for an intensity o other words, the dissociation rates for the pure CO stretch-
10" Wi/cn?; the same calculation for the fundamental ex-ing resonances are very smf30]. Thus, the laser strongly
citation frequencyw, yields a dissociation probability that is excites the molecule in thedirection, but this does not lead
almost zero. Also shown in this figure, for comparison, is theto noticeable dissociation, at least not on the time scale of a
result from a(shor) grid propagation. few picoseconds.

The classical result for the mean energy does not repro- In contrast to the results in Fig. 5, the classical calcula-
duce the oscillations ofH) in Fig. 5. This is what one tions reproduce the strong oscillations (@,) remarkably
would expect, especially since only two quantum states areell, at least for the first part of the pulse. Because several
significantly populated. However, the average is well reprostates (Q;,,0) are excited, the wave functich(t) has the
duced. The classical dissociation probability is also almosbehavior of a localized wave packet, which bounces back
zero, just like its quantum-mechanical counterpart. and forth between the inner and the outer turning point. Ap-

Figure 7 shows the same quantities as in Fig. 5 but foparently, this classical-like behavior is well reproduced by
excitation with the fundamental in the mode. As expected, the classical calculations. As time elapses, the “coherence”
the molecule is now excited along the CO bands indi- is gradually destroyed with the consequence that the oscilla-
cated by the large oscillations ¢f). HCO has a surprisingly tions are damped. The classical calculations give rise to a
long progression of pure states#§,0), in the bound part of dissociation probability that is significantly larger than in the
the potential as well as in the continuurB0]. Since this quantum calculations. The deviation becomes significant af-
progression is remarkably harmonisee Fig. 3, the laser ter about 1 ps; we suspect it is the “dephasing” of the “clas-

2
t [ps]
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sical wave packet” that causes the failure of the classical

calculation. o . . . ) eV) and the three internal coordinatBs r (in ag), andy (in de-
The ladder climbing is additionally illustrated in Fig. 8, greeg as functions of time. The upper panel also contains the norm

where we show the probabilitielg;(t)|* of the pure CO  of the quantum-mechanical wave packet inside the “boM(t);
stretching states (0;,0) as functions of time. All probabili- the solid line results from the grid propagation and the line with the
ties show a pronounced oscillatory structure, which is similashort dashes is the result of the matrix propagation. The two curves
to the oscillatory structures in Fig. 7. Details of these oscil-with the long dashes are the corresponding data obtained from the
lations, however, depend strongly on the particular leveltrajectory calculations. The long pulse defined in Etp) is used
When the laser begins to act on the molecule, it drives th&/ith @=0.134 eV corresponding to the first excitation in the
guantum system rapidly up the ladder of pure CO Stretchinén()de (@3); the intensity is 18 w/cn.
states. The excitation follows basically a sequential steplike o o
mechanism, i.e., the molecule climbs frd;0,0 to (0,1,0, Fig. 7, the deV|at_|ons become s_|gn|flcant af_ter abou_t 1 ps,
from (0,1,0 to (0,2,0, etc. The oscillations with a period of when the dephasing of the classical calculation sets in.
about 0.6 ps are again the Rabi-like oscillations mentioned o
already in Fig. 5. However, while in the latter case only two C. Distributions at the end of the pulse
states were involved, here several states are embraced. We The matrix propagation method also allows us to analyze
note again that the period becomes smaller with increasinthe distribution of state@ncluding both the true bound states
intensity of the field, as predicted by the simple two-stateand the states in the continupmt the end of the pulse, i.e.,
model[38]. which states are populated and which are only marginally
Finally, we show in Fig. 9 results for excitation in the excited. This is achieved in the following way. After each
bending moder;. This ladder is also quite harmonic and time step the coefficient vectaris multiplied with the ma-
therefore can be climbed easily. In contrast to thenode,  trix f in order to mimic the dissociation. The vectdrc
however, the bending motion is more strongly coupled to the=(1—f)c is thereby removed from the wave packet. As the
dissociation mode—manifested by the relatively large expecealculation continues, each component/of is separately
tation value of(R)—with the result that breaking apart into propagated by the time evolution operator exi;t). At the
H and CO is much more probable. The mean molecular erend of the pulse, the part af which has not yet been re-
ergy is significantly smaller than when thenode is excited; moved, and alA¢ are coherently summed.
nevertheless, the dissociation probability is considerably In Fig. 2b) we show one example of such a “final state
larger. In this case we also performed a calculation on theistribution”; the corresponding time-dependent picture is
grid. The two dissociation probabilities and expectation val-given in Fig. 9(excitation with the bending frequenays).
ues ofH, agree perfectly. In view of the convergence tests inSince in this case the dissociation is comparatively small,
Fig. 4, this agreement is expected, because the degree wfainly the bound states are populated with stat6,2 hav-
excitation, reflected by the maxima @fl), at all instants is  ing the maximum probability. Nevertheless, the continuum
well below the highest state in the basis. The classical calcistates are clearly populated however small their probabilities
lations reproduce the average ;) quite well but again are. The resonant ladder climbing, which started in the bound
significantly overestimate the dissociation probability. As inmanifold, clearly persists into the continuum. Although the

FIG. 9. Expectation values of the molecular Hamiltonkég (in
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states. The latter are bound states defined in a box, which is
so large that the wave functions have the character of
continuum-state wave functions. Provided the coupling op-
erator factorizes into a time-dependent part, which is inde-
pendent of the coordinates, and a coordinate-dependent term,
which does not depend on time, an efficient algorithm for the
107k 300fs ] propagation can be applied, which requires only one matrix-

'IO'] [ ‘ 600 fs

vector multiplication per time step.

We have applied the method to the multiphoton excitation
and dissociation of HCO in its ground electronic state. Com-
parisons to numerically exact calculations on a three-
dimensional grid have shown that, first, the state-expansion
method is considerably faster than the traditional grid propa-
gation and, second, it is very accurate provided the degree of
excitation is not too large. The main convergence parameter
is the number of states included in the basis. If the molecule
climbs up the ladder of vibrational states too quickly, states
at the upper end of the ladder become significantly populated
Elev] and spurious effects can occur. Thus, the expansion method
is the method of choice for small or medium coupling

_
Ol
]

150 fs

04 “0.4

FIG. 10. Probabilitie$c;|2 with which the bound and continuum

states are populated at the end of the propagation for three diﬂereﬁ{rengths' . .
pulse durations. The pulses have the form as given in(Hj.and We also tested the accuracy of the classical trajecto_ry
the intensity is 181 W/cr?. method. The agreement with the results of the exact grid

propagation is very good for short but intense pulses. This
holds true both for the average molecular energy and the
) ) ) ) o dissociation probability. The agreement is less good for the
density of quasicontinuum states is very higight-hand \yeaker but longer pulses. Thus, the classical calculations are
column in Fig. 3, only relatively few of them are populated trustworthy only when the interaction time is short, below 1
as manifested by the deep minima between the dn‘ferer}gS or so in the present case.
clumps separated bfws. The fact that the molecule ab- * The internal dynamics of HCO is mainly regular and this
sorbs more photons than required for breaking the bond ig reflected by the quite regular behavior of the expectation
calledabove threshold dissociati@nd has been observed in \5yes of the coordinates and the average molecular energy:
several theoretical studies of diatomic molecjiéd]. _. they show clear-cut Rabi-type oscillations over the entire du-
With decreasing pulse duration, the resonance conditiofation of the pulse. The regular dynamics is also manifested
becomes less and less fulfilled with the consequence that trbny the pronounced mode specificity of the ladder climbing
clumps become gradually broader and smeared out. The iRy the dissociation probability. For example, excitation with
fluence of the pulse length on the clump structure of the fina}e fundamental of the CO stretching mode does not lead to
state distribution is illustrated in Fig. 10. Shown are the final,qticeable dissociation. In contrast, excitation with the fun-
yalues of the probabili.tiebzi|.2 forthree_different pulses hav-  gamental frequency in the bending mode does result in a
ing envelopes as defined in E(6) with pulse lengths of gjgnificant bond rupture, although the bending frequency is
600, 300, and 150 fs, respectively. The shorter the pulse, thg, ghly half of the CO frequency, that is, more photons are
less well fulfilled is the resonance condition and the MOr€equired to break the bond. In a second publication we will
blurred is the clump structure. While for the longest two present results for HNO. The HNO potential well is roughly
pulses states up to the energetic cutoff are populated, for thgee times deeper than the HCO well with the result that
150 fs, pulse the population rapidly diminishes towards thenere are many more bound states and a considerably higher

highest state in the basis. density of states. As a consequence, the dynamics is more
irregular and that is clearly shown by the dissociation prob-
V. SUMMARY AND OUTLOOK ability.

We have described a practicable method for studying vi-
brational excitation with subsequent dissociation of mol-
ecules driven by an—in principle—arbitrary external electric The authors gratefully acknowledge financial support
field. The cornerstone of the method is the expansion of th&om the Deutsche Forschungsgemeinschaft within the
wave function in terms oéll bound-state wave functions of Schwerpunktsprogramm ‘“Zeitabhgige Phaomene und
the free molecule and a large set of discretized continuunMethoden in Quantensystemen in der Physik und Chemie.”
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