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Siegert pseudostate formulation of scattering theory: One-channel case
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Siegert pseudostatéSPS$ are defined as a finite basis representation of the outgoing wave solutions to the
radial Schrdinger equation for cutoff potentials and the problem of their calculation is reduced to standard
linear algebra easily implementable on computers. For a sufficiently large basis and the cutoff radius, the set of
SPSs includes bound, weakly antibound, and narrow complex-energy resonance states of the system, i.e., all
the physically meaningful states observable individually. Moreover, the set is shown to possess certain or-
thogonality and completeness properties that qualify it as a discrete basis suitable for expanding the continuum.
We rederive many results of the theory of Siegert states in terms of SPSs and obtaificsoareknowledgg
previously unknown relations. This not only makes the results practically applicable, but also sheds a new light
on their mathematical nature. In particular, we show how the Mittag-Leffler expansions for the outgoing wave
Green’s function and the scattering matrix can be obtained on the basis of very simple algebraic relations,
without assuming them to be meromorphic functions. Explicit construction of these two fundamental objects
completes the SPS formulation of scattering theory for the one-channel case. The computational efficiency of
this approach is illustrated by a number of numerical examp&HK50-29478)05409-2

PACS numbgs): 03.65.Nk, 03.80tr, 11.55—m, 34.10+x

[. INTRODUCTION states; their performance depends on how close these states
reproduce basic physical properties of the system. The third
In the nonrelativistic quantum theory of collisions be- approach does not rely upon any specific set of states and
tween microscopic particles one works with HamiltoniansCONSISts in approximating the integral over the continuum by
whose spectra consist of discrete and continuous parts: ther@l @ppropriate quadratuf8]. Although this might seem to

fore expansions in terms of the complete set of eigenstates &€ Purely mathematical, or one would say a numerical pro-
such Hamiltonians contain summation over the former ang€dure, such methods may be extremely efficient in practical

integration over the latter. It is well known that the discretepaICUIat'ons[‘l]’ which eventually must have some physical

part of the expansions is much easier to deal with than thént(_arrr[])ée;a&%r;.se of this paper is to promote Siegeseu-
continuous part, basically becauge summation Is a naturﬂostates(SP%introduced in5] as an appealing basis alter-
operation to do on computers while integration is to be ap

) . L native to those mentioned above. The Siegert ste3Ss
proximated by summation anyway. This difficulty keeps mo-p,ye jong been known as a potentially powerful tool in the

tivating one to seek a scheme to discretize the continuuntomga| scattering theory. However, this power remained
indeed, various such schemes have been proposed. Withqgfgely latent for the lack of an efficient method of their
the intention to overview all the literature, we mention only calculation, most of the applications to date being restricted
three major approaches in this direction. The first and tho studying only individual resonances. 6] we have pro-
most developed one is the-matrix method[1]. The basic posed a method to implement this power in terms of SPSs. In
idea here is to confine the system to a finite volume, with thehis brief exposure of our basic idea many important details
asymptotic boundary conditions replaced by certain condiof the derivation were omitted and simple one-dimensional
tions on the boundary of the volume. The eigenstates of th@tlustrative examples were skipped for the sake of more con-
Hamiltonian satisfying thus modified boundary conditionsvincing demonstration of the method by calculations for re-
form a discrete set called thR-matrix basis. The second alistic three-body Coulomb systems. The present paper is
approach is to switch from the energy eigenstates to sommeant to fill this gap. Here we present a thorough discussion
kind of Sturmian eigenstates which are eigenfunctions of thef the one-channel case; possible generalizations to a multi-
same Hamiltonian but with a nonunity weight chosen in suctchannel case go beyond the scope of this paper and will be
a way that the Sturmian problem has a purely discrete spetouched upon only briefly6].
trum[2]. A Sturmian basis can be defined by regarding some The definition of SSs requires an extension of the real
parameter of the potential energy, such as nuclear charge energy axis to complex energy “plane,” actually a multish-
angular momentum, as an eigenvalue instead of the energget Riemann surface. Although all the collision events can be
Each of these approaches enables one to replace integratidescribed by the scattering mati$(E) taken at real ener-
over the continuum by summation over a discrete set ogjiesE, the usefulness of considering complex energies was
recognized long ago. As far as we know, the first person who
employed complex energy in quantum mechanics was
*Permanent address: P. N. Lebedev Physical Institute, RussigBamow. In his famous paper endecay of atomic nucldi7]

Academy of Sciences, Moscow, Russia. Gamow associated the lifetime of a resonance state with
"Permanent address: Institute of Physics, The University of Stthe imaginary part of the energy of the state. Later, Breit
Petersburg, St. Petersburg, Russia. and Wigner [8] presented a formula describing a
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resonance profile in the scattering cross section in terms ameter of the problem. With the branching cut made along
the energy and the lifetime of the resonance state. In searthe positive real energy semiaxis, the upper/lower halves of
of a formal derivation of the Breit-Wigner formula from the the k plane map onto the so-called physical/unphysical en-
Schralinger equation, Kapur and Peiefl8] introduced a ergy sheets, respectively. Siegert eigenenergies are defined
discrete set of complex-energy eigenstates and showed thiay E,,=k2/2. Only the bound state poles may appear on the
narrow resonances in scattering correspond to the states hgyhysical sheet; all the others are located on the unphysical
ing a small imaginary part of the energy. However, the statesheet(see, e.g., Secs. 128, 133, and 1341ifi], Secs. 12.1
considered by Kapur and Peierls were dependent on the scaind 16.6 if12], Sec. 2.2 irf13], and many other treatises on
tering energy, which entered their formulation as an externagcattering theory

parameter. A formulation that is free from any external pa- There is a vast literature devoted to different aspects of
rameters and therefore focuses on the intrinsic properties afe theory of SSs. We mention only several pioneering stud-
the system was given by Sieg¢fiO]. In this paper we re- jes[14—35 containing results relevant to the present work;
strict our treatment to the genesewave scattering problem more references can be found [ih2,13. Hu [14] showed

defined by the radial Schdinger equation that the knowledge of only the SS eigenvalkgssuffices to
) completely determine the scattering matsk) in the whole
1d k plane and gave a formula fo®(k) in terms of k.
(H=E)¢(r)=0, H=-3 dr? +V(r), (18 gerdobol'ski [18] derived an expansion for the continuous-

r—o

1 2
E= 5K )

=0. (1c)

r=a

energy wave function in terms of the SS eigenfunctions
where the potential energy(r) is assumed to vanish suffi- @n(r). More and Gerjuoy28] presented a similar expansion
ciently fast atr —. Then SSs are defined as the solutions tdfor the outgoing wave Green’s function. Many more subtle
Eq. (1a satisfying the regularity boundary condition mt issues of the theory in which SSs differ from the usual en-
=0, ergy eigenstates, such as the orthogonality and normalization
condition [18,19,21-23,26-28,30,82 the completeness
¢(0)=0, (1b)  properties[22,23,28,29,32—34 and the perturbation theory
[15,19,21,25,27,28 have also been clarifid®6]. These re-
and the outgoing wave boundary conditionr at o, sults seem to suggest the foundation for a method capable of
a unified treatment of bound states, resonances, and con-
(i—ik)qS(r) -0 (10) tinuum, i.e., the whole spectrum of collision phenomena in
dr ’ terms of purely discrete set of SSs. However, no such
method exists as far as computational implementations are
where the energ¥ and the momenturk are related by concerned. The reason for this is rooted in the following
practical difficulty: The momenturk appears in Eqg1) and
(2) nonlinearly, which renders this eigenvalue problem trac-
table only by means of an iterative procedure. The iterations
can be performed for one or a few SSs, provided that a good
Equations(1)—(2) can be satisfied simultaneously only for a initial guess for their eigenvaluds, is known, but iterative
discrete set of generally complex momemtg; thus one calculations ofmanySSs required for the results mentioned
should consider them as an eigenvalue problem defikjng above to be practically useful become prohibitively difficult.
and corresponding eigenfunctiosg(r). The eigenvaluek, In [5] we have proposed a method to overcome this dif-
coincide with poles of the scattering matrix in the comptex ficulty. As a preliminary step of our formulation, the outgo-
plane. Those that lie on the positive imaginary semiaxis coring wave boundary conditiofiLc) should be applied at some
respond to bound states of the system; those lying on thénite point
negative imaginary semiaxis correspond to antiboiamavir-
tual) states; all the others occur in paksand -k} and lie (i—ik> (1)
in the lower half of thek plane. The bound states and the SSs dr
with Im(k,) <0 lying close to the real axis, which manifest
themselves as resonances in scattering at @egk,)=0] This amounts to cutting off the tail of the potentiA(r) that
or finite [Re(k,)# 0] energies, individually represent some extends beyond =a. In the following, we shall call the
basic features of the system; the other SSs lying deeper in thmlutions to Egs(1a), (1b), (1c¢’), and(2) Siegert states for
lower half plane are not observable individually and are recutoff potentials(SSCP% In contrast to SSs, which depend
lated to the background scattering. The distinction betweenn nothing but the potential energy(r) and certainly
the two groups is not mathematically rigorous, unless ongresent a more general mathematical construction, SSCPs
rigorously defines what is a resonance, but it is well knowndepend also on the cutoff radias For the special class of
to be physically meaningful. Note the important role playedfinite range potentials, when the functidf(r) identically
by relation(2): It specifies the structure of the Riemann sur-vanishes outside some fixed radius, SSCPs coincide with SSs
face of complex energ for the present problem as having for a sufficiently largea; otherwise, the two sets are quite
two sheets connected by the branching poinEat0 and different and even in the limia— <« only a finite number of
establishes a uniformization mapping of this surface onto th6&SCPs may converge to SSs, as will be discussed below.
plane of complex momenturk upon which the scattering Switching from Eq.(1c) to Eq.(1c") drastically modifies the
matrix S(k) becomes a single-valued function. Thus the mo-analytical structure of the problem, but it does not seem to
mentumk takes the place of the ener@y as a natural pa- introduce any restriction for our purposes. Indeed, we are
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interested in developing a method that would make the basicet us define the function

results of the theory of SSs practically applicable. However, N

all these results were rigorously derived only for finite range , ,

potentials i.e., actually in terms of SSCPs. Perhaps the re- In(r.r ):2’1 mi(r)mi(r’), ®
sults still hold for potentials decreasing faster than any ex-

ponential function, although even in this case a rigorousvhich is a representation of the unity operator within our
treatment is too complicated and definite statements are fewasis. We assume that the ba&& becomes complete in
[16]. For potentials decreasing slower than that, which in1.2[0,a] whenN—x, i.e.,

cludes exponentially decreasing potentials, the scattering ma-

trix S(k) besides the poles corresponding to SSs may also In(rr ") INmw=8(r—r"), (6)
have so-called redundant poles, branching points, and a
kind of singularity in the k plane, depending on the
asymptotic behavior o¥/(r) [17]. We believe that a physi-
cally sensible approach should not be sensitive to the e
treme tail of the potential, provided th¥i{(r) vanishes suf-
ficiently fast atr —. Accordingly, we shall treat the cutoff
potential problem based on Ed.c’), with the understanding
that the applicability of our method to infinite range poten-
tials must be confirmed by demonstrating convergence with 1fad77i(r) de(r) ik

respect to the increase of the cutoff radaus-or the sake of > ar ar dr— gm(a)qﬁ(a)
0

n\xh . o
ere the convergence is to be understood not pointwise, of
course, but in the sense of generalized functifdig. In
XQrder to satisfy Eq(1lb) we assume thair;(0)=0, but no
restriction on the behavior ofr(r) nearr=a is imposed,
except that dictated by the condition of square integrability.
Premultiplying Eg. (18 by m(r), integrating overr
e[0,a], and using the boundary conditighc’), we obtain

historical accuracy it should be noted that in the original
paper by Siegeftl0] Eq. (1c) rather than Eq(lc) was used. a
The finiteness of the region to be considered allows us to +f i (r)[V(r)—E]¢(r)dr=0. (7
apply anL? expansion technique. This leads to the definition 0

of SPSs as a finite basis representation of SSCPs. In Sec.ﬁﬂnI the values ofs(r) for r within the interval[0.a] ap-
we reduce the problem of constructing the complete set o Y ! b

SPSs to a linear algebraic eigenvalue problem and study jfgear in this equathn. Hence we can expa#(d) in Eq. (7)
properties. This section provides an algebraic foundation fol terms of the basi¢3),

the rest of the paper. Next we rederive the basic results of N

Refs.[14,18,28 in terms of SPSs: In Sec. Il we construct ¢(r)=2 ¢;mi(r), Osr=a. )
the outgoing wave Green'’s function and in Sec. IV we obtain j=1

the continuous-energy wave function and the scattering maS- N : S . .
trix. In Sec. V we consider the asymptotic distribution of the ubstltutlng this expansion ”_“O E) and using the relation
SSCP eigenvaluds, for largen, needed for an understand- (2), we arrive at the algebraic equation

ing of the numerical results presented for a number of model ik K2

potentials in Sec. VI. In Sec. VIl we point out possible gen- (H— —L——I
eralizations of the present approach and problems encoun- 2 2
tered therein. A summary of the results and a brief compari-
son of the SPS formulation with other computational
methods in scattering theory conclude the paper in Sec. VI

c=0. (9)

Let us comment on our notation. Here and further on,
column vectors of the dimensioN are denoted by lower
case italic characters, e.g,in Eq. (9) is a column vector
composed of the coefficients in Eq. (8); row vectors of the
Il. SIEGERT PSEUDOSTATES AND THEIR PROPERTIES same dimension will be denoted a5, whereT stands for
transposgwe refrain from using Dirac’s notation, because
. o (c| usually means transposed complex conjugate ofc),

We consider Egs(la, (1b), (1c¢)), and (2) defining  hjle we shall almost never need complex conjugation
SSCPs. Having thus confined the problem to a finite intervalSquare matrices of the dimensibix N are denoted by upper

we expand the solutions in terms of some primitive squargase holdface characters ani$ always the unit matrix. The

integrable basis, reducing the original differential equation to L~ . ) .

: o . . matricesH andL in Eq. (9) are defined by their elements

an algebraic form. Such a reduction is very convenient since
it provides a practical recipe to implement our method. In 4 adar(r) dai(r) a

addition, it renders the derivation of many basic equations of  H;; =—f ar d]r dr+ f mi(r)V(r)m;(r)dr
0 0

the theory simple and transparent. However, it also turns out 2

A. Reduction to an algebraic form

to be essential, as will become clear later. (10
We employ a finite basis and
mi(r), i=1, ... N, ©) Lij:ﬂ'i(a)ﬂ'j(a)- (12)
which is assumed to be orthonormal on the intef\gh], Introducing the Bloch operatdB8]

a 1 d
fo mi(r)m(r)dr=g;. 4 L=>d(r—a)4 (12)
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and the Hermitized Hamiltonian prohibits direct use of the standard methods of linear algebra.
- Fortunately, however, the nonlinearity is rather simple since
H=H+L, (13  k appears in Eq(9) only quadratically. As is shown below,

5 5 in this case the problem can be exadihearizedto a form
it can be seen thail is a matrix representation ¢&f within of the usual eigenvalue problem, but with the dimension
the basig3). As follows from Eq.(1c'), the action ofL on  doubled.
SSCPs is defined by Consider a quadratic algebraic eigenvalue problem

a ik (A+\B+\?l)c=0, (16)
fo m(r)Le(rydr = Zmi(a) $(a); (14
whereA andB are someN X N matrices| is the unit matrix,
thus L is proportional to a matrix representation bffor ?”d)& andc atfe ':heHe|genvaIrL]Je and tthi e(;gtenvector iot'be
L~ ound, respectively. Here we have switched to new notation
SSCPs. Note that for a real bas® the matricedH and L . ) . ; ;
are real and symmetric. Also nof?very importantly, thas in order to emphasize the generality of the following discus-

a projector-type matrixsee Appendix Aand has rank 1. It sion. The relation to Eq.9) is obvious,
can be diagonalized by an orthogonal transformation of the
basis (3) and its only nonzero eigenvalue is positive and
coincides with the trace df given by

A=ik, A=2H, B=-L. 17
It is convenient to introduce the matrix
N
tr(L)=>, m%(a). (15) M(N)=A+XB+\2, (18)
i=1

. : L , which is called a quadratic matrix polynomial with respect to
Equation(9) is a projection of Egs(1a), (1b), (1¢), and )\ 149] First, we observe that E4L6) has exactly X solu-

(2) onto anN-dimensional Hilbert space spanned by the bajons “this number being the degree of the polynomial repre-
sis(3). For any finiteN, we shall call the solutions to E() senting ddtM(\)] as a function of\. Thus, for a giverN

Siegert pseudostates. Because only the values(of forr  yhare are & SPSs. This gives a hint as how to linearize Eq.

e[0,a] were considered in the derivation of E) and (16). With each eigenpaih and ¢ satisfying Eq.(16) we
because the basi8) is complete within this interval for in- associate a column vector of doubled dimension

finite N, it is natural to expect by analogy with usual varia-
tional expansiongand this will be confirmed by numerical c c
calculation that the “lower” SPSs approximate some ( ) :( )
“low-lying” SSCPs, and that a better approximation for a

larger number of SSCPs can be achieved by increaling

[39]. However, at this point it is not clear whether the It is easy to see that this vector satisfies
“higher” SPSs represent anything but numerical rubbish. As

will be shown below they do, although not individually but 0 I c c

as essential members of a complete set. It is this property of ( A - B) ( ) =7\<~> (20
SPSs that makes us distinguish them from SSCPs and justi-

fies the introduction of the new terfd0]. Accordingly, all
the relations below will be derived for a finitd, i.e., in
terms of SPSs, corresponding results in terms of SSCPs b
ing recovered in the limitN—c. Strictly speaking, we
should assign the indel to all the quantities expressed in
terms of SPSs. However, for the simplicity of notation we - -
suppress such an index; moreover, we shall use the same ¢ [ ¢
notation for SPSs as for SSs and SSCPs, for it will always be o Ac™)’ n
clear which set is meant.

Note that for the present problem a representation of thgqm which the eigenvectors™ of Eq. (16) can be found.
R-matrix basis within our Hilbert space is defined by E9).  Thys Eqs(16) and(20) are equivalent. Such linearization of
with the L term dropped. This term originates from the he problem by means of doubling its dimension is a discrete
Bloch operator and, as will be seen later, it plays a major par&nalog of the well-known procedure of reducing a second-

(19

T \C

c c
This is also an eigenvalue problem, but in contrast to Eq.
16) this is alinear one and can be dealt with routinely.
guation (20) defines A eigenvalues\,, which coincide

with the eigenvalues of Eq16), and 2N eigenvectors

=1, ... N, (22)

within the SPS formulation. order differential equation to a set of two first-order equa-
tions. Obviously, this technique can be extended to a poly-
B. Linearization nomial eigenvalue problem of an arbitrary ordéd].

Equation (9) can have a nontrivial solution only for a  Fremultiplying Eq.(20) by the matrix

discrete set ok=k,,; thus it constitutes an algebraic eigen-

value problem definind, and corresponding eigenvectors (B I) 22)
c(M. Yet it is an unconventional eigenvalue problem since it (o)

is nonlinear with respect th. This is a manifestation of the

difficulty mentioned in the Introduction. This nonlinearity it can be reduced to a symmetric form
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—A 0\(cC B |
~ =\
0 1I/\lc I 0
This is a generalized algebraic eigenvalue problem with the _ _
weight matrix given by Eq(22). If A andB are symmetric, WhereC, is a constant. For bound states=i«,, wherex,
then the matrices in Eq23) are also symmetric. Equation is real and positive. In this case, the functi@$) exponen-

(23 is more convenient than Eq20) for deriving some tially decays atr—o and it is easy to see that E(R8)
general relations and it may be found advantageous also f@oincides with the ordinary orthogonality and normalization

(23) by

c) The function(27) can be smoothly continued beyone-a

¢n(r):Cneiknra r=a, (29

numerical solution. condition for bound states

From here on we assume that the matriéeandB are
real and symmetric, as is the case for B). From this some Jm r Ndr=6 30
properties of the SPS eigenvalugscan be deduced. First, if 0 n(1) $m(r) nm (30

the pair\ andc is a solution of Eq(16), then the complex
conjugate paih* andc* also is a solution. This means that This explains the choice of the normalization factor in Eq.
k, are either pure imaginarpound and antibound stajesr ~ (25). For all the other SPSs the functi¢®9) exponentially

occur in pairsk, and—k* . Second, using Eq16) it can be ~ 9rows atr—oo, since Imk,)<0, and the conditior28) dif-
shown that fers from the conventional on@0). The normalization con-

dition for SSCPs is obtained from E6) in the limit N
Im(\)[c* TBc+2 Rg\)c* Te]=0. (24  —; in coordinate representation it is given by the same

equation(28). The expression on the left-hand side of this
If In(\)#0 then, recalling that the only nonzero eigenvalue€quation fom=m has appeared already [it0]; its relation
of B (=—L) is negative, from Eq(24) we have Ref) o the norm of SSCPs was first realized[i8] and in the
=0. Thus complex, with Re(k,)#0 may appear only in Present form Eq(28) was first given in[23]. In the latter
the lower half of thek plane. These properties coincide with Paper it was interpreted as an analytical continuation of Eqg.
the well-known properties of Siegert eigenvalues; however(30. The unconventional normalization of SSCPs was a big
in the present formulation we have derived them not fromobstacle on the way of incorporating these states into the
the analytical dependence of the solutions to @@ on E, ~ apparatus of scattering theory. This problem has been ad-
as it is usually dond12], but from the properties of the dressed by many authofd9,21,23,26-2Bwho employed
matricesA andB. Note an interesting possibility allowed by different arguments and regularization techniques. Within
Eq. (24): Im(A\)#0 whenc*TBc=0 and Rek)=0. This the SPS formulation this matter becomes very simple: The
would correspond to a discrete state embedded in the coffigenvectors2l) are orthonormal in the usual sense of the
tinuum, in which case Ink,,)=0 while Rek,)#0. word, _but in the space of doubled d|mens_|qn and with a
nonunit weight[see Eq.(25)], and the condition(26) [or
(28)] results from the reduction of Eq25) to the original
Hilbert space. Note the absence of complex conjugation in

Assuming that all the eigenvaluag are distinct, it can be Egs. (26) and (28), which is a characteristic feature of all

shown that the eigenvectors of H&3) are orthogonal with theories of SSs.
respect to the following inner product

C. Orthogonality and normalization condition

o(m D. Completeness relations

B
(C(n>T{;<n>T)< ) (’"(m)) =2\ nSnm> (25) The eigenvectorf1), being linearly independent, form a
I 0/\c complete set in the space of doubled dimension. This fact is

expressed by
where the choice of the normalization factor on the right-

hand side will become clear shortly. Using E@1), this § 1 [ ¢ o wre (B 1 /o |
condition can be rewritten as & o A, c™ ('MW n, V)= ol ~\I _-B
oy L €TBS™ (31)
n m = .
creT At A = Onm- @6 o, equivalently, by
2N
In the coordinate representation, the SPS eigenfunctions are D ic(”)cm”:O (323
given by =N, '
N 2N
<15n(r)=j21 c{"m(r), O<r<a, 27 Zl c(MeMT=2|, (32b)
< =
and Eq.(26) takes the form 2N ;
Zl AcMcMT= 2B, (320
n:

J:¢n<r>¢m<r>dr+iM— 29)

Kntky "7 In the coordinate representation, these equations read
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2N which provides a three-term recurrence for generafgdor
> 2 ba(N) (1) =0, (339  p=<-—2 and/orp=2. For example,
n=1 n
2N
2N 1
= — eMe(MT— _op-1
S, da(1)balr) =201, (33b Q2= 2 peeT= -2 37
n=1
2N and
2 ikngn(r)n(r')=2ln(r,a)ln(r' @), (339 N
- 26(Na(MT—oR2_
where bothr andr’ lie within the interval[0,a]. These Q2 ngl Ance 2(B7-A). (38)

equations express important properties of SPSs that hold for
any N. In the limit N—o, using Eq.(6), we obtain the \ve do not write down expressions for the higl@y in co-

corresponding properties of SSCPs: ordinate representation; just note that the larger posjtive
= g the more diverging at=a they are wherN—x.
2 7 (1) dy(r')=0, (343
n=1 Ikn

E. Spectral resolutions of a quadratic matrix polynomial
and its inverse

> ba(D)a(r)=25(r—r1"), (34b Having found all the eigenvalues, and the eigenvectors

n=t ¢ of Eq. (16), one should be able to construct spectral
% resolutions of the matrix18) and its inverseM (\) can be
S ik, b ba(r')=28(r—a)é(r' —a). (349  expressed in terms of, andc™ using Egs.(32b), (320,
n=1 and (38). The result is quite different from the well-known

spectral resolution of a linear matrix polynomial. We give it
only for the case whemB is a projector-type matrixXsee
Appendix A). Using the propertyAl) we obtain

Equations(343@ and(34b) were first given inN29]. Equa-
tion (34b) shows that the set of SSCPs is complete in
L?[0,a], while Eq. (348 indicates that the set is actually
overcomplete, giving a linear combination of the functions 1 2N
én(r) that turns zero identically. The overcompleteness of ~ M(\)= EE [N2= ANy —A2=tr(B)\,]c™Mc™T, (39)
SSCPs was another big obstacle for the theory. It renders the n=1
guestion of convergence of the expansions in terms of SSCPs ) _

a nontrivial one, namely, convergence is not guaranteed byhere tr@) can be expressed in terms xof andc(™ using
simply increacing the number of terms. There is no suchEd- (320). A similar expansion for the inverse & (\) turns
problem for the expansions in terms of SPSs, provided tha@ut to be simpler. Without assuming any particular structure
all 2N SPSs are included and convergence is understoo®f B, using Egs(32a and(32b) it can be easily shown that
with respect to the increase &f. This follows from Eqgs.

(33b) and(6), which ensure that the set oN2SPSs becomes o § cMeMT
complete inL?[0,a] whenN— . In other words, taking the M ()‘)_nzl 2 (A —N\p) (40)

limit N—oo within the SPS formulation provides a control
over the overcompleteness. Some autf@&32,35,18re-  This formula will be used in Sec. Il for constructing the
lated the overcompleteness of SSCPs to the factor 2 in Eqgreen’s function.
(34b). Such an interpretation is hardly acceptable since this
factor can be easily removed by a mere renormalization of
én(r). The SPS formulation also sheds some light on the
nature of the overcompleteness: The set of the eigenvectors To conclude this algebraic section, we consider one more
(21) is complete in the space of doubled dimension, but reproperty of SPSs needed for the discussion below. From Eq.
duction to the original Hilbert space results in the overcom<18) we have
pleteness.

Relation (32¢ and its coordinate representations Egs. M(N)—M(—A)=2AB, (41)
(330 and(34¢) have not been given previously, as far as we ) )
know. In fact, there is an infinite sequence of such relationgvhich can be put in the equivalent form
that can be generated by the following proced#2]. Let

F. Miscellaneous properties

Q, be defined by I=2XxBM (M) =M(=N)M~(\). (42)
_ § Bl ()T This implies equality of the determinants of the matrices on
Qp_n=1 Apcet (39 each side of the equation. The determinanidi\) is given
by
From Egs.(328—(32¢ we haveQ_;=0, Qy,=2I, andQ;
=—2B. Using Eg.(16) we obtain 2N

defM(\)]= A—\p). 43
AQp_1+BQp+Qp:1=0, (36) M) nﬂl( ) “43
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Again using the fact thaB, and hence als8M ~1(\), is a

projector-type matrix'see Appendix A from the property

(A2) and Eq.(43) we obtain

2N

1-2x t[BM I\ 1=11 i)
n=1 }\_)\n

(44)

Taking the residue of both sides)at- \ ,, and using Eq(40)
we have

2N\ A

(MTRe(M — _
ct™iBc'™= -2\ .
mn#m )\m_)\n

(45)

In a coordinate representation these relations read

2N > 2N
: [én(@)]° 1 KntK
1+'kn=1—kn(kn—k)_nﬂl—kn—k (46)
and
2N gtk
[$m(@)]?=2ikn [T (=== (47
n#m Rm n

Equation(46) is essential for expressing the scattering matrix
in terms of only the SPS eigenvalukes; see Sec. IV. Equa-
tion (47) defines the boundary contribution to the SPS norm®
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2N (m(mT

c'c
G(k)= — 51
W= 2 10 Gy

In the coordinate representation we have
2N

(1) n(r’)
G(r,r’;k)= ——, O=sr,r'=<a. (52
( ) nZl kn(kn_k) ( )

This is the SPS expansion of the Green’s function. The deri-
vation presented is based on E(#239 and(32b) or, equiva-
lently, on Egs.(33a and(33b), which due to Eq(6) ensure
the & function on the right-hand side of EG183 in the limit
N—o. The SSCP expansion @(r,r’;k) obtained from
Eqg. (52 in this limit was anticipated i124,27] and in the
present form it was first given if28]. In its derivation these
and subsequent authoj29,31,33 essentially followed the
same logical route: Certain analytical properties of
G(r,r’;k) in the complexk plane were assuméd(r,r’;k)
is a meromorphic function d€], which allowed one to apply
the Mittag-Leffler expansion theorefa meromorphic func-
tion can be expanded in terms of its pdlds the SPS for-
mulation, Eq.(52) follows from Eqgs.(328 and(32b), which
in turn are rather simple algebraic relations.
Following[29,32, we note that once the SSCP expansion
fG(r,r';k), i.e., Eq.(52) in the limit N—«, is established,

in Eq. (28), the coefficienC, in Eq. (29), and the residues of elations(34a and(34b) follow from the formula

the scattering matrix at its poles given by EG0) below. By

taking the limitN— o« in Egs.(46) and(47), one obtains the
corresponding properties of SSCPs. To our knowledge, these

properties have never been presented in the literature.

IIl. OUTGOING WAVE GREEN’S FUNCTION

We proceed to rederive the basic results of the theory of
SSs in terms of SPSs. Here we construct the outgoing wave
Green's functionG(r,r’;k). For the cutoff potential prob-

lem it is defined by the equation

(H=E)G(r,r";k)y=68(r—r") (483
and the boundary conditions
G(0r';k)=0, (48b)
d
a—lk)G(l’,r’;k) =0, (480

r=a

where bothr andr’ lie within the interval[0,a] and we
recall the relation2). We seek the solution in the form

N
G(r,r’;k)z_zl Gij(K)ymi(r)m(r'), O<r, r'<a.
ij=

(49

Then for the matrixG(k) composed of the coefficients

Gjj(k) we obtain

(~ ik kz)
A-—=L——=1|G(k)=I. (50)

2 2

Using Eq.(40), the solution to this equation is given by

2
G(r,r’;k)hk‘_,w:—Eé(r—r’)JrO(k*?’), (53)

which is an obvious consequence of E483.

IV. CONTINUOUS-ENERGY WAVE FUNCTION
AND THE SCATTERING MATRIX

The knowledge of the outgoing wave Green’s function
G(r,r’;k) amounts to a complete solution of the Schro
dinger equation. Having expandé@l(r,r’;k) in terms of
SPSg[see Eq.(52)], we are in a position to derive similar
expansions for other quantities of interest. In particular, here
we consider a continuous-energy wave functig(m;k) and
the scattering matrib§(k). For thes-wave scattering by a
cutoff potential they are defined by

(H=E)¢(r;k)=0, (549
#(0;k)=0, (54b
P(r;K)| =a=e" " —S(k)e'"". (549

The solutiony(r;k) to this one-dimensional equation is re-
lated to the Green'’s functio&(r,r’;k) by

G k= pulro e, r=a, (59

wherer _ (r-) is the smalleKthe largey of r andr’. Setting
r’'=a, we obtain

y(r:k)=—ike *aG(r,a;k), r=<a. (56)
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Substituting here Eq52), we get an expansion fa¥(r;k) in under different assumptions regarding the maBixn Eq.

terms of SPSs: (16): Eq. (59 holds for an arbitrary symmetrig, while Eq.
N (61) requiresB to be a projector-type matrigsee Appendix
(k) = — ke ka dn(r)dn(a) _ A), which is actually the case becauBeepresents the Bloch

& ka(ka—k) r<a. (57 operator(11). This circumstance becomes somehow hidden

when the limitN— o is taken. Note that, as follows from Eq.
From the condition that Eq$54¢) and(56) must coincide at  (24), if a discrete state embedded in the continuum exists, it
r=a we have[38] must satisfy¢p,(a)=0; hence the residu@0) vanishes, i.e.,
such a state is not visible in the scattering.

S(k)=e 2k 1+ikG(a,a;k)]. (58)
Again using Eq(52), we obtain an expansion f&(k): V. ASYMPTOTIC DISTRIBUTION OF SIEGERT
EIGENVALUES FOR CUTOFF POTENTIALS
o [¢a(@)T?
S(k)=e~2ka 1+ik2 —rm7 (59) Prior to discussing the numerical illustrations, here we
=1 Kn(kn=k) investigate asymptotic distribution of the SSCP eigenvalues

k, defined by Egs(1a), (1b), (1c¢’), and(2) for n—o. This
will prove to be helpful for understanding general features of
the distributions of SPS eigenvalues presented in Sec. VI.
We shall consider only the eigenvaluks lying in the
(k—k)S(K)|kop = —ie 2k 4, (a)]2. (60) fourth quadrf'int (_)f thdx_ plane; th_ose lying in the thir_d quc_';\d-
n rant are their mirror images with respect to the imaginary
axis and there may exist only a finite number of the eigen-
values in the upper half plane. An expansiorkgffor large

We shall call this the “sum” formula for the scattering ma-
trix. It shows thatS(k) has simple poles dt=k,, with the
residues

Using Eq.(46), we obtain an alternative expression &fk):

ANk n was first discussed ifil5]. The well-known result reads
S(ky=e~2ka]] 21—, (61)  (see, e.g.[12))
n=1 kn_ k

This will be called the “product” formula. Taking into ac- k.a —an—il 1+ E Inn+0(1 63
count the properties of the SPS eigenvallgs the product @ln— =N~ 27 nn @, ©3
formula explicitly ensures unitarity of the scattering matrix
which for realk reads whereo is defined by

S(k)S*(k):S(k)S(_k)zl (62) V(r)| Ooc(a_r)o' (64)

r—a— .

In the limit N—«, Egs.(57), (59), and(61) become ex-
pressed in terms of SSCPs. The SSCP expansion of tHequation (63) gives too rough an approximation: Its first
continuous-energy wave function following from E(7)  neglected term does not decay with the increase, afhich
was first given in18]; see alsd30,32. The product repre- makes a comparison with the calculated results difficult and
sentation of the scattering matrix in terms of SSCPs follow-ambiguous. We are not aware whether the higher terms in
ing from Eq.(61) was first given in[14] and later derived the expansior(63) have ever been treated in the literature;
rigorously for finite range potentials {i16]. The situation in  probably, for the lack of an efficient method of calculating
the literature regarding the SSCP analog of E&9) is less K, this was considered to be of no practical use, which is not
certain. Although similar expansions have been discussed e case in the present work.
many authorq15,20,31,32,3h they always contain some Let us consider the case=0, i.e.,V(a)# 0, which is of
undefined quantities such as an entire function, some resinain interest for the cutoff potential problem. As can be seen
dues, or matrix elementsee, e.g., Sec. 12.1 in the standardfrom Eq. (63), |k,|~n for n—, so the expansiof63) can
textbook[12]), which make them actually useless for practi- be developed further by constructing the Born series for the
cal applications. To our knowledege, in that simple form thatsolutions to Eq.(1a). This approach was actually used in
follows from Eq.(59) in the limit N—<, the sum formula [15,18,16 to derive Eq.(63); however, it becomes too awk-
for the scattering matrix has not been given previously. Simiward for treating the higher terms. For this purpose, it is very
larly to the case of Green’s function, all previous authorsconvenient to use a version of the phase-amplitude method
following Ref.[15] based their derivations of the scattering proposed in[43]. In this method, the solution to Eqla)
matrix on the Mittag-Leffler expansion theorem; this was thesatisfying the first boundary conditiofib) is presented in
source of appearance of some undefined entire function ithe form
the resulting formulas(“The relation betweenP(k) [the

entire functiorj and the poles o8 is hard to disentangle, and A(r)
no simple expression is known.” See p. 364 1r2]). Within P(r)= sin(s(r)+6(r)]. (65)
the SPS formulation this matter also gets clarified and Egs. vk(r)

(59 and(61) do not involve any undefined quantities. More-

over, now we can see a relation between them, namely, foHere A(r) and 4(r) are the amplitude and the phase func-
mulas(59) and (61) are algebraically equivalent, as follows tions, respectively, an#(r) ands(r) are the classical mo-
from the results of Sec. Il F. However, they were derivedmentum and action conventionally defined by
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r Equation(71) defines an asymptotic string of SSCP eigen-
k(r)=vk2=2Vv(r), s(r)= fo k(r')dr’.  (66)  values that goes to infinity in the fourth quadrant of the
plane. For a more general class of potentials having discon-

In order to determine the two unknown functiodr) and tinuities in one of the derivatives somewhere inside the in-
6(r) an additional relation between them is needed. This id€"val[02], each discontinuity produces such an asymptotic

fixed by string [33]. From the presence of the cutoff radiasn Eq.
(71) it is clear that this equation describes theoff SSCPs,
¢'(r)=+k(r)A(r)cogs(r)+6(r)]. (67)  Which are something like “particle-in-a-box" states, but sat-
isfying the outgoing wave boundary conditidhc’). These
Then for the phas@(r) one obtains the equation SSCPs are only weakly affected by the presence of the po-
) tential; the individuality of the system is represented by a
LK) finite group of SSCPs whose eigenvalues lie in the vicinity
o'(n= 2Kk(r) sinf2s(r)+26(r)], (683 of the origin k=0. For infinite range potentials, only this

finite group can converge to SSs in the lirait>o; the cut-
0(0)=0 (68b) off SSCPs never converge, as can be seen from(EL.
This indicates that in addition to being incompldtbere
and the amplitudeA(r) can be found by a straightforward generally are branching cuts to be taken into accoBs
integration, provided thab(r) is known[43]. The second are pathologically sensitive to the asymptotic tail of the po-
boundary conditior{1c’) leads to the dispersion relation de- tential. Cutting off this tail, whatever physically and numeri-
fining the eigenvalud: cally negligible effect it might seem to produce, drastically
_ modifies the distribution of higher SS eigenvalues. This fea-
k(a)cofs(a)+6(a)]=ik, (69 ture was first realized by Mp44] for the special case of an
exponential potential and later analyzed by Ferreira and
Teixeira[45] for the Coulomb potential.
k+k(a) The leading term of the— o asymptotic for the normal-

which can be cast in the equivalent form

s(a)+ 6(a)=mn— L In

2 " k@) (700  ized SSCP wave function is given by
This equation can be solved iteratively, starting with the ap- - \E ; - 1 ;
proximation provided by Eq(63); the details are given in nlr) a sin(kar) iv2a expliknr ). (72
Appendix B and the result reads
nn 1 n n2 The latter equality holds for all except for a small vicinity
Knaly_= mn—ilnn+ g+ a1?+ @y +a T) of r=0, where the boundary conditidfb) is to be satisfied.
Inn VI. ILLUSTRATIVE EXAMPLES
+0 ? ' (713 Numerical calculations of Siegert states apparently were
initiated by Nussenzwei§46], who studied the motion of
where Siegert eigenvalues for a rectangular potential as its strength
varies[47]. This work was followed by many others where
i 22 Siegert states were studied for various one-dimensional po-
=" > , (71b  tentials[29,32,35,45,48—81both analytically and numeri-
a‘V(a) cally. This includes simple models for which the analytical
solution is available[46,45,48-51,29,54,32,35,65,73],74
ay=— E (719 calculations using different variants of the complex rotation
' method[52,53,55,56,58,59,63,65,70]7 4ariational calcula-
tions with the outgoing wave function explicitly included
aJaV( d aV'(a) 1 I 272 into the basi$57,60,64,72, calculations using Weyl's theory
ay=— ryar— — 5 In ) [61,67,69, Milne's differential equatior{66,68, absorbing
mJo amv(a) 2 a?V(a) potentialg 75—77], semiclassical approximatiof§2,66,70Q,
(719 and other methods’1,78—81. We refer only to those meth-
) ods that are capable of calculating complex-energy reso-
= — b (718 nance states directly. This does not include, for example,
3 . . . o .
22 scattering calculations and the stabilization method; even

then, the list is inevitably incomplete. Most of these studies
The branch of the logarithm function for the cagéa)<0  focused on one or a few Siegert eigenvalues corresponding
should be determined by the substitutiddr-V—i0, and we to the states visible as distinct resonances in the scattering
have assumed that the integral\i(fr) overr e[0,a] and the  cross section. Only few of them attempted application of the
derivative V' (a) exist. Note that the terms involving these theory of SSs to calculations of the scattering mask)
quantities are the only ones that make E4) different from  [32,35,65,71,7B
the corresponding result for a rectangular potential of the In this section we consider several representative poten-
valueV(a). tials for which the numerical calculations have been carried
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out in order to demonstrate the computational efficiency of

the present approach. The selected examples illustrate some

general observations drawn from the calculations for a wider
class of potentials and parameters than that reported here.
These observations will be formulated and numbered by Ro-
man numerals throughout this section, summarizing our nu-
merical results. We believe that they all apply generally, i.e.,
for an arbitrary reasonably well behaving potentiét) van-
ishing sufficiently fast at —oo.

Details of the present numerical procedure are given in
Appendix C. In all the cases, SPSs were calculated by solv-
ing Eq. (20). Thus, for a given potentiadV/(r), the cutoff
radiusa, and the number of basis functiohs the compu-
tational labor involved for constructing the whole set & 2
SPSs amounts to a single diagonalization of a real matrix of
the dimension RIX2N. There are two sources of the nu-
merical errors: the inaccuracy of our potential mafwwe are
using an N-point Gauss-Jacobi quadratuf€8)] and the
roudoff errors. The former is not intrinsic to our method and
can be avoided by using a better integration scheme; the
latter seems to be unavoidable. In each case, the accuracy of
the presented results will be specified separately.

In the following discussion, instead of the scattering ma-
trix S(k) we often consider the phase shiitk) or the scat-
tering cross sectionr (k). These quantities are defined by

. am
S(k)=exd 2is(k)], a(k)=Fsm2 8(k). (73

A. Rectangular potential: General features

We start with the rectangular potential

Vo, r=a

V(r)= 0

r>a, (74)

which is the simplest example of a cutoff potential. SSCPs in
this case were studied [46,49,50,32,35,73 The values of
the parametera=1 andV,= —112.5 used here are the same
as in[73].

It is convenient to order SPSs in accordance with the in-
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crease of|k,|. This specifies the meaning of the terms
“lower” and “higher” used in the previous sections. The
first feature to be observed is the following.

(i) For a given potentiaM(r) and the cutoff radius,
each SPS eigenvalug, converges whemN grows and the
lower k,, converge faster. Thode, that are not affected by a
further increase ofN within a specified accuracy we shall
call basis-independent d¥-converged eigenvalues; all the
others depend on the bas$. In the situations where inde-
pendent calculations of SSCP eigenvalues for the S&mg  case. The other half, i.e., the basis-dependent SPSs, differ
and a are available, we confirmed that SPSs converge tdrom their SSCP counterparts more considerably and the dif-
SSCPs. ference rapidly grows for higher SPSs. These features are

For the potential74), 50 SSCPs have been tabulated inillustrated in Figs. 1 and 2. Figure@ shows the potential
[73], including 5 bound, 4 antibound, and 41 lowest complexfunction (74) together with the energy positions of the bound
eigenvalues lying in the fourth quadrant of tkelane. Our and antibound states superimposed on it. Figur@s dand
calculations with the minimunN= 90 reproduce all of them 1(c) present distributions of some low-lying SPS eigenvalues
within the six-digit accuracy quoted if¥3]. Together with in the complexk and E planes, respectively. Figure(d
41 mirror images lying in the third quadrant, this makes 91shows a larger portion of the SPS eigenvalues inktipdane
N-converged, within six digits, SPS eigenvalues, which isand Fig. Zb) depicts the complete set. Figurgb) 1(c), and
about a half of the total numberN2=180 of SPSs in this 2(a) present also the results obtained from the SSCP

FIG. 1. SPS eigenvalues for the rectangular poteffidl with
the parameterd,=—112.5 anda=1 calculated using= 90 basis
functions.(a) Solid line, the potential energy; dash&thsh-dotted
lines, energies of the bourtdntibound states(b) Diamonds, low-
lying SPS eigenvalues in the compl&xplane; pluses, the results
obtained from the SSCP asymptotic form¥d) shown forn=5.
(c) Same as infb), but in the complexE plane. All the eigenvalues
shown areN-converged within the scale of the figure.
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FIG. 3. Function characterizing the phase skifk) produced
20 (b) by the potentia(74). Solid curve, the exact analytical result; broken
0 b curves, the results obtained from E¢S9) and(61) (indistinguish-
R % able in the figurgfor different numbers R of SPSs. At smallek,
200 o o ] all the curves coincide within the scale of the figure. For each value
a0 R . of 2N, there is a breakdown value &f starting from which the
corresponding broken curve diverges from the solid one. Only the
A 600 F 1 initial stages of this divergence are shown; this is followed by vio-
5 w0 | N o | lent oscillations of the broken curves at larder
1000 | | (61), is quite different in implementation and, due to the
numerical errors, it yields somewhat different results. For the
1200 | o . 1 potential (74), the phase shifts obtained from Eq59) and
-1400 | i (61) using the present numerical scheme coincide with each
other within at least twelve digits.
T o 100 00 2000 Now we make a very important observation regarding the
Rek SPS expansion9) and(61) for the scattering matrix.

(i) To achieve fast convergence with the increasH @l
FIG. 2. (8 Same as in Fig. (b), but on a larger scaléb) An 2N SPSs must be included into Eq59) and (61); skipping
even larger scale, which enables one to see the distribution of abyen one of them, eithel-converged or basis-dependent,
2N=180 SPS eigenvaluds, for this case. may make the result completely wrong. Such a behavior is
quite different from what one would expect since the higher
asymptotic formulg71). TheN-converged SPS eigenvalues, SPSs certainly do not have any physical meaning individu-
such as those shown in Figgbland Xc), first approach the ally. However, it has a simple explanation: Our derivation of
asymptotic results as increases. However, as can be seenEgs.(59) and(61) was essentially based on the completeness
from Fig. 2a), this tendency holds only up to some maxi- relations (32a and (32b) [or (338 and (33b)], which are
mum n after which the basis-dependent SPSs quickly di-valid only upon inclusion of all Rl SPSs.
verge from the SSCP asymptotic string, forming quite a dif- The following observation concerns the rate of the con-
ferent pattern shown in Fig.(B). vergence as a function &f
Next we discuss calculations of the scattering matrix. The (ii) With the increase oN, the upper boundary of the
convergence of the results obtained from the product formulénterval of k where the SPS expansiofs9) and (61) yield
(61) in terms of SSCPs for the potenti@4) was analyzed in  the converged results moves towards the laiger
[32,35,73. Korsch et al. [73] calculated the elastic phase  This is illustrated in Fig. 3, which shows the function
shift (k) at k=20 using different numbers of SSCP eigen-sir? §K) calculated using Eqs(59) and (61) for different
values in Eq.(61). As follows from their Table 2, the con- values of 2. For each &, there is a breakdown value kf
vergence is very poor. For example, with 491 SS@Rs  up to which the calculated results are indistinguishable in
corresponds to the last entry in the table and includes 24Fig. 3 from the analytical ones and above which they rapidly
mirror images lying in the third quadrarfor the phase shift diverge. As one can see, the convergence with the increase of
they got—10.7750 against the analytical resull0.6816, as N is very fast. For example, forl= 100 Eqgs.(59) and(61)
quoted in[73]. Our calculations by Eq61) with only 2N work well up to k=100, i.e., up to the energE=k?/2
=38 SPSs reproduce six digits of the analytical result and=5000, which is about 50 times larger than the depth of the
with  2N=50 we obtain correct twelve digits potential (74). Remarkably, scattering in this wide energy
—10.681 639 62D(1), which is the best we can do using range is described by the information obtained from diago-
the double precision arithmetics. The sum form(88), al-  nalization of only a 108 100 matrix. Note that the conver-
though it was shown to be algebraically equivalent to Eqgence is uniform with respect tk: Even tiny diffraction
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wavelets seen in Fig. 3 are excellently reproduced by Egs. s - - - -
(59) and(61). Fast convergence of the SPS expansi@®s o (@) |
and (61 for the scattering matrix demonstrated above con- ss

stitutes an important advantage of the SPS formulation over N -~ fesonance

all previous theories of SSs.

V@)

B. Potential with a barrier: Complex-energy resonance states

The rectangular potential is a bit too special case; the !
realistic potentials of interest in the collision theory usually
have infinite range. In this section we discuss convergence of
the results obtained within the SPS formulation with respect 0 2 . P s 10
to the increase of the cutoff radies We consider the po- r
tential

V(r)=7.52exp—r), (75) (b)

resonance
02

+ +
OF; Lo

which has a barrier with a maximum height 6f4.06 at 04 ;,,eamwﬁ”ﬁ“ Sote et
r=2 [see Fig. 4a)]. This potential is known to produce
a distinct resonance in the scattering cross section at the 08
energy indicated in Fig. (4), which has been a testing
ground for numerous schemes of resonance calculations 08
[52,53,57,60,62,64,66,70,72,74,76+%81
Figures 4b) and 4c) show distributions of some low- 1T
lying N-converged SPS eigenvalues calculated for the cutoff 10 s 0 5 10
radius a= 10, together with the results obtained from the Rek
SSCP asymptotic formul@l). A few lowest SS eigenvalues —
for the potential(75) have been calculated if66,77,87; 4T Lot
three of them are also shown in the figures. The general 3t La vt
structure of these distributions is similar to that shown in .1 Lot
Figs. 1b), 1(c), and 2 on a larger scale. The only different
feature is the appearance of d@apart from its mirror image
separately standing complex eigenvalue indicated as “reso-
nance.” Its position coincides within the scale of the figures at
with that of the lowest SS. The convergence of this eigen-
value with the increase dfl anda is illustrated in Table I. .
Our final results for the positiol,.s and widthI" of this T e,
resonance state obtained with the minimum parameters N £
(a,N)=(30,60), i.e., by diagonalizing a 120L20 matrix, o 5 1 15 20 25 30 35 4 450
are in excellent agreement with and even provide an addi- ReE
tional digit inI" as compared to the best available results of -~ 4 gimilar to Fig. 1, but for the potenti&¥5) calculated

Ref. [77]. Note that in[77] a larger ba5|s_ of 300 functlpns with the cutoff radiusa=10. (a) Solid line, the potential energy;
and a more accurate scheme of calculating the potential M@gpghed line, energy position of the resonance staieDiamonds,

trix was used; most of the other calculations cited above arw-lying SPS eigenvalues in the complexplane; pluses, the re-
restricted to a much lower accuracy. In order to see whafyjis obtained from the SSCP asymptotic form(#d) shown for
happens when the resonance becomes broader, we performgds; squares, three lowest SS eigenvalues taken from [Re.
similar calculations with the coefficient 7.5 in E@75) and their mirror images(c) Same as ir(b), but in the complexe
replaced by 2.5. The converged results for the resonangsiane. All the SPS eigenvalues shown &k&onverged within the
state in this case obtained with the minimum parameterscale of the figure. The SPS representing the resonance state lies on
(a,N)=(35,60) are E,~1.477948257(1) andI'/2 the top of the lowest SS.

=0.159 117 86#1). The convergence is achieved at larger

a, which is understandable because this resonance is abomdependent calculations of SS eigenvalues for the same po-
10 times broader, and fewer digits get stabilized. These retential are available, we confirmed that these SPSs converge
sults illustrate the following observation. to SSs.

(iv) For infinite range potentials, some of the SPS eigen- Table | demonstrates a remarkable accuracy of the present
valuesk,, converge within a specified accuracy with the in- method for calculating true scattering resonances. The situa-
crease of both the number of basis functibhand the cutoff  tion with the higher SSs, which do not reveal themselves as
radiusa; the others never do. The converging SPSs corredistinct resonances, is quite different. The second SS pro-
spond to bound, weakly antibound, and narrow complexduces a cusplike structure in the distribution of the
energy resonance states of the system. In the situations whexeconverged SPS eigenvalues shown in Figb) 4nd 4c),
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TABLE I. Convergence of the SPS calculations of a resonance
state for the potential75) with respect to the increase of the pa-
rametersa and N. The resonance positioB,es and widthI" are
defined bykﬁ/2= E,=E,—11'/2, wherek, is the corresponding
SPS eigenvalue.
a N Ees 10r'/2 =
0w
15 30 3.42639131031 0.127743607748 5 [/
40 3.42639141143 0.127744301272 04 ¢ ja=6
50 3.42639141144 0.127744301272 os b/
20 40 3.42639031473 0.127744665524
50 3.42639031662 0.127744683508 0
60 3.42639031662 0.127744683507 0.1
25 40 3.42639652531 0.127868298913 0
50 3.42639031007 0.127744805012 0.1
60 3.42639031007 0.127744804629
70 3.42639031007 0.127744804628 FIG. 5. Function characterizing the phase skifk) produced
30 50 3.42639023691 0.127746536919 by the potential(75). Different curves were calculated using Eqg.
60 3.42639031015 0.127744805925 (61) with N= 100 for different values o&. All the curves are con-
70 3.42639031015 0.127744805930 verged with respect thl. The solid curve ¢=20) is also converged
80 3.42639031014 0.127744805934 within the scale of the figure with respectdo
35 60 3.42639031121 0.127744818959 .
70 342639031015 0127744805930 (61 converges very fast with respect to bdtranda. How-
80 342639031015 0.127744805933 ever, the results ob_tained from the sum form(88), being
% 3.42639031015 0127744805932 N fair agreement with that from E(_ﬁ61) for smalla, dem-
onstrate no convergence with the increas&ldbr largera.
Converged 3.4263903105 0.12774480593) This is due to the numerical errors, which for the present
Ref.[77] 3.42639031015 0.1277448059 case play a much more violent role. Thus we arrive at the

following practically important observation.
(v) Although the sum(59) and the product6l) formulas

but there is no individual SPS that would converge to ihas are algebraically equivalent, they are quite different in imple-
grows. The higher SSs produce even less of an effect on thmentation and the latter, in addition to being explicitly uni-
SPS distribution. This agrees with the results of Riefd,45
and illustrates the hypersensitivity of the higher SSs to the Figure 5 shows the function id(k) calculated using Eq.

asymptotic behavior of the potential.

tary, is also numerically more stable.

(61) with N=100 for different values o&. For thisN, the

Next we discuss calculations of the scattering matrix.oreakdown similar to that shown by broken lines in Fig. 3
Table Il presents the results for the phase shfit) at k

=3, i.e., at the energig=4.5 just above the top of the po- converged within the scale of the figure. The resonance dis
tential barrier in Fig. 4a), calculated using Eqg59) and

happens just abovke=10. The results fom=20 are fully

cussed above can be clearly seek-a.6. This figure illus-

(61). For eacha, the presented results correspond to thetrates the following rather evident feature.

minimum N for which Eq.(61) ensures convergence within

(vi) For infinite range potentials, the finiteness of the cut-

all 12 quoted digits. One can see that the product formulaff radius affects the low-energy behavior of the scattering

matrix. The larger the cutoff radius, the lower in energy

TABLE II. Convergence of the SPS calculations of the phasethe SPS expansions f&(k) work well.
shift 5(k) (defined modulusr) produced by the potentidl’5) at
k=3 using the sun59) and the product61) formulas. For each,

the presented results correspond to the mininNifor which Eq.

Thus the parameteessandN restrict the energy range that
can be treated by the present method from below and above,
respectively. The convergence of the phase shift demon-

(62) converges within all 12 quoted digits. Due to the numerical strated in Table II was achieved in the easy-to-do case of

errors, convergence of E€59) with respect toN at largera be-

intermediate energies, which explains the incredibly high ac-

comes worse and for the last three entries in the second column (I,Iuracy of the result. Table Ill shows how the method works
produces completely wrong numbersot shown. '

in a wider energy range. Requesting a moderate six-digit
accuracy within the interval df from 0.1 to 10, i.e.E from

@nN) Ea. (59 Ea. (61 0.005 to 50, which is more than 10 times higher than the top
(10,40 2.98030728982 2.98030728987 of the potential barrier in Fig.(4), we achieved convergence
(20,55 2.961 2.96617426069 with the minimum parametersa(N)=(30,170).
(30,70 2.96617194275
(40,89 2.96617194254 C. An exponential potential: Bound and antibound states
(50,100 2.96617194254 ] .
An exponential potential of the form
Converged 2.96617194284

V(r)=Vqy exp(—ar) (76)
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TABLE Ill. Scattering cross section(k) calculated for the po- However, we met no problems in achieving convergence
tential (75) using the product formul#61) with the minimum pa-  for bound states. There is one bound state for the potential
rameters ,N)=(30,170), which ensure the requested conver-(7) in the interval ofV, considered above. We could easily

gence of all six quoted digita[b] meansax 10’. get its eigenvalue converged within 12 digits, as given in the

last column of Table 1V, in full agreement with the analytical

k o (k) k (k) results. Moreover, the lack of convergence of the antibound

0.1 0.71149] 55 0.29623D-1] SPS to _the corresponding SS QOes not cause any problems in

0.5 0.20288[2] 6.0 0.901531] calc.ulatlons of the pha}se.shlft using the product formula

1.0 0.609153 6.5 0.138188 (61): The convergence is similar to that demonstrated in the
last column of Table II, although we do not report these

1.5 0.4244541 ] 7.0 0.165388 .
results here. We have also checked the case of a repulsive

2.0 0.63127B-1] 7.5 0.175290 . .
potential(76) with the parameter¥,=0.5 anda= —2/3 and

25 0.710250 8.0 0.173537 . g

3.0 0.425276-1] 8.5 0.164887 could easily reproduce the analytical results reporteldf

3'5 0.928955 9 0 O 152685 within all eight quoted digits. These results add evidences to

' ' ' ' observation(iv) above.

4.0 0.583750 9.5 0.139081

45 0129709 10.0 0.125363 D. Potential with a Coulomb singularity at the origin

5.0 0.15732B-2]

In order to demonstrate the computational power of the
method, following Ref[80], we consider the potential

allows an exact analytical solution in terms of Bessel func- 50 N

tions; see, e.g[65]. Itis of interest in the present context for V(r)y=—— exp(—4r)+ — exp—r), (77

discussing calculations of bound and antibound states. r r
There are infinitely many SSs corresponding to antibound

. i Wwhich has a Coulomb singularity at the originizek and
states for the potentidl76). The positions of the lowest of oy X . ; .
them fora=2 e?ndvo \j(ary)ing fronF;— 15 to— 8 are given in Horacek [80] discussed the behavior of a pair of SS eigen-

the second column of Table IV. The third column presentsvalueS; let us call therk, and kz’.w'th the variation of the
larameter)x. ForA=7.5, these eigenvalues correspond to a

calculated results for the corresponding SPS eigenvalue. F ound and an antibound state. In this case, [, provides

Vo= —15, this eigenvalue lies rather close to the origin in ; . T o
thek plane and it rapidly converges wharandN increase. EZS\{V':ZSLTS %‘Qg;;ﬁg_ 'th%{r: ?hzelﬁnﬂgﬁzga?azngtlasg; '
Convergence of all nine significant digits of the first entry in —(20,100) are —ik,=0.211769667(1) and ik,

the third column of Table IV was achieved with the mini- :
mum parametersa(N) = (15,40). When the strengtW,| of _Ot‘225 08Z1). Notteh tha; ccirr]lvelr)gen((:je fod; thev\?ﬁt'biund
the potential decreases, this eigenvalue moves downwar%ae k) is worse than for the bound ond). en

along the negative imaginary semiaxis and the Convergendgcreases’ these e|genv5_;1lues approach each- other_,. coalesce,
with respect to the increase af becomes worse. All the and then leave the imaginary axis. Ror8, their positions

further results given in the third column of Table IV were are estimated bk, ,=+1.2059-i0.056[80]. Our calcula-

- - ; . tion with (a,N)=(30,140) yields kq o=
obtained with the sama& andN and we failed to improve on . o
them by increasing these parameters. +1.205 942 24%(1)—i10.056 805 03&(1). Thus, in all

the cases our results agree with those of R&#], but the

. i present method provides a much higher accuracy.
TABLE IV. Calculations of the lowest boundkg) and anti-

bound k,) SPS eigenvalues for the attractive exponential potential
(76) for =2 and different values of ;. The second column lists
the analytical results fok, . The third column lists the SPS results As the last example we consider a pure centrifugal poten-
for k, calculated with &,N)=(15,40) shown up to the first digit tjal

where the difference arises. When it goes deeper in the lower half

E. Pure centrifugal potential

plane, convergence of this SPS eigenvalue with respect to the in- [(1+1)

crease oh becomes worse. The fourth column lists the SPS results V(r)= > (78)
for k,, which coincide within all quoted digits with the analytical 2r

ones.

This has the purpose of testing the applicability of the
method in the case of a nonzero angular momentum.

For 1#0, there is a phase difference in the conventional
15 0.027345771893  0.02734577187  2.27081581770 definition of the scattering matrix as compared to that given
14 0.144869197957  0.14486919801  2.12319588440 by Eq.(54¢). However, if one still defineS(k) by Eq.(540),

13 0.264888780251  0.264888782 1.97116889372 then for the casé=1 the phase shifé(k) would be equal to

—Vy ik, (exac) ik, (SPS —ikp

12 0.387573026885  0.38757305 1.81428218362 /2, independently ok. The results calculated by E¢1)

11 0.513105796277  0.513107 1.65199746581 for different values ok andN are shown in Fig. 6. At small

10 0.641685750859  0.64172 1.48366586932 K, the deviation from the correct value is due to the finiteness
9 0.773523383889 0.7742 1.30849265602 Of a and at largek a breakdown similar to that shown in Fig.

8 0.908832940693 0.93 1.12548579773 3 happens due to the finitenessf However, the overall

agreement now is much worse than in the previous cases.
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0.53

the tail does produce a significant physical effect represented
by the Coulomb logarithmic phase. In this case, one must

0525 | i take into account the next term in EQ9):

052 -

Hakl. L—ik— 2 81
_ (a,k)|aw=1 “ka (81)

. It is easy to see that Egéla), (1b), (1), (2), and(81) cast

in an algebraic form similar to Eq9) result in acubic ei-
genvalue problem with respect ko This problem also can

be linearized by means of tripling its dimension and treated
along the lines of this paper, although all the derivations in
this case must be repeated. For the potentials with a centrifu-
gal tail (78) we have

0515 |

kyr

051

0.505

0.5

'('+1)+--->. (82)

=i +
Kk f(a,k)|azo |k<1 2i(ka)?
FIG. 6. Phase shif6(k) produced by the pure centrifugal po-
tential (78) for =1 calculated with different values of the param- Taking into account the second term on the right-hand side
etersa andN. The exact value for the present definition&fk) is also leads to a qubic eigenvalue problem, which provides a
w/2, independently ok. possibility to remedy the problem of slow convergence met
in Sec. VI E.
With the increase ol the results do become better, but  The other direction of generalization is to seek an exten-
much slower. Thus, the nonzero angular momenta remain aglon of the SPS formulation to a multichannel case. Consider

open problem for the present method; a possibile approach & matrix potentialV/;;(r) whose elements sufficiently rapidly

this problem is discussed in the next section. approach constant values wheincreases. The eigenvalues
E,<E,<---<Ejp of this matrix atr —oo for the M-channel
VIl. POSSIBLE GENERALIZATIONS problem define the asymptotic threshold energies. We as-
AND OPEN PROBLEMS sume them all to be different; a possible degeneracy would

only simplify the situation. It can be shown that in this case,

In this section we point out possible generalizations of thgstead of Eq(16) SPSs are defined by an equation of the
SPS formulation and mention some open problems. Some @f .,

these generalizations seem to be rather straightforward and
could be worked out without essential difficulties. At the (o4 \[EZE,B,+E—E,B,+:--+VE—EyBy+El)c=0,

same time, the most interesting for applications generaliza- 83)
tion to a multichannel case meets a problem whose solution
is beyond us at the moment. whereA again represents the Hermitized Hamiltonian 8nd

There are two directions where physically interesting genis proportional to the Bloch operator for the outgoing wave
eralizations could be sought. The first one consists in modisolutions in the channdl. This equation is an eigenvalue
fication of the boundary conditioflc’) as problem defining the enerdy. Because of the square roots,
it is essentially nonlinear with respect B If there exists
such a uniformization mapping(u) that reduces Eq83) to
a polynomial eigenvalue problem in terms of the new vari-
ableu, via subsequent linearization of this problem the SPS
The functionf (a,k) here has the meaning of the logarithmic formulation could be extended to the multichannel case. In
derivative of the outgoing wave soultion to Efla) atr  the one-channel case, the uniformization mapping is given
—a. Itis introduced to account for the effect due to the tailPY EQ- (2). In the two-channel case, such mapping is also
of the potential that extends beyonea. For all potentials Known and is defined by the equatioisee Sec. 17.1if12])

decreasing faster than the Coulomb one, the following fun-

=0. (1c)

r=a

o(r)

d f(a,k
ar (a,k)

damental property holds: ECE—A 1+u? VEZE,=A 2u (84)
Y 2 T2
f(a,k)|am=ik. (79
where
This relation shows that the SPS formulation exactly incor-
porates the leading term &fa,k) ata— oo for all physically A=\E,—E;. (85

interesting potentials but the Coulomb one. For such poten-
tials, the modification(1¢”) is not essential since at most it It is easy to see that upon substitution of E(®l) into Eq.
can accelerate convergence with respect to the increase of (83), the latter reduces to @uartic eigenvalue problem with
However, for potentials with a Coulomb asymptote respect tou. It would be very interesting and instructive to
investigate this problem along the lines of this paper and to
V()| Le=alr (80 establish the structure of the scattering matrix in terms of the
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SPS eigenvalues,,, similar to that given by Eq(61). We  tations are easy to implement and their computational effi-
leave this program for future studies. Note that there areiency was demonstrated by a number of numerical ex-
some results to this point available in the literat{$&,83, amples.
although they have never been scrutinized numerically. Before closing the paper, it is worthwhile to compare the
For more than two channels, the uniformization mappingSPS formulation with other computational approaches in
E(u) is not known to us. Moreover, even if it exists, there is Scattering theory. The universality of the present method
a circumstance that may require the introduction of an esserfhould be viewed from the perspective of the diversity of the
tially different element in the formulation. Namely, the Rie- €Xisting methods for a separate treatment of bound states,
mann surface spanned by the uniformization variable ~ '€Sonances, and continuum spectrum. Perhaps our method
this case is known to have a nonzero genus, i.e., it cannot L as';ego b?ftjvi?rzjtggsespr%\\//(iac;ev?r:leatl;%g?l aiiﬁfggsﬂﬂscgrcagggg
cpokgcsly mapeed oo an ol o T St B
face is topologically equivalent to a torus. In one- and two sides the high accuracy, there are also certain conceptual

h | h formizati . h “advantages; thus, in contrast to the complex rotation method,
channel cases the uniformization mapping, Whose purpose {§e nresent method does not require analytical continuation

to make the scattering matrix a single-valued _funct|on, Siof the potential energy/(r) into the complex plane and in
multaneously reduces Eq83) to a polynomial form. contrast to the stabilization method and scattering calcula-
Whether such polynomial form of the problem is possible totions, it yields the resonance position and width directly,
achieve for more than two channels remains an open quegyithout any fitting procedure. Among the methods for treat-
tion. ing continuum, the SPS formulation should be compared
Although the multichannel case is forbidden at the mo-with the R-matrix method. The two approaches have many
ment, the present formulation should work for multidimen-features in common. In each of them, the heavy part of the
sional but exactly separable problems. An interesting exealculations should be done only once and consists in diago-
ample of such a situation is given by the two-centernalization of a “big” matrix and constructing a set of
Coulomb problem. In this case, instead of the radial equatioenergy-independent information that then can be used for
(1a) one should deal with a quasiradial equation in spheroihigh-resolution scattering calculations in a wide energy
dal coordinates, which has quite a different mathematicalange, whose size grows with the dimension of the matrix.
nature. A Sturmian basis for this problem has been discussethe difference lies in the basis states and can be character-
recently[85]. We also mention an interesting possibility to ized briefly by saying that the SPS basis incorporates more

apply the machinary of the polynomial eigenvalue problemd?hysics and better portrays the individuality of the system,
[41] to calculations of Regge statf6]. while the R-matrix basis is more on the side of a mere com-

Finally, the following comment concerning our previous pL_Jta_tionaI tool. Thus th_e existence of scattering resonances
paper[5] is in order here. Ifi5] we calculated positions and within the SPS formulation can be seen already from the SPS

widths for several resonances éep dtu, andddy three- eigenvalues, without doing the scattering calculations. This

. may present an important technical merit in the case of very
b_ody C(_)ulomb systems Iylng below t_lmecz threghold. The narrow resonances, which are difficult to locate by scanning
discussion above may raise a question regarding the consigs

) o e energy range. Another technical merit is that due to the
tency of the calculations reported[i]. The answer is given complexity of the SPS eigenvalues, the well-known problem

as follows: The present formulation is completely eligible to ¢ singularities of theR-matrix method88] does not arise.

be used even in multichannel problems in the situationsrhe SPS formulation also has advantages as a method of

where there is only one open channel. This is the case for thgiscretization of the continuum. SPSs could be used as a

n=2 resonances in the symmetric three-body Coulomb sysyasis for expanding the target states in time-dependent close-

tems such asepandddu. In the case ofitu, by virtue of  coupling calculations, which would lead to a consistent way

the weakness of the coupling with the-du(n=1) decay of treating the ionization and enable one to distinguish be-

channel, the results reported[#] are numerically correct, as tween excitation of a resonance state and the underlying con-

is confirmed by the good agreement with the results of Reftinuum scattering. Another advantage stems from the fact

[87], of which we became aware recently. that the SPS expansion for the outgoing wave Green'’s func-
tion (52) has a very simple dependence on the energy, which
opens a way to study the time-evolution problef@8]. Fi-

VIll. SUMMARY AND DISCUSSION nally, we wish to emphasize the product form(#d) which

To summarize this work, its principal achievment ConsistsEas no analog in other methods of scattering calculations.

in finding a way to implement the power of Siegert states at be di lized
a universal tool for treating the whole spectrum of collision 0 be diagonalized. .

phenomena. This became possible via doubling the dimen- In conclusion, there are fSt'” many problems and_ some of
sion of the original Hilbert space and introducing Siegerttﬂem may turr]r! Q;J.t ttodb_e d'ﬁ'cglt to SO]!V:T’ ZUt wle be(l;e_vetrt]hat
pseudostates that actually make our method practical. A rghe approach initiate ifb] and more fully developed in the

derivation of the basic results of the theory of Siegert stateQreser.1t baper 1S .wor.th pursuing, and that the .SPS formula-
in terms of SPSs has led us to a new formulation of thd!on Will find applications in the theory of atomic and mo-

scattering theory for the simplest generic scattering proble cular collisions.
considered here. The main results of this formulation are
presented by the SPS expansions for the outgoing wave
Green’s function(52), continuous-energy wave function  We thank A. K. Kazansky and S. Watanabe for useful
(57), and the scattering matri9) and(61). These represen- discussions. O. I. T. and V. N. O. thank all the members and

he price for all this is doubling the dimension of the matrix
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APPENDIX A: SOME PROPERTIES {H - Ekzp(l’) H(r)=0 (C1a
OF THE PROJECTOR-TYPE MATRICES 2
Let P=uv', whereP is anNxN matrix andu andv are ¢(r)|rﬂoocr', (C1b
some N-dimensional column vectors. We call sué¢h a

projector-type matrix. First, we note that d b |

a—r—lk (f)(l’) =0. (C].C)
P?=tr(P)P, (A1) r=a

Herel is the angular momenturb= — 1 for the present case

which is obvious. Second, we prove the identity | ) ' |
of three-dimensional spherical wave, and the Hamiltodan

det(|+P)=1+tr(P). (A2) is defined by
Indeed, let us introduce a new orthonormal basis such that H=K+U(r), (C2
the first two basis vectors; ande, lie in the plane of the g g
vectorsu andv and all others;, i=3, ... N are perpen- _ E a a o
dicular to that plane. Let; be directed along, with e, thus K= 2 drp(r) dr’ p(r)=r%, €3

being perpendicular ta. In the new basis the matri® has
only two nonzero elements] Pe, =tr(P) ande]Pe,, while
the unit matrixl, of course, remains unchanged. Now it can
be easily seen that in the new basis E) holds. Hence it
holds in any basis since both determinant of a matrix and itsvhere V(r) is the potential energy and it is assumed that

U(r)=%|(l+1)+p(r)V(r), (C4

trace are invariant under a change of basis. p(a)V(a)=0.
For the numerical treatment, insteadrofve introduce a
APPENDIX B: DERIVATION OF EQ. (7)) new variablex,
Here we give some details needed for the derivation of a
Eq. (71). Assuming the expansiof71a, we have r=51+x. (CH
a (2 In'n Then the intervat e[0,a] maps ontox e[ —1,1]. As a basis
s(@)=ksa- EJ'O V(r)dr+0(?) ’ B L?[—1,1] one can employ the set of functions
. W(X)
Jkatp@ 27 2iinn 2a en0=\F— P00, n=1,... N, (Co
ka—p(a) a?V(a) @ N wn nt
) where P{*#)(x) are the Jacobi polynomials orthogonal on
L= Inn (In_n (B2 the intervalxe[—1,1] with the weight
2 2 ]

W(X)=(1-x)*(1+x)? (C7)
and from Eq.(68) ) L
and h,, are corresponding normalization constaf@§]. In
a%V’ (a)e? @ ( Inn order to satisfy the boundary conditioGG1h) and(C1c we
- ) (B3) choosea=0 andB=2I. The basigC6) is orthonormal and
becomes complete ih?[ —1,1] when N—. However, in

. . . ) practical calculations one can operate with only a finite num-
Substituting these expansions into Eg0), we confirm the o N of the basis functions. Such truncation of the basis is

0(a)= —_—

3

8m°n n?

assumed form of Eq71a and obtain the coefficientd 1b)— known as a finite basis representatidPBR). Given the
(718. value ofN, for a number of practical reasons it is convenient
to switch from the FBR to a discrete variable representation
APPENDIX C: NUMERICAL PROCEDURE (DVR) [91]. The polynomialsP{*#)(x) define an associate

Here we describe the numerical procedure used for calcN-POINt Gauss-Jacobi quadrature

lating SPSs in this paper as well as for treating the radial part L N

of the three-body Coulomb problems j6]. For practical f FOOw(x)dx=~ > wF(x) (C9)

reasons, it is more convenient to consider a somewhat modi- -1 = v
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whereF(x) is an arbitrary function such that the integral on U(r) in Eq.(C16), wherer; is related tog; by Eq.(C5), were
the left-hand side of Eq(C8) exists andx; and w; are  calculatedapproximately using the quadraturéC8). How-
quadrature abscissas and weights, respectively. Note that fogver, the result is exact for the centrifugal partufr) [the
mula (C8) gives an exact result fdf(x) polynomial of de- first term in Eq.(C4)] and for the Coulomb singularity of
gree N—1 or less. The quadraturéC8) and the related V(r), if any. The exactness of the potential matrix in Eq.
Christoffel-Darboux identity provide a foundation for the (C16) for purely CoulombV(r) reveals a computational ad-
FBR-DVR transformation92]: vantage of Eq(C1a over Eq.(1a. We refrain from using
N N the quadrature for calculating the matrixsince this may
lead to an unnecessary slowing down of the convergence
‘Pn(x):; Toimi(X), Wi(x):gl Thien(X), (€9 yith respect to the increase K Without derivation we give
formulas used for calculating the matridésandp («=0 is

where assumed here as abgvEor K we have
Toi=(T"Yin= kien(X) (C10
N
and ~ ~
Kijznm2=l TniKl(‘]‘f%ij! (CZO)
R C11 |
= Nty (1
. . where
The DVR basis functions
n—1
~ 1
mi(), n=1, ... N, (€12 Kimn=en(Dem(1)| 22, <p5<1)+<p§<1)—5}
=1
also form an orthonormal set on the interjat 1,1] and (C21a
have the property
for n<m,
m(x) =K '8, (c13 o . L2
which reveals them as pointwise basis conjugate to the Rﬁ‘ﬁ)ZZQDﬁ(l)gl ¢§(1)+§ qDﬁ(l)—E) , (C21b

polynomialwisebasis(C6).
ba;Nise expand the solutions of EGC1) in terms of the DVR andK (@ =K The matrixp is given by

2

N a
¢(X)=E Cjo(X)r —1<x<1. (C14 Pij:Z[(1+Xi)25ij+A(N)TNiTNj]’ (C22
=1

where the first term coincides with what would be obtained

Substituting this into Eq(C1a, premultiplying by m;(x), using the quadratureCs), and

integrating overxe[ —1,1], and using the boundary condi-

tions (C1lb and(C10), we arrive at the algebraic eigenvalue ANA(N+ B)>

problem A(N)= : (C23
L (2N+B)’[(2N+B)*—1]
H—(b+|ka)L—§k2p c=0, (€19 1pe polynomialsP{*#(x), quadrature abscissas, and
weightsw; were calculated using the algorithms of Réf3].
wherec is the vector of coefficients in EqC14) and the After the differential eigenvalue problef€1) is cast into
boldface characters denote matrices defined with respect #n algebraic form(C15), there are two ways to transform it
the DVR basis: further to the required form of E¢16). One can premultiply
- Eq.(C15 by 2p~ ! and obtain for the vectar an equation of
Hij=Kij+U(ri) g, (C16  the type(16) wherex =ik and
_Lfrdm® 247 (X) A=2p Y (A-bL), (C243
ij_zf_l 5 (1H0P— —dx (€17 P )
B=—2ap lL. (C24b
However, these matrices are not symmetric, in contradiction
a2 ri , to what has been assumed in writing E@85 and (31).
Pij :ZJllWi(X)(l—’_ X)“arj(X)dXx. (C19  Another approach is to introduce a new vector of coefficients
s=p'. (C25

All these matrices are real and symmetric. The tilde d¥er

and K indicates that they represent Hermitized versions offhen premultiplying Eq(C15) by 2p~ 2 for the vectors we
the operatorsH and K, respectively. Matrix elements of again obtain Eq(16), now with symmetric matrices
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A=2p Y4H-bL)p 2 (C263

B=—2ap YLp 12 (C26h

In our calculations we solved EQO0) using a general eigen-

value problem solver. In this case, it is simpler to use Egs.
(C24. If in doing this linear algebra part of the calculations
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B | —-D-iD"! iD\2 )
I o) iD D/’ (€27
where
D=(2il—-B) 2. (C29

one is going to utilize some advantages of the symmetridhis permits one to reduce the generalized algebraic eigen-

form Eq. (23), then Eqs(C26) must be used.
Finally, we note the relation

value problem Eq(23) to an ordinary one with a symmetric
but explicitly complex matrix.
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