
PHYSICAL REVIEW A SEPTEMBER 1998VOLUME 58, NUMBER 3
Relativistic Levinson theorem in two dimensions
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In the light of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation in two
dimensions is established as a relation between the total numbernj of the bound states and the sum of the
phase shiftsh j (6M ) of the scattering states with the angular momentumj :

hj~M!1hj~2M!5H~nj11!p when a half bound state occurs atE5M and j 53/2 or 21/2

~nj11!p when a half bound state occurs atE52M and j 51/2 or 23/2

njp the remaining cases.
The critical case, where the Dirac equation has a finite zero-momentum solution, is analyzed in detail. A
zero-momentum solution is called a half-bound state if its wave function is finite but does not decay fast
enough at infinity to be square integrable.@S1050-2947~98!11109-5#

PACS number~s!: 03.80.1r, 03.65.Ge, 11.80.2m, 73.50.Bk
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I. INTRODUCTION

The Levinson theorem@1# is an important theorem in th
quantum scattering theory, which sets up the relation
tween the number of bound states and the phase shift at
momentum. It has been generalized@2–9# and applied to
different fields in modern physics@10–16#. Recently, the
Levinson theorem in two dimensions was studied both
experimental@17# and theoretical@18–20# aspects because o
the wide interest in the lower dimensional field theories.

In this paper we will study the Levinson theorem for t
Dirac equation in two dimensions:

(
m50

2

igm~]m1 ieAm!c5Mc, ~1!

whereM is the mass of the particle, and

g05s3 , g15 is1 , g25 is2 . ~2!

Throughout this paper the natural units\5c51 are em-
ployed. Discuss the special case where only the zero com
nent ofAm is nonvanishing and cylindrically symmetric:

A15A250, eA05V~r !. ~3!

The boundary condition at the origin for the potentialV(r ) is
necessary for the nice behavior of the wave function
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r uV~r !udr,`. ~4!

For simplicity, we first discuss the case where the poten
V(r ) is a cutoff one at a sufficiently large radiusr 0:

V~r !50 when r>r 0 . ~5!

The general case where the potentialV(r ) has a tail at infin-
ity will be discussed in Sec. V.

Introduce a parameterl for the potentialV(r ):

V~r ,l!5lV~r !. ~6!

As l increases from zero to one, the potentialV(r ,l)
changes from zero to the given potentialV(r ). If l changes
its sign, the potentialV(r ,l) changes sign, too.

Letting

c jE~ t,r ,l!5e2 iEtr 21/2S f jE~r ,l!ei ~ j 21/2!w

gjE~r ,l!ei ~ j 11/2!wD , ~7!

where j denotes the total angular momentum,j 561/2,
63/2, . . . , weobtain the radial equations:

d

dr
gjE~r ,l!1

j

r
gjE~r ,l!5@E2V~r ,l!2M # f jE~r ,l!,

~8!

2
d

dr
f jE~r ,l!1

j

r
f jE~r ,l!5@E2V~r ,l!1M #gjE~r ,l!.
2160 © 1998 The American Physical Society
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It is easy to see that the solutions with a negativej can be
obtained from those with a positivej by interchanging
f jE(r ,l)↔g2 j 2E(r ,2l), so that in the following we only
discuss the solutions with a positivej . The main results for
the case with a negativej will be indicated in the text.

The physically admissible solutions are finite, continuo
vanishing at the origin, and square integrable:

f jE~r ,l!5gjE~r ,l!50 when r→0, ~9!

E
0

`

dr$u f jE~r ,l!u21ugjE~r ,l!u2%,`. ~10!

The solutions foruEu.M describe the scattering states, a
those foruEu<M describe the bound states. We will solv
Eq. ~8! in two regions, 0<r ,r 0 and r 0,r ,`, and then
match two solutions atr 0 by the match condition:

Aj~E,l![
f jE~r ,l!

gjE~r ,l!
U

r 5r 02

5
f jE~r ,l!

gjE~r ,l!
U

r 5r 01

. ~11!

When r 0 is the zero point ofgjE(r ,l), the match condition
can be replaced by its inversegjE(r ,l)/ f jE(r ,l) instead.
The merit of using this match condition is that we need
care about the normalization factor in the solutions.

The establishment of the Levinson theorem for the Di
equation is similar to that for the Schro¨dinger equation@20#.
The main differences between them are that the ratiof /g of
two radial functions in the Dirac problem plays the role
e

a

,

t

c

the logarithmic derivativeR8/R in the Schro¨dinger problem,
and the energyE of bound states satisfiesuEu<M instead of
E<0. With the increment of the strength of the potent
V(r ,l), the scattering state may turn into a bound state at
energyM or 2M and the bound state may also turn into
scattering state at the energies.

The key point for the proof of the Levinson theorem
that the ratiof jE(r ,l)/gjE(r ,l) is monotonic with respect to
the energy E, which is called the generalized Sturm
Liouville theorem@21# and will be proved in Sec. II. Base
on the generalized Sturm-Liouville theorem, in Sec. III t
number of bound states will be related with the variance
the ratio atr 02 as the potential changes. In Sec. IV, w
further prove that this variance of the ratio also determin
the sum of the phase shifts at the energies6M . In the course
of the proof, it can be seen evidently that as the poten
changes, the phase shift at the energyM jumps byp while a
scattering state of a positive energy becomes a bound s
and the phase shift at the energy2M jumps by2p while a
bound state becomes a scattering state of a negative en
or vice versa. The critical case, where the Dirac equation
a finite zero-momentum solution, will be studied in Sec.
in detail. A zero-momentum solution is called a half-bou
state if its wave function is finite but does not decay fa
enough at infinity to be square integrable. Thus, the Levin
theorem relates the numbernj of bound states with angula
momentumj to the sum of phase shiftsh j (6M ) with j at
the energies6M :
h j~M !1h j~2M !5H ~nj11!p when a half bound state occurs atE5M and j 53/2 or 21/2,

~nj11!p when a half bound state occurs atE52M and j 51/2 or 23/2,

njp the remaining cases.

~12!
n-
The problem that the potential has a tail at infinity will b
discussed in Sec. V.

II. GENERALIZED STURM-LIOUVILLE THEOREM

Suppose thatf ,g and f 1 ,g1 are two solutions of Eq.~8!
with the energiesE and E1, respectively. From Eq.~8! we
have

d

dr
~ f 1g2g1f !52~E12E!~ f 1f 1g1g!. ~13!

From the boundary condition that both solutions vanish
the origin, we integrate Eq.~13! in the region 0<r<r 0 and
obtain

~ f 1g2g1f !ur 5r 0252~E12E!E
0

r 0
~ f 1f 1g1g!dr.

Taking the limit asE1 tends toE, we have
t

lim
E1→E

f 1g2g1f

E12E U
r 5r 02

5$gjE~r 0 ,l!%2
]

]E
Aj~E,l!

52E
0

r 0
$ f jE

2 ~r ,l!1gjE
2 ~r ,l!%dr,0,

~14!

where we denote the solutionf and g by f jE(r 0 ,l) and
gjE(r 0 ,l). Thus, whenuEu>M we have

Aj~E,l!5Aj~M ,l!2c1
2k21•••

when E.M andE;M ,

Aj~E,l!5Aj~2M ,l!1c2
2k21•••

when E,2M andE;2M , ~15!

wherec1
2 andc2

2 are non-negative numbers, and the mome
tum k is defined as follows:
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k5~E22M2!1/2. ~16!

Similarly, from the boundary condition that the radi
functions f jE(r ,l) andgjE(r ,l) for uEu<M tend to zero at
infinity, we obtain by integrating Eq.~13! in the regionr 0
<r ,`

$gjE~r 0 ,l!%2
]

]ES f jE~r ,l!

gjE~r ,l! D U
r 5r 01

5E
r 0

`

@ f jE
2 ~r ,l!1gjE

2 ~r ,l!#dr.0. ~17!

Thus, as the energyE increases, the ratiof jE(r ,l)/gjE(r ,l)
at r 02, i.e.,Aj (E,l), decreases monotonically, but the ra
f jE(r ,l)/gjE(r ,l) at r 01 when uEu<M increases mono
tonically. This is called the generalized Sturm-Liouvil
theorem@21#.

III. NUMBER OF BOUND STATES

Now, we solve Eq.~8! for the energyuEu<M . In the
region 0<r ,r 0, whenl50, we have

f jE~r ,0!5e2 i ~ j 21/2!p/2$~M1E!pkr /2%1/2Jj 21/2~ ikr !,

gjE~r ,0!5e2 i ~ j 23/2!p/2$~M2E!pkr /2%1/2Jj 11/2~ ikr !,
~18!
o

te
x

ue
ri

t
e
o

whereJm(x) is the Bessel function, and

k5~M22E2!1/2. ~19!

The ratio atr 5r 02 whenl50 is

Aj~E,0!52 i S M1E

M2ED 1/2Jj 21/2~ ikr 0!

Jj 11/2~ ikr 0!

55 2
2M ~2 j 11!

k2r 0

;2` when E;M ,

2
2 j 11

2Mr 0
when E;2M .

~20!

In the regionr 0,r ,`, due to the cutoff potential we
haveV(r )50 and

f jE~r ,l!5ei ~ j 11/2!p/2$~M1E!pkr /2%1/2H j 21/2
~1! ~ ikr !,

~21!

gjE~r ,l!5ei ~ j 13/2!p/2$~M2E!pkr /2%1/2H j 11/2
~1! ~ ikr !,

whereHm
(1)(x) is the Hankel function of the first kind. The

ratio at r 5r 01 does not depend onl and is given as fol-
lows:
f jE~r ,l!

gjE~r ,l!
U

r 5r 01

52 i S M1E

M2ED 1/2H j 21/2
~1! ~ ikr 0!

H j 11/2
~1! ~ ikr 0!

55
2Mr 0

2 j 21
when E;M and j >3/2,

22Mr 0ln~kr 0!;` when E;M and j 51/2,

k2r 0

2M ~2 j 21!
;0 when E;2M and j >3/2,

2k2r 0ln~kr 0!

2M
;0 when E;2M and j 51/2.

~22!
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It is evident from Eqs.~20! and ~22! that as the energyE
increases from2M to M , there is no overlap between tw
variant ranges of the ratio at two sides ofr 0 whenl50 ~no
potential! except forj 51/2 where there is a half-bound sta
at E5M . The half-bound state will be discussed in the ne
section.

As l increases from zero to one, the potentialV(r ,l)
changes from zero to the given potentialV(r ), andAj (E,l)
changes, too. If Aj (M ,l) decreases across the val
2Mr 0 /(2 j 21) asl increases, an overlap between the va
ant ranges of the ratios at two sides ofr 0 appears. Since the
ratio Am(E,l) of two radial functions atr 02 decreases
monotonically as the energyE increases, and the ratio a
r 01 increases monotonically, the overlap means that th
must be one and only one energy where the matching c
dition ~11! is satisfied, namely a bound state appears.

As l increases,Aj (M ,l) may decrease to2`, jump to
`, and then decrease again across the value 2Mr 0 /(2 j 21),
t

-

re
n-

so that another bound state appears. Note that whenr 0 is a
zero point of the wave functiongjE(r ,l), Aj (E,l) goes to
infinity. It is not a singularity.

On the other hand, asl increases, ifAj (2M ,l) de-
creases across zero, an overlap between the variant rang
the ratios at two sides ofr 0 disappears so that a bound sta
disappears.

Therefore, each timeAj (M ,l) decreases across the valu
2Mr 0 /(2 j 21) asl increases, a new overlap between t
variant ranges of the ratios at two sides ofr 0 appears such
that a scattering state of a positive energy becomes a bo
state. On the other hand, each timeAj (2M ,l) decreases
across zero, an overlap between the variant ranges of
ratio at two sides ofr 0 disappears such that a bound sta
becomes a scattering state of a negative energy. Conver
each timeAj (M ,l) increases across the value 2Mr 0 /(2 j
21), an overlap between the variant ranges disappears
that a bound state becomes a scattering state of a pos
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energy, and each timeAj (2M ,l) increases across zero,
new overlap between the variant ranges appears such t
scattering state of a negative energy becomes a bound s

Now, the numbernj of bound states with the angular mo
mentum j is equal to the sum~or subtraction! of four times
as l increases from zero to one: the times thatAj (M ,l)
decreases across the value 2Mr 0 /(2 j 21), minus the times
thatAj (M ,l) increases across the value 2Mr 0 /(2 j 21), mi-
nus the times thatAj (2M ,l) decreases across zero, plus t
times thatAj (2M ,l) increases across zero.

When j 51/2, the value 2Mr 0 /(2 j 21) becomes infinity.
We may check the times thatAj (M ,l)21 increases~or de-
creases! across zero to replace the times thatAj (M ,l) de-
creases~or increases! across infinity.

IV. RELATIVISTIC LEVINSON THEOREM

We turn to a discussion of the phase shifts of the scat
ing states. Solving Eq.~8! in the regionr 0,r ,` for the
energyuEu.M , we have

f jE~r ,l!5B~E!S pkr

2 D 1/2

$cosh j~E,l!Jj 21/2~kr !
t a
te.

r-

2sin h j~E,l!Nj 21/2~kr !%, ~23!

gjE~r ,l!5S pkr

2 D 1/2

$cosh j~E,l!Jj 11/2~kr !

2sin h j~E,l!Nj 11/2~kr !%,

whereNm(x) denotes the Neumann function, the momentu
k is given in Eqs.~16!, andB(E) is defined as

B~E!5H S E1M

E2M D 1/2

when E.M ,

2S uEu2M

uEu1M D 1/2

when E,2M .

~24!

The asymptotic form of the solution~23! at r→` is

f jE~r ,l!;B~E!cos@kr2 j p/21h j~E,l!#,
~25!

gjE~r ,l!;sin@kr2 j p/21h j~E,l!#.

Substituting Eq.~23! into the match condition~11!, we ob-
tain the formula for the phase shifth j (E,l):
tion
tan h j~E,l!5
Jj 11/2~kr0!

Nj 11/2~kr0!

Aj~E,l!2B~E!Jj 21/2~kr0!/Jj 11/2~kr0!

Aj~E,l!2B~E!Nj 21/2~kr0!/Nj 11/2~kr0!

5
Jj 21/2~kr0!

Nj 21/2~kr0!

$Aj~E,l!%212B~E!21Jj 11/2~kr0!/Jj 21/2~kr0!

$Aj~E,l!%212B~E!21Nj 11/2~kr0!/Nj 21/2~kr0!
. ~26!

The phase shifth j (E,l) is determined up to a multiple ofp due to the period of the tangent function. We use the conven
that the phase shifts for the free particles@V(r )50# are vanishing:

h j~E,0!50. ~27!

Under this convention, the phase shiftsh j (E) are determined completely asl increases from zero to one:

h j~E![h j~E,1!. ~28!

The phase shiftsh j (6M ,l) are the limits of the phase shiftsh j (E,l) asE tends to6M . At the sufficiently smallk, k
!1/r 0, we have

tan h j~E,l!;

¦

2
p~kr0/2!2 j 11

~ j 11/2!! ~ j 21/2!!

Aj~M ,l!22M ~2 j 11!/~k2r 0!

Aj~M ,l!2c1
2k22

2Mr 0

2 j 21 S 11
~kr0!2

~2 j 21!~2 j 23! D when j .3/2,

2
p

2 S kr0

2 D 4 Aj~M ,l!28M /~k2r 0!

Aj~M ,l!2c1
2k22Mr 0S 12

~kr0!2

2
ln~kr0! D when j 53/2,

p

2ln~kr0!

$Aj~M ,l!%211c1
2k22k2r 0 /~4M !

$Aj~M ,l!%211c1
2k21$2Mr 0ln~kr0!%21

when j 51/2

~29!

for E.M , and
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tan h j~E,l!;5
2

p~kr0/2!2 j 11

~ j 11/2!! ~ j 21/2!!

Aj~2M ,l!1~2 j 11!/~2Mr 0!

Aj~2M ,l!1c2
2k21

k2r 0

2M ~2 j 21!

when j >3/2,

2pS kr0

2 D 2 Aj~2M ,l!11/~Mr 0!

Aj~2M ,l!1c2
2k22k2r 0ln~kr0!/~2M !

when j 51/2,

~30!

for E,2M . The asymptotic forms~15! have been used in driving Eqs.~29! and ~30!. In addition to the leading terms, w
include in Eqs.~29! and~30! some next leading terms, which are useful only for the critical case where the leading term
canceled.

First, from Eqs.~29! and~30! we see that tanh j (E,l) tends to zero asE goes to6M , namely,h j (6M ,l) are always equa
to the multiple ofp. In other words, if the phase shifth j (E,l) for a sufficiently smallk is expressed as a positive or negati
acute angle plusnp, its limit h j (M ,l) @or h j (2M ,l)] is equal tonp. It means thath j (M ,l) @or h j (2M ,l)] changes
discontinuously whenh j (E,l) changes through the value (n11/2)p, wheren is an integer.

Second, from Eq.~26! we have

]h j~E,l!

]Aj~E,l!
U

E

52S E1M

E2M D 1/2 2$cosh j~E,l!%2

pkr0$Nj 11/2~kr0!Aj~E,l!2B~E!Nj 21/2~kr0!%2
<0, E.M ,

~31!

]h j~E,l!

]Aj~E,l!
U

E

5S uEu2M

uEu1M D 1/2 2$cosh j~E,l!%2

pkr0$Nj 11/2~kr0!Aj~E,l!2B~E!Nj 21/2~kr0!%2
>0, E,2M .
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Namely, as the ratioAj (E,l) decreases, the phase sh
h j (E,l) for E.M increases monotonically, buth j (E,l) for
E,2M decreases monotonically. In terms of the monoto
properties we are able to determine the jump of the ph
shifts h j (6M ,l).

We first consider the scattering states of a positive ene
with a sufficiently small momentumk. As Aj (E,l) de-
creases, if tanh j (E,l) changes sign from positive to neg
tive, the phase shifth j (M ,l) jumps byp. Note that in this
case if tanh j (E,l) changes sign from negative to positiv
the phase shifth j (M ,l) stays invariant. Conversely, a
Aj (E,l) increases, if tanh j (E,l) changes sign from nega
tive to positive, the phase shifth j (M ,l) jumps by 2p.
Therefore, asl increases from zero to one, each time t
Aj (M ,l) decreases from near and larger than the va
2Mr 0 /(2 j 21) to smaller than that value, the denomina
in Eq. ~29! changes sign from positive to negative and t
rest factor stays positive, so that the phase shifth j (M ,l)
jumps byp. It has been shown in the preceding section t
each time the Aj (M ,l) decreases across the val
2Mr 0 /(2 j 21), a scattering state of a positive energy b
comes a bound state. Conversely, each time theAj (M ,l)
increases across that value, the phase shifth j (M ,l) jumps
by 2p, and a bound state becomes a scattering state
positive energy.

Then, we consider the scattering states of a negative
ergy with a sufficiently smallk. As Aj (E,l) decreases, if
tan h j (E,l) changes sign from negative to positive, t
phase shifth j (2M ,l) jumps by2p. However, in this case
if tan h j (E,l) changes sign from positive to negative, t
phase shift h j (2M ,l) stays invariant. Conversely, a
Aj (E,l) increases, if tanh j (E,l) changes sign from posi
tive to negative, the phase shifth j (2M ,l) jumps by p.
Therefore, asl increases from zero to one, each time t
c
se

y

e
r

t

-

f a

n-

Aj (2M ,l) decreases from a small and positive number t
negative one, the denominator in Eq.~29! changes sign from
positive to negative and the rest factor stays negative, so
the phase shifth j (2M ,l) jumps by2p. In the preceding
section it was shown that each time theAj (2M ,l) de-
creases across zero, a bound state becomes a scattering
of a negative energy. Conversely, each time theAj (2M ,l)
increases across zero, the phase shifth j (2M ,l) jumps by
p, and a scattering state of a negative energy becom
bound state. Therefore, we obtain the Levinson theorem
the Dirac equation in two dimensions for noncritical case

h j~M !1h j~2M !5njp. ~32!

It is obvious that the Levinson theorem~32! holds for both
positive and negativej in the noncritical cases.

For the case ofj 51/2 and E;M , where the value
2Mr 0 /(2 j 21) is infinity, since$Aj (E,l)%21 increases as
Aj (E,l) decreases, we can study the variance
$Aj (E,l)%21 in this case instead. For the energyE.M
where the momentumk is sufficiently small, when
$Aj (M ,l)%21 increases from negative to positive asl in-
creases, both the numerator and denominator in Eq.~29!
change signs, but not simultaneously. The numera
changes sign first, and then the denominator changes.
front factor in Eq.~29! is negative so that tanh j (E,l) first
changes from negative to positive when the numera
changes sign, and then changes from positive to nega
when the denominator changes sign. It is in the second
that the phase shifth j (M ,l) jumps by p. Similarly, each
time $Aj (M ,l)%21 decreases across zero asl increases,
h j (M ,l) jumps by2p.

For l50 andj 51/2, the numerator in Eq.~29! is equal to
zero, and the phase shifth j (M ,0) is defined to be zero. Fo
this case there is a half-bound state atE5M @see Eq.~33!#.
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If $Aj (M ,l)%21 increases@Aj (M ,l) decreases# as l in-
creases from zero, the front factor in Eq.~29! is negative, the
numerator becomes positive first, and then the denomin
changes sign from negative to positive, such that the ph
shift h j (M ,l) jumps by p and simultaneously the half
bound state becomes a bound state withE,M .

Now, we turn to study the critical cases. First, we stu
the critical case forE;M , where the ratioAj (M ,1) is equal
to the value 2Mr 0 /(2 j 21). It is easy to obtain the follow-
ing solution ofE5M in the regionr 0,r ,` , satisfying the
radial equations~8! and the match condition~11! at r 0:

f jM ~r ,1!52Mr 2 j 11, gjM ~r ,1!5~2 j 21!r 2 j . ~33!

It is a bound state whenj .3/2, but called a half-bound stat
when j 53/2 or j 51/2. A half-bound state is not a boun
state, because its wave function is finite but not square i
grable.

For definiteness, we assume that in the critical case, al
increases from a number near and less than one and fi
reaches one,Aj (M ,l) decreasesand finally reaches, but no
across, the value 2Mr 0 /(2 j 21). In this case, whenl51 a
new bound state ofE5M appears forj .3/2, but does not
appear forj 53/2 or j 51/2. We should check whether or no
the phase shifth j (M ,1) increases by an additionalp as l
increases and reaches one.

It is evident from the next leading terms in the denom
nator of Eq. ~29! that the denominator forj >3/2 has
changed sign from positive to negative asAj (M ,l) de-
creases and finally reaches the value 2Mr 0 /(2 j 21),
namely, the phase shifth j (M ,l) jumps by an additionalp at
l51. Simultaneously, a new bound state ofE5M appears
for j .3/2, but only a half-bound state appears forj 53/2, so
that the Levinson theorem~32! holds for the critical case
with j .3/2, but it has to be modified for the critical cas
with j 53/2:

h j~M !1h j~2M !5~nj11!p ~34!

when a half bound state occurs atE5M and j 53/2.
For j 51/2 the next leading term with ln(kr0) in the de-

nominator of Eq.~29! dominates so that the denominat
stays negative~does not change sign! as $Aj (M ,l)%21 in-
creases and finally reaches zero, namely, the phase
h j (M ,l) does not jump, no matter whether the rest part
Eq. ~28! stays positive or has changed to negative. Simu
neously, only a new half-bound state ofE5M for j 51/2
appears, so that the Levinson theorem~32! holds for the
critical case withj 51/2.

This conclusion holds for the critical case whereAj (M ,l)
increasesand finally reaches, but not across, the va
2Mr 0 /(2 j 21).

Second, we study the critical case forE52M , where the
ratio Aj (2M ,1) is equal to zero. It is easy to obtain th
following solution ofE52M in the regionr 0,r ,`, satis-
fying the radial equations~8! and the match condition~11! at
r 0:

f jM ~r ,l!50, gjM ~r ,l!5r 2 j . ~35!

It is a bound state whenj >3/2, but a half-bound state whe
j 51/2.
or
se

y

e-
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-

ift
n
-

e

For definiteness, we again assume that in the critical c
as l increases from a number near and less than one
finally reaches one,Aj (2M ,l) decreasesand finally reaches
zero, so that whenl51 the energy of a bound state d
creases toE52M for j >3/2, but a bound state becomes
half-bound state forj 51/2. We should check whether or no
the phase shifth j (2M ,1) decreases byp asl increases and
reaches one.

For the energyE,2M where the momentumk is suffi-
ciently small, one can see from the next leading terms in
denominator of Eq.~30! that the denominator does no
change sign asAj (2M ,l) decreases and finally reache
zero, namely, the phase shifth j (2M ,l) does not jump by
an additional2p at l51. Simultaneously, the energy of
bound state decreases toE52M for j >3/2, but a bound
state becomes a half-bound state forj 51/2, so that the
Levinson theorem~32! holds for the critical case withj
>3/2, but it has to be modified for the critical case withj
51/2:

h j~M !1h j~2M !5~nj11!p ~36!

when a half-bound state occurs atE52M and j 51/2.
Combining Eqs.~32!, ~34!, ~36! and their corresponding

forms for the negativej , we obtain the relativistic Levinson
theorem~12! in two dimensions.

V. DISCUSSION

Now, we discuss the general case where the poten
V(r ) has a tail atr>r 0. Let r 0 be so large that only the
leading term inV(r ) is concerned:

V~r !;br2n, r>r 0 , ~37!

whereb is a nonvanishing constant andn is a positive con-
stant, not necessary to be an integer. Substituting it into
~8! and changing the variabler to j:

j5H kr5rAE22M2 when uEu.M ,

kr 5rAM22E2 when uEu<M ,
~38!

we obtain the radial equations in the regionr 0<r ,`:

d

dj
gjE~j!1

j

j
gjE~j!5S E

uEuA
E2M

E1M
2

b

jn
kn21D f jE~j!,

2
d

dr
f jE~j!1

j

r
f jE~j!5S E

uEuA
E1M

E2M
2

b

jn
kn21D gjE~j!,

~39!

for uEu.M , and

d

dj
gjE~j!1

j

j
gjE~j!5S 2AM2E

M1E
2

b

jn
kn21D f jE~j!,

2
d

dr
f jE~j!1

j

r
f jE~j!5SAM1E

M2E
2

b

jn
kn21D gjE~j!,

~40!
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for uEu<M . As far as the Levinson theorem is concerned,
are only interested in the solutions with the sufficiently sm
k and k. If n>3, in comparison with the first term on th
right hand side of Eq.~39! or Eq. ~40!, the potential term
with a factorkn21 ~or kn21) is too small to affect the phas
shift at the sufficiently smallk and the variant range of th
ratio f jE(r ,l)/gjE(r ,l) at r 01. Therefore, the proof given
in the preceding sections is effective for those potentials w
a tail so that the Levinson theorem~12! holds.

When n52 and bÞ0, we will only keep the leading
terms for the small parameterk ~or k) in solving Eq.~39! @or
Eq. ~40!#. First, we calculate the solutions with the ener
E;M . Let

a5~ j 22 j 12Mb11/4!1/2Þ j 21/2. ~41!

If a2,0, there is an infinite number of bound states. We w
not discuss this case nor the case witha50 here. When
a2.0, we takea.0 for convenience. Some formulas give
in the preceding sections will be changed.

WhenE<M we have

f jE~r ,l!5ei ~a11!p/22M ~pkr /2!1/2Ha
~1!~ ikr !,

gjE~r ,l!5ei ~a11!p/2k~pkr /2!1/2

3H 2
d

d~kr !
Ha

~1!~ ikr !1
j 21/2

kr
Ha

~1!~ ikr !J .

~42!

Hence, the ratio atr 5r 01 for E5M is

f jE~r ,l!

gjE~r ,l!
U

r 5r 01

5
2Mr 0

j 1a21/2
, E5M . ~43!

WhenE.M we have

f jE~r ,l!52M ~pkr/2!1/2

3$cosda~E,l!Ja~kr !2sin da~E,l!Na~kr !%,

gjE~r ,l!5k~pkr/2!1/2H cosda~E,l!S 2
d

d~kr !
Ja~kr !

1
j 21/2

kr
Ja~kr ! D2sin da~E,l!

3S 2
d

d~kr !
Na~kr !1

j 21/2

kr
Na~kr ! D J . ~44!

Whenkr tends to infinity, the asymptotic form of the solu
tion is

f jE~r ,l!;2M cos@kr2ap/22p/41da~E,l!#,

gjE~r ,l!;k sin@kr2ap/22p/41da~E,l!#.

In comparison with the solution~25! we obtain the phase
shift h j (E,l) for E.M :

h j~E,l!5da~E,l!1~ j 2a21/2!p/2, E.M . ~45!
e
ll

h

l

From the match condition~11!, for the sufficiently smallk
we obtain

tan da~E,l!;
2p~kr0/2!2a

G~a11!G~a!S j 2a21/2

j 1a21/2D
3

Aj~M ,l!22Mr 0 /~ j 2a21/2!

Aj~M ,l!22Mr 0 /~ j 1a21/2!
. ~46!

Therefore, asl increases from zero to one, each time t
Aj (M ,l) decreases from near and larger than the va
2Mr 0 /( j 1a21/2) to smaller than that value, the denom
nator in Eq.~46! changes sign from positive to negative a
the rest factor stays positive, so thatda(M ,l) jumps byp.
Simultaneously, from Eq.~43! a new overlap between th
variant ranges of the ratio at two sides ofr 0 appears such tha
a scattering state of a positive energy becomes a bound s
Conversely, each time theAj (M ,l) increases across tha
value,da(M ,l) jumps by2p, and a bound state becomes
scattering state of a positive energy.

Second, we calculate the solutions with the energyE;
2M . Let

b5~ j 21 j 22Mb11/4!1/2Þ j 11/2. ~47!

Similarly, we only discuss the cases withb2.0, and take
b.0.

WhenE>2M we have

f jE~r ,l!52ei ~b11!p/2k~pkr /2!1/2

3H d

d~kr !
Hb

~1!~ ikr !1
j 11/2

kr
Hb

~1!~ ikr !J ,

gjE~r ,l!5ei ~b11!p/22M ~pkr /2!1/2Hb
~1!~ ikr !. ~48!

Hence, the ratio atr 5r 01 for E52M is

f jE~r ,l!

gjE~r ,l!
U

r 5r 01

52
j 2b11/2

2Mr 0
, E52M . ~49!

WhenE,2M we have

f jE~r ,l!52k~pkr/2!1/2H cosdb~E,l!S d

d~kr !
Jb~kr !

1
j 11/2

kr
Jb~kr ! D2sin db~E,l!S d

d~kr !
Nb~kr !

1
j 11/2

kr
Nb~kr ! D J ,

gjE~r ,l!52M ~pkr/2!1/2$cosdb~E,l!Jb~kr !

2sin db~E,l!Nb~kr !%, ~50!

Whenkr tends to infinity, the asymptotic form for the solu
tion is

f jE~r ,l!;k sin@kr2bp/22p/41db~E,l!#,

gjE~r ,l!;2M cos@kr2bp/22p/41db~E,l!#.
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In comparison with the solution~25! we obtain the phase
shift h j (E,l) for E,2M :

h j~E,l!5db~E,l!1~ j 2b11/2!p/2, E,2M .
~51!

From the match condition~11!, for the sufficiently smallk
we obtain

tan da~E,l!;
2p~kr0/2!2b

G~b11!G~b!

3
Aj~2M ,l!1~ j 1b11/2!/~2Mr 0!

Aj~2M ,l!1~ j 2b11/2!/~2Mr 0!
.

~52!

Therefore, asl increases from zero to one, each time t
Aj (2M ,l) decreases from near and larger than the val
2( j 2b11/2)/(2Mr 0) to smaller than that value, the de
nominator in Eq.~52! changes sign from positive to negativ
and the rest factor stays negative, so thatdb(2M ,l) jumps
by 2p. Simultaneously, from Eq.~49! an overlap between
the variant ranges of the ratio at two sides ofr 0 disappears
such that a bound state becomes a scattering state of a
tive energy. Conversely, each time theAj (2M ,l) increases
across that value,db(2M ,l) jumps byp, and a scattering
state of a negative energy becomes a bound state.

In summary, we obtain the modified relativistic Levinso
theorem for noncritical cases when the potential has a
~37! with n52 at infinity:
s

ga-

il

h j~M !1h j~2M !5njp1~2 j 2a2b!p/2. ~53!

We will not discuss the critical cases in detail. In fact, t
modified relativistic Levinson theorem~53! holds for the
critical cases ofa.1 andb.1. When 0,a,1 or 0,b
,1, da(M ,1) or db(2M ,1) in the critical case will not be
multiple of p, respectively, so that Eq.~53! is violated for
those critical cases.

Furthermore, for the potential~37! with a tail at infinity,
when n.2, even if it contains a logarithm factor, for an
arbitrarily small positivee, one can always find a sufficientl
large r 0 such that uV(r )u,e/r 2 in the region r 0,r ,`.
Thus, from Eqs.~41! and ~47! we have for the sufficiently
small e

a5~ j 22 j 62Me11/4!1/2; j 21/2,

b5~ j 21 j 72Me11/4!1/2; j 11/2.

Hence, Eq.~53! coincides with Eq.~32!. In this case the
Levinson theorem~32! holds for the noncritical case.

ACKNOWLEDGMENTS

This work was supported by the National Natural Scien
Foundation of China and Grant No. LWTZ-1298 of the Ch
nese Academy of Sciences.
ys.

A

by
@1# N. Levinson, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.25, 9
~1949!.

@2# R. G. Newton, J. Math. Phys.1, 319 ~1960!; 18, 1348~1977!;
18, 1582 ~1977!; Scattering Theory of Waves and Particle,
2nd ed.~Springer-Verlag, New York, 1982!, and references
therein.

@3# J. M. Jauch. Helv. Phys. Acta30, 143 ~1957!.
@4# A. Martin, Nuovo Cimento7, 607 ~1958!.
@5# G. J. Ni, Phys. Energ. Fortis Phys. Nucl.3, 432 ~1979!; Z. Q.

Ma and G. J. Ni, Phys. Rev. D31, 1482~1985!.
@6# Z. Q. Ma, J. Math. Phys.26, 1995~1985!.
@7# Z. Q. Ma, Phys. Rev. D32, 2203~1985! 32, 2213~1985!.
@8# Z. R. Iwinski, L. Rosenberg, and L. Spruch, Phys. Rev. A31,

1229 ~1985!.
@9# N. Poliatzky, Phys. Rev. Lett.70, 2507~1993!; R. G. Newton,

Helv. Phys. Acta67, 20 ~1994!; Z. Q. Ma, Phys. Rev. Lett.76,
3654 ~1996!.

@10# Z. R. Iwinski, L. Rosenberg, and L. Spruch, Phys. Rev. A33,
946 ~1986!; L. Rosenberg, and L. Spruch,ibid. 54, 4985
~1996!.
@11# R. Blankenbecler and D. Boyanovsky, Physica D18, 367
~1986!.

@12# A. J. Niemi and G. W. Semenoff, Phys. Rev. D32, 471~1985!.
@13# F. Vidal and J. Letourneaux, Phys. Rev. C45, 418 ~1992!.
@14# K. A. Kiers and W. van Dijk, J. Math. Phys.37, 6033~1996!.
@15# M. S. Debianchi, J. Math. Phys.35, 2719~1994!.
@16# P. A. Martin and M. S. Debianchi, Europhys. Lett.34, 639

~1996!.
@17# M. E. Portnoi and I. Galbraith, Solid State Commun.103, 325

~1997!.
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