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Electronic energy loss of helium ions in aluminum using the extended-sum-rule method
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Using a recently derived extension of the Friedel sum rule to finite velocities we calculate the energy loss of
helium ions in aluminum. The model includes the contribution due to the excitation of valence electrons
according to a quantum-mechanical picture based on scattering tfiesorgport cross-section approaemd
gives a self consistent representation of the velocity-dependent screening for swift ions. The method provides
a direct evaluation of the nonlinear effects in the more complex range of energies around the stopping power
maximum. In the corresponding limits, the present results converge to the existing low- and high-velocity
approximations. The stopping power values calculated with this method are in good agreement with various
experimental result§S1050-2947®8)00209-1

PACS numbgs): 34.50.Bw, 34.50.Fa, 79.20.Rf

[. INTRODUCTION velocities using a local-density representation of the dielec-
tric models.

The problem of the energy loss of ions in solids has been In the present work we consider the application of a re-
for many years a subject of intense experimental and thecsently developed modgll1], based on an extension of the
retical researchil,2]. One of the main theoretical problems is Friedel sum-rule method, to calculate the energy loss of a
to formulate a quantum description of the nonlinear effecteam of helium ions in aluminum. With this model we
that arise from the strong perturbation that the ion producegvaluate the stopping power for a wide range of velocities,
in the solid. A consistent solution to this problem has so fafincluding the low- and high-velocity regimes and the region
been given only for the case of very slow ions moving in@round the stopping maximum. A good agreement with ex-
jellium [3-5], which represents the conduction electrons ofPeriments is obtained in all cases. A description of the model
metals. These calculations were based on the density funé given in Sec. Il. The results are reported in Sec. lll, and
tional (DF) formalism and in the transport cross-sectionthe main conclusions are summarized in Sec. IV.

(TCS approach. On the other hand, a simplified self-

consistent model based on the Friedel sum rule was also

proposed 6,7]. The model emulates the DF results and has II. THEORETICAL MODEL

the advantage of a much simpler calculation. The extension A. Partial stopping power

of the method to the case of inhomogeneous electronic dis- .
tributions was shown to explain very well the experimental. 'T‘ order to represent _the various charge states of the pro-
data on the energy loss of slow ions in solids, including botHeCtIIe we assume conditions of charge equm_brlum and we
the Z, and Z, dependencel3,9]. These models provide a calculate the average energy IO.SS’ stopping power
good description of nonlinear scattering and stopping coeffing/dX% as a sum of the contributions from each possible
cients but they are all restricted to the case of slowly movingCharge state, namely,

ions. dE dE
More recently, the possibilities of extending the Friedel <d_> =E (I)n(v)<d—> , (D)
sum rule to finite velocities were investigat¢t0,11. In X XIn

particular, the self-consistent model based on the Friedel sum

rule was reformulated and a quantum calculation was carrie{}{lhere

out for arbitrary (nonrelativisti¢ velocities of the moving charae-state fractions. andE/dx). is the stoppind bower
ions [11]. It was shown that this approach reproduces th%r e%ch charge stat(e;a.,pt(hepart?gI stopping BEWE{EG]).

maximum in the stopping power at |nter.med|at¢ Vemc't'?SAdditional contributions from capture and loss processes and
and merges with the perturbation results in the high-velocity

imit. th idi lote d o fthe t i inner-shell excitations are to be considered later.
Imit, thus providing a compiete description ot the ransition — pg y51yes of{dE/dx), will be calculated according to
from the low- to the high-velocity regimes.

On the other hand, the problem of the energy loss ogur previous formulatiofl1] using the following expression

helium ions in metals has been theoretically investigated b atomic units are usgd
several authors using different methods. A first self-
consistent quantum model was proposed by Ferrell and dE 1 vE o+
Ritchie for slow ions[12] and the case of swift ions was <&> f u dUJ
considered by Arnawet al. [13] using a combination of di-

electric and density-functional models. Further calculations

by Kaneko[14], and Wang and Naghl5], showed the pos- X
sibilities of stopping-power evaluations on a wide range of

®,(v) (with n=0,1,2) denotes the equilibrium

u
dk KaM(k,v)
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wherev¢ is the Fermi velocity of the metal anf{,“)(k,v) is C. Model potentials

the transport cross section corresponding to the scattering of The potentials used in the present description should sat-
electrons in the moving-ion potentifl1]. One should note isfy at least two basic conditions:
the various velocities that appear in this expressiors the (1) Near the nucleus the potential must have a Coulomb-
ion velocity,u is the electron velocity relative to the metallic |ike dependencey(r)=—2Z,/r (for r—0). (2) Asymptoti-
environment (@<u<uv¢ for a distribution of electrons within - ¢cajly it should be consistent with the conditions of complete
a Fermi spherg andk is therelativevelocity of the scattered  screeningi.e., the total induced charge should be equal to
electron with respect to the iaoithe use of the variablk in Z,—N,), and so it must decay faster tham Y\ (r)—O0, for
this case is adopted to maintain the usual notation of scattef-, «]. These conditions must be fulfilled for any physical
ing theory. The integrations over the angular variables haveyajues of the parameters. In the case of helium, with three
already been taken into account. _ possible charge states: HeHe", and H&", we propose
The dependence of the transport cross seatipon the  simple model potentials to represent each of these cases. We

ion velocity v in Eq. (2) is an implicit result of the optimi- yse combinations of hydrogenic potentials of the form
zation of the scattering potential, which contains a screening

parameter that is adjusted in a self-consistent way for each _ o
velocity, and for each charge state, as described in[R&f. V(r)=-Ze

1+a
T3 5

The electronic density corresponding to this potential is

B. Velocity-dependent sum rule given by
The generalization of the Friedel sum rule to finite veloci- 1 o3
ties was developed earlier, and we will give here only a brief n=— 4_V2V228_e* ar (6)
T a

description of the model. In the general case of an ion with
nuclear charg&; carrying a numbeN, of bound electrons,

the sum rule may be expressed as follqd]; In the case of ions carrying bound electrons {ldaed He')

the total electronic density around the moving ion will be
o composed of a core term.,,., due to the bound electrons,
Zi=— E (21+1)G(v,vg) + Ny, (3) and a screening termg, due to the scattering of the free
mI=0 electrons, namelyp = Ny Nser, and the corresponding po-
tential will be of the formV=V g+ V-

) o Let us then consider each of these cases.
whereG,(v,vg) takes into account the contribution of each (1) H**: This is the simplest case, where the screening

I-wave component to the screening charge, and may be egensity is provided wholly by the scattering of free electrons,
pressed as an integral of phase-shlft contributions for a disyng phence the potential will be assumed of the form of Eq.
placed Fermi spheréDFS), in the form (5), with Z=2. The value of the parameterin this case will
depend on the ion velocity, since it will be determined
using the velocity-dependent sum rule for each velocity.
Gi( _ i déi(k) (2) He": In this case we have one bound electron insa 1
1(v,vE) yp K dQ dk bital: . g . X
DF orbital; hence, the total electronic density and potential will
be assumed of the form

ma 481(K)
:fkmm — otk (4 o

8
nM(ry=—e ¥+ _——e *, )
T 8w

o

1
— 4+ —

where Kynin=max0y —vg}, Kna=v+ve, and the function _ear
r 2/

g(k,v) is defined in Ref.[11]. Explicit expressions for
Gi(v,vg) are also given in Ref.11], and some useful ana-
lytical results forv>v andv<vg are included in the Ap- The first term in these equations represents the contribution
pendix. of the bound electrorffor a 1s state with nuclear charge
The basis of this method consists of using the extended;=2), while the second term represents the additional con-
sum rule as a condition to adjust a parametrized model pdribution of the screening electrons corresponding to a total
tential by changing the screening parameter and recalculatirgereening charge of unit value. As before, the value ofill
numerically the phase shifts until the sum rule is satisfiede fixed by the velocity-dependent sum rule, and it will take
with enough accuracy. In this way, we adjust both the potena different value than for Hg .
tial and the values of the phase shif{s The model provides (3) HE”: In this case we observe that the core tengy,
an extension of the nonlinear transport cross section ap=(27y%/8w)exp(—yr), already contains two electrons, which
proach to all velocities of the projectile. The main assump-provide enough screening charge to assure the electric neu-
tion of this model is the limitation to the spherical average oftrality of the composite. However, this is not the self-
the scattering potential; however, the self-consistent methodonsistent solution to the problem of a neutral system im-
used to adjust the potential reduces the influence of this asnersed in a screening medium, as it may be checked simply
sumption on the final results, showing a good agreemerity noting that the Friedel sum rule is generally not satisfied.
with the expected values in all cadddl]. Then, in order to achieve self-consistency we will consider

V(r)y=—e ¥ )

1
Z42
r
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an additional screening charge distribution, but in order to 7 v T T

maintain the overall neutrality the total screening charge "¢ i (@) He 1
should be zero. el % A
Therefore, we propose a convenient form for the total E
electronic density and potential, given by 12 , ]
I D — Numerical
)/3 ol ,83 /; 10 [ | S Born approx. ]
n(r)= Zg e 7r+Qg67 M—Qgef’gr, 9 % 08 | oo e Asymptotic approx. J
06 |-
V(ry=—2e™ " l+Z —-ge ' 1~|—E 04 -
r 2 q r 2
02 |-
rae (T B R B
v(au)
Where, in addition to the core contributidfirst term), we
have included an additional screening tefwith parameter
a) and a compensatingntiscreeningcomponent(with pa- TSN
rameterg). Y (b) He
The values of these parameters are now taken as follows S8 S .
the parametery will be taken equal to 3.375, which is the Y i
value corresponding to the variational calculation of kfe s —— Numerical
vacuum. The value of is somewhat arbitrary and was fixed _ '°r ------ Born approx. ]
to 0.5; this might be interpreted as an indication that thes 4| N e Asymptotic approx. ]

screening involves a charge of order unity, similar to the S
previous cases, although we note that the results were nc~ 06
very sensitive to this value once the sum rule was satisfiec

. .. 04 |
since the variation of the free parameter usually compensate

the change in thg value(several calculations usingvalues 02

in the range 0.3—1.5 support this conclugiofherefore we ol v ey
do not attribute any significant meaning to this particular "o 1 2 3 4 5 6 7 8
value. The parameters and 8 are to be adjusted using the v(au)

Eriedel sum rule. We note that this provides 'only one condi- FIG. 1. Values of the screening paramedefor (a) He* and(b)

tion and is therefore not enough to determine both paramp+  o1yminym ts=2.07), as a function of ion velocity. Solid

eters. Then, We_ used as_ an aU_X"'af}’ condition that the Yaluﬁ'\nes: a values numerically adjusted for each velocity using the

o_f the phase shif, obtained Wlth this method .should CoiN- extended Friedel sum rule of E3) with Ny=1 andN,=0, re-

cide with the value determined from density functional gpectively. Dashed lines: analytical values from the Born approxi-

theory. mation to the Friedel sum rulsee Appendix, EqSA10), (A11)].
Dotted lines: asymptotic high-velocity limif&Eqgs.(A6), (A9) in the

lll. CALCULATIONS Appendix.

In Fig. 1 we show the values of the parametefor ()  Eq. (2), using thea values previously determined. The ratio
He® and (b) He** adjusted for each velocity using the ex- between these stopping values is shown in the inset. We find
tended Friedel sum rule of E¢3) with N,=1 andN,=0, that this ratio is about 2 not only near the maximum but also
respectively, for the case of aluminum targets<2.07). By  at high velocities. This is a rather striking result since the
comparison, the analytical values from the Born approximaexpectedZ? behavior at high velocities would predict a value
tion to the Friedel sum rulgsee Appendix, Eqs(Al0),  close to four. To explain this behavior we note that the He
(A11)], and the asymptotic high-velocity limit,e  jon is not a simple point charge but a nucleus with charge 2
~ \/Ewp/v [Egs. (AB), (A9)], are also shown. We observe surrounded by the charge density of the bound electron. Ac-
important differences in the low-velocity range<€vg) due  cording to the partition rulgl] —which would apply at high
to the failure of the perturbative Born approximation, and avelocities— the contributions to the energy loss due to close
rapid convergence far>vr . The velocity dependence ef  and distant collisions, in the case of pointlike charges, are of
shows a relaxation in the screening conditions with increasthe same order; but the effective charge of the” Hen for
ing ion velocity. In particular, we observe a fast dropmf close collisions should be close to two, while the effective
whenv~vg, corresponding to a sudden expansion of thecharge for distant collisions should approach one. Therefore,
screening charge around the ion. The behaviar eft larger  the stopping power for He at high velocities may be
velocities shows the characteristic dependereaf /v) ex-  roughly approximated by an average between the stopping
pected in the asymptotic range, as first pointed out by Bohpowers of a proton and an alpha particle, that is, about half
[17]. the stopping power of Hé .

In Fig. 2 we show the stopping powers of the Hand In order to calculate the total stopping power for a beam
He?™ components obtained from the present formulationof helium ions in solids we should take into account the
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FIG. 2. Partial stopping powers for Fleand Hé* in aluminum, FIG. 4. Contributions to the stopping power from various pro-

calculated from Eq(2) using the present method, with the values of cesses. The curve denoted FE gives the free-electron gas contribu-
« numerically determined for each velocity using the extended suntion calculated with the present model. The C&L curve shows an
rule as in Fig. 1. The inset shows the stopping raB  estimation of capture and loss processes according td Rif.The
=(dE/dx)[He?* ]/(dE/dx)[He"]. contribution from inner shells was calculated following Rgf9].

The upper solid curve shows the total stopping power values. The
population of each charge state, described by the equilibriureurve DF is the density functional prediction for low velocities and
charge-state fraction®,(v) (with n=0,1,2) as in Eq(1).  the curves denoteB1 andB2 are the asymptotic Bethe limits for
Since no direct experimental data of these fractions withirthe free electron gas and for the whole system.
the solid exist, we used the values calculated by Echenique

ert1al. [1hS] for Fhle case of aluminumf %L?rgetf. In Fig€+3 W€ three free electrons per atonand represent the main contri-
show the partial stopping powers of HeHe", and He™, bution to the energy loss process for light ions at low and

taklngtln(;ot?]ccol_?tgt tht_e chcf;lrgg St?te irhactl?n fo_r each case. '?Iﬁtermediate velocities. This is illustrated in Fig. 4, where we
expected, the raction dominates the slopping process a compare the present results for free electron excitatiBEs

low velocities while H&" determines the high-velocity stop- - ; . .
ping. The figure also shows the total stopping power givenW'th the other mechanisms that contribute to the stopping

by Eg. (1) corresponding to excitations of free electrons POWer: namely, shell excnatlor[ig] and capture an_d loss
(FE) (CL) processe$13], according to the evaluations given by

The calculations already discussed describe the excitd2f€Vious authors for each case. The contribution from CL
tions of the free electrons in aluminuforresponding to Processes estimated in REE3] amounts to about 15% of the
total in the range of the maximum stopping, although a pre-
07 —r . . . . . . cise calculation of these terms is difficult due to the inaccu-
racy of the perturbative models in this energy range. Some
authors have neglected or estimated smaller values for these
terms[14,15,2Q0. The shell processes give the contribution
from the excitation of thé.- andK-shell electrons of alumi-
num [19]; these excitations become more important in the
o high-energy range, as expected from the Bethe theory. By
04 He T comparison, we also show in the figure the results from the
[ T density-functional theoryin the low-velocity rangg and the
03 . asymptotic results predicted by the Bethe theory for the free
I T electron componenti1) and including the effects of inner-
02 . . shell excitations B2).
He 1 In Fig. 5 we show the final results of the present calcula-
01 R E tion, including the mentioned corrections, and compare them
He ] with all the available experimental results from different
0.0 (- . L L sourceg21-27. We observe a quite satisfactory agreement
0 ! 2 3 5 6 7 both in the low- and high-energy ranges, and a slight over-
estimation around the maximum. It does not seem possible to
FIG. 3. Stopping power contributions for HeHe', and Hé* attribute a unique origin to these residual differences due to
in aluminum, calculated as in Fig. 2, and weighted by the correthe mixed contributions from different processes that occur
sponding charge state fractions from R@fg]. The upper curve is in the intermediate range of velocities. However, we observe
the sum of the three contributions and gives the total stoppingd Satisfactory representation of the shape of the stopping
power of the free-electron gas in the present method. curve on the whole energy range.

0.6 |- Total .

05 -

<dE/dx> (a.u.)

4
v (a.u.)
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L e e LA B A B S B B B S B standing of the dominant processes around the stopping-
[ power maximum.
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E‘é 0.3 Go APPENDIX: HIGH-VELOCITY APPROXIMATIONS
02 - We include in this appendix some useful approximations,
T corresponding to the perturbatier first-order Born ap-
01 1 proximation, which apply in the limit of high-velocities.
0.0 L— . , . . . . . By expanding the functior®,(v,vg) in the limit v>vg
0 1 2 3 4 5 6 7 8 we get the high-velocity expression of the Friedel sum rule
v (a.u.) [11]:
FIG. 5. Stopping power values for helium in aluminum as ob- 03\ 2 ds
tained from the present model, compared with experimental data Z,= _F1Z 2 (21+1) - +Ny. (A1)
from various sourcesa) Ref.[21], (b) Ref.[22], (c) Ref.[23], (d) 3p2] ™9 dk|,_,

Ref.[24], (e) Ref.[25], (f) Ref.[26], and(g) Ref.[27].

In this limit one can use the Born approximation to cal-
IV. SUMMARY AND CONCLUSIONS culate the phase shifts, namely,

The calculations reported here provide a nonperturbative .
guantum calculation of the stopping power for moving ions 8B(k)=—2k f dr r2v(n)[j,(kr)?. (A2)
through the whole range of nonrelativistic energies, includ- 0
ing the main region around the stopping-power maximum.

The model proposed is based on an extension of the Frie- Using this approximation we get for a simple hydrogenic
del sum rule to finite velocities of the ion, using the quantumpotential[11],
scattering formulation and the transport cross-section ap-
proach. The model converges to the existing low- and high-
velocity models in the corresponding limits, but in addition it
describes the region of the stopping-power maximum where
other approximations usually fail. The model provides agng therefore,
guantitative estimation of the role of nonlinear effects in the

Z
)
a2

2 > (21+1)88 k)= 8k (A3)
T g T

more complex range of intermediate energies. The present 3\ d/8kz 8v2 \ 7
method describes also the transition from the nonlinear to the 7, = —F2 — — _; b= F2 _; +Np
linear-screening conditions as the ion velocity increases. 3v?/|dK| 7 o K= ) a

In order to allow a comparison with experimental data, (A4)
the present calculations for free-electron excitations must be
supplemented with correction effects due to capture and loskhis expression yields the value ef that satisfies the sum
processes and inner-shell excitations. These further corregule in the Born approximatioffor Ny #Z;), namely,
tions are evaluated using perturbative methods that are usu-
ally inaccurate for low and intermediate velocities, but there /80;3:' Z; 1 [ 2Z; wy
is no evidence so far that this may significantly affect the " N37 Z,—Nyv VZ;—-N, v (AS)
total results since, on one side, the contribution from capture
and loss processes is relatively small, whereas inner-shell In particular, in the case of Hé (with Z;=2, N,=0) we
excitations become relevant only for high velocities whereget
perturbative methods apply. It is perhaps due to these favor-
able conditions that the influence of the correction terms 80,3: 1 o,
does not affect very much the final results. = \3- 5~ V2 > (AB)

From the comparison with the experimental results we
may therefore infer that the present model describes ip a On the other hand, in the case of Hasing the potential
satisfactory way th_e dynamlc.al e_ffects related to the'veloutyv(r) of Eq. (8) in Eq. (A2) we obtain
dependent screening of moving ions, and the stopping-power
due to the excitations of free electrons in metals, which yield

) N : : . 8k

the main contribution to the energy loss in the interesting = (21+1)8B(k)= —
range of intermediate velocities. We expect that further ap- I ™
plications of the present method to other interacting elements
will be of much help in providing a more complete under- and in particular foN,=1 and8=4, we get

+Np, (A7)

1
af PP
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(3171;2 1 ) —172 . (a) for He':
ag= _3 - 1_6
8ur [ [ 4ve vi=v? |v+oug]] 7t 1)\t
The term 1/16 in this expression is negligible forvg, so @7\ | 2vrv V—UE 16
that to a good approximation (A10)
8ur 1 wp (b) for He**:
ag= g;—\/ij, (A9)
. 4ug vé—v2 vtug
which converges to the case of He Eq. (A6). aé:_ | (A11)
The previous considerations can be extended to the whole ™ 2vpv VT UF
range of velocitiegignoring for the moment the breakdown
of the Born approximation at low velocitigsfollowing the These approximations are compared with the exact nu-
derivation given in Ref[11] [cf. Eq. (19) of this referenck  merical values ofx in Fig. 1. It may also be observed that
By repeating those calculations we obtain both values are nearly coincident for v .
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