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Electronic energy loss of helium ions in aluminum using the extended-sum-rule method

A. F. Lifschitz and N. R. Arista
Comisión Nacional de Energı´a Atómica, Centro Ato´mico Bariloche and Instituto Balseiro, 8400 Bariloche, Argentina

~Received 24 March 1998; revised manuscript received 11 May 1998!

Using a recently derived extension of the Friedel sum rule to finite velocities we calculate the energy loss of
helium ions in aluminum. The model includes the contribution due to the excitation of valence electrons
according to a quantum-mechanical picture based on scattering theory~transport cross-section approach! and
gives a self consistent representation of the velocity-dependent screening for swift ions. The method provides
a direct evaluation of the nonlinear effects in the more complex range of energies around the stopping power
maximum. In the corresponding limits, the present results converge to the existing low- and high-velocity
approximations. The stopping power values calculated with this method are in good agreement with various
experimental results.@S1050-2947~98!00209-1#

PACS number~s!: 34.50.Bw, 34.50.Fa, 79.20.Rf
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I. INTRODUCTION

The problem of the energy loss of ions in solids has b
for many years a subject of intense experimental and th
retical research@1,2#. One of the main theoretical problems
to formulate a quantum description of the nonlinear effe
that arise from the strong perturbation that the ion produ
in the solid. A consistent solution to this problem has so
been given only for the case of very slow ions moving
jellium @3–5#, which represents the conduction electrons
metals. These calculations were based on the density f
tional ~DF! formalism and in the transport cross-secti
~TCS! approach. On the other hand, a simplified se
consistent model based on the Friedel sum rule was
proposed@6,7#. The model emulates the DF results and h
the advantage of a much simpler calculation. The extens
of the method to the case of inhomogeneous electronic
tributions was shown to explain very well the experimen
data on the energy loss of slow ions in solids, including b
the Z1 and Z2 dependences@8,9#. These models provide
good description of nonlinear scattering and stopping coe
cients but they are all restricted to the case of slowly mov
ions.

More recently, the possibilities of extending the Fried
sum rule to finite velocities were investigated@10,11#. In
particular, the self-consistent model based on the Friedel
rule was reformulated and a quantum calculation was car
out for arbitrary ~nonrelativistic! velocities of the moving
ions @11#. It was shown that this approach reproduces
maximum in the stopping power at intermediate velocit
and merges with the perturbation results in the high-velo
limit, thus providing a complete description of the transiti
from the low- to the high-velocity regimes.

On the other hand, the problem of the energy loss
helium ions in metals has been theoretically investigated
several authors using different methods. A first se
consistent quantum model was proposed by Ferrell
Ritchie for slow ions@12# and the case of swift ions wa
considered by Arnauet al. @13# using a combination of di-
electric and density-functional models. Further calculatio
by Kaneko@14#, and Wang and Nagy@15#, showed the pos-
sibilities of stopping-power evaluations on a wide range
PRA 581050-2947/98/58~3!/2168~6!/$15.00
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velocities using a local-density representation of the diel
tric models.

In the present work we consider the application of a
cently developed model@11#, based on an extension of th
Friedel sum-rule method, to calculate the energy loss o
beam of helium ions in aluminum. With this model w
evaluate the stopping power for a wide range of velociti
including the low- and high-velocity regimes and the regi
around the stopping maximum. A good agreement with
periments is obtained in all cases. A description of the mo
is given in Sec. II. The results are reported in Sec. III, a
the main conclusions are summarized in Sec. IV.

II. THEORETICAL MODEL

A. Partial stopping power

In order to represent the various charge states of the
jectile we assume conditions of charge equilibrium and
calculate the average energy loss, orstopping power
^dE/dx&, as a sum of the contributions from each possi
charge state, namely,

K dE

dxL 5( Fn~v !K dE

dxL
n

, ~1!

where Fn(v) ~with n50,1,2) denotes the equilibrium
charge-state fractions, and^dE/dx&n is the stopping power
for each charge state~i.e., thepartial stopping power@16#!.
Additional contributions from capture and loss processes
inner-shell excitations are to be considered later.

The values of̂ dE/dx&n will be calculated according to
our previous formulation@11# using the following expression
~atomic units are used!:

K dE

dxL
n

5
1

4p2v2E0

vF
u duE

uv2uu

uv1uu
dk k4s tr

~n!~k,v !

3F11
v22u2

k2 G , ~2!
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wherevF is the Fermi velocity of the metal ands tr
(n)(k,v) is

the transport cross section corresponding to the scatterin
electrons in the moving-ion potential@11#. One should note
the various velocities that appear in this expression:v is the
ion velocity,u is the electron velocity relative to the metall
environment (0,u,vF for a distribution of electrons within
a Fermi sphere!, andk is therelativevelocity of the scattered
electron with respect to the ion~the use of the variablek in
this case is adopted to maintain the usual notation of sca
ing theory!. The integrations over the angular variables ha
already been taken into account.

The dependence of the transport cross sections tr on the
ion velocity v in Eq. ~2! is an implicit result of the optimi-
zation of the scattering potential, which contains a screen
parameter that is adjusted in a self-consistent way for e
velocity, and for each charge state, as described in Ref.@11#.

B. Velocity-dependent sum rule

The generalization of the Friedel sum rule to finite velo
ties was developed earlier, and we will give here only a b
description of the model. In the general case of an ion w
nuclear chargeZ1 carrying a numberNb of bound electrons,
the sum rule may be expressed as follows@11#:

Z15
2

p (
l 50

`

~2l 11!Gl~v,vF!1Nb , ~3!

whereGl(v,vF) takes into account the contribution of ea
l -wave component to the screening charge, and may be
pressed as an integral of phase-shift contributions for a
placed Fermi sphere~DFS!, in the form

Gl~v,vF!5
1

4pEDFS
Fdd l~k!

dk GdV dk

5E
kmin

kmaxFdd l~k!

dk Gg~k,v !dk, ~4!

where kmin5max$0,v2vF%, kmax5v1vF , and the function
g(k,v) is defined in Ref.@11#. Explicit expressions for
Gl(v,vF) are also given in Ref.@11#, and some useful ana
lytical results forv.vF andv,vF are included in the Ap-
pendix.

The basis of this method consists of using the exten
sum rule as a condition to adjust a parametrized model
tential by changing the screening parameter and recalcula
numerically the phase shifts until the sum rule is satisfi
with enough accuracy. In this way, we adjust both the pot
tial and the values of the phase shiftsd l . The model provides
an extension of the nonlinear transport cross section
proach to all velocities of the projectile. The main assum
tion of this model is the limitation to the spherical average
the scattering potential; however, the self-consistent met
used to adjust the potential reduces the influence of this
sumption on the final results, showing a good agreem
with the expected values in all cases@11#.
of

r-
e

g
ch

-
f
h

x-
s-

d
o-
ng
d
-

p-
-
f
d
s-
nt

C. Model potentials

The potentials used in the present description should
isfy at least two basic conditions:

~1! Near the nucleus the potential must have a Coulom
like dependence,V(r ).2Z1 /r ~for r→0). ~2! Asymptoti-
cally it should be consistent with the conditions of comple
screening~i.e., the total induced charge should be equal
Z12Nb), and so it must decay faster than 1/r @rV(r )→0, for
r→`]. These conditions must be fulfilled for any physic
values of the parameters. In the case of helium, with th
possible charge states: He0, He1, and He21, we propose
simple model potentials to represent each of these cases
use combinations of hydrogenic potentials of the form

V~r !52Ze2ar S 1

r
1

a

2 D . ~5!

The electronic density corresponding to this potential
given by

n52
1

4p
¹2V5Z

a3

8p
e2ar . ~6!

In the case of ions carrying bound electrons (He0 and He1)
the total electronic density around the moving ion will b
composed of a core termncore, due to the bound electrons
and a screening termnscr due to the scattering of the fre
electrons, namely,n5ncore1nscr, and the corresponding po
tential will be of the formV5Vcore1Vscr.

Let us then consider each of these cases.
~1! He21: This is the simplest case, where the screen

density is provided wholly by the scattering of free electro
and hence the potential will be assumed of the form of E
~5!, with Z52. The value of the parametera in this case will
depend on the ion velocityv, since it will be determined
using the velocity-dependent sum rule for each velocity.

~2! He1: In this case we have one bound electron in as
orbital; hence, the total electronic density and potential w
be assumed of the form

n~1!~r !5
8

p
e24r1

a3

8p
e2ar , ~7!

V~1!~r !52e24r S 1

r
12D2e2ar S 1

r
1

a

2 D . ~8!

The first term in these equations represents the contribu
of the bound electron~for a 1s state with nuclear charge
Z152), while the second term represents the additional c
tribution of the screening electrons corresponding to a to
screening charge of unit value. As before, the value ofa will
be fixed by the velocity-dependent sum rule, and it will ta
a different value than for He21.

~3! He0: In this case we observe that the core term,ncore
5(2g3/8p)exp(2gr), already contains two electrons, whic
provide enough screening charge to assure the electric
trality of the composite. However, this is not the se
consistent solution to the problem of a neutral system
mersed in a screening medium, as it may be checked sim
by noting that the Friedel sum rule is generally not satisfi
Then, in order to achieve self-consistency we will consid
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an additional screening charge distribution, but in order
maintain the overall neutrality the total screening cha
should be zero.

Therefore, we propose a convenient form for the to
electronic density and potential, given by

n~r !52
g3

8p
e2gr1q

a3

8p
e2ar2q

b3

8p
e2br , ~9!

V~r !522e2gr S 1

r
1

g

2D2qe2ar S 1

r
1

a

2 D
1qe2br S 1

r
1

b

2 D . ~10!

Where, in addition to the core contribution~first term!, we
have included an additional screening term~with parameter
a) and a compensatingantiscreeningcomponent~with pa-
rameterb).

The values of these parameters are now taken as follo
the parameterg will be taken equal to 3.375, which is th
value corresponding to the variational calculation of He0 in
vacuum. The value ofq is somewhat arbitrary and was fixe
to 0.5; this might be interpreted as an indication that
screening involves a charge of order unity, similar to t
previous cases, although we note that the results were
very sensitive to this value once the sum rule was satis
since the variation of the free parameter usually compens
the change in theq value~several calculations usingq values
in the range 0.3–1.5 support this conclusion!. Therefore we
do not attribute any significant meaning to this particu
value. The parametersa andb are to be adjusted using th
Friedel sum rule. We note that this provides only one con
tion and is therefore not enough to determine both par
eters. Then, we used as an auxiliary condition that the va
of the phase shiftd0 obtained with this method should coin
cide with the value determined from density function
theory.

III. CALCULATIONS

In Fig. 1 we show the values of the parametera for ~a!
He1 and ~b! He21 adjusted for each velocity using the e
tended Friedel sum rule of Eq.~3! with Nb51 andNb50,
respectively, for the case of aluminum targets (r s52.07). By
comparison, the analytical values from the Born approxim
tion to the Friedel sum rule@see Appendix, Eqs.~A10!,
~A11!#, and the asymptotic high-velocity limit,a
'A2vP /v @Eqs. ~A6!, ~A9!#, are also shown. We observ
important differences in the low-velocity range (v!vF) due
to the failure of the perturbative Born approximation, and
rapid convergence forv@vF . The velocity dependence ofa
shows a relaxation in the screening conditions with incre
ing ion velocity. In particular, we observe a fast drop ofa
when v;vF , corresponding to a sudden expansion of
screening charge around the ion. The behavior ofa at larger
velocities shows the characteristic dependence (;vP /v) ex-
pected in the asymptotic range, as first pointed out by B
@17#.

In Fig. 2 we show the stopping powers of the He1 and
He21 components obtained from the present formulati
o
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Eq. ~2!, using thea values previously determined. The rat
between these stopping values is shown in the inset. We
that this ratio is about 2 not only near the maximum but a
at high velocities. This is a rather striking result since t
expectedZ2 behavior at high velocities would predict a valu
close to four. To explain this behavior we note that the H1

ion is not a simple point charge but a nucleus with charg
surrounded by the charge density of the bound electron.
cording to the partition rule@1# —which would apply at high
velocities— the contributions to the energy loss due to cl
and distant collisions, in the case of pointlike charges, are
the same order; but the effective charge of the He1 ion for
close collisions should be close to two, while the effecti
charge for distant collisions should approach one. Theref
the stopping power for He1 at high velocities may be
roughly approximated by an average between the stopp
powers of a proton and an alpha particle, that is, about
the stopping power of He21.

In order to calculate the total stopping power for a be
of helium ions in solids we should take into account t

FIG. 1. Values of the screening parametera for ~a! He1 and~b!
He21 in aluminum (r s52.07), as a function of ion velocity. Solid
lines: a values numerically adjusted for each velocity using t
extended Friedel sum rule of Eq.~3! with Nb51 andNb50, re-
spectively. Dashed lines: analytical values from the Born appro
mation to the Friedel sum rule@see Appendix, Eqs.~A10!, ~A11!#.
Dotted lines: asymptotic high-velocity limits@Eqs.~A6!, ~A9! in the
Appendix#.
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population of each charge state, described by the equilibr
charge-state fractionsFn(v) ~with n50,1,2) as in Eq.~1!.
Since no direct experimental data of these fractions wit
the solid exist, we used the values calculated by Echen
et al. @18# for the case of aluminum targets. In Fig. 3 w
show the partial stopping powers of He0, He1, and He21,
taking into account the charge state fraction for each case
expected, the He0 fraction dominates the stopping process
low velocities while He21 determines the high-velocity stop
ping. The figure also shows the total stopping power giv
by Eq. ~1! corresponding to excitations of free electro
~FE!.

The calculations already discussed describe the ex
tions of the free electrons in aluminum~corresponding to

FIG. 2. Partial stopping powers for He1 and He21 in aluminum,
calculated from Eq.~2! using the present method, with the values
a numerically determined for each velocity using the extended s
rule as in Fig. 1. The inset shows the stopping ratioR
5^dE/dx&@He21#/^dE/dx&@He1#.

FIG. 3. Stopping power contributions for He0, He1, and He21

in aluminum, calculated as in Fig. 2, and weighted by the co
sponding charge state fractions from Ref.@18#. The upper curve is
the sum of the three contributions and gives the total stopp
power of the free-electron gas in the present method.
m

n
ue

As
t

n

a-

three free electrons per atom!, and represent the main contr
bution to the energy loss process for light ions at low a
intermediate velocities. This is illustrated in Fig. 4, where w
compare the present results for free electron excitations~FE!
with the other mechanisms that contribute to the stopp
power, namely, shell excitations@19# and capture and los
~CL! processes@13#, according to the evaluations given b
previous authors for each case. The contribution from
processes estimated in Ref.@13# amounts to about 15% of th
total in the range of the maximum stopping, although a p
cise calculation of these terms is difficult due to the inac
racy of the perturbative models in this energy range. So
authors have neglected or estimated smaller values for t
terms @14,15,20#. The shell processes give the contributio
from the excitation of theL- andK-shell electrons of alumi-
num @19#; these excitations become more important in t
high-energy range, as expected from the Bethe theory.
comparison, we also show in the figure the results from
density-functional theory~in the low-velocity range!, and the
asymptotic results predicted by the Bethe theory for the f
electron component (B1) and including the effects of inner
shell excitations (B2).

In Fig. 5 we show the final results of the present calcu
tion, including the mentioned corrections, and compare th
with all the available experimental results from differe
sources@21–27#. We observe a quite satisfactory agreeme
both in the low- and high-energy ranges, and a slight ov
estimation around the maximum. It does not seem possib
attribute a unique origin to these residual differences due
the mixed contributions from different processes that oc
in the intermediate range of velocities. However, we obse
a satisfactory representation of the shape of the stopp
curve on the whole energy range.

m

-

g

FIG. 4. Contributions to the stopping power from various pr
cesses. The curve denoted FE gives the free-electron gas con
tion calculated with the present model. The C&L curve shows
estimation of capture and loss processes according to Ref.@13#. The
contribution from inner shells was calculated following Ref.@19#.
The upper solid curve shows the total stopping power values.
curve DF is the density functional prediction for low velocities a
the curves denotedB1 andB2 are the asymptotic Bethe limits fo
the free electron gas and for the whole system.
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IV. SUMMARY AND CONCLUSIONS

The calculations reported here provide a nonperturba
quantum calculation of the stopping power for moving io
through the whole range of nonrelativistic energies, inclu
ing the main region around the stopping-power maximum

The model proposed is based on an extension of the F
del sum rule to finite velocities of the ion, using the quantu
scattering formulation and the transport cross-section
proach. The model converges to the existing low- and hi
velocity models in the corresponding limits, but in addition
describes the region of the stopping-power maximum wh
other approximations usually fail. The model provides
quantitative estimation of the role of nonlinear effects in t
more complex range of intermediate energies. The pre
method describes also the transition from the nonlinear to
linear-screening conditions as the ion velocity increases.

In order to allow a comparison with experimental da
the present calculations for free-electron excitations mus
supplemented with correction effects due to capture and
processes and inner-shell excitations. These further cor
tions are evaluated using perturbative methods that are
ally inaccurate for low and intermediate velocities, but the
is no evidence so far that this may significantly affect t
total results since, on one side, the contribution from cap
and loss processes is relatively small, whereas inner-s
excitations become relevant only for high velocities whe
perturbative methods apply. It is perhaps due to these fa
able conditions that the influence of the correction ter
does not affect very much the final results.

From the comparison with the experimental results
may therefore infer that the present model describes i
satisfactory way the dynamical effects related to the veloc
dependent screening of moving ions, and the stopping-po
due to the excitations of free electrons in metals, which yi
the main contribution to the energy loss in the interest
range of intermediate velocities. We expect that further
plications of the present method to other interacting eleme
will be of much help in providing a more complete unde

FIG. 5. Stopping power values for helium in aluminum as o
tained from the present model, compared with experimental
from various sources:~a! Ref. @21#, ~b! Ref. @22#, ~c! Ref. @23#, ~d!
Ref. @24#, ~e! Ref. @25#, ~f! Ref. @26#, and~g! Ref. @27#.
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standing of the dominant processes around the stopp
power maximum.
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APPENDIX: HIGH-VELOCITY APPROXIMATIONS

We include in this appendix some useful approximatio
corresponding to the perturbative~or first-order Born ap-
proximation!, which apply in the limit of high-velocities.

By expanding the functionGl(v,vF) in the limit v@vF
we get the high-velocity expression of the Friedel sum r
@11#:

Z1>S vF
3

3v2D 2

p (
l

~2l 11!Fdd l

dk G
k5v

1Nb . ~A1!

In this limit one can use the Born approximation to ca
culate the phase shifts, namely,

d l
B~k!522k E

0

`

dr r 2V~r !@ j l~kr !#2 . ~A2!

Using this approximation we get for a simple hydrogen
potential@11#,

2

p (
l

~2l 11!d l
B~k!5

8k

p

Z1

a2
, ~A3!

and therefore,

Z1>S vF
3

3v2D F d

dkS 8k

p

Z1

a2D G
k5v

1Nb5S 8vF
3

3pv2D Z1

a2
1Nb .

~A4!

This expression yields the value ofa that satisfies the sum
rule in the Born approximation~for NbÞZ1), namely,

aB5A8vF
3

3p

Z1

Z12Nb

1

v
5A 2Z1

Z12Nb

vp

v
. ~A5!

In particular, in the case of He21 ~with Z152, Nb50) we
get

aB5A8vF
3

3p

1

v
5A2

vp

v
. ~A6!

On the other hand, in the case of He1 using the potential
V(r ) of Eq. ~8! in Eq. ~A2! we obtain

2

p (
l

~2l 11!d l
B~k!5

8k

p S 1

aB
2

1
1

b2D 1Nb , ~A7!

and in particular forNb51 andb54, we get

-
ta
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aB5S 3pv2

8vF
3

2
1

16D 21/2

. ~A8!

The term 1/16 in this expression is negligible forv@vF , so
that to a good approximation

aB.A8vF
3

3p

1

v
5A2

vp

v
, ~A9!

which converges to the case of He21, Eq. ~A6!.
The previous considerations can be extended to the w

range of velocities~ignoring for the moment the breakdow
of the Born approximation at low velocities!, following the
derivation given in Ref.@11# @cf. Eq. ~19! of this reference#.
By repeating those calculations we obtain
.

ate

H

. B

g

H.
le

~a! for He1:

aB
25S H 4vF

p F11
vF

22v2

2vFv
lnUv1vF

v2vF
UG J 21

2
1

16D
21

~A10!

~b! for He21:

aB
25

4vF

p F11
vF

22v2

2vFv
lnUv1vF

v2vF
UG . ~A11!

These approximations are compared with the exact
merical values ofa in Fig. 1. It may also be observed tha
both values are nearly coincident forv@vF .
ys.
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