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Franck-Condon principle and the hadronic and muonic Auger effect
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Auger rates are calculated for some unrealistically low-lying states of antiprotonic helium. Two methods are
used. One method, which makes use of hydrogenic functions and the golden rule, should give accurate rates.
The other method treats the Auger process as inelastic scattering in one dimension. It makes use of a two-state
approximation and the modern Born-Oppenheimer approximation, and it relates the transition rate to a ratio of
probability currents for radial motion on two coupled one-dimensional adiabatic potential surfaces with an
avoided crossing. In most instances this method leads to good agreement with the golden rule if only one
traversal of the crossing is taken into account, and it demonstrates that the transition can be thought of as

occurring at a rather well-defined radial separation between thep̄ and the nucleus, in accord with the Franck-
Condon principle. It is found that taking into account many traversals of the crossing would lead to fairly good
agreement with the golden rule if the phases of the separate contributions to the transition amplitude from these
traversals are effectively random. It is argued that radial and~perhaps! angular motion would ultimately
produce the requisite phases if the finite width of the initial state were to be taken into account. The calcula-
tions for antiprotonic helium are then used as the basis for a conjecture that a phase difference associated with
the angular motion of a stoppingm2, p2, or K2 might largely account for the very striking, shell-dependent
regularities that have been observed in x-ray yields from exotic atoms formed in heavier elements.
@S1050-2947~98!02307-5#
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I. INTRODUCTION

This paper is motivated in part by the belief that t
Franck-Condon principle~FCP!, which was first enunciated
to account for variations in the intensity of molecular ba
spectra@1,2#, must also govern Auger transitions in high
excited states of exotic atoms. In either instance there
sudden, drastic rearrangement of an otherwise almost a
batically varying electronic structure. The basic idea of F
is that the drastic change in the motion of the rapidly mov
electrons occurs so quickly that the much more slowly m
ing massive particles—whose motion is in most instan
nearly classical~in the sense that their positions and m
menta can be thought of as being simultaneously rather
defined!—experience very little impulse. As a result, a tra
sition tends not to proceed unless the massive particles
momentarily situated so that their momenta are nearly
same in both the initial and final states.

The FCP is ordinarily thought of only with regard to r
dial motion; and most of the discussion in the present pa
is with regard to radial motion. We shall, however, raise
question as to the possible relevance of angular separa
between points on a two-dimensional classical traject
where a transition can be thought of as occurring, espec
a transition that occurs during exotic atom formation~EAF!.
Although most of the calculations in the present paper
quantum-mechanical and are for radial motion alone,
shall in some instances speak in terms of classical traje
ries in two dimensions, and we shall assume that it would
meaningful to associate quantum-mechanical phases
such trajectories, as has been done for some chemical
tions @3#, though usually in just one dimension. Specifical
we shall conjecture that a phase difference due to diffe
angular momenta on segments of different, almost class
581050-2947/98/58~1!/204~26!/$15.00
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paths leading to the same final state might account for
very striking, shell-dependent regularities in x-ray yiel
from muonic, pionic, and kaonic atoms that became the
cus of much attention many years ago after Wiegand
Godfrey conducted a systematic study of negative ka
stopping in pure elements@4–6#.

It was found in Refs.@4–6# that the angular momentumL
of the captured particle is correlated with the position of t
capturing atom in the Periodic Table, with a relatively highL
being more likely near closed shells. Later studies, mostly
muons stopping in chemical compounds, revealed ano
~apparently related! shell effect, this one involving the tota
capture cross section, which was found to be relatively sm
near closed shells@7–9#. We note that these effects are co
sistent with there being some mechanism~s! causing capture
of particles with relatively lowL to be suppressed nea
closed shells. We further note that this would be consist
with there being some sort ofL-dependent interference tha
also depends on shell structure.

EAF is not well understood theoretically, especially wi
regard to the distribution of energy and angular moment
of the newly captured hadron or muon. This has occasion
been noted in the literature@10,11#. The number of theoreti-
cal papers on EAF is vast, stretching back over half a cen
@12#. Even within the past few years there have been m
investigations@13–15#. A variety of approaches have bee
employed, many of them making use, in one way or anoth
of the assumption that the stopping particle behaves in s
respects like a classical particle. Also, it has long been r
ognized that the response of the electrons in the captu
atom to the stopping particle is in some respects almost a
batic. However, the possibility that in some instances a
cisive role might be played by interference between two d
ferent contributions to the transition amplitude—ea
204 © 1998 The American Physical Society
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PRA 58 205FRANCK-CONDON PRINCIPLE AND THE HADRONIC . . .
associated with a fairly well-defined position of the stoppi
particle, in accord with the FCP—seems not to have b
considered in any previous study. The present paper see
establish that this possibility is entirely consistent with
elementary example of the hadronic Auger effect.

For simplicity, we restrict our attention to hypothetic
instances for which the calculation of Auger rates becom
relatively easy, but our primary purpose is to uncover f
tures of Auger transitions that might be important in EA
We present no calculations for muonic, pionic, or kao
atoms. Instead, we restrict our attention to antiprotonic

lium ( p̄He1), which consists only of a helium nucleus, ap̄
with large principal quantum numberN, and an electron in
its ground state. Moreover, even for this atom we make so
simplifications. We assume the mass of the helium nucl
to be infinite, which frees us from having to include a Frie

Martin correction@16#. Although our calculations ofp̄ radial
motion are in most instances quantum mechanical, we
quire N to be large enough so that the~unperturbed! radial
motion is almost classical, except for circular and nearly c
cular orbitals. We also require the energy difference betw
adjacent principal levels to be large enough to permit Au
ejection. Specifically, we consider only instances in wh
N510 or 15. Thep̄ mean orbital radius is then at least 1
times smaller than that of the electron, which greatly simp
fies the computation of wave functions.~These examples ar
indeed hypothetical becausep̄He1 with N<15 does not ex-
ist: the p̄ is initially captured into an atomic orbital with
much higherN and, sooner or later, is annihilated before
can reachN515 @17#.!

Accurate Auger rates for these simple hypothetical
amples are easily computed with the golden rule, and
shall use these rates as a basis for comparison. In our go
rule calculations the wave functions for the unperturb
states are assumed to be hydrogenic, and the perturbin
teraction is assumed to be the dipole electrostatic interac
between the electron and thep̄. Though we present no sys
tematic description of these calculations, which are simila
ones performed many years ago for muonic atoms by B
bidge and de Borde@18#, we will note from time to time the
similarity of some of their features to those of the calcu
tions that are the subject of most of the present paper.

In this paper we devise another way of computing Aug
rates in order to argue that a transition can usefully
thought of as occurring at a fairly well-defined radial sep
ration between thep̄ and the nucleus, in accord with th
FCP.~A preliminary report of these calculations has alrea
appeared@19#.! Our estimates of Auger rates are made us
probability currents forp̄ motion on two coupled one
dimensional adiabatic potential surfaces with an avoid
crossing. We are able to use probability currents because
motion on the adiabatic surfaces is almost classical in so
instances. In effect, we treat an Auger transition between
almost stationary bound states as a Landau-Ze
Stückelberg~LZS! process, which is ordinarily thought of a
a special type of inelastic scattering. We shall regard
probability current for the final state as being proportiona
the absolute square of a time-dependent transition amplit
with the time in each instance being the total time requi
n
to
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for the p̄, treated as a classical particle, to complete an in
gral number of half-cycles of motion in the initial state. Fu
thermore, theangular action that would be associated wit
the nearly classical motion on the adiabatic surfaces is u
in some instances to estimate quantum-mechanical ph
and phase differences that might be present if the tim
dependent transition amplitude were to be expressed
sum of terms, each associated with a different, more or
classical, path leading to the same final state@3,20,21#.

Our probability currents are computed using Bor
Oppenheimer~BO! wave functions, but within the frame
work of the modern BO approximation@22,23#. There are
two reasons why we use BO functions. One reason is
their use is conceptually convenient: in principle, the fin
electron wave function can be related to the time-depend
transition amplitude, and the relative phases of the contri
tions to this wave function from separate encounters of thp̄
with the avoided crossing can be specified approximately
terms of integrals of a diagonal element of the vector pot
tial that characterizes the modern BO approximation. T
second reason is to call attention to some of the difficulti
and also to some of the advantages, of using BO functi
and the modern BO approximation to calculate Auger ra
for the much more highly excited states ofp̄He1 that have
actually been observed@17#.

The electronic BO wave functions used in this paper
not exact. Though it is possible to determine the adiab
cally varying electronic BO function forp̄He1 precisely for
the initial state@24,25#, the calculation would be lengthy, an
for this reason we use first-order perturbation theory. T
final electron wave function is approximated with a Coulom
wave. Our electronic functions are believed to be accur
enough for the low-lying transitions considered here.

Our calculations are carried only to lowest nonvanish
order in thep̄-nucleus separation. We use atomic units.

Outline of paper

Section II is devoted to a calculation of wave function
The initial and final states of thep̄, together with the vector
potential necessary to specify the nonadiabatic coupling
tween them, are discussed in Sec. II A. Our approxim
electronic functions are presented in Sec. II B. These fu
tions are then used in Sec. II C to estimate off-diagonal e
ments of the vector potential. Section II D is devoted to th
equivalent sets of coupled differential equations, each
scribing the radial motion of thep̄, but in different ways. The
first of these, which is a set of equations obtained direc
from the modern BO approximation, contains first deriv
tives in its coupling terms. The second set is obtained fr
the first by a unitary transformation that achieves a diab
representation in which the coupling terms contain no fi
derivative, thereby ensuring that the sum of probability c
rents remains precisely constant. The third set is obtai
from the second by another unitary transformation that
sults in equations for motion on adiabatic potential surfac
where the radial motion is almost classical in some instan

Section III is devoted to the calculation of Auger rates,
most instances with probability currents. As outlined in S
III A, our calculation of an Auger rate using currents begi



o

-
in
a

on
bl
li
e

ric
in

on
In
im
te
n
ia
o

n
om
in
e

b
D
n
b
u
te

e
t
n
e
o
i

er
m
an

o

tio
te

i
a

ed
r i
ti
ef

u
te
-

ol
in
b

u
n
d

r-
lly

a-
the
n

ed

a
-

ant
e

ect
e
on-
be
it is
are
led
era-

ith

ne
a

ed
s
lar
in
n-

ined

ter

the

206 PRA 58J. E. RUSSELL
with a truncated set of starting values of a regular solution

the radial wave equation forp̄ motion on the diabatic sur
faces, obtained at a very small radial separation by us
procedures described in Sec. II D. These starting values
chosen so that there is appreciable relative amplitude on
one of the two surfaces. It is combined with another suita
chosen, independent set of starting values to give a trave
wave initially moving outward, but only on the one surfac
The wave is determined at larger separations by nume
integration of coupled differential equations. As outlined
Sec. III B, approximations of several successive reflecti
of this wave are found by further numerical integration.
Sec. III C, some arguments are presented to justify a prel
nary expression for the Auger rate in terms of unreflec
outgoing currents on the diabatic surfaces. This expressio
then modified for use with unreflected currents on the ad
batic surfaces. A brief discussion of Auger rates in terms
time-dependent probabilities rather than probability curre
is also included, partly to emphasize some of the shortc
ings of our two-state model, and partly to note the seem
importance of the contributions to the actual time-depend
transition amplitude from separate half-cycles of~almost
classical! p̄ motion. Numerical estimates of Auger rates o
tained with probability currents are presented in Sec. III
These estimates are made using reflected as well as u
flected waves on the adiabatic surfaces, with further suita
modifications of the expression for the Auger rate. Our n
merical results, together with some considerations promp
by work of chemists@3,20,21#, lead us to conclude that th
actual time-dependent transition amplitude can be though
as a sum of many terms, all of them of nearly equal mag
tude, and each of them due to a radially rather well-defin
encounter of thep̄ with an avoided crossing between tw
adiabatic potential surfaces, in accord with the FCP. It
concluded in Sec. III E that effectively random phase diff
ences between the contributions from these encounters
exist if agreement with the golden rule is to be achieved,
it is argued that radial and~perhaps! angular motion of thep̄
would produce the required differences if the finite width
the initial state were to be taken into account.Also, it is
conjectured that phase differences due to angular mo
might be important in EAF, and that they could be estima
using classical mechanics.

The discussion in Sec. IV is devoted to two items. One
the possibility of using the modern BO approximation in
golden rule calculation of Auger rates for the highly excit
states ofp̄He1 that have actually been observed. The othe
our conjecture that phase differences due to angular mo
might account for the experimental results reported in R
@4–9#.

One other matter is worth mentioning here. Many of o
numerical results depend on a multiplicative factor deno
by f r . As explained in more detail in Sec. II D 4, our com
puter program was unable in most instances to obtain s
tions of the radial wave equations unless the perturbing
teraction responsible for Auger transitions was multiplied
f r!1.0. In most instances we setf r50.01. We believe this
procedure did not lead to any significant inaccuracy, beca
in almost all of our calculations the transition amplitudes a
the relevant differences in energy and phase were foun
f
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vary linearly with f r . The only exception is a phase diffe
ence shown in Figs. 13 and 14. This exception is carefu
discussed in Sec. III E 4.

II. WAVE FUNCTIONS

We work within the framework of a two-state approxim
tion, and we use some of the mathematical apparatus of
modern BO approximation. The initial and final electro
wave functions are denoted byc1(R,r ) andc2(R,r ), where
r is the position of the electron. Both functions are assum
to depend adiabatically on the positionR of the p̄, as in a
traditional BO calculation. The initial electron is bound in
slightly distorted 1s state. The final electron is in the con
tinuum with momentumk. In most applications of the BO
approximation, electronic energies depend in a signific
way on the spacing~s! between the massive particles, but w
can write them here simply as

~ initial electron energy!5e152 1
2 ,

~final electron energy!5e251 1
2 k2.

This is correct by definition in the latter instance and corr
to first order inR in the former. The final electron wav
function c2 is, of course, degenerate with respect to a n
denumerably infinite number of other states. This will
taken into account later in estimating transition rates, but
not taken into account in our BO calculations, as we
restricting ourselves to the consideration of just two coup
states. Some of the complexities associated with degen
cies in a modern BO calculation are ignored here@26#.

The initial and final states of thep̄ are denoted byC1(R)
andC2(R). They are assumed to be nearly hydrogenic w

~ initial principal quantum number!5N,

~final principal quantum number!5N2DN,

~ initial angular momentum andz component!5L,

~final angular momentum andz component!5L21.

If transitions are caused predominantly by theE1 interac-
tion, as should be the case if thep̄ is deep within the atom,
the initial and final angular momenta can differ by only o
unit. Golden rule calculations show that transitions with
decrease inp̄ angular momentum are much more favor
than those with an increase.~This can be understood in term
of the FCP@19#.! The reason for assuming that the angu
momentum and itsz component are equal to each other
both the initial and the final state is that the rate for a tra
sition between these two states is equal to the rate obta
by taking into account all possiblez components of the ini-
tial and final angular momenta, with a sum over the lat
and an average over the former.

A. Antiproton wave functions

In all of our calculations the final electron energye2 is
assumed to be such that the two BO states,C1(R)c1(R,r )
andC2(R)c2(R,r ), have equal energies, as computed in
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PRA 58 207FRANCK-CONDON PRINCIPLE AND THE HADRONIC . . .
traditional way without taking into account any coupling b
tween them. However, our computation ofC1 andC2 does
take into account coupling. We write the initial and finalp̄
wave functions in the form

C~R!5S C1~R!

C2~R!
D 5

1

RS u1~R!YL,L~R̂!

u2~R!YL21,L21~R̂!
D . ~1!

Later in this paper, in Sec. III, radial wave functions obtain
by a unitary transformation from the functionsu1 and u2
appearing in Eq.~1! are used to estimate Auger rates. T
computeu1 andu2, we employ the modern BO approxima
tion, and weattempt to regard the two-component colum
matrix C as an eigenfunction of the effective Hamiltonian

Heff5
1

2M
@P2A~R!#•@P2A~R!#1V~R!, ~2!

whereM is the mass of thep̄, andP, A, andV are

P52 i“S 1 0

0 1D ,

A~R!5S 0 A12~R!

A21~R! A22~R!
D , ~3!

V~R!5S 2
2

R
1e1 0

0 2
2

R
1e2

D .

The matrix A is the vector potential characteristic of th
modern BO approximation@22,23#. Its elements are define
by

Amn5Anm* 5 i E d3r cm* ~R,r !“Rcn~R,r !, ~4!

where“R is the gradient with respect toR. Its off-diagonal
elements are responsible for coupling between thep̄ states
C1 andC2. As discussed later, in Sec. II D 1, there are oth
states coupled toC1 andC2, but we shall ignore them. Th
diagonal elements ofV are the sums of the potential energ
of the p̄ in the field of the doubly charged nucleus and t
initial or final electron energy.Heff can be obtained using
standard methods if the final electron state is treated a
nondegenerate bound state. As usual, a small term invol
other electronic states has been neglected. We note thatHeff
is the Hamiltonian for a model that is not realistic. The act
initial state ofp̄He1 is not stationary. In our model it is on
of just two components of what will prove to be anapproxi-
mateeigenfunction ofHeff . We shall use this approximat
eigenfunction in Sec. III as a starting point to compute
outward-traveling wave, which is then used to estimat
transition rate.

The following equations are pertinent to the approxim
tions that will be made in Sec. II D 1, and they will also b
referred to in Sec. IV A.Heff can be written in the form
d

r

a
g

l

n
a

-

Heff5H01H8, ~5!

where

H05
1

2M
P•P1V~R!, ~6a!

H85
1

2M
@2P•A~R!2A~R!•P1A~R!•A~R!#. ~6b!

Except for the constant termse1 ande2 in V, the elements of
the diagonal matrixH0 are energy operators for a particle
massM moving in the Coulomb potential22/R. We shall
obtain coupled differential equations describing motion t
takes into account only~i! those eigenfunctions of the (1,1
element ofH0 that are proportional toYL,L , and ~ii ! those
eigenfunctions of the (2,2) element that are proportiona
YL21,L21, the coupling being due to the perturbationH8.
Furthermore, as outlined in Sec. II D 4, we shall require
radial functionsu1 and u2 appearing in regular wave func
tions of the form given in Eq.~1! to resemble hydrogenic
functions with principal quantum numbersN andN2DN.

The diagonal elementA11 vanishes becausec1 has con-
stant phase@27#. Though the diagonal elementA22 does not
vanish, we shall assume in our calculations that

A22~R!50. ~7!

This simplifies the calculations, and we believe it should n
significantly affect our estimates of transition rates with u
reflected waves. However, the calculation of rates using
flected or multiply reflected waves is an entirely differe
matter, and the possible relevance of~a suitably modified
form of! A22 to interference effects is discussed later, in S
III E 3. To compute the radial functionsu1 andu2 in the p̄
wave functionC, it is first necessary to obtain an explic
expression forA21 using suitable approximations toc1 and
c2.

B. Electron wave functions

We approximate the initial adiabatic electron wave fun
tion as

c1~R,r !5c1s~r !1cp~R,r !,

where

c1s~r !5R1s~r !/A4p, R1s~r !52e2r ,

cp~R,r !5Rp~R,r !A3/4p P1~R̂• r̂ !.

The term c1s is, of course, the normalized ground-sta
eigenfunction of the Hamiltonian,

He
~0!52

1

2
¹22

1

r
,

for an electron bound to an infinitely massive, singly charg
nucleus. We regardHe

(0) as taking into account not only th
interaction of the electron with the doubly charged nucle
but also~approximately! its E0 interaction with thep̄, the
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208 PRA 58J. E. RUSSELL
latter interaction being equated to 1/r even if r ,R. (He
(0)

and c1s are also the unperturbed Hamiltonian and init
wave function in our golden rule calculations.! The distortion
cp is assumed to be small and to vary linearly withR. There-
fore, c1 is normalized to first order inR. We estimateRp ,
the radial amplitude ofcp , with first-order perturbation
theory. We take into account~approximately! only the E1
interaction between the electron and thep̄, this interaction
being equated to

~4p/3!~R/r 2!(
m

Y1,m* ~R̂!Y1,m~ r̂ !

even if r ,R. ~This is also the perturbing interaction in ou
golden rule calculations.! It is convenient to write

Rp~R,r !5R p
~b!~R,r !1R p

~c!~R,r !,

whereR p
(b) is due to excited bound states ofHe

(0) andR p
(c) is

due to the continuum. A straightforward calculation sho
that

R p
~c!~R,r !5RE

0

`

dk B~k!
F1~kr !

kr
, ~8!

where

B~k!5
2k2

A3 p~e12e2!
E

0

`

dr R1s~r !
F1~kr !

kr
. ~9!

F1(kr) is the regular Coulomb wave function for ap-wave
electron with energye25 1

2 k2. Our approximate expressio
for c1 should be rather accurate for most values ofr . How-
ever, it is not accurate ifr &R because we have not used t
proper functional forms of theE0 andE1 interactions for
r ,R, and also because we have neglectedE2 and higher
multipole interactions.

We approximate the final electron wave functionc2 with
a suitable modification of the only important term in th
partial wave expansion of the function used in our gold
rule ~GR! calculations. That function was

cGR~k•r !54p(
l

i leis l
F l~kr !

kr (
m

Yl ,m* ~ k̂!Yl ,m~ r̂ !.

~10!

cGR is a Coulomb distorted plane wave, and thes l and Fl
are the usual Coulomb phase shifts and wave functions.cGR

is an eigenfunction ofHe
(0) with eigenvaluee25 1

2 k2. It has
unit density, and it satisfies the normalization condition

E d3k8E d3r cGR* ~k8•r ! cGR~k•r !5~2p!3.

Because onlyE1 transitions are important, and also becau
we only had to consider transitions between states in wh
the angular motion is described byYL,L or YL21,L21, the
only term in Eq.~10! that gave an appreciable contribution
our golden rule rates is
l

s

n

e
h

4p ieis1
F1~kr !

kr
Y1,1* ~ k̂!Y1,1~ r̂ !.

There is a one-to-one correspondence between this term
cGR, which means that the density of states, as a function
k, is the same for both. For these reasons we find it con
nient to approximatec2 as

c2~k,r !5A4p
F1~kr !

kr
Y1,1~ r̂ !. ~11!

As indicated explicitly in Eq.~11!, we regardc2 as beingk
dependent, but with a value that depends only on the ma
tude ofk, not its direction. LikecGR, it satisfies the normal-
ization condition

E d3k8E d3r c2* ~k8,r !c2~k,r !5~2p!3.

As with c1, our choice ofc2 is not accurate ifr &R. Fur-
thermore, it does not take into account a small distortion
r @R associated with the momentary positionR of the p̄.
This adiabatic distortion, which would be represented
small added terms due to the sameE1 interaction that was
taken into account in our approximation toc1, would be
proportional toR and consequently should be unimportant
the calculation ofA21 is carried only to first order inR, since
“Rc1s vanishes.

C. Off-diagonal elements of vector potential

The calculation ofA21 proceeds by standard methods. D
termining the components of“Rc1 is straightforward. The
integration over electron coordinates that must then be
formed is easily accomplished using orthogonality relatio
The orthogonality of energy eigenfunctions with differe
eigenvalues causesA21 to be independent of bound-sta
contributions toRp , and the relation

E
0

`

dr Fl~kr !Fl~k8r !5
p

2
d~k2k8!

permits the integral overk in Eq. ~8! to be evaluated after the
integration overr in Eq. ~4! has been performed. The sphe
cal components ofA21 are

A21;R5C~k!sinQ e2 iF, ~12a!

A21;Q5C~k!cosQ e2 iF, ~12b!

A21;F52 iC~k!e2 iF, ~12c!

where

C~k!52 i ~p/k!2B~k!/A2p,

and Q and F are the angular coordinates of thep̄. The
validity of these simple expressions, which are independ
of R sinceRp}R, depends on the mean orbital radius of t
p̄ being much smaller than that of the electron.
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D. Antiproton radial wave equations

1. Equation obtained from modern BO approximation

We now introduce further approximations and obtain a
of relatively simple differential equations for the function
u1 and u2 appearing in Eq.~1!. For the time being, we ne
glect the term inHeff containingA•A, as it should lead only
to second-order effects. Weattemptto write

HeffC5EC. ~13!

All derivatives with respect to thep̄ angular coordinatesQ
andF on the left-hand side of this equation can be evalua
analytically. It is obvious from Eqs.~1!–~3!, ~7!, and ~12!
that each term in a given component of the resulting exp
sion has the same dependence onF. This is not true of the
dependence onQ. The vector potentialA, as we have written
it in Eq. ~12!, couples the statesC1 and C2, as we have
written them in Eq.~1!, not only to each other but also t
states with angular momenta different fromL andL21. We
remedy this difficulty by simply neglecting the coupling wi
these other states. For the purpose of estimating Auger r
this should be an acceptable procedure because we are
considering transitions whose rates can be calculated reli
using first-order perturbation theory. We eliminate coupli
to these other states by multiplying both sides of Eq.~13! by

S YL,L* ~R̂! 0

0 YL21,L21* ~R̂!
D

and integrating overR̂. We note that if we had retained th
term inHeff proportional toA•A, this integration would have
caused its contribution to vanish. The resulting equation
u1 andu2 can be written as the eigenvalue equation

2
1

2M

d2u

dR2
1Uu5Eu, ~14!

where

u5S u1~R!

u2~R!
D , U5S U11~R! U12~R!

U21~R! U22~R!
D .

The elements ofU are given by

U11~R!5
L~L11!

2MR2
2

2

R
1e1 ,

U12~R!5
1

M
DL~k!S L

R
2

d

dRD ,

U21~R!5
1

M
DL~k!S L

R
1

d

dRD ,

U22~R!5
~L21!L

2MR2
2

2

R
1e2 ,

where
t

d

s-

es,
nly
ly

r

DL~k!5p3/2A L

2L11

B~k!

k2
. ~15!

The precise value ofE for a regular solution of Eq.~14!
depends onN, L, DN, and the assumed value ofk. It also
depends on the assumed relative sign ofu1 and u2 at very
small R.

We shall refer to the diagonal elementsU11 andU22 as the
unperturbed initial and final effective radial potentials. It
argued in Sec. III that an Auger transition can be though
as occurring in the vicinity of the point where these tw
potentials become equal to one another. The perturbation
sponsible for Auger transitions is proportional toDL(k),
which appears in the off-diagonal elements ofU. We note
that even though Eq.~14! is for the radial wave functions
alone, the perturbation couplingu1 andu2 depends on angu
lar motion. The term inU21 containing the derivative with
respect toR obviously is associated only with the radi
component ofA21. But the other term, the one proportion
to L/R, is a sum of contributions associated with the angu
components as well as the radial component. A detailed
amination of these contributions reveals that the one ass
ated with the componentA21;Q is relatively quite small un-
less L is quite small. But the contribution associated wi
azimuthal motion is relatively large ifL is relatively large.
This provides part of the basis for a conjecture, outlined
Secs. III E 3 and IV B, that phase differences due to angu
motion might be important in EAF and that they could
estimated using classical mechanics.

Our method of estimating Auger rates, as outlined in S
III, depends on the radial motion of thep̄ being nearly clas-
sical for certain values ofR. If this condition is to be ful-
filled, it is necessary not only that thep̄ local wavelengths
not be changing too rapidly, but also that the coupling b
tween the electronic states depend adiabatically on the p
tion of the p̄. An approximate description of adiabatic mo
tion can be achieved by a unitary transformation. The mot
is indeed adiabatic if it is permissible to ignore the o
diagonal elements in the transformed equation. This is
always possible; but it is possible to cause the off-diago
elements in a transformed equation to be truly important o
for a comparatively narrow range ofR. Because of the pres
ence of a derivative in the off-diagonal elements ofU, we
accomplish this by two successive transformations, both
pressed in a familiar general form@22,28#.

2. Equation for diabatic representation

The purpose of the first transformation is to obtain
expression similar to Eq.~14!, but containing no first deriva-
tive. We accomplish this by writing

u5Uav, ~16!

where

Ua5S cosVa 2sinVa

sinVa cosVa
D , v5S v1~R!

v2~R!
D ~17!

and
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Va5DL~k!R.

The equation forv then becomes

2
1

2M

d2v

dR2
1Vv5Ev, ~18!

where the elements of

V5S V11~R! V12~R!

V21~R! V22~R!
D

are given by

V1152
2

R
1S L~L11!

2MR2
1e1D cos2Va2

1

2M
@DL~k!#2

1S ~L21!L

2MR2
1e2D sin2Va1

1

M
DL~k!

L

R
sin 2Va ,

V1252
1

2S L~L11!2~L21!L

2MR2
1e12e2D sin 2Va

1
1

M
DL~k!

L

R
cos 2Va ,

V215V12,

V2252
2

R
1S ~L21!L

2MR2
1e2D cos2Va2

1

2M
@DL~k!#2

1S L~L11!

2MR2
1e1D sin2Va2

1

M
DL~k!

L

R
sin 2Va .

Though more complicated in form, the diagonal eleme
V11 andV22 are not very different from the unperturbed e
fective radial potentialsU11 and U22. SinceV125V21, the
Wronskian—or, equivalently, the total probability current
for Eq. ~18! is constant. The off-diagonal elements ofV can
be thought of as causing transitions from one of the diab
potential surfaces,V11 or V22, to the other.V12 is shown in
Fig. 1 for L52 and 14, in both instances forN515 and
DN521. The range ofR in this figure includes all separa
tions relevant to our calculations.V12 is very nearly propor-
tional toVa5DL(k)R, which makes it difficult to think of a
transition betweenV11 andV22 as occurring at a well-define
separation. Partly for this reason, but mostly becauseV12 is
generally not small enough to permit motion on the diaba
surfaces to be regarded as almost classical, we shall con
adiabatic potential surfaces, where the motion of thep̄ is in
some instances much more nearly classical. We note tha
angle Va specifying the transformation between the rad
wave functionsu andv, which is given approximately by

Va'
V12

e22e1
, ~19!

where
s

ic

c
der

he
l

~e22e1!52.41 a.u. if N515 ~20!

is small enough in every instance so that the angular mo
associated with the upper~lower! component ofv should not
be very different from that associated with the upper~lower!
component ofu.

3. Equation for adiabatic representation

A description of nearly adiabatic motion is achieved by
second transformation, which we write as

v5Ubw, ~21!

where

Ub5Ub
215S cosVb sinVb

sinVb 2cosVb
D , w5S w1~R!

w2~R!
D .

It is straightforward to show that

Ub
21VUb5W5SW1~R! 0

0 W2~R!
D ,

where

W65 1
2 ~V111V22!6 1

2 A~V112V22!
21~2V12!

2,

if

sin 2Vb5
2V12

A~V112V22!
21~2V12!

2
, ~22a!

cos 2Vb5
V112V22

A~V112V22!
21~2V12!

2
. ~22b!

W1(R) andW2(R) are, of course, the usual expressions
adiabatic potentials with an avoided crossing that appea
many discussions of LZS transitions. The equation forw is

FIG. 1. The matrix elementV12 for L52 and 14, in both in-
stances forN515 andDN521.
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2
1

2M

d2w

dR2
1FW1

1

2M S dVb

dR D 2Gw
1

1

2M S 0 21

1 0 D S 2
dVb

dR

dw

dR
1

d2Vb

dR2
wD 5Ew. ~23!

Figure 2 shows the upper and lower adiabatic potent
W1 andW2 for several values ofL, in each instance for
N515 andDN521. A different energy scale is used fo
eachL. The total energy of the system is also shown,
only for separations classically allowed for both potentia
In each instance the avoided crossing is located well wit
the classically allowed region, in accord with the FCP.
the level of accuracy visible in Fig. 2,W1 andW2 are
indistinguishable from the diagonal elements ofU or V, pro-
vided the solid and the dashed curves to the right of
avoided crossings are thought of as being interchanged.

Equation~23!, like Eqs. ~14! and ~18!, has off-diagonal
elements that cannot in general be ignored. However,
off-diagonal elements in Eq.~23! depend on derivatives o
Vb , and these derivatives are large only for a relativ
small range ofR. As illustrated in Figs. 3 and 4, the off
diagonal elements in Eq.~23! are truly important only within
a narrow range, which makes it possible to think of a tran
tion ~or the lack of one! from one adiabatic surface to th
other as occurring at a fairly well-defined separation.

Figure 3~a! showsVb for all separations classically a
lowed on bothW1 andW2 . This angle, which is nearly
zero for most separations below the avoided crossing, s
denly approaches2p/2 asR passes the crossing; but the
for all but the largestL, Vb slowly rises a bit. As discusse
in Sec. III D, this slow rise proves to be troublesome in
timating Auger rates. A detailed view of the increase inVb
at largeR is given in Fig. 3~b!, which also shows its mini-
mum. The slight rise inVb at large separations notwithstan
ing, the overall behavior of this angle, as shown in Fig. 3~a!,
together with the very small values ofVa estimated in Sec
II D 2, indicate that, at all separations not too near the cro
ing, the angular motion associated with a component ow
should not be very different from that associated with one
the other of the components ofu. This provides part of the
basis for a conjecture, outlined in Secs. III E 3 and IV B, th
phase differences due to angular motion might be import
in EAF.

Figure 4 shows three functions that resemble, more
less, functions which appear—or can be thought of
appearing—in Eq.~23!, and which not only depend on
derivative ofVb but also multiply a component ofw. The
functions shown in Fig. 4 are defined by

T15
1

2M S dVb

dR D 2

, T25
kc

MUdVb

dR U, T35
1

2MUd2Vb

dR2 U ,
wherekc is the local wave number forv1 andv2 at the point
where the diabatic potentialsV11 andV22 cross.T1, T2, and
T3 are all very sharply peaked near the crossing.T1 is not
associated with transitions. It is a diagonal term that mus
added to both adiabatic potentials. It can be thought o
ls

t
.
n

e

e

y

i-

d-

-

s-

r

t
t

r
s

e
s

being responsible for a very small contribution to the ene
E. We shall refer toW61T1 as a corrected adiabatic pote
tial. T1 causes these corrected potentials to be greater thaE
at points very near the crossing.T2 is a rough estimate of the
magnitude ofT2, which we define as

FIG. 2. Upper and lower adiabatic potentialsW1 andW2 for
several values ofL, in each instance forN515 andDN521. The
avoided crossing is marked. The total energy of the system
shown, but only for separations classically allowed for both pot
tials. A different energy scale is used for eachL.
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T25
1

M

dVb

dR

dw1

dR

1

w1
. ~24!

This function, which contains the reciprocal ofw1, can be
thought of as appearing in Eq.~23! and multiplying w1.
There would, of course, be a similarly defined function w
the opposite sign multiplyingw2. The terms in Eq.~23! con-
taining first derivatives of bothVb and a component ofw are
the terms generally believed to be of paramount importa
in LZS transitions. Because of our introduction of the wa
numberkc , the functionT2 can have quantitative signifi
cance only near the avoided crossing, and even there onl
a solution of Eq.~23! representing a traveling wave; but th
is not very restrictive, since our estimates of Auger rates
Sec. III are obtained with traveling waves, and our results
due largely to changes in currents occurring in the vicinity
crossings.T2 vanishes at the point whereVb has a minimum
and then increases somewhat asR becomes larger. Becaus
of the near absence of coupling, motion on the adiab

FIG. 3. The angleVb for several values ofL, in each instance
for N515 andDN521. ~a! For all separations classically allowe
on bothW1 andW2 . ~b! For a small range ofVb , attainable only
beyond the avoided crossing.Vb is shown on a greatly expande
scale, and its minimum is marked.
e

for

n
re
f

ic

surfaces should momentarily be almost classical at the p
whereVb has a minimum, provided the local wavelengths
both surfaces are not changing too rapidly. However, e
thoughT2 has no quantitative significance at large sepa
tions, it seems clear that a certain amount of coupling
tween w1 and w2 reappears at largeR in some instances
This point is discussed again in Sec. III D.T3 is the absolute
value ofT3, which we define as

T35
1

2M

d2Vb

dR2
. ~25!

The functionT3 appears in Eq.~23! and multipliesw. It
varies rapidly near the avoided crossing, where it chan
sign.

FIG. 4. The functionsT1, T2, andT3 for several values ofL, in
each instance forN515 andDN521. T2 andT3 are shown only
for radial separations classically allowed on bothW1 andW2 .
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4. Numerical procedures

A knowledge of any one of the solutionsu, v, or w of
Eqs.~14!, ~18!, or ~23! suffices to specify the other two. A
will be explained in Sec. III B, aregular solution of Eq.~18!
was used in obtaining approximate expressions for the
flections of traveling waves on the diabatic surfaces; as
be explained in Secs. III C and III D, these reflected wa
were used to obtain similarly directed waves on the adiab
surfaces, which were then used to estimate Auger rates.
these reasons we describe in some detail the procedures
to obtain accurate regular solutions of Eqs.~14!, ~18!, and
~23!.

We used Gear’s method, as implemented by the IM
~International Mathematics and Statistics Library! subroutine
DIVPAG, to obtain numerical solutions of one or another
the differential equations. It was decided not to integrate
~14! anywhere because at very smallR its coupling terms
diverge, while at very largeR they are not obviously les
difficult to deal with than those of Eqs.~18! or ~23!. It was
decided to integrate Eq.~18! rather than Eq.~23! in the clas-
sically allowed region, since the coupling terms in the lat
vary so rapidly near the avoided crossing, but to integr
Eq. ~23! at low separations because its coupling terms t
become marginally smaller. Equation~23! was again se-
lected at the very large separations for which classical m
tion is forbidden, in this instance because the potent
specified by thediagonalelements ofW, to a much greater
extent than those ofV, are not too different from those ofU.
At extremely large separations, a suitable solution of
equation foru, with the coupling termsU12 andU21 equated
to zero, was calculated with standard methods, and then
to provide approximate starting values for an inward integ
tion of the equation forw. A somewhat similar procedur
was used at a very small separation to provide starting va
for an outward integration.

Though we have, in effect, used uncoupled hydroge
functions to estimate starting values for regular solutions
Eq. ~23! at extremely small and very largeR, the subsequen
outward and inward numerical integrations to the region
classically allowed motion did take into account the coupl
betweenw1 andw2. In the case of the inward integration, th
two pairs of ~uncoupled! starting values on the upper an
lower adiabatic surfaces were each multiplied by suita
adjusted factors so as to obtain a solution that joined c
tinuously near the higher classical turning points with t
one obtained by the outward integration. A solution that v
ied smoothly everywhere was then achieved by adjusting
energyE and the relative values ofw1 and w2 and their
derivatives at extremely smallR.

We were not always able make the preceding sche
work without a modification. In many instances our com
puter program could not integrate Eq.~23! inward unless the
quantityDL defined in Eq.~15! was multiplied by a factor
f r!1. We usually setf r50.01. This improvisation ulti-
mately led to satisfactory results because it was found
every instance that the probability current assumed to be
portional to the Auger rate varies almost precisely asf r

2 . All
of the Auger rates reported in this paper that were estima
using probability currents were computed by settingf r

50.01 and then dividing the result byf r
2 .
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For given values ofN, L, DN, andk, there are two regular
solutions, which are linearly independent and which ha
slightly different energy eigenvalues. The ratiov2 /v1—or,
equivalently,u1 /u2 or w1 /w2—is positive at very smallR
for one solution and negative for the other. The eigenval
for these solutions are denoted byE1 and E2. ~Our two-
state model bears a passing resemblance to an asymm
double well, the principal difference being that tunnelin
from one well to the other occurs at the crossing point, no
a classical turning point.! It was found thatE12E2 is very
nearly proportional tof r .

For given values ofN, L, DN, and k, and for a given
relative sign ofw1 andw2 at very smallR, the determination
of the correct value ofE and the correct relative values ofw1
andw2 and their derivatives is equivalent to a determinati
of the vibrational quantum numbernv for the final state with
the integral value

nv5N2DN2L. ~26!

This matter is discussed again in Sec. III C 1, wherenv plays
a role in our estimates of Auger rates.

Within the framework of our model,k is a constant. We
have already stated in Sec. II A thate25 1

2 k2 is assumed to
be such that the energies of the BO statesC1c1 andC2c2
are the same, provided all coupling between them is igno
In practice we assume thatk is adequately specified by

1

2
k252

2M

N2
1

2M

~N2DN!2
2

1

2
, ~27!

since the initial and final states of both the electron and thp̄
are nearly hydrogenic. Numerical calculations were alwa
done using this expression. This matter is discussed aga

III. ESTIMATES OF AUGER RATES

Most of our estimates of Auger rates are proportional
ratios of suitably specified probability currents for radial m
tion of the p̄ on the one-dimensional adiabatic potential s
facesW6 appearing in Eq.~23!. In essence, what is done
first to construct, at a suitably chosen small radial separat
a solution to this equation with a large outward current
W1 and a negligible current onW2 . An outward numerical
integration to a suitably chosen large separation is then
formed, and the change in the currents is used to estimate
transition probability. Further calculations take into accou
some subsequent reflections. However, before presenting
tails of this seeminglyad hocprocedure, it is convenient to
discuss probability currents for a simpler case, motion on
diabatic potential surfacesV11 andV22 appearing in Eq.~18!.

Obtaining expressions for probability currents associa
with solutions to Eq.~18! is trivial. The procedure is essen
tially the same as for single-component wave functions, a
the results are essentially the same. The currents onV11 and
V22 are
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j v1
52

i

2M S v1*
dv1

dR
2

dv1*

dR
v1D ,

j v2
52

i

2M S v2*
dv2

dR
2

dv2*

dR
v2D .

Their sum is

j v5 j v1
1 j v2

52
i

2M S v†
dv
dR

2
dv†

dR
v D . ~28!

This sum is constant for all values ofR because it is propor
tional to a Wronskian of a second-order differential equat
containing no first derivative.

Probability currents can be meaningfully compared to
periment only if the motion is nearly classical. Because
this, we compute currents only in the region of positive
netic energy, which we define for the time being to be
range of separationsRlo,R,Rhi for which both of the po-
tential energiesV11 andV22 are less thanE.

A. Unreflected wave on diabatic surfaces

To compute the desired currents, we first specify a s
able wave function atRlo . We want to construct a function
that can be thought of—if only in an approximate way—
describing purely outward motion. At separations nearRlo
this motion should be almost exclusively on the surfaceV11.
We begin by picking anextremely smallseparationR0!Rlo ,
and we select the regular solution of Eq.~18! at R5R0 with
energyE5E1, as defined in Sec. II D 4.~Choosing the regu-
lar solution withE5E2 results in an estimated Auger ra
almost the same as obtained withE1.! However, we retain
only v1 and its derivative. We equatev2 and its derivative to
zero atR0. This truncated solution provides starting values
a solution that will be denoted byva. We then integrate Eq
~18! outward toRlo . At this point v2

a has acquired a finite
value, but it is still quite small compared to what it wou
have been otherwise. For the time being we define the
part of our complex wave functionv to beva. This definition
will be slightly modified later. We represent the compone
of va and their derivatives by a four-component vector fun
tion h(R) defined by

h15v1
a , h25

dv1
a

dR
, h35v2

a , h45
dv2

a

dR
. ~29!

We now determine an independent solutionvb to Eq.
~18!. For the time being we define it to be the imaginary p
of our complex wave function. This definition will be dra
tically modified later. We represent the components ofvb

and their derivatives by a four-component vector funct
j(R) defined by

j15v1
b , j25

dv1
b

dR
, j35v2

b , j45
dv2

b

dR
. ~30!

We choose to requirej to be orthogonal toh at Rlo . We
satisfy this condition by writingj(Rlo) in the form
n

-
f

-
e

t-

f

al

s
-

t

j1~Rlo!5a1@1h2~Rlo!sinu cosf1a1h1~Rlo!cosu#,
~31a!

j2~Rlo!5a1@2h1~Rlo!sinu cosf1a1h2~Rlo!cosu#,
~31b!

j3~Rlo!5a2@1h4~Rlo!sinu sinf2a2h3~Rlo!cosu#,
~31c!

j4~Rlo!5a2@2h3~Rlo!sinu sinf2a2h4~Rlo!cosu#,
~31d!

where

a15$@h1~Rlo!#21@h2~Rlo!#2%21/2,

a25$@h3~Rlo!#21@h4~Rlo!#2%21/2,

and

a15
a1

Aa1
21a2

2
, a25

a2

Aa1
21a2

2
.

The anglesu andf in Eq. ~31! can assume any values.
With the real and imaginary parts ofv defined to beva

andvb, the currents onV11 andV22 at Rlo are

j v1
~Rlo!52

1

Ma1
sinu cosf,

j v2
~Rlo!52

1

Ma2
sinu sinf.

We choose to specifyu andf by requiring that the currents
at Rlo be directed outward, and that their sum be as large
possible. In each instance investigated,j v2

(Rlo) was found to

be vastly smaller thanj v1
(Rlo). It was also found that

j v2
(Rlo) is much smaller than the currentj v2

at separations

nearRhi , as ultimately determined after an outward nume
cal integration.

We now modify our complex wave function. Though th
modification has no effect on the relative values of un
flected currents at any separationR, the procedure itself
proves to be useful in obtaining acceptable expressions
reflected waves. We rewritev as

v5va1 i f vb, ~32!

wheref is a complex constant. We determinef by requiring
v to resemble a conventional outgoing wave. We are una
to phrase this requirement precisely for a wave whose lo
wave number does not remain constant, and we look to
WKB approximation for guidance. We requirev, when inte-
grated outward fromRlo to some pointRs where the radial
motion of thep̄ can reasonably be expected to be more
less semiclassical, to be such thatv1 and its derivative satisfy
the relation

dv1

dR U
Rs

5S ik1~Rs!2
k18~Rs!

2k1~Rs!
D v1~Rs!, ~33!
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wherek1 andk18 are the local wave number and its derivati
on the diabatic surfaceV11, as specified by

k1~R!5A2M @E2V11~R!#. ~34!

Equation~33! is satisfied by a WKB function for outward
motion onV11. However, it doesnot lead to a unique speci
fication ofv becausef then depends somewhat on the cho
of Rs . It is given by

f ~Rs!5 i
h2~Rs!2g1~Rs!h1~Rs!

j2~Rs!2g1~Rs!j1~Rs!
,

where

g1~Rs!5 ik1~Rs!2
k18~Rs!

2k1~Rs!
. ~35!

Several values ofRs were employed in our numerical ca
culations. They are

Rs
~1!5R at first maximum ofuv1

1u, ~36a!

Rs
~2!5R at first node ofv1

1 with R.Rlo , ~36b!

Rs
~3!5R at first node ofv2

1 with R.Rlo , ~36c!

Rs
~4!5R at second node ofv1

1 with R.Rlo , ~36d!

Rs
~5!5R at second node ofv2

1 with R.Rlo , ~36e!

where v1
1 and v2

1 are the components of the real, nea
hydrogenic regular solution to Eq. ~18! obtained withE
5E1. In every instance considered, the real and imagin
parts of f are roughly equal in magnitude, with 1023&u f u
&1022. u f u decreases with decreasing angular moment
but it is fairly insensitive toRs . Our estimated Auger rate
prove to be not very sensitive to the choice ofRs . ~There is
no dependence onRs if the rates are estimated using unr
flected currents.! Most of the rates reported in this pap
were computed usingRs

(2) .

B. Reflected waves on diabatic surfaces

Some of our estimates of Auger rates will be made w
waves that have undergone one or more reflections. For
reason we now obtain an inward-traveling wavev r that can
be thought of as being due to the outward-traveling wavv
specified by Eq.~32!. As with v, our expression forv r is not
unique.

In order to specifyv r , it is convenient to rewrite our ex
pressions forv and the differential equation that it satisfie
We work with the entirely equivalent relations

z5h1 i f j,
dz

dR
5Bz,

whereh andj are the vector functions defined in Eqs.~29!
and ~30!, f is the complex constant appearing in Eq.~32!,
and B is an R-dependent matrix whose elements are ea
obtained from Eq.~18!. The complex vector functionz(R)
y

,

is

y

specifies the components and derivatives of the comp
wave functionv. It is convenient to write it as

z5(
j 51

4

ajx
~ j !, ~37!

where theaj are complex constants and thex ( j )(R) are four
suitably chosen, real, linearly independent vector functio
each satisfying the equation

dx~ j !

dR
5Bx~ j !.

We choose to require thex ( j ) to be orthonormal atR
5Rlo . We also require each component of two of these v
tors, x (1) and x (2), to become vanishingly small asR→`.
Each component of the two remaining vectors should
verge in this limit. Because our Auger computations are do
with E equated to the eigenvalueE1 of Eq. ~18!, we choose
the components ofx (1) to be proportional to the componen
and derivatives of the regular solution of this equation w
this eigenvalue, as obtained using the procedures outline
Sec. II D 4. The components ofx (2) at Rlo are equated to
expressions almost identical in form to those used in Eq.~31!
to specifyj(Rlo), the only difference being that the compo
nents ofh(Rlo) are replaced with those ofx (1)(Rlo); and the
anglesu andf in these expressions are then adjusted by t
and error until each of the components ofx (2) vanishes as
R→`, as determined by numerical integration withE5E1.
However, the components ofx (2), unlike those ofx (1), pre-
sumably all diverge asR→0. The remaining two vector
functions,x (3) and x (4), whose components presumably a
diverge not only asR→` but also asR→0, are then deter-
mined in a straightforward manner by requiring that atRlo

both of them be orthogonal tox (1) andx (2) and also to each
other. Once the four orthonormal vectorsx ( j )(Rlo) are
known, the complex coefficientsaj in Eq. ~37! are readily
determined.

A complex vector functionz r(R) specifying the compo-
nents and derivatives of the reflected wavev r is written as

z r5(
j 51

4

bjx
~ j !, ~38!

where

z1
r 5v1

r , z2
r 5

dv1
r

dR
, z3

r 5v2
r , z4

r 5
dv2

r

dR
.

The complex coefficientsbj in Eq. ~38! are determined by
requiring z r to satisfy appropriate conditions. We requi
each component of the combined wave functionv1v r to
vanish asR→`. This leads to

b352a3 , b452a4 .

The two remaining coefficients,b1 and b2, are determined
by requiringv1

r and v2
r to resemble inward-traveling WKB

functions at some suitable separation. In a manner very s
lar to our determination of the constantf in Eq. ~32!, we
choose a separationRs , where the relations
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dv1
r

dR
U

Rs

5S 2 ik1~Rs!2
k18~Rs!

2k1~Rs!
D v1

r ~Rs!, ~39a!

dv2
r

dR
U

Rs

5S 2 ik2~Rs!2
k28~Rs!

2k2~Rs!
D v2

r ~Rs! ~39b!

can reasonably be required to be satisfied. The local w
numbersk1 andk2 in Eq. ~39! are defined either by Eq.~34!
or by

k2~R!5A2M @E2V22~R!#.

The calculation ofb1 andb2 then becomes straightforward
Subsequent reflections are taken into account in a sim
fashion.

C. Preliminary expressions for Auger rate

1. In terms of currents on diabatic surfaces

For reasons presented below, wetentativelywrite a semi-
classical estimate of the Auger rate in terms of currents
the diabatic surfacesV11 andV22 as

RA
v 52 f ef p̄f t1

j v2
~Rhi!

j v1
~Rlo!

. ~40!

The factorsf e , f p̄ , and f t1
in Eq. ~40! are defined by

f e54pr~e2!, f p̄5
2p

t2
, f t1

5
2

t1
, ~41!

where

r~e2!5
A2e2

~2p!3
~42!

and

t15
pN3

2M
, t25

p~N2DN!3

2M
. ~43!

t1 and t2 are the periods of thep̄ for the initial and final
states, as calculated with classical mechanics for Kepler
bits with energies

EN1
52

2M

N2
, EN2

52
2M

~N2DN!2
. ~44!

EN1
andEN2

are the quantum-mechanical energies ofp̄ with

a principal quantum numberN or N2DN bound in a hydro-
genic state to an infinitely massive, doubly charged nucle
Though Eq.~40! proves to be unsatisfactory, it provides
convenient starting point for a more accurate estimate of
Auger rate. The arguments leading to this equation are
follows.

~i! Probability currents can be related to experiment if
motion is nearly classical. To the extent that radial motion
the p̄ is indeed nearly classical at separationsRlo1

andRhi2
ve

ar

n

r-

s.

e
as

e
f

not too far from Rlo and Rhi , and to the extent that the
computed currentsj v1

and j v2
do not change very much a

Rlo1
andRhi2

are then allowed to approachRlo andRhi , the

probability of a transition during the first half-cycle of thep̄
orbital motion should be proportional to the ratio of curren
in Eq. ~40!. As explained later, the assumption about moti
being nearly classical not too far fromRhi is not fully justi-
fied for the potentialsV11 andV22.

~ii ! The factor 2 in Eq.~40! is due to there being two
paths possible for ap̄ with an angular momentumLÞ0
whose initial radial motion is specified at some point. O
path is clockwise, the other counterclockwise. Although
obtained Eq.~18! by assuming that the initialz component of
the p̄ angular momentum is1L, it can also be obtained with
2L. To put the argument another way, the factor 2 takes i
account the fact that Eq.~18! is compatible with thez com-
ponent of the final electron angular momentum being eit
11 or 21.

~iii ! The factorf e in Eq. ~40! is the number of final elec-
tron states per unit energy. The need to includef e in our
estimate of the Auger rate arises from an obvious inadequ
of our two-state model: the final electron is in the continuu
~Even with the inclusion of the factorf e , our two-state
model is expected to give an acceptable result only if
transition probability is small.! Our expression forf e follows
from the one-to-one correspondence between
k-dependent wave functionscGR and c2 specified in Eqs.
~10! and ~11!. The functioncGR is normalized to unit den-
sity, and ink space the number of states in the volume e
mentd3k is

d3k

~2p!3
5r~e2!de2dVk ,

wherer(e2) is defined by Eq.~42! anddVk is an element of
solid angle. For a fixed total energy

E5EN2
1e2 ,

the final electron energye2 is, at least in principle, specified
precisely once the finalp̄ energyEN2

is determined.

~iv! The factor f p̄ appears in Eq.~40! becauseEN2
is

determined in practice by a trial-and-error variation of t
total energyE, with e2 assumed to be fixed and specified
Eq. ~27!. In principle, however,EN2

is determined by an

integration over a final vibrational quantum numbernv8 ,
which can be thought of as varying continuously with
energyEN2

8 , but which must really be equal to the valuenv

specified by Eq.~26!. To obtain our expression forf p̄ , we
make use of the relation

d~nv82nv!5
2p

t2
d~EN2

8 2EN2
!,

which is obtained with the aid of the WKB approximation b
assuming that the functional dependence ofnv8 on EN2

8 is

given by
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S nv81
1

2Dp5A2ME
Rlo

Rhi
dr AEN2

8 2
~L2 1

2 !2

2MR2
1

2

R
.

~A somewhat similar procedure is used in the theory of
classicalS matrix @3#.!

~v! The ratio of currents in Eq.~40! is proportional to a
transition probability, but the equation itself specifies a tra
sition rate. This accounts for the presence of the factorf t1

.
The condition specified in the first of the preceding fi

arguments is not really satisfied. The wave functionv is not
a solution of an equation that can be related to truly class
motion at largeR. If the p̄ motion is to be almost classical,
is necessary not only that the local wavelength not be cha
ing too rapidly but also that the coupling with the other st
be negligible. As illustrated in Fig. 1, the off-diagonal el
ments ofV are not truly negligible nearRhi—in fact, they
increase in magnitude with increasingR. For this reason we
shall modify Eq.~40! so as to use instead a solution of E
~23!, since its off-diagonal elements, as illustrated in Fi
4~b! and 4~c!, are truly large only within a comparativel
narrow range near the avoided crossing. There will still
some difficulty at largeR, but in Sec. III D we shall attemp
to circumvent it, first by evaluating our expression for t
current associated with the final state at some suitably cho
radial separation that is in most instances rather smaller
Rhi , and then by taking into account reflections.

2. In terms of currents on adiabatic surfaces

The total current, as expressed in Eq.~28!, can also be
written in terms of a complex solutionw to Eq. ~23! if the
transformation specified by Eq.~21! is employed. It then
takes the form

j v5 j w52
i

2M S w†
dw

dR
2

dw†

dR
wD

1
i

M

dVb

dR
w†S 0 21

1 0 Dw.

We choose to rewrite this as

j v5 j w5 j w1
1 j w2

,

where

j w1
5 j w1

~0!1 j w1

~1! , j w2
5 j w2

~0!1 j w2

~1!

and

j w1

~0!52
i

2M S w1*
dw1

dR
2

dw1*

dR
w1D , ~45a!

j w1

~1!52
i

2M

dVb

dR
~w1* w22w2* w1!, ~45b!

j w2

~0!52
i

2M S w2*
dw2

dR
2

dw2*

dR
w2D , ~45c!
e

-

al

g-
e

.
.

e

en
an

j w2

~1!51
i

2M

dVb

dR
~w2* w12w1* w2!. ~45d!

The expressions forj w1

(0) and j w2

(0) are identical in form to

those for j v1
and j v2

. The termsj w1

(1) and j w2

(1)—which are

equal to each other—are due to the presence in Eq.~23! of a
first derivative ofw. Assigning half of their sum to each o
our expressions for the currents onW1 andW2 is admit-
tedly arbitrary, but it proves to be of little importance
estimating Auger rates.

An Auger transition occurs if the outward movingp̄ re-
mains on the adiabatic potential surfaceW1 . For this reason
we now write downanother tentative estimateof the transi-
tion rate. This estimate is

RA
w52 f ef p̄f t1

j w1
~Rhi!

j w1
~Rlo!

, ~46!

where the factorsf e , f p̄ , and f t1
are the same as before, b

Rlo andRhi are now lower and upper bounds of the range
separations for which classical motion is allowed on the
per adiabatic surface. The important difference between E
~40! and ~46! is the difference betweenj v2

(Rhi) and

j w1
(Rhi), which can be considerable.
In Eq. ~46!, as in Eq.~40!, we have not taken into accoun

reflections of the outgoing wave. To put the matter anot
way, we have taken into account only one of the many
portunities thatp̄ has to remain on an adiabatic surface.
each of the instances considered in the present paper,p̄
initially on one adiabatic surface is very unlikely to rema
on that surface as it passes the avoided crossing. Th
illustrated in Fig. 5, which shows the Auger transition pro
ability per half-cycle, as obtained from our golden rule c
culations by multiplying the transition rate byt1/2. This fig-
ure shows that a transition becomes likely to have occur
only after there have been many encounters of thep̄ with the
crossing. Nevertheless, using Eq.~46!, or some variation

FIG. 5. The Auger transition probability per half-cycle, as o
tained by multiplying the transition rate byt1/2. The transition rate
is computed with the golden rule, and the period of motiont1 of the

p̄ in the initial state is computed with classical mechanics.
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thereof, would appear to be a reasonable procedure, sinc
many contributions to the transition amplitude, each ass
ated with one such encounter, should contribute incohere
to the rate because of phase differences. The matter of p
differences and incoherence will be discussed in Sec. III

The preceding arguments notwithstanding, there is st
problem with Eq.~46!. The difficulty is due to the presenc
of some not entirely negligible, velocity-dependent, o
diagonal terms in Eq.~23! at largeR. A very rough approxi-
mation to the magnitude of these terms is shown in Fig. 4~b!
for a traveling wave. As explained in more detail later,
Sec. III D, these terms are responsible in some instance
a troublesome increase in probability current at largeR that
ultimately is of little or no consequence.

3. In terms of probabilities rather than currents

To the extent that our model is valid, Auger rates sho
also be expressible in terms of time-dependent probabilit
It should suffice to determine the time-dependent probab
of the p̄ being in the upper or the lower component of
suitably specified approximate solutionu of Eq. ~14!.

We obtain an estimate by assuming that at timet50, the
p̄ is initially in the nonstationary state

ui~R!5
1

A2
@u1~R!1u2~R!#,

whereu1 andu2 are the linearly independent regular sol
tions of Eq.~14! with slightly different eigenvaluesE1 and
E2, as discussed in Sec. II D 4. To a very good approxim
tion, ui has appreciable amplitude only for the upper com
nent ofu. The probability at some later timet of the p̄ being
in the nonstationary stateuf , defined by

uf~R!5
1

A2
@u1~R!2u2~R!#,

is given exactly by

Pf~ t !5sin2S ~E12E2!t

2 D .

To a very good approximation,uf has appreciable amplitud
only for the lower component ofu. As long as the probabil-
ity of the p̄ being in the initial stateui remains nearly equa
to unity—and to the extent that our model is valid—the A
ger rate should be given approximately by

RA52 f ef p̄

1

t
Pf~ t !,

where f e and f p̄ are defined in Eq.~41!. Our reasons for the
factors 2,f e , and f p̄ in the preceding equation are the sam
as they are for Eq.~40!.

If Pf!1, our expression forRA varies linearly witht. It
is, therefore, generally incorrect, which implies that o
model—or, at the very least, some of the results obtai
with it—must be modified. The same difficulty is encou
the
i-

tly
se
.
a

for

d
s.
y

-
-

r
d

tered in Sec. III D 2, where estimates of the Auger rate
computed using probability currents for reflected and mu
ply reflected waves.

Probabilities varying quadratically witht are also ob-
tained with time-dependent perturbation theory. This is,
course, a feature of some derivations of the golden rule
the case of the golden rule, this difficulty can be circu
vented@29#. It is also possible to circumvent it in the case
RA . As explained below, nearly exact agreement with n
merical results obtainable forp̄He1 by using the golden rule
should also be obtainable with our model—though in a
especially elegant way—by~i! allowing N andM to become
sufficiently large,~ii ! discarding all values ofRA exceptthe
one fort5t1/2, ~iii ! then considering times that are not on
large enough to ensure that many half-cycles of~almost clas-
sical! p̄ motion have occurred but are also small enough
ensure that the initial state remains largely undepleted,
~iv! simply assumingthat the separate contributions to th
actual time-dependent transition amplitude from the ma
half-cycles ofp̄ motion not only have magnitudes that are
nearly equal to the magnitude of the amplitude leading to
value ofRA at t5t1/2 but also have phases that aresomehow
effectively random, thereby permitting the cross terms in
absolute square of the amplitude to be neglected.

Our assertion of being able to achieve nearly exact ag
ment with the golden rule is based on Fig. 6, which sho
the ratio ofRA , as evaluated att5t1/2, to the golden rule
rate. RA was computed by first settingf r50.01 and then
dividing the result byf r

2 . ~It will be recalled from Sec. II D 4
that the small energy differenceE12E2 is very nearly pro-
portional to the multiplicative factorf r .) Our values ofRA
differ from the golden rule rate by a factor not very differe
from unity. In every instance this factor is nearly equal
t1 /t2. Therefore, nearly exact agreement with the gold
rule should be achieved ifN, as it appears in the expression
for the periodst1 and t2 given by Eq.~43!, is allowed to
become very large.~If agreement with the golden rule is t
be achieved by allowingN to become very large, while re
taining our original assumptions that~i! the mean orbital
radius of thep̄ is much less than that of the electron, and~ii !
the spacing between adjacent principal levels of thep̄ is

FIG. 6. The ratio of the rateRA , evaluated at timet5t1/2, to
the Auger rate computed using the golden rule. The dotted li
show the values oft1 /t2. t1 and t2 are the periods of the initia
and final states, as computed with classical mechanics.
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large enough to permit Auger ejection, it would also be n
essary to think ofM as being much larger.!

D. Numerical results

1. Estimates with unreflected waves

Figure 7 shows the unreflected currentj w1
on the upper

adiabatic surface at radial separations in the rangeRlo,R
,Rhi . This current was calculated in each instance withf r
50.01. It is shown on two scales because it changes v
rapidly near the avoided crossing. The unreflected cur
j w2

on the lower surface is also shown, but only at sepa

tions below the crossing. Using a different value off r would
cause both currents to change, though their sum would
main constant. However, except at separations so nea
crossing as to be practically invisible on the scales use
Fig. 7, these changes can be specified rather accurate
terms of the currents obtained withf r50.01. In the case o
j w1

there would be no visible dependence onf r below the
crossing, while at all separations perceptibly beyond t
point the current would be almost precisely proportional
f r

2 . The currentj w2
shown in Fig. 7 for separations below th

crossing is also very nearly proportional tof r
2 . ~It was found

in all of our calculations, including those involving reflecte
waves, that the current assumed to be proportional to
Auger rate is almost exactly proportional tof r

2 .! UnlessL is
relatively large,j w1

has a minimum at a separation betwe

the crossing point andRhi . This minimum, which is marked
in Fig. 7, occurs at the same radial separation where
angleVb specified by Eq.~22! has a minimum, as shown i
Fig. 3~b!. This separation will be denoted byRb . Since the
velocity-dependent coupling term in Eq.~23! vanishes atRb ,
the p̄ motion at this point should be almost classical if t
local wavelengths on both adiabatic surfaces are not ch
ing too rapidly. In those instances wherej w1

has no mini-

mum belowRhi , we simply defineRb to be equal toRhi . The
increase inj w1

at separations beyondRb , which is quite

small if L is large, becomes relatively large asL decreases
For example, the ratio ofj w1

at Rhi to its value atRb for the

transition from the state withN515 andL51 is ;7. These
increases inj w1

are troublesome because Eq.~46!, without
further modification, would lead to an unacceptable over
timate of the Auger rate in many instances. However, th
overestimates would be of little significance because, as
plained in Sec. III D 2, once a reflection is taken into a
count, the increase inj w1

at large separations—or much o
it—has no lasting effect.

Figure 8 shows the ratio of the Auger rateRA
w , as com-

puted using amodificationof Eq. ~46!, to the rate obtained
using the golden rule. The modification is that the un
flected currentj w1

in the numerator of Eq.~46! is evaluated

at Rb rather thanRhi . Except for transitions between orbita
with fairly small or very large angular momenta, the agre
ment between the two rates is good, in most instances
good, but we acknowledge that further justification should
provided for ignoring the~sometimes relatively large! in-
creases inj w1

at classically allowed separations beyondRb .
At first glance it might seem that the lack of agreement
-
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both fairly small and very largeL would be due to inad-
equacy of the arguments leading to our original express
for RA

w , but, as argued in Sec. III D 2, it seems more likely
fairly small L that this is simply due toRb not always being
a suitable point to evaluatej w1

. It must be added that the

ratios of rates shown in Fig. 8 are not changed much ifj w1
is

approximated byj w1

(0) , as specified by Eq.~45a!: the changes

FIG. 7. The unreflected currentj w1
at radial separations wher

motion is classically allowed on both the upper and lower adiab
surfaces. The unreflected currentj w2

is also shown, but only at
separations below the crossing point. The minimum ofj w1

is
marked in every instance where it occurs below the upper bound
classical motion.
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are less than 1%, usually much less, except for circula
nearly circular orbits, in which case the ratios become
much as 13% smaller.

The question arises as to whether accurate rates cou
obtained by using currents on the diabatic surfaces. S
rates would be specified by Eq.~40! or some reasonabl
modification thereof. Since the outgoing currentsj w1

and j v1

are practically identical atRlo if L is not too high, the ad-
equacy of this equation should be revealed by the rela
differences betweenj w1

and j v2
at large separations. A de

tailed investigation of this question has shown that satis
tory overall agreement with the golden rule could not
achieved if unreflected currents on the diabatic surfaces w
to be employed, no matter wherej v2

would be evaluated
This conclusion is not surprising: the fundamental nature
the adiabatic representation in reactions involving electro
rearrangement has long been recognized@21#. ~A similar
conclusion does not apply to some of the estimates prese
in Sec. III D 2, because the inward traveling currentsj w2

and

j v2
are very nearly the same atRlo if L is not too high.!

Figure 9 shows some radial separations relevant to
transitions being considered. It shows the lower and up
classical turning pointsRlo andRhi , approximate bounds o
the transition region, and the location of the avoided cro
ing. The approximate bounds of the transition region are
fined arbitrarily to be the lowest separations wherej w2

and

j w1
are equal to twice the value ofj w1

at Rb . These approxi-
mate bounds are unaffected by the choice of the multipl
tive factor f r . We argue that the results in this figure, t
gether with those in Figs. 7 and 8, suggest that an Au
transition can be thought of as occurring on an adiab
surface at a relatively well defined radial separation.

FIG. 8. The ratio of the Auger rateRA
w , as computed using the

unreflected currentj w1
on the upper adiabatic surface atRb rather

thanRhi , to the rate computed using the golden rule.
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Good agreement with golden rule rates notwithstandi
our procedure clearly demands more scrutiny, if only b
cause our largelyad hoc modification of Eq.~46! might
never have been introduced had it not been for the trou
some increases inj w1

for smallL and largeR evident in Fig.
7. There is, however, a second reason. In some instance
p̄ motion atRb is not semiclassical, which makes it awkwa
to relate j w1

to experiment. This is obviously the case

those instances whereRb5Rhi . It is also the case in a few
other instances, where the classical action on the corre
upper adiabatic surface, as computed betweenRb andRhi , is
quite small. Therefore, rates were also estimated using
flected waves, together with further modification of Eq.~46!.

2. Estimates with reflected waves

Some results obtained with reflected waves are show
Fig. 10. This figure, like Fig. 8, shows ratios ofRA

w to golden
rule rates. However, in obtaining the ratios in Fig. 10, t
current in the numerator of Eq.~46! was replaced with a
current computed with a reflected or multiply reflected wa
that had experienced two, three, or four encounters with
avoided crossing. This current istentativelyassumed to be
proportional to the probability that a transition occurs
some time during the first two, three, or four half-cycles ofp̄
motion. Because of the longer periods of time, the express
for RA

w was again modified: it was decreased by a fac
equal to the number of half-cycles. The reflected waves

FIG. 9. The classical turning points, approximate bounds of
transition region, and the location of the avoided crossing for tr
sitions withDN521 from states withN510 or 15.
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the currents associated with them were calculated using
procedures outlined in Secs. III B and III C. The former pr
cedure requires the aid of the WKB approximation at so
suitable separationRs to ensure, as much as we are ab
within the framework of our model, that a reflected wave
going in the desired direction. The ratios shown in Fig.
were all obtained usingRs

(2) , as specified by Eq.~36b!. If
the number of half-cycles was even, the already twice mo
fied Eq.~46! was modified again by replacing the current
its numerator with the inward-traveling currentj w2

on the

lower adiabatic surface atRlo . Except for transitions from
nearly circular orbitals,j w2

was found to be almost consta

throughout an interval betweenRlo and some nearby poin
that is not only well below the lower bound of the transitio
region shown in Fig. 9 but also such that the WKB appro
mation should be fairly reliable. Therefore, in most instan
there would appear to be no serious problem in relat
j w2

(Rlo) to experiment, even though thep̄ motion is not

semiclassical atRlo . In the case of three half-cycles the ou
ward moving current in the numerator of Eq.~46! was evalu-
ated, as before, on the upper adiabatic surface atRb . The
results shown in Fig. 10 arenot in agreement with the golde
rule, and it is the aim of the discussion presented in Sec. I
to reconcile the two calculations.

The most striking feature of Fig. 10 is that the ratio
rates is in many instances roughly equal to the numbe
half-cycles. This is generally true if the number of ha
cycles is even. However, it is not true of the ratios for thr
half-cycles ifL is relatively low. The overall behavior of th
ratios for three half-cycles in Fig. 10 more or less resemb
that for a single half-cycle in Fig. 8. In both figures the ra
is nearly equal to the number of half-cycles ifL is large
~except for circular orbitals, which are shown only in Fig. 8!,
but it becomes much smaller asL becomes small. Because o
the near constancy of the ratios for two and four half-cycl

FIG. 10. The ratio of the Auger rateRA
w , as computed using

radial waves that have been reflected one, two, or three times, t
rate computed using the golden rule.
he
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even ifL is low, we suspect that these decreases are due
so much to inadequacy of the arguments leading to our or
nal expression forRA

w as they are toRb simply not always
being an appropriate choice of separation to evaluatej w1

for

the final state.
A simple, classical argument lends qualitative support

our suspicion thatRb is not always a suitable place to eval
ate j w1

in a rate estimate. If the FCP is to be satisfied,
Auger transition should be inhibited at any separation wh
there would be a relatively large change in the local, clas
cally computed radial momentum. A straightforward calc
lation has shown that, whileRb would indeed appear to be a
acceptable lower bound in many instances to the range
large, classically allowed separations where the radial m
menta on the two adiabatic surfaces are comparatively
ferent, a more realistic lower bound to this range would
appreciably greater thanRb if L is fairly low. We therefore
believe that there is some physical justification for discard
the ratios for lowL shown in Fig. 8 in favor of ratios ob-
tained with j w1

evaluated at somewhat higher separatio
An examination of Figs. 7–9 indicates that this would n
require abandoning our interpretation of the transition as
curring within a range of separations small compared to
classically allowed range. Similarly, for waves that ha
been reflected twice, the discrepancies with the golden r
as shown in Fig. 10, could be made more nearly a unifo
factor ;3.

Complications of the sort encountered at large separat
do not arise if the number of half-cycles is even, and beca
of this we conclude that the relatively small deviations of t
ratios in Fig. 10 from 2.0 and 4.0 for two and four hal
cycles are largely a consequence of our use of the W
approximation at some separationRs on the diabatic surface
to determine that waves are proceeding in the proper di
tion on the adiabatic surfaces. We believe that this conc
sion is supported~to some extent! by ratios computed, when
possible, with each of the five choices ofRs listed in Eq.
~36!. Results were obtained for transitions from states w
N515 andL52, 5, 8, 11, 13, or 14, in each instance for tw
half-cycles. Except for the transition between circu
orbitals—for which our only value ofRs is beyondthe cross-
ing point and is, therefore, not really an appropriate place
determine that on both surfaces the reflected wave is ind
moving inward at points nearRlo—the deviations of these
ratios from 2.0 were found to have the same magnitude
usually the same sign as the relatively small deviatio
shown for two half-cycles in Fig. 10.

It seems clear from some of the results shown in Fi
7–10 that the net effect of an inward traversal of the cross
is that much, if not all, of any troublesome increase inj w1

at
large separations has no lasting effect, probably becaus
the relatively large momentum changes that must accomp
transitions occurring at separations much beyond the cr
ing. Because of the results shown in these figures, and
because of investigations by others which have shown
some chemical reactions can be understood in terms o
most classical trajectories on adiabatic surfaces@3,20,21#, we
conclude that the time-dependent amplitude for an Au
transition can be thought of as a sum of contributions, e
associated with a radially rather well defined encounter w

the
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the avoided crossing during which thep̄ remains on the sam
adiabatic surface instead of hopping to the other one. H
ever, the large and more or less regular discrepancies
the golden rule for rates computed with reflected waves m
still be resolved.

E. Phase differences

It is apparent from Fig. 10 that fairly good agreement w
the golden rule would be achieved if some reason could
found for dividing each of the ratios in this figure—modifie
in some instances by using an outgoing current evaluate
a separation somewhat greater thanRb—by the number of
half-cycles. We can think of no reason why this would
justified after only a small number of half-cycles. Howev
as indicated in Fig. 5, many half-cycles are required befo
transition becomes likely to have occurred. If, as we ha
concluded, the time-dependent transition amplitude is a s
of contributions from many radially rather well defined e
counters of thep̄ with the avoided crossing, and if thes
many contributions all have nearly the same magnitude
effectively random phases, the cross terms in the abso
square can reasonably be expected to have no net effec
Sec. III E 4 we shall argue that this would likely be the ca
if the finite width of the initial state were to be taken in
account. Our arguments will be based on some estimate
phase differences due to radial motion. But before that
Sec. III E 3, we shall discuss a possible phase difference
to angular motion that can be estimated using classical o
~which will be discussed in Sec. III E 2!, and we shall con-
jecture that it might be important in the special type of Aug
transition which occurs during EAF. This phase difference is
the angular analog of what we shall refer to as the traditio
Stückelberg phase, which is associated with radial moti
and which is defined and discussed below.

1. Traditional Stückelberg phase

In obtaining the ratios shown in Figs. 8 and 10 we have
effect assumed that a current, eitherj w1

(Rb) directed out-

ward or j w2
(Rlo) directed inward, is proportional to the ab

solute square of the amplitude for the occurrence of a tr
sition at some time during a certain number of half-cycl
Our results imply that the contributions of each half-cyc
have not only nearly the same magnitude but also nearly
same phase. This near equality of phase merits discussio
only because we have really been treating ap̄ Auger transi-
tion as a LZS process. It was at one time widely accep
that the two contributions to the amplitude for a LZS tran
tion of the usual kind~inelastic scattering! should differ in
phase by an amount related in a simple fashion to the dif
ence in radial action along the two possible classical pa
between the encounters with the avoided crossing. We s
refer to this phase difference as the traditional Stu¨ckelberg
phase. For the transitions being considered here, it is rea
estimated using unperturbed Coulomb potentials, and
most instances its effect is not negligibly small. Our failu
to achieve agreement with the traditional Stu¨ckelberg phase
is, by itself, unremarkable because it has been known
some time that the traditional LZS formula@30# leads to
incorrect results in some instances@31#, including those in
-
ith
st

e

at

,
a
e
m

ut
te
In

e

of
n
ue
its

r

al
,

n

n-
.

e
, if

d
-

r-
s

all

ily
in

r

which the transition probability is small@32#. We call atten-
tion to this lack of agreement because in Sec. III E 3 we sh
conjecture that the angular analog of the Stu¨ckelberg phase,
as estimated in the traditional way, might be important
EAF.

Even though the lack of agreement with the tradition
LZS formula is unsurprising, we can only hazard a guess
to why our estimated contributions to the transition amp
tude are so nearly equal in phase. As suggested by the re
of an approximate calculation sketched in the next pa
graph, differences in the radial action should indeed be
portant. Therefore, it would seem that there must be so
mechanism that has nearly the opposite effect as the di
ence in radial action. We suspect that this mechanism is
sociated in some way with one or both of the off-diagon
terms in Eq.~23!, which take into account all coupling be
tween the initial and final states due to both radial and an
lar motion. Because all coupling due to angular motion
taken into account in the radial wave equation, we shall
sume in Sec. III E 3 that there is no mechanism that wo
diminish a similar difference in angular action, as estima
in the traditional way.

The traditional Stu¨ckelberg phase can be made to app
in an approximategolden rule expression. The derivation
similar to that of an approximate expression for the Fran
Condon factor given by Miller@33#. It is only necessary tha
the p̄ radial dipole matrix element not be computed exac
but instead be roughly estimated by first replacing the ini
and final hydrogenic wave functions with WKB function
and then using the stationary phase approximation to ev
ate the integral. The form of the resulting approximate e
pression for the transition rate is proportional to the tra
tional LZS formula, which contains the factor

f S5cos2S f22f12
p

4 D ,

wheref1 and f2 are the integrals of the local radial wav
numbers for the initial and final unperturbed states from
lowest classical turning points to the crossing point. Beca
of the preceding expression, we choose to define the tr
tional Stückelberg phase as

fS52~f22f1!2
p

2
. ~47!

The absolute square of the sum of two amplitudes, equa
magnitude but differing in phase byfS , would be propor-
tional to f S . We note that an implicit appearance of th
factor in our estimates of Auger rates using probability c
rents would have been unwelcome. A straightforward cal
lation indicates that the presence off S would cause the esti
mated transition rate to depend on thep̄ angular momentum
in a way quite different from the dependence obtained w
the presumably accurate golden rule, as shown in Fig. 5.
failure to achieve agreement with the traditional Stu¨ckelberg
phase is almost surely associated with the breakdown of
WKB approximation near the avoided crossing.
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2. Relating p̄wave functions to classical orbits

The FCP should still hold for motion in more than on
dimension: it should still be possible to think of a transiti
amplitude as being a sum of contributions, each produ
near a point where both the radial separation and the ra
momentum are the same in the initial and the final states.
denote this separation byRc . To gain some insight into this
matter, we examined some classical orbits. We assumed
infinite manifolds of coplanar Kepler orbits with energi
given by Eq.~44! adequately describe the initial and the fin
motion of thep̄. As in our quantum-mechanical calculation
it was assumed that the squares of the initial and the fi
angular momenta areL(L11) and (L21)L. If the effective
radial potential for the final orbit is increased by an amo
equal to the increase in binding energy of thep̄, it intersects
the effective potential for the initial orbit at the separati
Rc . Two coplanar orbits with suitably different energies a
angular momenta intersect at the required separationRc if
they are properly oriented with respect to each other. Fo
given initial ~final! orbit, two orientations are possible for
final ~initial! orbit. For one of the orientations, radial motio
on both orbits proceeds inward toward the nucleus at
intersection; and for the other, motion proceeds outward

Figure 11~a! shows both possible orientations of a fin
orbit with N514 andL57 with respect to an initial orbit
with N515 andL58. All of the orbits lie in thex-y plane.
All points on the two final orbits a distanceRc from the
nucleus are marked, even if they are not located at an in
section with the particular initial orbit we have chosen
show. Motion on each of these orbits is regarded as proc
ing counterclockwise. We defineF1

in (F1
out) to be the angular

position of the point on the initial orbit with separationRc
and inward~outward! radial motion, and we also define

DF15F1
out2F1

in .

The anglesF2
in , F2

out, andDF2 are similarly defined for a
final orbit. The magnitude of the angular separation betw
the two final orbits in Fig. 11~a! is DF22DF1. ~If we had
instead shown just one final orbit and the two possible ini
orbits associated with it, the magnitude of the angle betw
the two initial orbits would also have beenDF22DF1.!
Figure 11~b! showsDF1 andDF2 for all of the transitions
being considered.These angles are large, and they have
significant dependence on angular momentum. This will l
us to conjecture in Sec. III E 3 that, because of difference
angular motion, interference between two contributions
the transition amplitude could be important in EAF.

It is necessary to be more precise about how we re
wave functions to classical orbits. To be specific, we c
sider a hydrogenic state with principal quantum numberN
and angular momentumL. As in Sec. II A, we assume tha
thez component of the angular momentum isL. For the time
being, we also assume that this state is not coupled to
other state. We first write the wave function in the usual w
as

RN,L~R!YL,L~Q,F!,

whereRN,L is real. We assume thatN is large andL is not
small. The radial motion is almost classical except near
d
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turning points, and the azimuthal motion is almost classi
everywhere. Furthermore, the motion is almost two dim
sional becauseYL,L has appreciable amplitude only in th
neighborhood of thex-y plane. It is convenient to express th
radial function approximately as the sum of two waves, o
ward motion with one and inward with the other:

RN,L~R!'xN,L
~1 !~R!1xN,L

~2 !~R!.

We accomplish this by replacingRN,L with a suitably chosen
real function and then adding and subtracting a suitably c
sen imaginary function. We shall assume thatxN,L

(1) andxN,L
(2)

are WKB functions.
For the moment, we restrict our attention to the wave

xN,L
~1 !~R!YL,L~Q,F!,

which is simultaneously proceeding radially outward a
azimuthally counterclockwise. At any given point where t
radial motion is almost classical, the phase of this wave
be identified with Hamilton’s characteristic functionW0 for
classical motion passing through this point, with“W0 being

FIG. 11. Results of calculations using classical mechanics
Kepler orbits, but with quantum-mechanical values for the energ
and the squares of the angular momenta.~a! One of the initial orbits
and two of the final orbits relevant to the transition withDN5
21 from the state withN515 andL58. The nucleus is at the
origin, and the initial orbit~solid line! has its major axis parallel to
the x axis. The two final orbits~dotted lines! are the only ones tha
intersect the initial orbit at a point where the FCP is satisfied. Th
intersections occur at a distanceRc from the nucleus. The two
points on each orbit a distanceRc from the nucleus are marked; bu
on a given final orbit, one of these points is at an intersection w
an initial orbit that is not shown.~b! The angular separationsDF1

and DF2 on the initial and final orbits between two successi

encounters of thep̄ with separations a distanceRc from the nucleus.
The radial motion is assumed to be directed inward during the
encounter.
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the momentumP along a locally well defined trajectory@34#.
For a fixed value ofF, there is a different trajectory assoc
ated with each value ofR where motion is almost classica
Motion on each of these trajectories has the same total
ergy, but the momentumP has a momentary value depen
ing onR. We shall think of each of these trajectories as be
in the x-y plane. By the nature of the WKB approximatio
the difference in phase ofxN,L

(1)YL,L at any two points lying
along a given orbit is given by the integral*P•dR along the
segment of orbit connecting them, provided this segm
does not include any points where motion is not almost c
sical. This integral is the sum of two terms, the radial and
angular action along the segment.

In a manner similar to the way we relatexN,L
(1)YL,L to

classical trajectories, we also associate

xN,L
~2 !~R!YL,L~Q,F!

with a manifold of locally well-defined trajectories, all mov
ing azimuthally counterclockwise, but radially inward. Bo
radial wavesxN,L

(1) andxN,L
(2) can be thought of as ultimatel

undergoing reflection at a classical turning point, thereby
ing turned in to each other in the usual way of WKB fun
tions. For this reason, the outgoing~ingoing! local trajectory
for given values ofR and F can be associated with th
ingoing ~outgoing! local trajectories forother combinations
of R andF to form parts of a continuous orbit. There wou
be a nondenumerably infinite number of such orbits, all p
ceeding counterclockwise, and with orientations distribu
uniformly in the x-y plane. For every value ofF, there
would be two of these orbits passing through every po
specified by a classically allowed value ofR, one with mo-
tion directed inward, the other with motion outward. B
making use of the usual procedures for determining refl
tions of WKB waves, we can assign a well-defined pha
difference betweenany two points on a given orbit—even i
all of the segment of orbit connecting them does not lie
the region where quantum-mechanical motion is alm
classical—provided the two points themselves do lie in t
region. The angular contribution to this phase difference
LDF, whereDF is the angular separation between the t
points. While the preceding discussion has been devoted
hydrogenic function, most of it also applies to a similar
specified wave function for almost classical motion in a
central field, the essential difference being that the class
orbits would generally not be closed, as they would be fo
hydrogenic function with largeN andL.

3. Possible phase difference due to angular motion
on different paths

The numerical results presented in Figs. 1 and 3 and E
~19! and~20! indicate that the successive transformationsUa
andUb relating the radial functionsu1 andu2 appearing in
Eq. ~1! to the functionsw1 andw2 in Eq. ~21! are such that
the angular momenta on the two paths between encoun
with the avoided crossing effectively differ by;1 unit, ex-
cept near the crossing. As outlined below, a difference
angular action—which has not been taken into account in
Auger calculations using the modern BO approximation a
probability currents—could reduce constructive interferen
n-
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substantially. By angular action we simply mean that con
bution to the integral*P•dR along the~almost classical!

trajectory of thep̄ which is due to components of the mo
mentumP orthogonal to the radius vector from the origin.

We are interested in the effects that phase differen
might have on Auger transition probabilities. This involv
motion on two coupled adiabatic surfaces. As already d
cussed in considerable detail, we argue that transitions ca
thought of as occurring near radial separations whereR
5Rc , in accord with FCP. The WKB approximation for ra
dial motion breaks down near such points. For this reas
semiclassical estimates of phase differences between p
on a path corresponding to a transition should be unrelia
We shall assume that our quantum-mechanical computat
of the radial phases, as presented later, in Sec. III E 4,
reliable.But because the off-diagonal elements of (the rad
wave) Eq. (14) already take into account all coupling due
angular motion, and also because currents computed us
the radial wave function w obtained by successive unit
transformations from the function u appearing in Eq. (1
lead to rather good agreement with the golden rule if only
single traversal of the avoided crossing is taken into a
count, we shall further assume that reliable estimates
phase differences due to angular motion can be obtained
simply computing the angular action along the appropria
segments of classical orbits.

If the perturbation responsible for transitions is taken in
account—and if we think in terms of classical paths—t
FCP would require each path associated with the initial s
to spawn a path associated with the final state every tim
passes a point with the radial separationRc . Each path, in-
cluding those originating with a transition, would have ass
ciated with it a phase that is continually increasing as
motion proceeds. As outlined below, we argue that th
could be significant differences in phase between differ
paths leading to a given final orbit.

In what follows, we shall consider waves moving~effec-
tively in two dimensions! on adiabatic surfaces that hav
fairly well-defined angular momenta, except near t
avoided crossing. We shall restrict our attention to the ph
difference associated with just two successive encoun
with the crossing. Furthermore, we shall consider only
phase difference associated with angular motion. We s
assume that the first encounter occurs as the motion proc
inward, the second as it proceeds outward. Except for
absence of a term2p/2, which arises in the reflection of
WKB radial wave, the phase difference would be the angu
analog of the traditional~radial! Stückelberg phasefS , as
we have defined it in Eq.~47!.

In estimating the phase difference due to angular moti
we consider three Kepler orbits more or less similar to th
shown in Fig. 11~a!, the difference being that we now con
sider two initial orbits and just one final one, not the oth
way around. However, even though it is convenient to d
with Kepler orbits, our general definitions of the radial sep
ration at crossing points and the angles between these po
and also our method of estimating phase differences, wo
be unchanged if we had chosen to consider orbits that are
closed~or trajectories that are not bounded!.

We assert that the phase difference due to angular mo
should be approximatelyDF2. The arguments leading to thi
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assertion are as follows. A given final orbit would have a
sociated with it two initial orbits whose relative orientatio
differs by the angleDF22DF1. One of these initial orbits
would have a crossing for inward motion, the other for o
ward motion.~These two initial orbits would be just one o
many pairs of initial orbits—all with the samerelative
orientation—that would have to be taken into account in
scribing a transition from an initial state with angular depe
denceYL,L to a final state withYL21,L21.! We consider mo-
tion directed initially inward, and starting on both initia
orbits at the largest possible classically allowed radial se
ration. Even though these starting points are not in the reg
where quantum-mechanical motion is almost classical,
can assign to the two paths the initial phase difference

L~DF22DF1!,

which is simply the difference in phase between the relev
values ofYL,L . The orbit with the larger phase is the on
associated with a transition occurring as thep̄ moves out-
ward. The phases for the two separate paths leading to
same final orbit can be written as

F in1~L21!DF2 ,

and

L~DF22DF1!1F in1LDF1 .

The first of these phases is associated with a transition
curring at the separationRc as thep̄ moves inward on one o
the two initial orbits, the second with a transition occurri
at Rc as it moves outward on the other. In writing down the
two expressions, we have evaluated both phases at that
on the final orbit where the second transition occurs, and
have letF in denote the angular action that accumulates
either initial orbit as radial motion proceeds inward from
starting point to the first encounter with a point having t
separationRc . The phase that accumulates between the
successive encounters with the separationRc is (L
21)DF2 on the first path andLDF1 on the second. The
difference between the phases for these two paths leadin
the same final orbit isDF2.

If phase differences due to angular motion—as estima
above for the special case of just two successive encoun
with the avoided crossing, without even considering
width of the initial state—were the only phase differenc
that have to be taken into account, and if the motion were
proceed on true Kepler orbits, the separate contribution
the transition amplitude from not just two but many encou
ters of thep̄ with the crossing would have just one of tw
phases. Half of them would have one phase, and half wo
have the other.~This would not generally be true for motio
in a central field, but it would be true for closed orbits.! The
difference between them would beDF2. However, we be-
lieve there should be other, much smaller phase differen
that would result in total incoherence. These other phase
ferences would be due to radial motion, and would take i
account the finite width of the initial state. As outlined
Sec. III E 4, radial phase differences by themselves sho
result in incoherence if the width of the initial state were
be taken into account. To put the matter another way, ph
-
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differences due to different angular momenta on differ
paths should have no further effect on an estimated trans
rate of p̄He1 if the width of the initial state and radial phas
differences are first taken into account.However, we conjec-
ture that the phase differenceDF2 might be important in the
rather different type of Auger transition resulting in EAF. I
such an instance there presumably would be only two
counters with an avoided crossing, and a large phase diff
ence due to angular motion might be important.

The preceding considerations are relevant to our Au
rates obtained with the modern BO approximation and pr
ability currents. We note thatDF2 can be related, by mean
of an obvious generalization of the vector potentialA defined
in Eq. ~4!, to the change in phase of anadiabatically varying

final electron wave function as thep̄ moves on a final orbit
from its first encounter with the crossing to its second. O
Auger calculations forp̄He1 have thus far have not take
into account any adiabatic change in phase of this funct
and for this reason it is necessary to redefine it. We also g
it a more suitable normalization. We write

c2,ad~k,R,r !5c2~k,r !e2 iF/~2p!3/2,

wherec2 is defined in Eq.~11!. The phase ofc2,ad depends
on the azimuthal coordinateF of the positionR of the p̄.
This function has the normalization

E d3k8E d3r c2,ad* ~k8,R,r !c2,ad~k,R,r !51.

We now assume that the diagonal elementA22 in Eq. ~3!
should be given, not by Eq.~4!, which is really appropriate
only for bound states, but instead by

A225 i E d3k8E d3r c2,ad* ~k8,R,r !“Rc2,ad~k,R,r !.

It is obvious thatDF2 is given by

DF25E
Rc1

Rc2A22~R!•dR,

where the integration is over the path in thex-y plane be-
tween the two successive crossing pointsRc1

and Rc2
on a

final orbit.

4. Relative phases of reflected radial waves

Within the framework of the procedures described
Secs. III A and III B, our numerical computations of outg
ing, reflected, and multiply reflected radial waves we
highly accurate. We were able to determine that there
small phase differences between waves traveling in the s
direction on the same one-dimensional potential surface a
having been reflected a different number of times. Pa
because of the way our computer program had been writ
but mostly because of the troublesome but transitory
creases in the amplitude of the final state at separations m
beyond the crossing, we found it convenient to examine o
the wave functionv for motion on the diabatic surfaces, an
evaluated only at the lower boundRlo for classical motion on
the upper adiabatic surface.~The functionsv andw for mo-
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tion on the diabatic and adiabatic surfaces are nearly
same atRlo if the initial and final orbitals are not circular o
nearly circular.!

We first consider an example that is simple and instr
tive, though not directly relevant. Figure 12 shows the ph
at Rlo of the inward traveling wavev1 on the upper diabatic
surface after two complete cycles of radial motion relative
its phase at this point after just one complete cycle. Res
were computed in each instance withRs5Rs

(2) and f r

50.01. These phase differences are quite small, but t
were found to vary linearly withf r . These results, togethe
with the transition probabilities shown in Fig. 5, indicate th
in the realistic casef r51.0 a net change in phase exceedi
2p would be achieved after the completion of a number
half-cycles an order of magnitude smaller than the la
number required before the transition becomes likely to h
occurred. For example, in the case of the transition from
state withN515 andL58, these two numbers are;160
and;1500. In most other instances the relative difference
even larger. However, there is every reason to believe th
our calculations were to be extended to take into acco
many more reflections, the successive changes in the p
of v1 at Rlo would be nearly the same as those shown in F
12. This presents a problem because we want to argue
the phases of many values ofv1, each obtained at the end o
a half-cycle of radial motion, should not be almost uniform
spaced but should instead ultimately become a set of ran
numbers. We believe this could be accomplished by tak
into account the finite width of the initial state.

If this width were to be taken into account,v1 would be a
superposition of many contributions, each corresponding
different value ofE. The finite timetA required for the tran-
sition implies thatE should have a rangeDE;tA

21 . This
would introduce a range of phases associated with the ra
motion.~There should also be a variation in phase associa
with angular motion, but we have not attempted to estim
this.!

The range of phases is easily estimated for radial mot
The vibrational quantum numbernv for the initial state
should be given rather accurately by the WKB approxim
tion. It can be regarded as a continuous function ofE, and its
derivative is given by

FIG. 12. The phase of the inward-traveling wavev1 on the
upper diabatic surface atRlo after two complete cycles relative to it
phase after just one complete cycle. The phase scales forN510 and
15 differ by a factor of 10.
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where t1 is the classically computed period of the initi
state. This can be used to write

Df5pDnv5t1DE/2;t1 /~2tA!,

where Df is the approximate range of the change in t
radial action on the upper diabatic surface for a single h
cycle. Our approximate expression forDf in terms oft1 and
tA is numerically equal to the transition probability per ha
cycle shown in Fig. 5. ThoughDf is small, its effect is
cumulative: it should be multiplied by the number of ha
cycles taken into account. This cumulative range of ph
change inv1 should ultimately exceed the phase differen
for any two successive half-cycles, as estimated withf r
51.0 for a fixed value ofE. ~In arriving at an estimate of the
phase difference for any two successive half-cycles, we s
ply assume that, for a fixed value ofE, this phase difference
can be equated to the product off r

21 and half the phase
difference for the first two successive full cycles, as co
puted atRlo and shown in Fig. 12 forf r50.01.! The number
of half-cycles required for this to occur is fairly small com
pared not only to the number required for the transition
become likely but also to the number required for the cha
in phase ofv1 to exceed 2p if E is fixed. For example, in the
case of the transition from the state withn515 andL58,
this number is only;60, as compared to;1500 and;160.
In most other instances, the relative values of these th
numbers are even more favorable to our argument. It th
fore seems reasonable to conclude that the width of the
tial state should ultimately cause the phases of most of a
of multiply reflected wavesv1, each evaluated after th
completion of an integral number of half-cycles, to be effe
tively random.

The preceding discussion is only indirectly relevant to t
question at hand. The relative phases of manycontributions
to v2, each produced during a different half-cycle of motio
not the phases of many successive values ofv1, are what are
directly relevant to our estimates of transition rates. Res
of some calculations pertinent to this question are shown
Figs. 13 and 14. Figure 13 shows the absolute value of
phase ofv2 at Rlo after two complete cycles relative to it
phase after just one complete cycle. The sign of this rela
phase is identified in every instance. As before, results w
obtained withRs5Rs

(2) and f r50.01. Unfortunately, both
the magnitude and the sign of this phase difference vary w
L. However, the behavior of this phase difference seem
become less complicated asf r becomes larger. Figure 1
shows this phase difference—though on a different scale
f r50.001, 0.01, or 0.1. It seems possible to extrapolate
results shown in Fig. 14, and obtain more or less relia
guessed values of the phase difference iff r51.0. We believe
the results in Figs. 12–14 suggest that in the realistic c
f r51.0 the range of the~presumably evenly spaced! phases
of the contributions to v2 after not too large a number o
half-cycles, as computed for a fixed value ofE, should be
comparable to the net change in the phase ofv1. We further
believe it would be reasonable to assume that these pha
like the phases of values ofv1 obtained after integral num



te
ial
co
lf

a
o
b
a

be
ls
ob
ir
a

ates
cise

ear
p-
d—
me

der
e the
e-

.
ns
cor-
ran-
first
e
le,
ar

lti-

ccu-

rn
ir-
r-

s
lity
ry
er

ons
at
ap-
: it

ly
e
he

f

a
ed

n
im-
-

lin

le
c

s
w

PRA 58 227FRANCK-CONDON PRINCIPLE AND THE HADRONIC . . .
bers of half-cycles, would become effectively random af
not too large a number of reflections if the width of the init
state were to be taken into account, thereby causing the
tributions to the transition amplitude from separate ha
cycles ofp̄ motion to be incoherent.

IV. DISCUSSION

A. Auger rates for metastablep̄He1

We have used the modern BO approximation to estim
Auger rates for some unrealistically low-lying states
p̄He1. The question arises as to whether it could also
used to calculate rates for the metastable states, which
much more highly excited. We believe that this could
done, at least in principle. But as explained below, we a
believe that it should be done with the golden rule, not pr
ability currents. Such a calculation would, of course, requ
traditional BO wave functions and energies. These have

FIG. 13. The absolute value of the phase of the inward-trave
wave v2 on the lower diabatic surface atRlo after two complete
cycles relative to its phase at this point after just one comp
cycle. The sign of this relative phase is identified in every instan

FIG. 14. The phase of the inward-traveling wavev2 on the
lower diabatic surface atRlo after two complete cycles relative to it
phase at this point after just one complete cycle, as computed
different values of the multiplicative factorf r .
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ready been calculated precisely for the metastable st
@25,26#; and it seems possible to obtain, if necessary, pre
electronic BO functions for the final states@35#. Nonetheless,
a golden rule calculation for a metastable state would app
to be difficult—perhaps even ill advised if the two-state a
proximation used in the present paper were to be retaine
and we briefly mention some of the problems, and also so
of the advantages.

One problem is the possible importance of second-or
effects. The states in question are metastable, not becaus
perturbing interaction is in general especially small, but b
cause the final electron—which has a low energy~substan-
tially less than 1 a.u.! and a high angular momentum (DL
>4)—has very little overlap with the initial electron
Though taking into account only first-order transitio
should lead to estimates that are at least approximately
rect, the very low rates seem by themselves to be no gua
tee that these estimates would be highly accurate. The
rate estimates for metastablep̄He1 were made using som
very simple variational wave functions and the golden ru
with the initial electron wave function having no angul
dependence on the position of the slowly movingp̄, and with
the perturbation being the electrostatic interaction of mu
pole orderDL between thep̄ and the electron@36#. Subse-
quently, rates have been computed using vastly more a
rate variational wave functions@37–43#. But to our
knowledge there has, within the framework of the mode
BO approximation, been no reliable determination that v
tual transitions of lower multipole order to and from inte
mediate states introduce no significant correction.

Metastablep̄ orbitals are circular or nearly circular. A
illustrated in Fig. 8, rate estimates obtained with probabi
currents for relatively low-lying circular orbitals are not ve
accurate. If only for this reason, we believe that an Aug
calculation for metastable states using BO wave functi
should employ the golden rule, not probability currents. In
least one respect, the modern BO approximation would
pear to be especially suited for a golden rule calculation
distinguishes that part of thep̄-electron interaction which is
responsible for the transition from that part which mere
distorts the initial and final wave functions. It would b
analogous to the distorted-wave Born approximation. T
Hamiltonian for thep̄ would be written in the form given in
Eqs.~5! and~6!, but with M now being the reduced mass o
the p̄ and the He nucleus, and withV(R) now being

V~R!5S 2
2

R
1e1~R! 0

0 2
2

R
1e2

D ,

wheree1—which now depends onR—is the energy of the
adiabatically varying initial electronic state, as obtained in
traditional BO calculation. As with the transitions consider
in the present paper, the energye2 of the final electronic state
should be constant and equal to1

2 k2 because this state is i
the continuum. The unperturbed wave functions would s
ply be p̄ functions computed with the traditional BO ap
proximation. The perturbing interactionH8 would be given
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by Eq.~6b!. A second advantage of a golden rule calculat
using the modern BO approximation is that center-of-m
corrections of the type discussed in Ref.@16# are included
implicitly in the expression forH8 if the electronic BO wave
functions are computed precisely.

The interactionH8 and its matrix elements would prob
ably not be easy to calculate accurately for highly exci
states, even if only first-order transitions have to be ta
into account. Unlike the estimates presented in the pre
paper for relatively low-lying states, the calculations cou
not be carried only to lowest nonvanishing order inR, which
means that the determination ofA would be more difficult,
largely because“Rc1(R,r ) would no longer be independen
of R, as it is in the calculations outlined in Sec. II C. Mor
over, because of the large change in thep̄ angular momen-
tum, it would be necessary to determine accurately that v
small part ofH8 which transforms under rotations about t
z axis as exp(2iDLf).

B. Exotic atom formation

We now present a summary and a slightly more deta
discussion of our conjecture about the role in EAF of ph
differences due to angular motion. This conjecture, wh
was made in Sec. III E 3, is based in part on~i! our conclu-
sion in Sec. III D 2 that an Auger transition from a low-lyin
level of p̄He1 can be thought of as occurring at rather we
defined points, in accord with the FCP, and~ii ! our estimates
of a large, L-dependent angular separationDF2 between
such points, as shown in Fig. 11~b! for Kepler orbits. How-
ever, we must acknowledge that our estimates of Auger r
using the modern BO approximation and probability curre
do not really demand that phase differences due to ang
motion be important inp̄He1. As explained in Sec. III E 4,
our estimates can very likely be made to agree fairly w
with the golden rule by taking into account only phase d
ferences associated with radial motion, together with
width of the initial state. But our calculations are entire
consistent with the presence of phase differences due to
gular motion, and we believe their presence is in f
strongly suggested. These results—together with the re
larities in x-ray yields reported in Refs.@4–9#, which we
suspect are due to interference—have prompted our con
ture about EAF. Specifically, we have conjectured that
x-ray data can largely be accounted for by a difference
angular action along different paths leading to the same fi
state. Furthermore, we have suggested that the phase d
ence due to this difference in angular action could be e
mated by employing classical trajectories for the initial sta
and a classical orbit for the final state, much as we have d
with Kepler orbits forp̄He1 in Secs. III E 2 and III E 3.
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Our conjecture is contingent upon EAF being a nonre
nant reaction. We imagine EAF as occurring during just o
simple, almost classical collision of the stopping hadron
muon with the capturing atom. Even though it is a reacti
not a decay, there are clear similarities to the sort of Au
transition considered in the present paper. As noted in Se
it has long been widely believed that EAF is an almost ad
batic process; so it should be possible to describe it wit
the framework of the modern BO approximation. As w

have concluded for Auger transitions inp̄He1, the FCP
should be relevant: one should be able to think of EAF
occurring during radially rather well-defined encounters w
an avoided crossing. Presumably, there would be just
encounters, not the large numbers considered in the pre
paper. Therefore, one should be able to think of the transi
amplitude as a coherent sum of two contributions, one p
duced as the stopping particle first moves inward toward
nucleus of the capturing atom, the other as it then attem
to move away. There might be a significant differen
in phase between these two contributions. In general,
difference could be due to both radial and angular motion
the present paper we have found, for the special case
successive encounters with an avoided crossing in low-ly

levels ofp̄He1, that there is only a small difference in pha
due to radial motion, but we have found there is a lar
L-dependent differenceDF2 due to angular motion.

The present calculations give no clear indication as
how theL dependence ofDF2 would vary with atomic num-
ber in the case of EAF. But it does seem reasonable to ex
that there could be a significant dependence. This phase
ference should be determined by the size and shape o
adiabatically varying effective radial potentials experienc
by the stopping particle in both the initial and final state
and also by the energy this particle loses when it is captu
The detailed behavior of these potentials, as well as the
ergy loss, should depend on atomic number.~The possible
relevance of atomic size to EAF was noted many years
by Condo @44#.! The very fact thatDF2 could depend in
more than one way on atomic number is itself encouragi
because x-ray yields accompanying EAF, unlike most sh
dependent properties of atoms, appear to vary more or
smoothly in the vicinity of closed shells@4–6#. This suggests
that more than one atomic property must be taken into
count. These questions are being investigated.
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