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Siegert pseudostate formulation of scattering theory: One-channel case

Oleg I. Tolstikhin,* Valentin N. Ostrovsky,† and Hiroki Nakamura
Division of Theoretical Studies, Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

~Received 27 March 1998!

Siegert pseudostates~SPSs! are defined as a finite basis representation of the outgoing wave solutions to the
radial Schro¨dinger equation for cutoff potentials and the problem of their calculation is reduced to standard
linear algebra easily implementable on computers. For a sufficiently large basis and the cutoff radius, the set of
SPSs includes bound, weakly antibound, and narrow complex-energy resonance states of the system, i.e., all
the physically meaningful states observable individually. Moreover, the set is shown to possess certain or-
thogonality and completeness properties that qualify it as a discrete basis suitable for expanding the continuum.
We rederive many results of the theory of Siegert states in terms of SPSs and obtain some~to our knowledge!
previously unknown relations. This not only makes the results practically applicable, but also sheds a new light
on their mathematical nature. In particular, we show how the Mittag-Leffler expansions for the outgoing wave
Green’s function and the scattering matrix can be obtained on the basis of very simple algebraic relations,
without assuming them to be meromorphic functions. Explicit construction of these two fundamental objects
completes the SPS formulation of scattering theory for the one-channel case. The computational efficiency of
this approach is illustrated by a number of numerical examples.@S1050-2947~98!05409-2#

PACS number~s!: 03.65.Nk, 03.80.1r, 11.55.2m, 34.10.1x
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I. INTRODUCTION

In the nonrelativistic quantum theory of collisions b
tween microscopic particles one works with Hamiltonia
whose spectra consist of discrete and continuous parts; th
fore expansions in terms of the complete set of eigenstate
such Hamiltonians contain summation over the former a
integration over the latter. It is well known that the discre
part of the expansions is much easier to deal with than
continuous part, basically because summation is a nat
operation to do on computers while integration is to be
proximated by summation anyway. This difficulty keeps m
tivating one to seek a scheme to discretize the continu
indeed, various such schemes have been proposed. Wi
the intention to overview all the literature, we mention on
three major approaches in this direction. The first and
most developed one is theR-matrix method@1#. The basic
idea here is to confine the system to a finite volume, with
asymptotic boundary conditions replaced by certain con
tions on the boundary of the volume. The eigenstates of
Hamiltonian satisfying thus modified boundary conditio
form a discrete set called theR-matrix basis. The secon
approach is to switch from the energy eigenstates to s
kind of Sturmian eigenstates which are eigenfunctions of
same Hamiltonian but with a nonunity weight chosen in su
a way that the Sturmian problem has a purely discrete s
trum @2#. A Sturmian basis can be defined by regarding so
parameter of the potential energy, such as nuclear charg
angular momentum, as an eigenvalue instead of the ene
Each of these approaches enables one to replace integr
over the continuum by summation over a discrete set
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states; their performance depends on how close these s
reproduce basic physical properties of the system. The t
approach does not rely upon any specific set of states
consists in approximating the integral over the continuum
an appropriate quadrature@3#. Although this might seem to
be purely mathematical, or one would say a numerical p
cedure, such methods may be extremely efficient in pract
calculations@4#, which eventually must have some physic
interpretation.

The purpose of this paper is to promote Siegertpseu-
dostates~SPSs! introduced in@5# as an appealing basis alte
native to those mentioned above. The Siegert states~SSs!
have long been known as a potentially powerful tool in t
formal scattering theory. However, this power remain
largely latent for the lack of an efficient method of the
calculation, most of the applications to date being restric
to studying only individual resonances. In@5# we have pro-
posed a method to implement this power in terms of SPSs
this brief exposure of our basic idea many important det
of the derivation were omitted and simple one-dimensio
illustrative examples were skipped for the sake of more c
vincing demonstration of the method by calculations for
alistic three-body Coulomb systems. The present pape
meant to fill this gap. Here we present a thorough discuss
of the one-channel case; possible generalizations to a m
channel case go beyond the scope of this paper and wil
touched upon only briefly@6#.

The definition of SSs requires an extension of the r
energy axis to complex energy ‘‘plane,’’ actually a multis
eet Riemann surface. Although all the collision events can
described by the scattering matrixS(E) taken at real ener-
giesE, the usefulness of considering complex energies w
recognized long ago. As far as we know, the first person w
employed complex energy in quantum mechanics w
Gamow. In his famous paper ona decay of atomic nuclei@7#
Gamow associated the lifetime of a resonance state w
the imaginary part of the energy of the state. Later, Br
and Wigner @8# presented a formula describing

an

t.
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resonance profile in the scattering cross section in term
the energy and the lifetime of the resonance state. In se
of a formal derivation of the Breit-Wigner formula from th
Schrödinger equation, Kapur and Peierls@9# introduced a
discrete set of complex-energy eigenstates and showed
narrow resonances in scattering correspond to the states
ing a small imaginary part of the energy. However, the sta
considered by Kapur and Peierls were dependent on the
tering energy, which entered their formulation as an exter
parameter. A formulation that is free from any external p
rameters and therefore focuses on the intrinsic propertie
the system was given by Siegert@10#. In this paper we re-
strict our treatment to the generics-wave scattering problem
defined by the radial Schro¨dinger equation

~H2E!f~r !50, H52
1

2

d2

dr2
1V~r !, ~1a!

where the potential energyV(r ) is assumed to vanish suffi
ciently fast atr→`. Then SSs are defined as the solutions
Eq. ~1a! satisfying the regularity boundary condition atr
50,

f~0!50, ~1b!

and the outgoing wave boundary condition atr→`,

S d

dr
2 ik Df~r !U

r→`

50, ~1c!

where the energyE and the momentumk are related by

E5
1

2
k2. ~2!

Equations~1!–~2! can be satisfied simultaneously only for
discrete set of generally complex momentakn ; thus one
should consider them as an eigenvalue problem definingkn
and corresponding eigenfunctionsfn(r ). The eigenvalueskn
coincide with poles of the scattering matrix in the complexk
plane. Those that lie on the positive imaginary semiaxis c
respond to bound states of the system; those lying on
negative imaginary semiaxis correspond to antibound~or vir-
tual! states; all the others occur in pairskn and2kn* and lie
in the lower half of thek plane. The bound states and the S
with Im(kn),0 lying close to the real axis, which manife
themselves as resonances in scattering at zero@Re(kn)50#
or finite @Re(kn)Þ0# energies, individually represent som
basic features of the system; the other SSs lying deeper in
lower half plane are not observable individually and are
lated to the background scattering. The distinction betw
the two groups is not mathematically rigorous, unless o
rigorously defines what is a resonance, but it is well kno
to be physically meaningful. Note the important role play
by relation~2!: It specifies the structure of the Riemann su
face of complex energyE for the present problem as havin
two sheets connected by the branching point atE50 and
establishes a uniformization mapping of this surface onto
plane of complex momentumk upon which the scattering
matrix S(k) becomes a single-valued function. Thus the m
mentumk takes the place of the energyE as a natural pa-
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rameter of the problem. With the branching cut made alo
the positive real energy semiaxis, the upper/lower halves
the k plane map onto the so-called physical/unphysical
ergy sheets, respectively. Siegert eigenenergies are de
by En5kn

2/2. Only the bound state poles may appear on
physical sheet; all the others are located on the unphys
sheet~see, e.g., Secs. 128, 133, and 134 in@11#, Secs. 12.1
and 16.6 in@12#, Sec. 2.2 in@13#, and many other treatises o
scattering theory!.

There is a vast literature devoted to different aspects
the theory of SSs. We mention only several pioneering st
ies @14–35# containing results relevant to the present wo
more references can be found in@12,13#. Hu @14# showed
that the knowledge of only the SS eigenvalueskn suffices to
completely determine the scattering matrixS(k) in the whole
k plane and gave a formula forS(k) in terms of kn .
Serdobol’ski� @18# derived an expansion for the continuou
energy wave function in terms of the SS eigenfunctio
fn(r ). More and Gerjuoy@28# presented a similar expansio
for the outgoing wave Green’s function. Many more sub
issues of the theory in which SSs differ from the usual e
ergy eigenstates, such as the orthogonality and normaliza
condition @18,19,21–23,26–28,30,32#, the completeness
properties@22,23,28,29,32–34#, and the perturbation theor
@15,19,21,25,27,28#, have also been clarified@36#. These re-
sults seem to suggest the foundation for a method capab
a unified treatment of bound states, resonances, and
tinuum, i.e., the whole spectrum of collision phenomena
terms of purely discrete set of SSs. However, no su
method exists as far as computational implementations
concerned. The reason for this is rooted in the followi
practical difficulty: The momentumk appears in Eqs.~1! and
~2! nonlinearly, which renders this eigenvalue problem tra
table only by means of an iterative procedure. The iterati
can be performed for one or a few SSs, provided that a g
initial guess for their eigenvalueskn is known, but iterative
calculations ofmanySSs required for the results mentione
above to be practically useful become prohibitively difficu

In @5# we have proposed a method to overcome this d
ficulty. As a preliminary step of our formulation, the outg
ing wave boundary condition~1c! should be applied at som
finite point

S d

dr
2 ik Df~r !U

r 5a

50. ~1c8!

This amounts to cutting off the tail of the potentialV(r ) that
extends beyondr 5a. In the following, we shall call the
solutions to Eqs.~1a!, ~1b!, ~1c8!, and ~2! Siegert states for
cutoff potentials~SSCPs!. In contrast to SSs, which depen
on nothing but the potential energyV(r ) and certainly
present a more general mathematical construction, SS
depend also on the cutoff radiusa. For the special class o
finite range potentials, when the functionV(r ) identically
vanishes outside some fixed radius, SSCPs coincide with
for a sufficiently largea; otherwise, the two sets are quit
different and even in the limita→` only a finite number of
SSCPs may converge to SSs, as will be discussed be
Switching from Eq.~1c! to Eq. ~1c8! drastically modifies the
analytical structure of the problem, but it does not seem
introduce any restriction for our purposes. Indeed, we
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interested in developing a method that would make the b
results of the theory of SSs practically applicable. Howev
all these results were rigorously derived only for finite ran
potentials, i.e., actually in terms of SSCPs. Perhaps the
sults still hold for potentials decreasing faster than any
ponential function, although even in this case a rigoro
treatment is too complicated and definite statements are
@16#. For potentials decreasing slower than that, which
cludes exponentially decreasing potentials, the scattering
trix S(k) besides the poles corresponding to SSs may
have so-called redundant poles, branching points, and
kind of singularity in the k plane, depending on th
asymptotic behavior ofV(r ) @17#. We believe that a physi
cally sensible approach should not be sensitive to the
treme tail of the potential, provided thatV(r ) vanishes suf-
ficiently fast atr→`. Accordingly, we shall treat the cutof
potential problem based on Eq.~1c8!, with the understanding
that the applicability of our method to infinite range pote
tials must be confirmed by demonstrating convergence w
respect to the increase of the cutoff radiusa. For the sake of
historical accuracy it should be noted that in the origin
paper by Siegert@10# Eq. ~1c8! rather than Eq.~1c! was used.
The finiteness of the region to be considered allows us
apply anL2 expansion technique. This leads to the definiti
of SPSs as a finite basis representation of SSCPs. In Se
we reduce the problem of constructing the complete se
SPSs to a linear algebraic eigenvalue problem and stud
properties. This section provides an algebraic foundation
the rest of the paper. Next we rederive the basic result
Refs. @14,18,28# in terms of SPSs: In Sec. III we constru
the outgoing wave Green’s function and in Sec. IV we obt
the continuous-energy wave function and the scattering
trix. In Sec. V we consider the asymptotic distribution of t
SSCP eigenvalueskn for largen, needed for an understand
ing of the numerical results presented for a number of mo
potentials in Sec. VI. In Sec. VII we point out possible ge
eralizations of the present approach and problems enc
tered therein. A summary of the results and a brief comp
son of the SPS formulation with other computation
methods in scattering theory conclude the paper in Sec. V

II. SIEGERT PSEUDOSTATES AND THEIR PROPERTIES

A. Reduction to an algebraic form

We consider Eqs.~1a!, ~1b!, ~1c8!, and ~2! defining
SSCPs. Having thus confined the problem to a finite inter
we expand the solutions in terms of some primitive squ
integrable basis, reducing the original differential equation
an algebraic form. Such a reduction is very convenient si
it provides a practical recipe to implement our method.
addition, it renders the derivation of many basic equations
the theory simple and transparent. However, it also turns
to be essential, as will become clear later.

We employ a finite basis

p i~r !, i 51, . . . ,N, ~3!

which is assumed to be orthonormal on the interval@0,a#,

E
0

a

p i~r !p j~r !dr5d i j . ~4!
ic
r,
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Let us define the function

I N~r ,r 8!5(
i 51

N

p i~r !p i~r 8!, ~5!

which is a representation of the unity operator within o
basis. We assume that the basis~3! becomes complete in
L2@0,a# whenN→`, i.e.,

I N~r ,r 8!uN→`5d~r 2r 8!, ~6!

where the convergence is to be understood not pointwise
course, but in the sense of generalized functions@37#. In
order to satisfy Eq.~1b! we assume thatp i(0)50, but no
restriction on the behavior ofp i(r ) near r 5a is imposed,
except that dictated by the condition of square integrabil
Premultiplying Eq. ~1a! by p i(r ), integrating over r
P@0,a#, and using the boundary condition~1c8!, we obtain

1

2E0

a dp i~r !

dr

df~r !

dr
dr2

ik

2
p i~a!f~a!

1E
0

a

p i~r !@V~r !2E#f~r !dr50. ~7!

Only the values off(r ) for r within the interval@0,a# ap-
pear in this equation. Hence we can expandf(r ) in Eq. ~7!
in terms of the basis~3!,

f~r !5(
j 51

N

cjp j~r !, 0<r<a. ~8!

Substituting this expansion into Eq.~7! and using the relation
~2!, we arrive at the algebraic equation

S H̃2
ik

2
L2

k2

2
I D c50. ~9!

Let us comment on our notation. Here and further o
column vectors of the dimensionN are denoted by lower
case italic characters, e.g.,c in Eq. ~9! is a column vector
composed of the coefficientscj in Eq. ~8!; row vectors of the
same dimension will be denoted ascT, whereT stands for
transpose~we refrain from using Dirac’s notation, becaus
^cu usually means transposeand complex conjugate ofuc&,
while we shall almost never need complex conjugatio!;
square matrices of the dimensionN3N are denoted by uppe
case boldface characters andI is always the unit matrix. The
matricesH̃ andL in Eq. ~9! are defined by their elements

H̃ i j 5
1

2E0

adp i~r !

dr

dp j~r !

dr
dr1E

0

a

p i~r !V~r !p j~r !dr

~10!

and

Li j 5p i~a!p j~a!. ~11!

Introducing the Bloch operator@38#

L5
1

2
d~r 2a!

d

dr
~12!
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and the Hermitized Hamiltonian

H̃5H1L, ~13!

it can be seen thatH̃ is a matrix representation ofH̃ within
the basis~3!. As follows from Eq.~1c8!, the action ofL on
SSCPs is defined by

E
0

a

p i~r !Lf~r !dr 5
ik

2
p i~a! f~a!; ~14!

thus L is proportional to a matrix representation ofL for
SSCPs. Note that for a real basis~3! the matricesH̃ and L
are real and symmetric. Also note, very importantly, thatL is
a projector-type matrix~see Appendix A! and has rank 1. It
can be diagonalized by an orthogonal transformation of
basis ~3! and its only nonzero eigenvalue is positive a
coincides with the trace ofL given by

tr~L !5(
i 51

N

p i
2~a!. ~15!

Equation~9! is a projection of Eqs.~1a!, ~1b!, ~1c8!, and
~2! onto anN-dimensional Hilbert space spanned by the b
sis ~3!. For any finiteN, we shall call the solutions to Eq.~9!
Siegert pseudostates. Because only the values off(r ) for r
P@0,a# were considered in the derivation of Eq.~9! and
because the basis~3! is complete within this interval for in-
finite N, it is natural to expect by analogy with usual vari
tional expansions~and this will be confirmed by numerica
calculations! that the ‘‘lower’’ SPSs approximate som
‘‘low-lying’’ SSCPs, and that a better approximation for
larger number of SSCPs can be achieved by increasinN
@39#. However, at this point it is not clear whether th
‘‘higher’’ SPSs represent anything but numerical rubbish.
will be shown below they do, although not individually b
as essential members of a complete set. It is this propert
SPSs that makes us distinguish them from SSCPs and j
fies the introduction of the new term@40#. Accordingly, all
the relations below will be derived for a finiteN, i.e., in
terms of SPSs, corresponding results in terms of SSCPs
ing recovered in the limitN→`. Strictly speaking, we
should assign the indexN to all the quantities expressed
terms of SPSs. However, for the simplicity of notation w
suppress such an index; moreover, we shall use the s
notation for SPSs as for SSs and SSCPs, for it will always
clear which set is meant.

Note that for the present problem a representation of
R-matrix basis within our Hilbert space is defined by Eq.~9!
with the L term dropped. This term originates from th
Bloch operator and, as will be seen later, it plays a major p
within the SPS formulation.

B. Linearization

Equation ~9! can have a nontrivial solution only for
discrete set ofk5kn ; thus it constitutes an algebraic eige
value problem definingkn and corresponding eigenvecto
c(n). Yet it is an unconventional eigenvalue problem since
is nonlinear with respect tok. This is a manifestation of the
difficulty mentioned in the Introduction. This nonlinearit
e

-
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of
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e-
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e

e

rt

it

prohibits direct use of the standard methods of linear alge
Fortunately, however, the nonlinearity is rather simple sin
k appears in Eq.~9! only quadratically. As is shown below,
in this case the problem can be exactlylinearizedto a form
of the usual eigenvalue problem, but with the dimens
doubled.

Consider a quadratic algebraic eigenvalue problem

~A1lB1l2I !c50, ~16!

whereA andB are someN3N matrices,I is the unit matrix,
and l and c are the eigenvalue and the eigenvector to
found, respectively. Here we have switched to new notat
in order to emphasize the generality of the following discu
sion. The relation to Eq.~9! is obvious,

l5 ik, A52H̃, B52L . ~17!

It is convenient to introduce the matrix

M ~l!5A1lB1l2I , ~18!

which is called a quadratic matrix polynomial with respect
l @41#. First, we observe that Eq.~16! has exactly 2N solu-
tions, this number being the degree of the polynomial rep
senting det@M (l)# as a function ofl. Thus, for a givenN
there are 2N SPSs. This gives a hint as how to linearize E
~16!. With each eigenpairl and c satisfying Eq.~16! we
associate a column vector of doubled dimension,

S c

c̃
D 5S c

lcD . ~19!

It is easy to see that this vector satisfies

S 0 I

2A 2BD S c

c̃
D 5lS c

c̃
D . ~20!

This is also an eigenvalue problem, but in contrast to
~16! this is a linear one and can be dealt with routinely
Equation ~20! defines 2N eigenvaluesln , which coincide
with the eigenvalues of Eq.~16!, and 2N eigenvectors

S c~n!

c̃~n!D 5S c~n!

lnc~n!D , n51, . . . ,2N, ~21!

from which the eigenvectorsc(n) of Eq. ~16! can be found.
Thus Eqs.~16! and~20! are equivalent. Such linearization o
the problem by means of doubling its dimension is a discr
analog of the well-known procedure of reducing a seco
order differential equation to a set of two first-order equ
tions. Obviously, this technique can be extended to a po
nomial eigenvalue problem of an arbitrary order@41#.

Premultiplying Eq.~20! by the matrix

S B I

I 0D ~22!

it can be reduced to a symmetric form
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S 2A 0

0 I D S c

c̃
D 5lS B I

I 0D S c

c̃
D . ~23!

This is a generalized algebraic eigenvalue problem with
weight matrix given by Eq.~22!. If A andB are symmetric,
then the matrices in Eq.~23! are also symmetric. Equatio
~23! is more convenient than Eq.~20! for deriving some
general relations and it may be found advantageous also
numerical solution.

From here on we assume that the matricesA and B are
real and symmetric, as is the case for Eq.~9!. From this some
properties of the SPS eigenvalueskn can be deduced. First, i
the pairl andc is a solution of Eq.~16!, then the complex
conjugate pairl* andc* also is a solution. This means th
kn are either pure imaginary~bound and antibound states!, or
occur in pairskn and2kn* . Second, using Eq.~16! it can be
shown that

Im~l!@c* TBc12 Re~l!c* Tc#50. ~24!

If Im( l)Þ0 then, recalling that the only nonzero eigenval
of B (52L ) is negative, from Eq.~24! we have Re(l)
>0. Thus complexkn with Re(kn)Þ0 may appear only in
the lower half of thek plane. These properties coincide wi
the well-known properties of Siegert eigenvalues; howev
in the present formulation we have derived them not fr
the analytical dependence of the solutions to Eq.~1a! on E,
as it is usually done@12#, but from the properties of the
matricesA andB. Note an interesting possibility allowed b
Eq. ~24!: Im(l)Þ0 when c* TBc50 and Re(l)50. This
would correspond to a discrete state embedded in the
tinuum, in which case Im(kn)50 while Re(kn)Þ0.

C. Orthogonality and normalization condition

Assuming that all the eigenvaluesln are distinct, it can be
shown that the eigenvectors of Eq.~23! are orthogonal with
respect to the following inner product

~c~n!Tc̃~n!T!S B I

I 0D S c~m!

c̃~m!D 52lndnm , ~25!

where the choice of the normalization factor on the rig
hand side will become clear shortly. Using Eq.~21!, this
condition can be rewritten as

c~n!Tc~m!1
c~n!TBc~m!

ln1lm
5dnm . ~26!

In the coordinate representation, the SPS eigenfunctions
given by

fn~r !5(
j 51

N

cj
~n!p j~r !, 0<r<a, ~27!

and Eq.~26! takes the form

E
0

a

fn~r !fm~r !dr1 i
fn~a!fm~a!

kn1km
5dnm . ~28!
e

for

r,

n-

-

re

The function~27! can be smoothly continued beyondr 5a
by

fn~r !5Cneiknr , r>a, ~29!

whereCn is a constant. For bound stateskn5 ikn , wherekn
is real and positive. In this case, the function~29! exponen-
tially decays atr→` and it is easy to see that Eq.~28!
coincides with the ordinary orthogonality and normalizati
condition for bound states

E
0

`

fn~r !fm~r !dr5dnm . ~30!

This explains the choice of the normalization factor in E
~25!. For all the other SPSs the function~29! exponentially
grows atr→`, since Im(kn),0, and the condition~28! dif-
fers from the conventional one~30!. The normalization con-
dition for SSCPs is obtained from Eq.~26! in the limit N
→`; in coordinate representation it is given by the sa
equation~28!. The expression on the left-hand side of th
equation forn5m has appeared already in@10#; its relation
to the norm of SSCPs was first realized in@18# and in the
present form Eq.~28! was first given in@23#. In the latter
paper it was interpreted as an analytical continuation of
~30!. The unconventional normalization of SSCPs was a
obstacle on the way of incorporating these states into
apparatus of scattering theory. This problem has been
dressed by many authors@19,21,23,26–28# who employed
different arguments and regularization techniques. Wit
the SPS formulation this matter becomes very simple: T
eigenvectors~21! are orthonormal in the usual sense of t
word, but in the space of doubled dimension and with
nonunit weight@see Eq.~25!#, and the condition~26! @or
~28!# results from the reduction of Eq.~25! to the original
Hilbert space. Note the absence of complex conjugation
Eqs. ~26! and ~28!, which is a characteristic feature of a
theories of SSs.

D. Completeness relations

The eigenvectors~21!, being linearly independent, form
complete set in the space of doubled dimension. This fac
expressed by

(
n51

2N
1

2ln
S c~n!

lnc~n!D ~c~n!Tlnc~n!T!5S B I

I 0D 21

5S 0 I

I 2BD
~31!

or, equivalently, by

(
n51

2N
1

ln
c~n!c~n!T50, ~32a!

(
n51

2N

c~n!c~n!T52I , ~32b!

(
n51

2N

lnc~n!c~n!T522B. ~32c!

In the coordinate representation, these equations read
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(
n51

2N
1

ikn
fn~r !fn~r 8!50, ~33a!

(
n51

2N

fn~r !fn~r 8!52I N~r ,r 8!, ~33b!

(
n51

2N

iknfn~r !fn~r 8!52I N~r ,a!I N~r 8,a!, ~33c!

where bothr and r 8 lie within the interval @0,a#. These
equations express important properties of SPSs that hold
any N. In the limit N→`, using Eq.~6!, we obtain the
corresponding properties of SSCPs:

(
n51

`
1

ikn
fn~r !fn~r 8!50, ~34a!

(
n51

`

fn~r !fn~r 8!52d~r 2r 8!, ~34b!

(
n51

`

iknfn~r !fn~r 8!52d~r 2a!d~r 82a!. ~34c!

Equations~34a! and~34b! were first given in@29#. Equa-
tion ~34b! shows that the set of SSCPs is complete
L2@0,a#, while Eq. ~34a! indicates that the set is actual
overcomplete, giving a linear combination of the functio
fn(r ) that turns zero identically. The overcompleteness
SSCPs was another big obstacle for the theory. It renders
question of convergence of the expansions in terms of SS
a nontrivial one, namely, convergence is not guaranteed
simply increacing the number of terms. There is no su
problem for the expansions in terms of SPSs, provided
all 2N SPSs are included and convergence is unders
with respect to the increase ofN. This follows from Eqs.
~33b! and~6!, which ensure that the set of 2N SPSs become
complete inL2@0,a# whenN→`. In other words, taking the
limit N→` within the SPS formulation provides a contr
over the overcompleteness. Some authors@28,32,35,13# re-
lated the overcompleteness of SSCPs to the factor 2 in
~34b!. Such an interpretation is hardly acceptable since
factor can be easily removed by a mere renormalization
fn(r ). The SPS formulation also sheds some light on
nature of the overcompleteness: The set of the eigenvec
~21! is complete in the space of doubled dimension, but
duction to the original Hilbert space results in the overco
pleteness.

Relation ~32c! and its coordinate representations Eq
~33c! and~34c! have not been given previously, as far as
know. In fact, there is an infinite sequence of such relati
that can be generated by the following procedure@42#. Let
Qp be defined by

Qp5 (
n51

2N

ln
pc~n!c~n!T. ~35!

From Eqs.~32a!–~32c! we haveQ2150, Q052I , and Q1
522B. Using Eq.~16! we obtain

AQp211BQp1Qp1150, ~36!
or

f
he
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y
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is
f

e
rs
-
-

.

s

which provides a three-term recurrence for generatingQp for
p<22 and/orp>2. For example,

Q225 (
n51

2N
1

ln
2

c~n!c~n!T522A21 ~37!

and

Q25 (
n51

2N

ln
2c~n!c~n!T52~B22A!. ~38!

We do not write down expressions for the higherQp in co-
ordinate representation; just note that the larger positivep,
the more diverging atr 5a they are whenN→`.

E. Spectral resolutions of a quadratic matrix polynomial
and its inverse

Having found all the eigenvaluesln and the eigenvectors
c(n) of Eq. ~16!, one should be able to construct spect
resolutions of the matrix~18! and its inverse.M (l) can be
expressed in terms ofln and c(n) using Eqs.~32b!, ~32c!,
and ~38!. The result is quite different from the well-know
spectral resolution of a linear matrix polynomial. We give
only for the case whenB is a projector-type matrix~see
Appendix A!. Using the property~A1! we obtain

M ~l!5
1

2 (
n51

2N

@l22lln2ln
22tr~B!ln#c~n!c~n!T, ~39!

where tr(B) can be expressed in terms ofln andc(n) using
Eq. ~32c!. A similar expansion for the inverse ofM (l) turns
out to be simpler. Without assuming any particular struct
of B, using Eqs.~32a! and~32b! it can be easily shown tha

M21~l!5 (
n51

2N
c~n!c~n!T

2ln~l2ln!
. ~40!

This formula will be used in Sec. III for constructing th
Green’s function.

F. Miscellaneous properties

To conclude this algebraic section, we consider one m
property of SPSs needed for the discussion below. From
~18! we have

M ~l!2M ~2l!52lB, ~41!

which can be put in the equivalent form

I22lBM21~l!5M ~2l!M21~l!. ~42!

This implies equality of the determinants of the matrices
each side of the equation. The determinant ofM (l) is given
by

det@M ~l!#5 )
n51

2N

~l2ln!. ~43!
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Again using the fact thatB, and hence alsoBM21(l), is a
projector-type matrix~see Appendix A!, from the property
~A2! and Eq.~43! we obtain

122l tr@BM21~l!#5 )
n51

2N
l1ln

l2ln
. ~44!

Taking the residue of both sides atl→lm and using Eq.~40!
we have

c~m!TBc~m!522lm )
nÞm

2N
lm1ln

lm2ln
. ~45!

In a coordinate representation these relations read

11 ik (
n51

2N
@fn~a!#2

kn~kn2k!
5 )

n51

2N
kn1k

kn2k
~46!

and

@fm~a!#252ikm )
nÞm

2N
km1kn

km2kn
. ~47!

Equation~46! is essential for expressing the scattering ma
in terms of only the SPS eigenvalueskn ; see Sec. IV. Equa
tion ~47! defines the boundary contribution to the SPS no
in Eq. ~28!, the coefficientCn in Eq. ~29!, and the residues o
the scattering matrix at its poles given by Eq.~60! below. By
taking the limitN→` in Eqs.~46! and~47!, one obtains the
corresponding properties of SSCPs. To our knowledge, th
properties have never been presented in the literature.

III. OUTGOING WAVE GREEN’S FUNCTION

We proceed to rederive the basic results of the theory
SSs in terms of SPSs. Here we construct the outgoing w
Green’s functionG(r ,r 8;k). For the cutoff potential prob-
lem it is defined by the equation

~H2E!G~r ,r 8;k!5d~r 2r 8! ~48a!

and the boundary conditions

G~0,r 8;k!50, ~48b!

S d

dr
2 ik DG~r ,r 8;k!U

r 5a

50, ~48c!

where bothr and r 8 lie within the interval @0,a# and we
recall the relation~2!. We seek the solution in the form

G~r ,r 8;k!5 (
i , j 51

N

Gi j ~k!p i~r !p j~r 8!, 0<r , r 8<a.

~49!

Then for the matrixG(k) composed of the coefficient
Gi j (k) we obtain

S H̃2
ik

2
L2

k2

2
I DG~k!5I . ~50!

Using Eq.~40!, the solution to this equation is given by
x

se

f
ve

G~k!5 (
n51

2N
c~n!c~n!T

kn~kn2k!
. ~51!

In the coordinate representation we have

G~r ,r 8;k!5 (
n51

2N
fn~r !fn~r 8!

kn~kn2k!
, 0<r ,r 8<a. ~52!

This is the SPS expansion of the Green’s function. The d
vation presented is based on Eqs.~32a! and~32b! or, equiva-
lently, on Eqs.~33a! and~33b!, which due to Eq.~6! ensure
thed function on the right-hand side of Eq.~48a! in the limit
N→`. The SSCP expansion ofG(r ,r 8;k) obtained from
Eq. ~52! in this limit was anticipated in@24,27# and in the
present form it was first given in@28#. In its derivation these
and subsequent authors@29,31,32# essentially followed the
same logical route: Certain analytical properties
G(r ,r 8;k) in the complexk plane were assumed@G(r ,r 8;k)
is a meromorphic function ofk], which allowed one to apply
the Mittag-Leffler expansion theorem@a meromorphic func-
tion can be expanded in terms of its poles#. In the SPS for-
mulation, Eq.~52! follows from Eqs.~32a! and~32b!, which
in turn are rather simple algebraic relations.

Following @29,32#, we note that once the SSCP expansi
of G(r ,r 8;k), i.e., Eq.~52! in the limit N→`, is established,
relations~34a! and ~34b! follow from the formula

G~r ,r 8;k!u uku→`52
2

k2
d~r 2r 8!1O~k23!, ~53!

which is an obvious consequence of Eq.~48a!.

IV. CONTINUOUS-ENERGY WAVE FUNCTION
AND THE SCATTERING MATRIX

The knowledge of the outgoing wave Green’s functi
G(r ,r 8;k) amounts to a complete solution of the Schr¨-
dinger equation. Having expandedG(r ,r 8;k) in terms of
SPSs@see Eq.~52!#, we are in a position to derive simila
expansions for other quantities of interest. In particular, h
we consider a continuous-energy wave functionc(r ;k) and
the scattering matrixS(k). For thes-wave scattering by a
cutoff potential they are defined by

~H2E!c~r ;k!50, ~54a!

c~0;k!50, ~54b!

c~r ;k!ur>a5e2 ikr2S~k!eikr . ~54c!

The solutionc(r ;k) to this one-dimensional equation is re
lated to the Green’s functionG(r ,r 8;k) by

G~r ,r 8;k!5
i

k
c~r , ;k!eikr ., r .>a, ~55!

wherer , (r .) is the smaller~the larger! of r andr 8. Setting
r 85a, we obtain

c~r ;k!52 ike2 ikaG~r ,a;k!, r<a. ~56!
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Substituting here Eq.~52!, we get an expansion forc(r ;k) in
terms of SPSs:

c~r ;k!52 ike2 ika(
n51

2N
fn~r !fn~a!

kn~kn2k!
, r<a. ~57!

From the condition that Eqs.~54c! and~56! must coincide at
r 5a we have@38#

S~k!5e22ika@11 ikG~a,a;k!#. ~58!

Again using Eq.~52!, we obtain an expansion forS(k):

S~k!5e22ikaF11 ik (
n51

2N
@fn~a!#2

kn~kn2k!G . ~59!

We shall call this the ‘‘sum’’ formula for the scattering ma
trix. It shows thatS(k) has simple poles atk5kn with the
residues

~k2kn!S~k!uk5kn
52 ie22ikna@fn~a!#2. ~60!

Using Eq.~46!, we obtain an alternative expression forS(k):

S~k!5e22ika)
n51

2N
kn1k

kn2k
. ~61!

This will be called the ‘‘product’’ formula. Taking into ac
count the properties of the SPS eigenvalueskn , the product
formula explicitly ensures unitarity of the scattering mat
which for realk reads

S~k!S* ~k!5S~k!S~2k!51. ~62!

In the limit N→`, Eqs.~57!, ~59!, and ~61! become ex-
pressed in terms of SSCPs. The SSCP expansion of
continuous-energy wave function following from Eq.~57!
was first given in@18#; see also@30,32#. The product repre-
sentation of the scattering matrix in terms of SSCPs follo
ing from Eq. ~61! was first given in@14# and later derived
rigorously for finite range potentials in@16#. The situation in
the literature regarding the SSCP analog of Eq.~59! is less
certain. Although similar expansions have been discusse
many authors@15,20,31,32,35#, they always contain som
undefined quantities such as an entire function, some r
dues, or matrix elements~see, e.g., Sec. 12.1 in the standa
textbook@12#!, which make them actually useless for prac
cal applications. To our knowledege, in that simple form t
follows from Eq. ~59! in the limit N→`, the sum formula
for the scattering matrix has not been given previously. Si
larly to the case of Green’s function, all previous autho
following Ref. @15# based their derivations of the scatterin
matrix on the Mittag-Leffler expansion theorem; this was
source of appearance of some undefined entire functio
the resulting formulas.„‘‘The relation betweenP(k) @the
entire function# and the poles ofS is hard to disentangle, an
no simple expression is known.’’ See p. 366 in@12#…. Within
the SPS formulation this matter also gets clarified and E
~59! and~61! do not involve any undefined quantities. Mor
over, now we can see a relation between them, namely,
mulas~59! and ~61! are algebraically equivalent, as follow
from the results of Sec. II F. However, they were deriv
he
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under different assumptions regarding the matrixB in Eq.
~16!: Eq. ~59! holds for an arbitrary symmetricB, while Eq.
~61! requiresB to be a projector-type matrix~see Appendix
A!, which is actually the case becauseB represents the Bloch
operator~11!. This circumstance becomes somehow hidd
when the limitN→` is taken. Note that, as follows from Eq
~24!, if a discrete state embedded in the continuum exists
must satisfyfn(a)50; hence the residue~60! vanishes, i.e.,
such a state is not visible in the scattering.

V. ASYMPTOTIC DISTRIBUTION OF SIEGERT
EIGENVALUES FOR CUTOFF POTENTIALS

Prior to discussing the numerical illustrations, here
investigate asymptotic distribution of the SSCP eigenval
kn defined by Eqs.~1a!, ~1b!, ~1c8!, and~2! for n→`. This
will prove to be helpful for understanding general features
the distributions of SPS eigenvalues presented in Sec. V

We shall consider only the eigenvalueskn lying in the
fourth quadrant of thek plane; those lying in the third quad
rant are their mirror images with respect to the imagina
axis and there may exist only a finite number of the eig
values in the upper half plane. An expansion ofkn for large
n was first discussed in@15#. The well-known result reads
~see, e.g.,@12#!

knaun→`5pn2 i S 11
1

2
s D lnn1O~1!, ~63!

wheres is defined by

V~r !ur→a20}~a2r !s. ~64!

Equation ~63! gives too rough an approximation: Its firs
neglected term does not decay with the increase ofn, which
makes a comparison with the calculated results difficult a
ambiguous. We are not aware whether the higher term
the expansion~63! have ever been treated in the literatur
probably, for the lack of an efficient method of calculatin
kn, this was considered to be of no practical use, which is
the case in the present work.

Let us consider the cases50, i.e.,V(a)Þ0, which is of
main interest for the cutoff potential problem. As can be se
from Eq. ~63!, uknu;n for n→`, so the expansion~63! can
be developed further by constructing the Born series for
solutions to Eq.~1a!. This approach was actually used
@15,18,16# to derive Eq.~63!; however, it becomes too awk
ward for treating the higher terms. For this purpose, it is v
convenient to use a version of the phase-amplitude met
proposed in@43#. In this method, the solution to Eq.~1a!
satisfying the first boundary condition~1b! is presented in
the form

f~r !5
A~r !

Ak~r !
sin@s~r !1u~r !#. ~65!

HereA(r ) and u(r ) are the amplitude and the phase fun
tions, respectively, andk(r ) and s(r ) are the classical mo
mentum and action conventionally defined by
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k~r !5Ak222V~r !, s~r !5E
0

r

k~r 8!dr8. ~66!

In order to determine the two unknown functionsA(r ) and
u(r ) an additional relation between them is needed. Thi
fixed by

f8~r !5Ak~r !A~r !cos@s~r !1u~r !#. ~67!

Then for the phaseu(r ) one obtains the equation

u8~r !5
k8~r !

2k~r !
sin@2s~r !12u~r !#, ~68a!

u~0!50 ~68b!

and the amplitudeA(r ) can be found by a straightforwar
integration, provided thatu(r ) is known @43#. The second
boundary condition~1c8! leads to the dispersion relation d
fining the eigenvaluek:

k~a!cot@s~a!1u~a!#5 ik, ~69!

which can be cast in the equivalent form

s~a!1u~a!5pn2
i

2
ln

k1k~a!

k2k~a!
. ~70!

This equation can be solved iteratively, starting with the
proximation provided by Eq.~63!; the details are given in
Appendix B and the result reads

knaun→`5pn2 i lnn1a01a1

lnn

n
1a2

1

n
1a3S ln n

n D 2

1OS ln n

n2 D , ~71a!

where

a052
i

2
ln

2p2

a2V~a!
, ~71b!

a152
1

p
, ~71c!

a25
a

pE0

a

V~r !dr2
aV8~a!

4pV~a!
2

1

2p
ln

2p2

a2V~a!
,

~71d!

a352
i

2p2
. ~71e!

The branch of the logarithm function for the caseV(a),0
should be determined by the substitutionV→V2 i0, and we
have assumed that the integral ofV(r ) over r P@0,a# and the
derivativeV8(a) exist. Note that the terms involving thes
quantities are the only ones that make Eq.~71! different from
the corresponding result for a rectangular potential of
valueV(a).
is

-

e

Equation~71! defines an asymptotic string of SSCP eige
values that goes to infinity in the fourth quadrant of thek
plane. For a more general class of potentials having disc
tinuities in one of the derivatives somewhere inside the
terval @0,a#, each discontinuity produces such an asympto
string @33#. From the presence of the cutoff radiusa in Eq.
~71! it is clear that this equation describes thecutoff SSCPs,
which are something like ‘‘particle-in-a-box’’ states, but sa
isfying the outgoing wave boundary condition~1c8!. These
SSCPs are only weakly affected by the presence of the
tential; the individuality of the system is represented by
finite group of SSCPs whose eigenvalues lie in the vicin
of the origin k50. For infinite range potentials, only thi
finite group can converge to SSs in the limita→`; the cut-
off SSCPs never converge, as can be seen from Eq.~71!.
This indicates that in addition to being incomplete~there
generally are branching cuts to be taken into account!, SSs
are pathologically sensitive to the asymptotic tail of the p
tential. Cutting off this tail, whatever physically and nume
cally negligible effect it might seem to produce, drastica
modifies the distribution of higher SS eigenvalues. This f
ture was first realized by Ma@44# for the special case of an
exponential potential and later analyzed by Ferreira a
Teixeira @45# for the Coulomb potential.

The leading term of then→` asymptotic for the normal-
ized SSCP wave function is given by

fn~r !'A2

a
sin~knr !'

1

iA2a
exp~ iknr !. ~72!

The latter equality holds for allr except for a small vicinity
of r 50, where the boundary condition~1b! is to be satisfied.

VI. ILLUSTRATIVE EXAMPLES

Numerical calculations of Siegert states apparently w
initiated by Nussenzweig@46#, who studied the motion of
Siegert eigenvalues for a rectangular potential as its stre
varies@47#. This work was followed by many others wher
Siegert states were studied for various one-dimensional
tentials @29,32,35,45,48–81# both analytically and numeri-
cally. This includes simple models for which the analytic
solution is available @46,45,48–51,29,54,32,35,65,73,74#,
calculations using different variants of the complex rotati
method@52,53,55,56,58,59,63,65,70,74#, variational calcula-
tions with the outgoing wave function explicitly include
into the basis@57,60,64,72#, calculations using Weyl’s theory
@61,67,69#, Milne’s differential equation@66,68#, absorbing
potentials@75–77#, semiclassical approximations@62,66,70#,
and other methods@71,78–81#. We refer only to those meth
ods that are capable of calculating complex-energy re
nance states directly. This does not include, for exam
scattering calculations and the stabilization method; e
then, the list is inevitably incomplete. Most of these stud
focused on one or a few Siegert eigenvalues correspon
to the states visible as distinct resonances in the scatte
cross section. Only few of them attempted application of
theory of SSs to calculations of the scattering matrixS(k)
@32,35,65,71,73#.

In this section we consider several representative po
tials for which the numerical calculations have been carr



o
o
de
e

R
n
.e

i
ol

x
-

nd
th

cy

a

s i

e

in
s

e

ll
e
-

in
le

9
i

iffer
dif-
are

l
nd

es

CP

s

2086 PRA 58TOLSTIKHIN, OSTROVSKY, AND NAKAMURA
out in order to demonstrate the computational efficiency
the present approach. The selected examples illustrate s
general observations drawn from the calculations for a wi
class of potentials and parameters than that reported h
These observations will be formulated and numbered by
man numerals throughout this section, summarizing our
merical results. We believe that they all apply generally, i
for an arbitrary reasonably well behaving potentialV(r ) van-
ishing sufficiently fast atr→`.

Details of the present numerical procedure are given
Appendix C. In all the cases, SPSs were calculated by s
ing Eq. ~20!. Thus, for a given potentialV(r ), the cutoff
radiusa, and the number of basis functionsN, the compu-
tational labor involved for constructing the whole set of 2N
SPSs amounts to a single diagonalization of a real matri
the dimension 2N32N. There are two sources of the nu
merical errors: the inaccuracy of our potential matrix@we are
using an N-point Gauss-Jacobi quadrature~C8!# and the
roudoff errors. The former is not intrinsic to our method a
can be avoided by using a better integration scheme;
latter seems to be unavoidable. In each case, the accura
the presented results will be specified separately.

In the following discussion, instead of the scattering m
trix S(k) we often consider the phase shiftd(k) or the scat-
tering cross sections(k). These quantities are defined by

S~k!5exp@2id~k!#, s~k!5
4p

k2
sin2 d~k!. ~73!

A. Rectangular potential: General features

We start with the rectangular potential

V~r !5H V0 , r<a

0, r .a,
~74!

which is the simplest example of a cutoff potential. SSCP
this case were studied in@46,49,50,32,35,73#. The values of
the parametersa51 andV052112.5 used here are the sam
as in @73#.

It is convenient to order SPSs in accordance with the
crease ofuknu. This specifies the meaning of the term
‘‘lower’’ and ‘‘higher’’ used in the previous sections. Th
first feature to be observed is the following.

~i! For a given potentialV(r ) and the cutoff radiusa,
each SPS eigenvaluekn converges whenN grows and the
lower kn converge faster. Thosekn that are not affected by a
further increase ofN within a specified accuracy we sha
call basis-independent orN-converged eigenvalues; all th
others depend on the basis~3!. In the situations where inde
pendent calculations of SSCP eigenvalues for the sameV(r )
and a are available, we confirmed that SPSs converge
SSCPs.

For the potential~74!, 50 SSCPs have been tabulated
@73#, including 5 bound, 4 antibound, and 41 lowest comp
eigenvalues lying in the fourth quadrant of thek plane. Our
calculations with the minimumN590 reproduce all of them
within the six-digit accuracy quoted in@73#. Together with
41 mirror images lying in the third quadrant, this makes
N-converged, within six digits, SPS eigenvalues, which
about a half of the total number 2N5180 of SPSs in this
f
me
r
re.
o-
u-
.,

n
v-

of

e
of

-

n

-

to

x

1
s

case. The other half, i.e., the basis-dependent SPSs, d
from their SSCP counterparts more considerably and the
ference rapidly grows for higher SPSs. These features
illustrated in Figs. 1 and 2. Figure 1~a! shows the potentia
function ~74! together with the energy positions of the bou
and antibound states superimposed on it. Figures 1~b! and
1~c! present distributions of some low-lying SPS eigenvalu
in the complexk and E planes, respectively. Figure 2~a!
shows a larger portion of the SPS eigenvalues in thek plane
and Fig. 2~b! depicts the complete set. Figures 1~b!, 1~c!, and
2~a! present also the results obtained from the SS

FIG. 1. SPS eigenvalues for the rectangular potential~74! with
the parametersV052112.5 anda51 calculated usingN590 basis
functions.~a! Solid line, the potential energy; dashed~dash-dotted!
lines, energies of the bound~antibound! states.~b! Diamonds, low-
lying SPS eigenvalues in the complexk plane; pluses, the result
obtained from the SSCP asymptotic formula~71! shown forn>5.
~c! Same as in~b!, but in the complexE plane. All the eigenvalues
shown areN-converged within the scale of the figure.
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asymptotic formula~71!. TheN-converged SPS eigenvalue
such as those shown in Figs. 1~b! and 1~c!, first approach the
asymptotic results asn increases. However, as can be se
from Fig. 2~a!, this tendency holds only up to some max
mum n after which the basis-dependent SPSs quickly
verge from the SSCP asymptotic string, forming quite a d
ferent pattern shown in Fig. 2~b!.

Next we discuss calculations of the scattering matrix. T
convergence of the results obtained from the product form
~61! in terms of SSCPs for the potential~74! was analyzed in
@32,35,73#. Korsch et al. @73# calculated the elastic phas
shift d(k) at k520 using different numbers of SSCP eige
values in Eq.~61!. As follows from their Table 2, the con
vergence is very poor. For example, with 491 SSCPs~this
corresponds to the last entry in the table and includes
mirror images lying in the third quadrant! for the phase shift
they got210.7750 against the analytical result210.6816, as
quoted in@73#. Our calculations by Eq.~61! with only 2N
538 SPSs reproduce six digits of the analytical result a
with 2N550 we obtain correct twelve digit
210.681 639 6210(1), which is the best we can do usin
the double precision arithmetics. The sum formula~59!, al-
though it was shown to be algebraically equivalent to E

FIG. 2. ~a! Same as in Fig. 1~b!, but on a larger scale.~b! An
even larger scale, which enables one to see the distribution o
2N5180 SPS eigenvalueskn for this case.
n

i-
-

e
la

1

d

.

~61!, is quite different in implementation and, due to th
numerical errors, it yields somewhat different results. For
potential~74!, the phase shifts obtained from Eqs.~59! and
~61! using the present numerical scheme coincide with e
other within at least twelve digits.

Now we make a very important observation regarding
SPS expansions~59! and ~61! for the scattering matrix.

~ii ! To achieve fast convergence with the increase ofN all
2N SPSs must be included into Eqs.~59! and~61!; skipping
even one of them, eitherN-converged or basis-dependen
may make the result completely wrong. Such a behavio
quite different from what one would expect since the high
SPSs certainly do not have any physical meaning indivi
ally. However, it has a simple explanation: Our derivation
Eqs.~59! and~61! was essentially based on the completen
relations ~32a! and ~32b! @or ~33a! and ~33b!#, which are
valid only upon inclusion of all 2N SPSs.

The following observation concerns the rate of the co
vergence as a function ofk.

~iii ! With the increase ofN, the upper boundary of the
interval of k where the SPS expansions~59! and ~61! yield
the converged results moves towards the largerk.

This is illustrated in Fig. 3, which shows the functio
sin2 d(k) calculated using Eqs.~59! and ~61! for different
values of 2N. For each 2N, there is a breakdown value ofk
up to which the calculated results are indistinguishable
Fig. 3 from the analytical ones and above which they rapi
diverge. As one can see, the convergence with the increas
N is very fast. For example, for 2N5100 Eqs.~59! and~61!
work well up to k'100, i.e., up to the energyE5k2/2
'5000, which is about 50 times larger than the depth of
potential ~74!. Remarkably, scattering in this wide energ
range is described by the information obtained from dia
nalization of only a 1003100 matrix. Note that the conver
gence is uniform with respect tok: Even tiny diffraction

all

FIG. 3. Function characterizing the phase shiftd(k) produced
by the potential~74!. Solid curve, the exact analytical result; broke
curves, the results obtained from Eqs.~59! and~61! ~indistinguish-
able in the figure! for different numbers 2N of SPSs. At smallerk,
all the curves coincide within the scale of the figure. For each va
of 2N, there is a breakdown value ofk starting from which the
corresponding broken curve diverges from the solid one. Only
initial stages of this divergence are shown; this is followed by v
lent oscillations of the broken curves at largerk.
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wavelets seen in Fig. 3 are excellently reproduced by E
~59! and ~61!. Fast convergence of the SPS expansions~59!
and ~61! for the scattering matrix demonstrated above c
stitutes an important advantage of the SPS formulation o
all previous theories of SSs.

B. Potential with a barrier: Complex-energy resonance states

The rectangular potential is a bit too special case;
realistic potentials of interest in the collision theory usua
have infinite range. In this section we discuss convergenc
the results obtained within the SPS formulation with resp
to the increase of the cutoff radiusa. We consider the po-
tential

V~r !57.5r 2 exp~2r !, ~75!

which has a barrier with a maximum height of'4.06 at
r 52 @see Fig. 4~a!#. This potential is known to produc
a distinct resonance in the scattering cross section at
energy indicated in Fig. 4~a!, which has been a testin
ground for numerous schemes of resonance calculat
@52,53,57,60,62,64,66,70,72,74,76–81#.

Figures 4~b! and 4~c! show distributions of some low
lying N-converged SPS eigenvalues calculated for the cu
radius a510, together with the results obtained from t
SSCP asymptotic formula~71!. A few lowest SS eigenvalue
for the potential~75! have been calculated in@66,77,81#;
three of them are also shown in the figures. The gen
structure of these distributions is similar to that shown
Figs. 1~b!, 1~c!, and 2 on a larger scale. The only differe
feature is the appearance of one~apart from its mirror image!
separately standing complex eigenvalue indicated as ‘‘re
nance.’’ Its position coincides within the scale of the figur
with that of the lowest SS. The convergence of this eig
value with the increase ofN anda is illustrated in Table I.
Our final results for the positionEres and width G of this
resonance state obtained with the minimum parame
(a,N)5(30,60), i.e., by diagonalizing a 1203120 matrix,
are in excellent agreement with and even provide an a
tional digit in G as compared to the best available results
Ref. @77#. Note that in@77# a larger basis of 300 function
and a more accurate scheme of calculating the potential
trix was used; most of the other calculations cited above
restricted to a much lower accuracy. In order to see w
happens when the resonance becomes broader, we perfo
similar calculations with the coefficient 7.5 in Eq.~75!
replaced by 2.5. The converged results for the resona
state in this case obtained with the minimum parame
(a,N)5(35,60) are Eres51.477 948 257(1) and G/2
50.159 117 864(1). Theconvergence is achieved at larg
a, which is understandable because this resonance is a
10 times broader, and fewer digits get stabilized. These
sults illustrate the following observation.

~iv! For infinite range potentials, some of the SPS eig
valueskn converge within a specified accuracy with the i
crease of both the number of basis functionsN and the cutoff
radiusa; the others never do. The converging SPSs co
spond to bound, weakly antibound, and narrow compl
energy resonance states of the system. In the situations w
s.
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independent calculations of SS eigenvalues for the same
tential are available, we confirmed that these SPSs conv
to SSs.

Table I demonstrates a remarkable accuracy of the pre
method for calculating true scattering resonances. The si
tion with the higher SSs, which do not reveal themselves
distinct resonances, is quite different. The second SS
duces a cusplike structure in the distribution of t
N-converged SPS eigenvalues shown in Figs. 4~b! and 4~c!,

FIG. 4. Similar to Fig. 1, but for the potential~75! calculated
with the cutoff radiusa510. ~a! Solid line, the potential energy
dashed line, energy position of the resonance state.~b! Diamonds,
low-lying SPS eigenvalues in the complexk plane; pluses, the re
sults obtained from the SSCP asymptotic formula~71! shown for
n>4; squares, three lowest SS eigenvalues taken from Ref.@66#
and their mirror images.~c! Same as in~b!, but in the complexE
plane. All the SPS eigenvalues shown areN-converged within the
scale of the figure. The SPS representing the resonance state li
the top of the lowest SS.
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but there is no individual SPS that would converge to it aa
grows. The higher SSs produce even less of an effect on
SPS distribution. This agrees with the results of Refs.@44,45#
and illustrates the hypersensitivity of the higher SSs to
asymptotic behavior of the potential.

Next we discuss calculations of the scattering mat
Table II presents the results for the phase shiftd(k) at k
53, i.e., at the energyE54.5 just above the top of the po
tential barrier in Fig. 4~a!, calculated using Eqs.~59! and
~61!. For eacha, the presented results correspond to
minimum N for which Eq.~61! ensures convergence withi
all 12 quoted digits. One can see that the product form

TABLE I. Convergence of the SPS calculations of a resona
state for the potential~75! with respect to the increase of the p
rametersa and N. The resonance positionEres and width G are
defined bykn

2/25En5Eres2 iG/2, wherekn is the corresponding
SPS eigenvalue.

a N Eres 10G/2

15 30 3.42639131031 0.127743607748
40 3.42639141143 0.127744301272
50 3.42639141144 0.127744301272

20 40 3.42639031473 0.127744665524
50 3.42639031662 0.127744683508
60 3.42639031662 0.127744683507

25 40 3.42639652531 0.127868298913
50 3.42639031007 0.127744805012
60 3.42639031007 0.127744804629
70 3.42639031007 0.127744804628

30 50 3.42639023691 0.127746536919
60 3.42639031015 0.127744805925
70 3.42639031015 0.127744805930
80 3.42639031014 0.127744805934

35 60 3.42639031121 0.127744818959
70 3.42639031015 0.127744805930
80 3.42639031015 0.127744805933
90 3.42639031015 0.127744805932

Converged 3.42639031015~1! 0.12774480593~1!

Ref. @77# 3.42639031015 0.1277448059

TABLE II. Convergence of the SPS calculations of the pha
shift d(k) ~defined modulusp) produced by the potential~75! at
k53 using the sum~59! and the product~61! formulas. For eacha,
the presented results correspond to the minimumN for which Eq.
~61! converges within all 12 quoted digits. Due to the numeri
errors, convergence of Eq.~59! with respect toN at largera be-
comes worse and for the last three entries in the second colum
produces completely wrong numbers~not shown!.

(a,N) Eq. ~59! Eq. ~61!

~10,40! 2.98030728982 2.98030728987
~20,55! 2.961 2.96617426069
~30,70! 2.96617194275
~40,85! 2.96617194254
~50,100! 2.96617194254

Converged 2.96617194254~1!
he

e

.

e

la

~61! converges very fast with respect to bothN anda. How-
ever, the results obtained from the sum formula~59!, being
in fair agreement with that from Eq.~61! for small a, dem-
onstrate no convergence with the increase ofN for largera.
This is due to the numerical errors, which for the pres
case play a much more violent role. Thus we arrive at
following practically important observation.

~v! Although the sum~59! and the product~61! formulas
are algebraically equivalent, they are quite different in imp
mentation and the latter, in addition to being explicitly un
tary, is also numerically more stable.

Figure 5 shows the function sin2 d(k) calculated using Eq.
~61! with N5100 for different values ofa. For thisN, the
breakdown similar to that shown by broken lines in Fig.
happens just abovek510. The results fora520 are fully
converged within the scale of the figure. The resonance
cussed above can be clearly seen atk'2.6. This figure illus-
trates the following rather evident feature.

~vi! For infinite range potentials, the finiteness of the c
off radius affects the low-energy behavior of the scatter
matrix. The larger the cutoff radiusa, the lower in energy
the SPS expansions forS(k) work well.

Thus the parametersa andN restrict the energy range tha
can be treated by the present method from below and ab
respectively. The convergence of the phase shift dem
strated in Table II was achieved in the easy-to-do case
intermediate energies, which explains the incredibly high
curacy of the result. Table III shows how the method wor
in a wider energy range. Requesting a moderate six-d
accuracy within the interval ofk from 0.1 to 10, i.e.,E from
0.005 to 50, which is more than 10 times higher than the
of the potential barrier in Fig. 4~a!, we achieved convergenc
with the minimum parameters (a,N)5(30,170).

C. An exponential potential: Bound and antibound states

An exponential potential of the form

V~r !5V0 exp~2ar ! ~76!

e

e

l

it

FIG. 5. Function characterizing the phase shiftd(k) produced
by the potential~75!. Different curves were calculated using E
~61! with N5100 for different values ofa. All the curves are con-
verged with respect toN. The solid curve (a520) is also converged
within the scale of the figure with respect toa.
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allows an exact analytical solution in terms of Bessel fu
tions; see, e.g.,@65#. It is of interest in the present context fo
discussing calculations of bound and antibound states.

There are infinitely many SSs corresponding to antibou
states for the potential~76!. The positions of the lowest o
them fora52 andV0 varying from215 to28 are given in
the second column of Table IV. The third column prese
calculated results for the corresponding SPS eigenvalue.
V05215, this eigenvalue lies rather close to the origin
thek plane and it rapidly converges whena andN increase.
Convergence of all nine significant digits of the first entry
the third column of Table IV was achieved with the min
mum parameters (a,N)5(15,40). When the strengthuV0u of
the potential decreases, this eigenvalue moves downw
along the negative imaginary semiaxis and the converge
with respect to the increase ofa becomes worse. All the
further results given in the third column of Table IV we
obtained with the samea andN and we failed to improve on
them by increasing these parameters.

TABLE III. Scattering cross sections(k) calculated for the po-
tential ~75! using the product formula~61! with the minimum pa-
rameters (a,N)5(30,170), which ensure the requested conv
gence of all six quoted digits.a@b# meansa310b.

k s(k) k s(k)

0.1 0.711493@3# 5.5 0.296230@21#

0.5 0.202880@2# 6.0 0.901534@21#

1.0 0.609153 6.5 0.138188
1.5 0.424456@1# 7.0 0.165388
2.0 0.631273@21# 7.5 0.175290
2.5 0.710250 8.0 0.173537
3.0 0.425275@21# 8.5 0.164887
3.5 0.928955 9.0 0.152685
4.0 0.583750 9.5 0.139081
4.5 0.129709 10.0 0.125363
5.0 0.157323@22#

TABLE IV. Calculations of the lowest bound (kb) and anti-
bound (ka) SPS eigenvalues for the attractive exponential poten
~76! for a52 and different values ofV0 . The second column lists
the analytical results forka . The third column lists the SPS resul
for ka calculated with (a,N)5(15,40) shown up to the first digi
where the difference arises. When it goes deeper in the lower
plane, convergence of this SPS eigenvalue with respect to the
crease ofa becomes worse. The fourth column lists the SPS res
for kb , which coincide within all quoted digits with the analytica
ones.

2V0 ika ~exact! ika ~SPS! 2 ikb

15 0.027345771893 0.02734577187 2.270815817
14 0.144869197957 0.14486919801 2.123195884
13 0.264888780251 0.264888782 1.9711688937
12 0.387573026885 0.38757305 1.8142821836
11 0.513105796277 0.513107 1.6519974658
10 0.641685750859 0.64172 1.4836658693
9 0.773523383889 0.7742 1.3084926560
8 0.908832940693 0.93 1.1254857977
-

d

s
or

rd
ce

However, we met no problems in achieving convergen
for bound states. There is one bound state for the poten
~76! in the interval ofV0 considered above. We could easi
get its eigenvalue converged within 12 digits, as given in
last column of Table IV, in full agreement with the analytic
results. Moreover, the lack of convergence of the antibou
SPS to the corresponding SS does not cause any problem
calculations of the phase shift using the product form
~61!: The convergence is similar to that demonstrated in
last column of Table II, although we do not report the
results here. We have also checked the case of a repu
potential~76! with the parametersV050.5 anda522/3 and
could easily reproduce the analytical results reported in@65#
within all eight quoted digits. These results add evidence
observation~iv! above.

D. Potential with a Coulomb singularity at the origin

In order to demonstrate the computational power of
method, following Ref.@80#, we consider the potential

V~r !52
50

r
exp~24r !1

l

r
exp~2r !, ~77!

which has a Coulomb singularity at the origin. Cˇ ı́žek and
Horáček @80# discussed the behavior of a pair of SS eige
values; let us call themk1 andk2, with the variation of the
parameterl. For l57.5, these eigenvalues correspond to
bound and an antibound state. In this case, Ref.@80# provides
us with the estimate2 ik150.2118 andik250.2251. Our
best results obtained with the minimum parameters (a,N)
5(20,100) are 2 ik150.211 769 667(1) and ik2
50.225 082(1). Note that convergence for the antiboun
state (k2) is worse than for the bound one (k1). When l
increases, these eigenvalues approach each other, coa
and then leave the imaginary axis. Forl58, their positions
are estimated byk1,2561.20592 i0.056 @80#. Our calcula-
tion with (a,N)5(30,140) yields k1,25
61.205 942 2450(1)2 i0.056 805 0385(1). Thus, in all
the cases our results agree with those of Ref.@80#, but the
present method provides a much higher accuracy.

E. Pure centrifugal potential

As the last example we consider a pure centrifugal pot
tial

V~r !5
l ~ l 11!

2r 2
. ~78!

This has the purpose of testing the applicability of t
method in the case of a nonzero angular momentum.

For lÞ0, there is a phase difference in the conventio
definition of the scattering matrix as compared to that giv
by Eq.~54c!. However, if one still definesS(k) by Eq.~54c!,
then for the casel 51 the phase shiftd(k) would be equal to
p/2, independently ofk. The results calculated by Eq.~61!
for different values ofa andN are shown in Fig. 6. At smal
k, the deviation from the correct value is due to the finiten
of a and at largek a breakdown similar to that shown in Fig
3 happens due to the finiteness ofN. However, the overall
agreement now is much worse than in the previous ca
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l

lf
in-
ts



ut
n
h

th
e
a
e

iz
tio

en
d

ic

ai

un

or

te
it
of

ted
ust

ted
in

rifu-

ide
s a
et

en-
ider
y
s

as-
uld
e,

he

ve
e
s,

ri-
PS
. In
ven
lso

o
to

the

-
-

PRA 58 2091SIEGERT PSEUDOSTATE FORMULATION OF . . .
With the increase ofa the results do become better, b
much slower. Thus, the nonzero angular momenta remai
open problem for the present method; a possibile approac
this problem is discussed in the next section.

VII. POSSIBLE GENERALIZATIONS
AND OPEN PROBLEMS

In this section we point out possible generalizations of
SPS formulation and mention some open problems. Som
these generalizations seem to be rather straightforward
could be worked out without essential difficulties. At th
same time, the most interesting for applications general
tion to a multichannel case meets a problem whose solu
is beyond us at the moment.

There are two directions where physically interesting g
eralizations could be sought. The first one consists in mo
fication of the boundary condition~1c8! as

S d

dr
2 f ~a,k! Df~r !U

r 5a

50. ~1c9!

The functionf (a,k) here has the meaning of the logarithm
derivative of the outgoing wave soultion to Eq.~1a! at r
5a. It is introduced to account for the effect due to the t
of the potential that extends beyondr 5a. For all potentials
decreasing faster than the Coulomb one, the following f
damental property holds:

f ~a,k!ua→`5 ik. ~79!

This relation shows that the SPS formulation exactly inc
porates the leading term off (a,k) at a→` for all physically
interesting potentials but the Coulomb one. For such po
tials, the modification~1c9! is not essential since at most
can accelerate convergence with respect to the increasea.
However, for potentials with a Coulomb asymptote

V~r !ur→`5a/r ~80!

FIG. 6. Phase shiftd(k) produced by the pure centrifugal po
tential ~78! for l 51 calculated with different values of the param
etersa andN. The exact value for the present definition ofd(k) is
p/2, independently ofk.
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the tail does produce a significant physical effect represen
by the Coulomb logarithmic phase. In this case, one m
take into account the next term in Eq.~79!:

f ~a,k!ua→`5 ik2
ia

ka
. ~81!

It is easy to see that Eqs.~1a!, ~1b!, ~1c9!, ~2!, and~81! cast
in an algebraic form similar to Eq.~9! result in acubic ei-
genvalue problem with respect tok. This problem also can
be linearized by means of tripling its dimension and trea
along the lines of this paper, although all the derivations
this case must be repeated. For the potentials with a cent
gal tail ~78! we have

f ~a,k!ua→`5 ikS 11
l ~ l 11!

2i ~ka!2
1••• D . ~82!

Taking into account the second term on the right-hand s
also leads to a qubic eigenvalue problem, which provide
possibility to remedy the problem of slow convergence m
in Sec. VI E.

The other direction of generalization is to seek an ext
sion of the SPS formulation to a multichannel case. Cons
a matrix potentialVi j (r ) whose elements sufficiently rapidl
approach constant values whenr increases. The eigenvalue
E1,E2,¯,EM of this matrix atr→` for the M -channel
problem define the asymptotic threshold energies. We
sume them all to be different; a possible degeneracy wo
only simplify the situation. It can be shown that in this cas
instead of Eq.~16! SPSs are defined by an equation of t
form

~A1AE2E1B11AE2E2B21¯1AE2EMBM1EI !c50,

~83!

whereA again represents the Hermitized Hamiltonian andBi
is proportional to the Bloch operator for the outgoing wa
solutions in the channeli . This equation is an eigenvalu
problem defining the energyE. Because of the square root
it is essentially nonlinear with respect toE. If there exists
such a uniformization mappingE(u) that reduces Eq.~83! to
a polynomial eigenvalue problem in terms of the new va
ableu, via subsequent linearization of this problem the S
formulation could be extended to the multichannel case
the one-channel case, the uniformization mapping is gi
by Eq. ~2!. In the two-channel case, such mapping is a
known and is defined by the equations~see Sec. 17.1 in@12#!

AE2E15D
11u2

12u2
, AE2E25D

2u

12u2
, ~84!

where

D5AE22E1. ~85!

It is easy to see that upon substitution of Eqs.~84! into Eq.
~83!, the latter reduces to aquartic eigenvalue problem with
respect tou. It would be very interesting and instructive t
investigate this problem along the lines of this paper and
establish the structure of the scattering matrix in terms of
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SPS eigenvaluesun , similar to that given by Eq.~61!. We
leave this program for future studies. Note that there
some results to this point available in the literature@82,83#,
although they have never been scrutinized numerically.

For more than two channels, the uniformization mapp
E(u) is not known to us. Moreover, even if it exists, there
a circumstance that may require the introduction of an es
tially different element in the formulation. Namely, the Ri
mann surface spanned by the uniformization variableu in
this case is known to have a nonzero genus, i.e., it canno
topologically mapped onto an ordinary complex pla
@84,12#. For example, for the three-channel problem this s
face is topologically equivalent to a torus. In one- and tw
channel cases the uniformization mapping, whose purpos
to make the scattering matrix a single-valued function,
multaneously reduces Eq.~83! to a polynomial form.
Whether such polynomial form of the problem is possible
achieve for more than two channels remains an open q
tion.

Although the multichannel case is forbidden at the m
ment, the present formulation should work for multidime
sional but exactly separable problems. An interesting
ample of such a situation is given by the two-cen
Coulomb problem. In this case, instead of the radial equa
~1a! one should deal with a quasiradial equation in sphe
dal coordinates, which has quite a different mathemat
nature. A Sturmian basis for this problem has been discus
recently @85#. We also mention an interesting possibility
apply the machinary of the polynomial eigenvalue proble
@41# to calculations of Regge states@86#.

Finally, the following comment concerning our previou
paper@5# is in order here. In@5# we calculated positions an
widths for several resonances ineep, dtm, andddm three-
body Coulomb systems lying below then52 threshold. The
discussion above may raise a question regarding the co
tency of the calculations reported in@5#. The answer is given
as follows: The present formulation is completely eligible
be used even in multichannel problems in the situati
where there is only one open channel. This is the case fo
n52 resonances in the symmetric three-body Coulomb s
tems such aseepandddm. In the case ofdtm, by virtue of
the weakness of the coupling with thet1dm(n51) decay
channel, the results reported in@5# are numerically correct, a
is confirmed by the good agreement with the results of R
@87#, of which we became aware recently.

VIII. SUMMARY AND DISCUSSION

To summarize this work, its principal achievment consi
in finding a way to implement the power of Siegert states
a universal tool for treating the whole spectrum of collisi
phenomena. This became possible via doubling the dim
sion of the original Hilbert space and introducing Sieg
pseudostates that actually make our method practical. A
derivation of the basic results of the theory of Siegert sta
in terms of SPSs has led us to a new formulation of
scattering theory for the simplest generic scattering prob
considered here. The main results of this formulation
presented by the SPS expansions for the outgoing w
Green’s function ~52!, continuous-energy wave functio
~57!, and the scattering matrix~59! and~61!. These represen
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tations are easy to implement and their computational e
ciency was demonstrated by a number of numerical
amples.

Before closing the paper, it is worthwhile to compare t
SPS formulation with other computational approaches
scattering theory. The universality of the present meth
should be viewed from the perspective of the diversity of
existing methods for a separate treatment of bound sta
resonances, and continuum spectrum. Perhaps our me
has no advantages over variational calculations of bo
states, but it does provide the best accuracy in calcula
complex-energy resonances, as was demonstrated above
sides the high accuracy, there are also certain concep
advantages; thus, in contrast to the complex rotation meth
the present method does not require analytical continua
of the potential energyV(r ) into the complexr plane and in
contrast to the stabilization method and scattering calc
tions, it yields the resonance position and width direct
without any fitting procedure. Among the methods for tre
ing continuum, the SPS formulation should be compa
with the R-matrix method. The two approaches have ma
features in common. In each of them, the heavy part of
calculations should be done only once and consists in dia
nalization of a ‘‘big’’ matrix and constructing a set o
energy-independent information that then can be used
high-resolution scattering calculations in a wide ener
range, whose size grows with the dimension of the mat
The difference lies in the basis states and can be chara
ized briefly by saying that the SPS basis incorporates m
physics and better portrays the individuality of the syste
while theR-matrix basis is more on the side of a mere co
putational tool. Thus the existence of scattering resonan
within the SPS formulation can be seen already from the S
eigenvalues, without doing the scattering calculations. T
may present an important technical merit in the case of v
narrow resonances, which are difficult to locate by scann
the energy range. Another technical merit is that due to
complexity of the SPS eigenvalues, the well-known probl
of singularities of theR-matrix method@88# does not arise.
The SPS formulation also has advantages as a metho
discretization of the continuum. SPSs could be used a
basis for expanding the target states in time-dependent cl
coupling calculations, which would lead to a consistent w
of treating the ionization and enable one to distinguish
tween excitation of a resonance state and the underlying
tinuum scattering. Another advantage stems from the
that the SPS expansion for the outgoing wave Green’s fu
tion ~52! has a very simple dependence on the energy, wh
opens a way to study the time-evolution problems@89#. Fi-
nally, we wish to emphasize the product formula~61! which
has no analog in other methods of scattering calculatio
The price for all this is doubling the dimension of the matr
to be diagonalized.

In conclusion, there are still many problems and some
them may turn out to be difficult to solve, but we believe th
the approach initiated in@5# and more fully developed in the
present paper is worth pursuing, and that the SPS form
tion will find applications in the theory of atomic and mo
lecular collisions.
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APPENDIX A: SOME PROPERTIES
OF THE PROJECTOR-TYPE MATRICES

Let P5uvT, whereP is anN3N matrix andu andv are
some N-dimensional column vectors. We call suchP a
projector-type matrix. First, we note that

P25tr~P!P, ~A1!

which is obvious. Second, we prove the identity

det~ I1P!511tr~P!. ~A2!

Indeed, let us introduce a new orthonormal basis such
the first two basis vectorse1 and e2 lie in the plane of the
vectorsu andv and all othersei , i 53, . . . ,N are perpen-
dicular to that plane. Lete1 be directed alongu, with e2 thus
being perpendicular tou. In the new basis the matrixP has
only two nonzero elementse1

TPe15tr(P) ande1
TPe2 , while

the unit matrixI , of course, remains unchanged. Now it c
be easily seen that in the new basis Eq.~A2! holds. Hence it
holds in any basis since both determinant of a matrix and
trace are invariant under a change of basis.

APPENDIX B: DERIVATION OF EQ. „71…

Here we give some details needed for the derivation
Eq. ~71!. Assuming the expansion~71a!, we have

s~a!5kna2
a

pnE0

a

V~r !dr1OS ln n

n2 D , ~B1!

ln
kn1p~a!

kn2p~a!
52ln n1 ln

2p2

a2V~a!
2

2i

p

ln n

n
1

2a0

pn

1
1

p2 S ln n

n D 2

1OS ln n

n2 D , ~B2!

and from Eq.~68!

u~a!5
a3V8~a!e2ia0

8p3n
1OS ln n

n2 D . ~B3!

Substituting these expansions into Eq.~70!, we confirm the
assumed form of Eq.~71a! and obtain the coefficients~71b!–
~71e!.

APPENDIX C: NUMERICAL PROCEDURE

Here we describe the numerical procedure used for ca
lating SPSs in this paper as well as for treating the radial
of the three-body Coulomb problems in@5#. For practical
reasons, it is more convenient to consider a somewhat m
n.

-

at

ts

f

u-
rt

di-

fied form of Eqs.~1a!, ~1b!, and~1c8!. To avoid introducing
new notation for only slightly modified quantities, suc
quantities will be denoted by the same symbols as th
counterparts in the main text, although they are not alw
identical. A link with the notation above will be establishe
by specification of the matricesA andB in Eq. ~16!.

The SPSs were calculated by solving the equations

FH2
1

2
k2r~r !Gf~r !50, ~C1a!

f~r !ur→0}r l , ~C1b!

S d

dr
2

b

r
2 ik Df~r !U

r 5a

50. ~C1c!

Herel is the angular momentum,b521 for the present case
of three-dimensional spherical wave, and the HamiltonianH
is defined by

H5K1U~r !, ~C2!

K52
1

2

d

dr
r~r !

d

dr
, r~r !5r 2, ~C3!

U~r !5
1

2
l ~ l 11!1r~r !V~r !, ~C4!

where V(r ) is the potential energy and it is assumed th
r(a)V(a)50.

For the numerical treatment, instead ofr we introduce a
new variablex,

r 5
a

2
~11x!. ~C5!

Then the intervalr P@0,a# maps ontoxP@21,1#. As a basis
in L2@21,1# one can employ the set of functions

wn~x!5Aw~x!

hn21
Pn21

~a,b!~x!, n51, . . . ,N, ~C6!

where Pn
(a,b)(x) are the Jacobi polynomials orthogonal o

the intervalxP@21,1# with the weight

w~x!5~12x!a~11x!b ~C7!

and hn are corresponding normalization constants@90#. In
order to satisfy the boundary conditions~C1b! and~C1c! we
choosea50 andb52l . The basis~C6! is orthonormal and
becomes complete inL2@21,1# when N→`. However, in
practical calculations one can operate with only a finite nu
ber N of the basis functions. Such truncation of the basis
known as a finite basis representation~FBR!. Given the
value ofN, for a number of practical reasons it is convenie
to switch from the FBR to a discrete variable representat
~DVR! @91#. The polynomialsPn

(a,b)(x) define an associate
N-point Gauss-Jacobi quadrature

E
21

1

F~x!w~x!dx'(
i 51

N

v iF~xi !, ~C8!
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whereF(x) is an arbitrary function such that the integral o
the left-hand side of Eq.~C8! exists andxi and wi are
quadrature abscissas and weights, respectively. Note tha
mula ~C8! gives an exact result forF(x) polynomial of de-
gree 2N21 or less. The quadrature~C8! and the related
Christoffel-Darboux identity provide a foundation for th
FBR-DVR transformation@92#:

wn~x!5(
i 51

N

Tnip i~x!, p i~x!5 (
n51

N

Tniwn~x!, ~C9!

where

Tni5~T21! in5k iwn~xi ! ~C10!

and

k i5A v i

w~xi !
. ~C11!

The DVR basis functions

p i~x!, n51, . . . ,N, ~C12!

also form an orthonormal set on the interval@21,1# and
have the property

p i~xj !5k i
21d i j , ~C13!

which reveals them as apointwise basis conjugate to the
polynomialwisebasis~C6!.

We expand the solutions of Eq.~C1! in terms of the DVR
basis

f~x!5(
j 51

N

cjp j~x!, 21<x<1. ~C14!

Substituting this into Eq.~C1a!, premultiplying by p i(x),
integrating overxP@21,1#, and using the boundary cond
tions ~C1b! and~C1c!, we arrive at the algebraic eigenvalu
problem

F H̃2~b1 ika!L2
1

2
k2rGc50, ~C15!

where c is the vector of coefficients in Eq.~C14! and the
boldface characters denote matrices defined with respe
the DVR basis:

H̃ i j 5K̃ i j 1U~r i !d i j , ~C16!

K̃ i j 5
1

2E21

1 dp i~x!

dx
~11x!2

dp j~x!

dx
dx, ~C17!

Li j 5p i~1!p j~1!, ~C18!

r i j 5
a2

4 E
21

1

p i~x!~11x!2p j~x!dx. ~C19!

All these matrices are real and symmetric. The tilde oveH̃
and K̃ indicates that they represent Hermitized versions
the operatorsH and K, respectively. Matrix elements o
or-

to

f

U(r ) in Eq. ~C16!, wherer i is related toxi by Eq.~C5!, were
calculatedapproximately, using the quadrature~C8!. How-
ever, the result is exact for the centrifugal part ofU(r ) @the
first term in Eq.~C4!# and for the Coulomb singularity o
V(r ), if any. The exactness of the potential matrix in E
~C16! for purely CoulombV(r ) reveals a computational ad
vantage of Eq.~C1a! over Eq.~1a!. We refrain from using
the quadrature for calculating the matrixr since this may
lead to an unnecessary slowing down of the converge
with respect to the increase ofN. Without derivation we give
formulas used for calculating the matricesK̃ andr (a50 is
assumed here as above!. For K̃ we have

K̃ i j 5 (
n,m51

N

TniK̃nm
~w!Tm j , ~C20!

where

K̃nm
~w!5wn~1!wm~1!F2(

k51

n21

wk
2~1!1wn

2~1!2
1

2G ,

~C21a!

for n,m,

K̃nn
~w!52wn

2~1! (
k51

n21

wk
2~1!1

1

2S wn
2~1!2

1

2D 2

, ~C21b!

and K̃nm
(w)5K̃mn

(w) . The matrixr is given by

r i j 5
a2

4
@~11xi !

2d i j 1D~N!TNiTN j#, ~C22!

where the first term coincides with what would be obtain
using the quadrature~C8!, and

D~N!5
4N2~N1b!2

~2N1b!2@~2N1b!221#
. ~C23!

The polynomialsPn
(a,b)(x), quadrature abscissasxi , and

weightsv i were calculated using the algorithms of Ref.@93#.
After the differential eigenvalue problem~C1! is cast into

an algebraic form~C15!, there are two ways to transform
further to the required form of Eq.~16!. One can premultiply
Eq. ~C15! by 2r21 and obtain for the vectorc an equation of
the type~16! wherel5 ik and

A52r21~H̃2bL !, ~C24a!

B522ar21L . ~C24b!

However, these matrices are not symmetric, in contradic
to what has been assumed in writing Eqs.~25! and ~31!.
Another approach is to introduce a new vector of coefficie

s5r1/2c. ~C25!

Then premultiplying Eq.~C15! by 2r21/2 for the vectors we
again obtain Eq.~16!, now with symmetric matrices
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A52r21/2~H̃2bL !r21/2, ~C26a!

B522ar21/2Lr21/2. ~C26b!

In our calculations we solved Eq.~20! using a general eigen
value problem solver. In this case, it is simpler to use E
~C24!. If in doing this linear algebra part of the calculation
one is going to utilize some advantages of the symme
form Eq. ~23!, then Eqs.~C26! must be used.

Finally, we note the relation
s.

D
l
by
, a

-

s

,

s.

ic

S B I

I 0D 5S 2D2 iD21 iD

iD D D 2

, ~C27!

where

D5~2i I2B!22. ~C28!

This permits one to reduce the generalized algebraic eig
value problem Eq.~23! to an ordinary one with a symmetri
but explicitly complex matrix.
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