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Relativistic Levinson theorem in two dimensions

Shi-Hai Dong
Institute of High Energy Physics, P.O. Box 918(4), Beijing 100039, The People’s Republic of China

Xi-Wen Hou
Institute of High Energy Physics, P.O. Box 918(4), Beijing 100039, The People’s Republic of China
and Department of Physics, University of Three Gorges, Yichang 443000, The People’s Republic of China

Zhong-Qi Ma
China Center for Advanced Science and Technology (World Laboratory), P.O. Box 8730,
Beijing 100080, The People’s Republic of China
and Institute of High Energy Physics, P.O. Box 918(4), Beijing 100039, The People’s Republic of China
(Received 27 March 1998

In the light of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation in two
dimensions is established as a relation between the total numb#rthe bound states and the sum of the
phase shiftsy; (= M) of the scattering states with the angular momenfum

(nj+1)7  when a half bound state occursB=M and j=3/2 or —1/2
7(M)+7(=M)=4 (n;+1)7 when a half bound state occurs Bt=—M and j=1/2 or —3/2

nym the remaining cases.
The critical case, where the Dirac equation has a finite zero-momentum solution, is analyzed in detail. A
zero-momentum solution is called a half-bound state if its wave function is finite but does not decay fast
enough at infinity to be square integrabl81050-2947©8)11109-5

PACS numbgs): 03.80:+r, 03.65.Ge, 11.86-:m, 73.50.Bk

I. INTRODUCTION 1

f rIV(r)|dr<e. (4)
The Levinson theoreml] is an important theorem in the 0

?ﬁ:g;utwesﬁﬁgig?%ftggam ;’;’:t'gg asr?dtst hlé:pp;gi,eriﬁit;togt l;gFor simplicity, we first discuss the case where the potential

i : i ff fficiently | i

momentum. It has been generalizE-9] and applied to {Rr) 's a cutoff one at a sufficiently large radivg

different fields in modern physickl0-16. Recently, the V(r)=0 when

Levinson theorem in two dimensions was studied both in

experimental17] and theoreticdl18—20 aspects because of The general case where the potentiét) has a tail at infin-
the wide interest in the lower dimensional field theories. ity will be discussed in Sec. V.

In this paper we will study the Levinson theorem for the = | ..oqice a parametex for the potentiaV/(r):
Dirac equation in two dimensions:

r=ry. (5)

2 V(r,N)=AV(r). (6)
. . _
,;o 1y rieA)y=My, @ As \ increases from zero to one, the potent(r,\)
changes from zero to the given potentiflr). If A changes
whereM is the mass of the particle, and its sign, the potentiaV/(r,\) changes sign, too.
Letting
7’0:0'3, ‘}’l:iﬂ'ly 72:i0'2- 2 »

o ij(r’)\)el(J—l/2)<p

Throughout this paper the natural unfis=c=1 are em- Yie(t,r, )= "Fr =1 gie(r\)elli+12e ) ()
J 1

ployed. Discuss the special case where only the zero compo-

nent ofA , is nonvanishing and cylindrically symmetric: where j denotes the total angular momentuins +1/2,

A=A, =0, eAy=V(r) 3 +3/2,..., weobtain the radial equations:
1= A=Y, = .
d .
The boundary condition at the origin for the potentigt) is ang(r,)\)+JngE(r,)\):[E—v(r,)\)— M1fie(r,N),
necessary for the nice behavior of the wave function
| , (®)
J
- —f; +=f =[E- + i .
*Electronic address: DONGSH@BEPC4.IHEP.AC.CN ar e M)+ et ) =[E=VIEN) +MIgie(r))
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It is easy to see that the solutions with a negafivean be the logarithmic derivativdR'/R in the Schrdinger problem,
obtained from those with a positivg by interchanging and the energ¥ of bound states satisfi¢g|<M instead of
fie(r,\)«=g_;_g(r,—\), so that in the following we only E<0. With the increment of the strength of the potential
discuss the solutions with a positiye The main results for \/(r \), the scattering state may turn into a bound state at the

the case with a negativjeWiII be indicated in the text. energyM or —M and the bound state may also turn into a
The physically admissible solutions are finite, continuousscattering state at the energies.
vanishing at the origin, and square integrable: The key point for the proof of the Levinson theorem is
fie(rA\)=gie(r,\)=0 when r—0, 9) that the ratiof jg(r,N\)/g;e(r,\) is monotonic with respect to

the energy E, which is called the generalized Sturm-
oc Liouville theorem[21] and will be proved in Sec. Il. Based
f dr{|f;e(r,M)[?+]gje(r,\)[2 <o, (100 on the generalized Sturm-Liouville theorem, in Sec. Il the
0 number of bound states will be related with the variance of
The solutions fof E|>M describe the scattering states, andthe ratio atro— as the potential changes. In Sec. IV, we
those for|E|<M describe the bound states. We will solve further prove that this variance of the ratio also determines
Eq. (8) in two regions, Bsr<r, andr,<r<o, and then the sum of the phase shifts at the energidd . In the course
match two solutions at, by the match condition: of the proof, it can be seen evidently that as the potential
changes, the phase shift at the enegyumps by s while a
ij(r,)\) _ij(r,)\)

_ scattering state of a positive energy becomes a bound state,
gje(r,\) t=rg gje(r,\)

Aj(EN)= 11

and the phase shift at the energyM jumps by— 7 while a
bound state becomes a scattering state of a negative energy,
Whenr is the zero point ofjje(r,\), the match condition ~ or vice versa. The critical case, where the Dirac equation has
can be replaced by its inversgg(r,\)/fie(r,\) instead. a finite zero-momentum solution, will be studied in Sec. IV
The merit of using this match condition is that we need notin detail. A zero-momentum solution is called a half-bound
care about the normalization factor in the solutions. state if its wave function is finite but does not decay fast
The establishment of the Levinson theorem for the Diracenough at infinity to be square integrable. Thus, the Levinson
equation is similar to that for the Schiinger equatioi20].  theorem relates the numbey of bound states with angular
The main differences between them are that the rdtijpoof momentum;j to the sum of phase shiftg;(=M) with j at
two radial functions in the Dirac problem plays the role of the energiest M:

r=ro+

(nj+1)7 when a half bound state occursB=M and j=3/2 or —1/2,
7(M)+5;(=M)=4 (nj+1)7 when a half bound state occurs B=—-M and j=1/2 or —3/2, (12)

nym the remaining cases.
|
The problem that the potential has a tail at infinity will be ~ f,g—g;f , 0
discussed in Sec. V. im ———— ={9ie(ro, M} 2= A(EN)
E1—>E 1 _ d

r=rq

Il. GENERALIZED STURM-LIOUVILLE THEOREM

"o
=— | {f%(r,\)+g%(r,\)}dr<o,
Suppose thaf,g and f,,g, are two solutions of Eq(8) fo e Gje(r M)y
with the energie€ and E;, respectively. From Eq8) we (14)
have
where we denote the solutioh and g by fie(ro,\) and
d gje(ro,\). Thus, wherE[=M we have
a(flg_glf):_(El_E)(flf+glg)- (13
AJ(EN)=A[(M,\)—cTk?+ -
From the boundary condition that both solutions vanish at

the origin, we integrate Eq13) in the region Gsr=<r, and
obtain

when E>M andE~M,
— 2
A(E\N)=A{(—M,\)+c5k?+ - -
;
(flg—glf)lr:ro,z_(El—E)f 0(f1f+glg)dr. when E<—M andE~—M, (15)
0

wherec? andc3 are non-negative numbers, and the momen-
Taking the limit asE; tends toE, we have tumk is defined as follows:
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k=(E?—M?)*2, (16)  whereJ(x) is the Bessel function, and

Similarly, from the boundary condition that the radial K:(|\/|2_EZ)1/2_ (19
functionsfg(r,\) andgje(r,\) for |E|<M tend to zero at
infinity, we obtain by integrating Eq(13) in the regionry  The ratio atr =r,— when\=0 is
sr<w

d [ fie(r,\) A(E,0)=—i M+ | "2 alixr)
{ng(ro,)\)}ZE(J—,)\) R M =E] Jj40dikro)
ng(r! ) r=ro+
2M(2j+1
2, ) —¥~—oo when E~M,
:jr [F2(r ) +0%(r\)]dr>0.  (17) _ K2r
° 2j+1
Thus, as the enerdg increases, the ratifie(r,\)/gje(r,\) " 2Mrg when E~—M.
atro—, i.e.,,Aj(E,\), decreases monotonically, but the ratio
fie(r,\)/gje(r,\) atro+ when |[E[<M increases mono- (20)
tonically. This is called the generalized Sturm-Liouville . ]
theorem[21]. In the regionry<<r<«, due to the cutoff potential we

haveV(r)=0 and

IIl. NUMBER OF BOUND STATES -
fie(r,\)=e 0" Y2m20(M+ E) rir /2V2H (Y, (i kr),

Now, we solve Eq.(8) for the energy|E|<M. In the (21

region O<r<r, when\=0, we have ng(r,)\):ei(j+3/2)ﬂ-/2{(M —E)7-rKr/2}1’2H}i)1,2(iKr),
fie(r,00=e ' U"Y272A(M +E) mrr 12} _ gyl k1),
whereH{Y(x) is the Hankel function of the first kind. The

0je(r,00=e U732 (M —E) mrir 12}, i k1), ratio atr =ry+ does not depend ok and is given as fol-
(18 lows:
|
[ 2M
o when E~M and j=3/2,
2j—1
—2MrgIn(krg)~~ when E~M and [j=1/2,
fie(r,\) ([MA+E\Y2H{Y (i kr) ) )" (To) J -
— =—i . = K2r g _
ng(ry)\) r=rg+ M—-E HJ(]-;—)l/Z(IKrO) mNO When E"\"_M and 123/2,

— k2rgIn(krg)

when E~—-M and j=1/2.
2M

It is evident from Eqgs(20) and (22) that as the energi so that another bound state appears. Note that whésn a
increases from-M to M, there is no overlap between two zero point of the wave functiog;e(r,\), A;(E,\) goes to
variant ranges of the ratio at two sidesrgfwhenA =0 (no infinity. It is not a singularity.

potentia) except forj = 1/2 where there is a half-bound state  On the other hand, a& increases, ifA;(—M,\) de-

at E=M. The half-bound state will be discussed in the nextcreases across zero, an overlap between the variant ranges of

section. the ratios at two sides aof, disappears so that a bound state
As \ increases from zero to one, the potent&lr,\) disappears.
changes from zero to the given potentélr), andA;(E,\) Therefore, each timé;(M,\) decreases across the value

changes, too. IfA;(M,\) decreases across the value2Mr,/(2j—1) as\ increases, a new overlap between the
2Mry/(2]—1) as\ increases, an overlap between the vari-variant ranges of the ratios at two sidesrgfappears such
ant ranges of the ratios at two sidesrgfappears. Since the that a scattering state of a positive energy becomes a bound
ratio An(E,\) of two radial functions atr,— decreases state. On the other hand, each tiAg—M,\) decreases
monotonically as the energl increases, and the ratio at across zero, an overlap between the variant ranges of the
ro+ increases monotonically, the overlap means that thereatio at two sides ofy disappears such that a bound state
must be one and only one energy where the matching corbecomes a scattering state of a negative energy. Conversely,
dition (11) is satisfied, namely a bound state appears. each timeA;(M,\) increases across the valué2,/(2]

As \ increasesA;(M,\) may decrease te-«, jump to  —1), an overlap between the variant ranges disappears such
o, and then decrease again across the vaMe2(2j—1), that a bound state becomes a scattering state of a positive
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energy, and each tima;(—M,\) increases across zero, a
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—sin 7;(E,N)Nj_yo(kn)}, (23)

new overlap between the variant ranges appears such that a

scattering state of a negative energy becomes a bound state.
Now, the numben; of bound states with the angular mo-

mentumj is equal to the sunfor subtractioi of four times
as \ increases from zero to one: the times tAg{M,\)

decreases across the valudl2,/(2j—1), minus the times

thatA;(M,\) increases across the valuMg, /(2] —1), mi-

12
ng(rJ\):(T) {cos 5;(E,N)Jj ¢ 1/okr)

—sin 7;(E,N)Nj . (KN},

whereN,,(x) denotes the Neumann function, the momentum

nus the times thah;(—M,\) decreases across zero, plus thek is given in Eqs16), andB(E) is defined as

times thatA;(—M,\) increases across zero.

Whenj=1/2, the value ®1ry/(2j —1) becomes infinity.

We may check the times that(M ,\) "1 increasegor de-
creasepacross zero to replace the times ti#g{M,\) de-
creasegor increasesacross infinity.

IV. RELATIVISTIC LEVINSON THEOREM

We turn to a discussion of the phase shifts of the scatter-

ing states. Solving Eq(8) in the regionr,<r< for the
energy|E|>M, we have

E+M\¥2
E M when E>M,

B(E)= |E| —M\ 2 (24)
— E[+M when E<-—M.

The asymptotic form of the solutiof23) atr—c is

fe(r,\)~B(E)cogkr —j m/2+ 7,(E\)], 25

gje(r,N)~sinkr—jm/2+ n;(E,N)].

Substituting Eq/(23) into the match conditiorill), we ob-

ar 1/2
7) {cos 7j(E,M)Jj-yo(kr) tain the formula for the phase shif(E,\):

fie(r,\)=B(E)

Jjr12Kkrg) AJ(EN)—=B(E)Jj_1a(kro)/Jj 4 1/2(Kro)
Nj;12(Krg) Aj(E,N)—B(E)N;_1/AKrg)/Nj1/2(Krg)

tan n;(E,N) =

_ Jj-1kro) {A(E,N)} 1 =B(E) 15 12 kro)/Jj (ko)
N;—22(KT0) {AJ(EN)} = B(E) "Ny 1 1(kro) /N _1ja(kro)

(26)

The phase shifyy;(E,\) is determined up to a multiple of due to the period of the tangent function. We use the convention
that the phase shifts for the free particl@qr)=0] are vanishing:

7(E,0=0. (27)
Under this convention, the phase shifff E) are determined completely asincreases from zero to one:
7i(E)=n;(E,1). (28)

The phase shiftg;(=M,\) are the limits of the phase shiftg(E,\) asE tends to=M. At the sufficiently smalk, k
<1y, we have

m(krg/2)2+t
(j+1/2)1(j—1/2)! A

A;(M,\)=2M(2j +1)/(K?rg)

2Mr krg)?
(M\) —c2k2— = 0( , Ko

) when j>3/2,

J 2j—1 (2j—-1)(2j-3)
m (krg\? A;(M,\)—8M/(K?rg)
tan 7 (EN)~| — 5 (7) (Krg)? when j=3/2, (29
Aj(M,\) = cTk?=Mro| 1— ——In(kro)
A(M,\)} T4+ c2k2—K3r o /(4M
T { j( )} 1 ol( ) when j=1/2

2In(kro) {A;(M,\)} 2+ cik2+{2MrIn(krg)} *

for E>M, and
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( m(krg/23*t A(=M,\)+(2j+1)/(2Mrg)

C(j+ 12— 1/2)! k2r when j=3/2,
UF12la=12 Aj(— M) +CaR2+ O
tan 7;(E,\)~ 2M(2j-1) (30)
kro\?2 A(—M,\)+1(Mr
—77(—0 i > )+ H(Mro) when j=1/2,
\ 2 ] Aj(—=M,\)+c5k2=K2rgIn(krg)/(2M)

for E<—M. The asymptotic form$15) have been used in driving EqR9) and (30). In addition to the leading terms, we
include in Egs{(29) and(30) some next leading terms, which are useful only for the critical case where the leading terms are
canceled.

First, from Eqs(29) and(30) we see that tap;(E,\) tends to zero ai goes to= M, namely,»;(=M,\) are always equal
to the multiple ofz. In other words, if the phase shift;(E,\) for a sufficiently smalk is expressed as a positive or negative
acute angle plusi, its limit 7;(M,\) [or 5;(—M,\)] is equal tonz. It means thaty;(M,\) [or 7;(—M,\)] changes
discontinuously whem;(E,\) changes through the value { 1/2)7, wheren is an integer.

Second, from Eq(26) we have

In;(E,\) E+M)1’2 2{cos 7;(E,\)}? 0 E-M

— e g i )

INEM T TEZMI akro{N; 12(Kro)Aj(EN) = B(E)N; -1 kro)}? @D
In(EN)| _(IE[-M 172 2{cos 7;(E,\)}? 0 E<-mM

IAEN) [ \[E[+M] akro{N; | 1o kro)A((E,N) —B(EIN; ko))

Namely, as the ratioA;(E,\) decreases, the phase shift A;(—M,\) decreases from a small and positive number to a
7;(E,\) for E>M increases monotonically, bug (E,\) for negative one, the denominator in E89) changes sign from
E<—M decreases monotonically. In terms of the monotonicpositive to negative and the rest factor stays negative, so that
properties we are able to determine the jump of the phasthe phase shifty;(—M,\) jumps by — . In the preceding
shifts 7;(=M,\). section it was shown that each time tg¢(—M,\) de-

We first consider the scattering states of a positive energ§f€ases across zero, a bound state becomes a scattering state
with a sufficiently small momentunk. As A;(E,\) de- Of & negative energy. Conversely, each timeAfe—-M,\)
creases, if tam;(E,\) changes sign from positive to nega- 'NCT€ases across zero, the phase shift—M,\) jumps by
tive, the phase shif;(M,\) jumps by . Note that in this 7, and a scattering state of a negative energy becomes a
case if tany;(E,\) changes sign from negative to positive, bound state. Therefore, we obtain the Levinson theorem for

the phase shift7;(M,\) stays invariant. Conversely, as the Dirac equation in two dimensions for noncritical cases:

A,-(E,)\) inc'r(.aases, if tam,-(E,)\) changes' sign from nega- 2(M)+ ;(=M)=n;. (32)

tive to positive, the phase shify;(M,\) jumps by — .

Therefore, as\ increases from zero to one, each time thejt is obvious that the Levinson theoref82) holds for both

Aj(M,\) decreases from near and larger than the valugositive and negative in the noncritical cases.

2Mry/(2j—1) to smaller than that value, the denominator For the case ofj=1/2 and E~M, where the value

in Eqg. (29) changes sign from positive to negative and the2Mr,/(2j—1) is infinity, since{Aj(E,)\)}‘l increases as

rest factor stays positive, so that the phase shj{tM,\) A;(E,\) decreases, we can study the variance of

jumps byr. It has been shown in the preceding section thr:n{Aj(E,A)}‘l in this case instead. For the ener&§>M

each time the Aj(M,\) decreases across the valuewhere the momentumk is sufficiently small, when

2Mry/(2j—1), a scattering state of a positive energy be-{Aj(M,)\)}‘1 increases from negative to positive Bsin-

comes a bound state. Conversely, each timeAj@M,\) creases, both the numerator and denominator in (2§).

increases across that value, the phase shifM,\) jumps  change signs, but not simultaneously. The numerator

by —, and a bound state becomes a scattering state of @éhanges sign first, and then the denominator changes. The

positive energy. front factor in Eq.(29) is negative so that tam;(E,\) first
Then, we consider the scattering states of a negative ethanges from negative to positive when the numerator

ergy with a sufficiently smalk. As A;(E,\) decreases, if changes sign, and then changes from positive to negative

tan »;(E,\) changes sign from negative to positive, thewhen the denominator changes sign. It is in the second step

phase shiftp;(—M,\) jumps by — 7. However, in this case that the phase shiff;(M,\) jumps by 7. Similarly, each

if tan #;(E,\) changes sign from positive to negative, thetime {A,—(M,)\)}*l decreases across zero msincreases,

phase shift 7;(—M,\) stays invariant. Conversely, as #7;(M,\) jumps by — .

A;(E,\) increases, if tam;(E,\) changes sign from posi- For\=0 andj=1/2, the numerator in Eq29) is equal to

tive to negative, the phase shiffj(—M,\) jumps by 7.  zero, and the phase shif(M,0) is defined to be zero. For

Therefore, as\ increases from zero to one, each time thethis case there is a half-bound stateEat M [see Eq(33)].
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If {Aj(M,)\)}‘1 increases/A;(M,\) decreasgsas \ in- For definiteness, we again assume that in the critical case,
creases from zero, the front factor in EQ9) is negative, the as\ increases from a number near and less than one and
numerator becomes positive first, and then the denominatdinally reaches oné);(—M,\) decreaseand finally reaches
changes sign from negative to positive, such that the phaseero, so that whe.=1 the energy of a bound state de-
shift 7;(M,\) jumps by 7 and simultaneously the half- creases t&=—M for j=3/2, but a bound state becomes a
bound state becomes a bound state \EthM. half-bound state foj=1/2. We should check whether or not

Now, we turn to study the critical cases. First, we studythe phase shifiy;(—M,1) decreases by as\ increases and
the critical case foE~M, where the ratiA;(M,1) is equal reaches one.

to the value Mry/(2j—1). It is easy to obtain the follow- For the energfe<—M where the momenturk is suffi-
ing solution ofE=M in the regionr,<r <« , satisfying the ciently small, one can see from the next leading terms in the
radial equation$8) and the match conditiofl1) atr: denominator of EQ.(30) that the denominator does not

i ) . change sign a#A;(—M,\) decreases and finally reaches
fim(r,D)=2Mr=7%  giw(r,)=(2j=1)r™. (33  zero, namely, the phase shift(—M,\) does not jump by
. . itional— =1. Simul ly, th f
It is a bound state whej>3/2, but called a half-bound state ggu?%dgg?: d ;raeta)g es Eof 'T:Atigfcjn:g;zt su?r;eglguﬁ da
whenj=3/2 orj=1/2. A half-bound state is not a bound g0 hecomes a half-bound state for1/2, so that the
state, because its wave function is finite but not square inte-\jinson theorem(32) holds for the critical case with

grable. - . . =3/2, but it has to be modified for the critical case wijth
For definiteness, we assume that in the critical cas&, as _ 1/2:

increases from a number near and less than one and finally
reaches oné);(M,\) decreaseand finally reaches, but not M)+ 7:(=M)=(n+ 1) m (36)
across, the valueMr,/(2j—1). In this case, wheh=1 a ) ! )

new bound state oE=M appears fo>3/2, but does not \hen a half-bound state occursit —M and j=1/2.
appear foj =3/2 orj=1/2. We should check whether or not  combining Egs(32), (34), (36) and their corresponding
the phase shifty;(M,1) increases by an additional asX  forms for the negativé, we obtain the relativistic Levinson

increases and reaches one. _ _ ~ theorem(12) in two dimensions.
It is evident from the next leading terms in the denomi-

nator of EqQ. (29 that the denominator fofj=3/2 has
changed sign from positive to negative As(M,\) de-
creases and finally reaches the valuérg/(2j—1), Now, we discuss the general case where the potential
namely, the phase shiffj(M,\) jumps by an additionat at ~ V(r) has a tail atr=r,. Let r, be so large that only the
A=1. Simultaneously, a new bound stateEof M appears leading term inV(r) is concerned:

for j>3/2, but only a half-bound state appearsjfer3/2, so

V. DISCUSSION

that the Levinson theorer(82) holds for the critical case V(r)~br=", r=rg, 37
with j>3/2, but it has to be modified for the critical case . o . N
with j=3/2: whereb is a nonvanishing constant andis a positive con-
stant, not necessary to be an integer. Substituting it into Eq.
7j(M)+ 7 (=M)=(nj+1)= (34  (8) and changing the variableto &:
when a half bound state occursEB&M and j=3/2. kr=ryE?-~M? when |E|>M,
j= i i i - = 38
For j=1/2 the next leading term with IR(y) in the de cr=rM?—EZ when |E|=M, (38

nominator of Eq.(29) dominates so that the denominator
stays negativédoes not change sigras {AJ-(M,)\)}‘1 in- . . . : : i
creases and finally reaches zero, namely, the phase shitt obtain the radial equations in the regigy=r <c=:
7;(M,\) does not jump, no matter whether the rest part in

Eqg. (28) stays positive or has changed to negative. Simulta- _ng(gHj ng(5)2<%‘ /%_gknl) fie(£),

neously, only a new half-bound state B&=M for j=1/2 dé €
appears, so that the Levinson theoré®® holds for the
E [E+M b .
TE\@?M_EK gie(é),
(39)

critical case withj =1/2. d i
This conclusion holds for the critical case whégM ,\) - af,-E(f)ﬂLFij(é) =
increasesand finally reaches, but not across, the value
2Mry/(2)—1).
Second, we study the critical case o= — M, where the for |E|>M, and
ratio Aj(—M,1) is equal to zero. It is easy to obtain the '
following solution of E= —M in the regionr,<<r <o, satis- d j M—E b
fying the radial equation§8) and the match conditiofL1) at _ng(§)+_ng(§):( Vit E_EKn—l) fie(8),

ro: dé £

L @+ e Vo= 2 et g
It is a bound state whej=3/2, but a half-bound state when dr & rI® M—-E ¢ ) Gete)
j=1/2. (40)

fim(r,M)=0, gju(r,\)=r"1 (35)
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for |E|<M. As far as the Levinson theorem is concerned, weFrom the match conditiofi11), for the sufficiently smalk
are only interested in the solutions with the sufficiently smallwe obtain
k and . If n=3, in comparison with the first term on the

right hand side of Eq(39) or Eq. (40), the potential term —m(krol2)?* [j—a—1/2

with a factork"~1 (or k"~1) is too small to affect the phase tan 5,(B.N)~ F(a+D)T(a)\j+a—1/2

shift at the sufficiently smalk and the variant range of the ]

ratio f;e(r,\)/g;e(r,\) atro+. Therefore, the proof given XAJ(M’)‘)_ZMrO/(J_“_llz) (46)
in the preceding sections is effective for those potentials with Aj(M,N)=2Mro/(j+a—1/2)°

a tail so that the Levinson theore{h2) holds.

When n=2 and b+0, we will only keep the leading Therefore, as\ increases from zero to one, each time the
terms for the small parametkr(or «) in solving Eq.(39) [or ~ Aj(M,\) decreases from near and larger than the value
Eq. (40)]. First, we calculate the solutions with the energy2Mro/(j + a—1/2) to smaller than that value, the denomi-
E~M. Let nator in EqQ.(46) changes sign from positive to negative and

the rest factor stays positive, so th@f(M,\) jumps by .
a=(j?—j+2Mb+1/4YV2£j—1/2. (41)  Simultaneously, from Eq(43) a new overlap between the
variant ranges of the ratio at two sidesrgfappears such that
If a?<0, there is an infinite number of bound states. We willa scattering state of a positive energy becomes a bound state.
not discuss this case nor the case with-0 here. When Conversely, each time th&;(M,\) increases across that
a?>0, we takea>0 for convenience. Some formulas given value,5,(M,\) jumps by— #, and a bound state becomes a

in the preceding sections will be changed. scattering state of a positive energy.
WhenE<M we have Second, we calculate the solutions with the eneegy
—M. Let

fie(r,\) =€ @ VT2M (mir [2)Y2H (P (i kr),
B=(j?+]—2Mb+1/4Y?+j+1/2. (47)
. r’)\ :ei(a+l)77/2K 7TKr/2 1/2
() ( ) Similarly, we only discuss the cases wigf>0, and take

d j—1/2 B>0.
_ i ()
><| d(Kr)Ha (i) +—2—H (ixr) . WhenE=—M we have
(42 fie(r,\)=—€ BT V™24 (myr/2)2
Hence, the ratio at=ry+ for E=M is 1 +1/2
X i r) H¢ )(IKI')‘I- Plirr)p,
fie(r,\) _ Mo w3 " o
9ie(r. M, | jta—=1/2° ' 9ie(r \) =P V™RM (mir/2)Y2H P (ikr).  (48)
WhenE>M we have Hence, the ratio at=ry+ for E=—M is
fie(r,\)=2M(akr/2)12 ;]EE:);; :_j_zfntllz’ E——M. (49
X {c0S 8,(E,N)J4(Kr)—sin 5,(E,N)N,(kr)}, BV M r=rg+ 0
WhenE<—-M we have
ng(r,)\)=k(wkr/2)1’2(coséa(E,)\)( ke J,(kr)
ij(r,)\)z—k(7-rkr/2)1’2[cos§B(E,)\)(d T dskn)
j—1/2 ‘ ) (kr)
+—J in 8,(E,\
i Ja(kr) | =sin 5,(E,\) J+1/23 » )) ' 5(E)\)( I
r sin , r
d '—1/2 ” kr “F p d(kr) " #
X kr)+ N, (kr) | . 44
) N, (kr) a(KT) (44) j+1/2
o Ng(kn) |
Whenkr tends to infinity, the asymptotic form of the solu-
tion is gje(r,\) =2M(mkr/2)Y%{cos 84(E,\)J g(kr)
fie(r,\)~2M cogkr—am/2—ml4+ 6,(E,N)], —sin 85(E,N)Ng(KD)}, (50)
gje(r,N\)~k sifkr—amw/2— w/4+ 6,(E,N)]. Whenkr tends to infinity, the asymptotic form for the solu-
tion is
In comparison with the solutio25) we obtain the phase _
shift »;(E,\) for E>M: fie(r,N)~k sinkr—Bm/2— w4+ 65(E,N)],

D(EN)=8,(EN)+(j—a—12)m2, E>M. (45 9je(r,\)~2M cogkr— Bm/2— w4+ S4(EN)].
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In comparison with the solutio25) we obtain the phase
shift »;(E,\) for E<—M:

MEN)=85(EN)+(j— B+ 12 ml2, E<—M.

(59)

From the match conditiofill), for the sufficiently smalk
we obtain

— m(krg/2)28
rg+1Hr(p)
A{(—M,\)+(j +B+1/2)/(2Mry)
A (=M )+ (= B+ 12I(2Mrg)”
(52

tan 6,(E,N)~

Therefore, as\ increases from zero to one, each time the
Aj(—M,\) decreases from near and larger than the value

—(j—B+1/2)/(2Mr) to smaller than that value, the de-
nominator in Eq(52) changes sign from positive to negative
and the rest factor stays negative, so thgt—M,\) jumps
by —#. Simultaneously, from Eq49) an overlap between
the variant ranges of the ratio at two sidesrgfdisappears

RELATIVISTIC LEVINSON THEOREM IN TWO DIMENSIONS
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7 (M)+n(—M)=nj7m+(2j—a—B)wl2. (53

We will not discuss the critical cases in detail. In fact, the
modified relativistic Levinson theorent63) holds for the
critical cases ofa>1 and8>1. When G<a<1 or 0<pg
<1, 8,(M,1) or 65(—M,1) in the critical case will not be
multiple of 7, respectively, so that Ed53) is violated for
those critical cases.

Furthermore, for the potenti@B7) with a tail at infinity,
whenn>2, even if it contains a logarithm factor, for any
arbitrarily small positives, one can always find a sufficiently
large ry such that|V(r)|<e/r? in the regionr,<r<oe.
Thus, from Egs(41) and (47) we have for the sufficiently
small

a=(j?—j+2Me+1/4HY°~|—-1/2,
B=(j?+jF2Me+ 1L/ 2~j+1/2.

Hence, Eq.(53) coincides with Eq.(32). In this case the

such that a bound state becomes a scattering state of a neg&vinson theorent32) holds for the noncritical case.

tive energy. Conversely, each time tAg—M,\) increases
across that valuejs(—M,\) jumps by, and a scattering
state of a negative energy becomes a bound state.

In summary, we obtain the modified relativistic Levinson
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