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Franck-Condon principle and the hadronic and muonic Auger effect
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Auger rates are calculated for some unrealistically low-lying states of antiprotonic helium. Two methods are
used. One method, which makes use of hydrogenic functions and the golden rule, should give accurate rates.
The other method treats the Auger process as inelastic scattering in one dimension. It makes use of a two-state
approximation and the modern Born-Oppenheimer approximation, and it relates the transition rate to a ratio of
probability currents for radial motion on two coupled one-dimensional adiabatic potential surfaces with an
avoided crossing. In most instances this method leads to good agreement with the golden rule if only one
traversal of the crossing is taken into account, and it demonstrates that the transition can be thought of as
occurring at a rather well-defined radial separation betweeﬁtmd the nucleus, in accord with the Franck-
Condon principle. It is found that taking into account many traversals of the crossing would lead to fairly good
agreement with the golden rule if the phases of the separate contributions to the transition amplitude from these
traversals are effectively random. It is argued that radial grethapg angular motion would ultimately
produce the requisite phases if the finite width of the initial state were to be taken into account. The calcula-
tions for antiprotonic helium are then used as the basis for a conjecture that a phase difference associated with
the angular motion of a stopping™, =, or K~ might largely account for the very striking, shell-dependent
regularities that have been observed in x-ray yields from exotic atoms formed in heavier elements.
[S1050-294{@8)02307-3

PACS numbd(s): 36.10—k

I. INTRODUCTION paths leading to the same final state might account for the
very striking, shell-dependent regularities in x-ray yields
This paper is motivated in part by the belief that thefrom muonic, pionic, and kaonic atoms that became the fo-
Franck-Condon principléFCP), which was first enunciated cus of much attention many years ago after Wiegand and
to account for variations in the intensity of molecular bandGodfrey conducted a systematic study of negative kaons
spectra[1,2], must also govern Auger transitions in highly stopping in pure elemenig—6].
excited states of exotic atoms. In either instance there is a It was found in Refs[4—6] that the angular momentum
sudden, drastic rearrangement of an otherwise almost adigf the captured particle is correlated with the position of the
batically varying electronic structure. The basic idea of FCPcapturing atom in the Periodic Table, with a relatively high
is that the drastic change in the motion of the rapidly movingbeing more likely near closed shells. Later studies, mostly of
electrons occurs so quickly that the much more slowly mov-muons stopping in chemical compounds, revealed another
ing massive particles—whose motion is in most instancegapparently relatedshell effect, this one involving the total
nearly classicalin the sense that their positions and mo- capture cross section, which was found to be relatively small
menta can be thought of as being simultaneously rather wetiear closed shells7—9]. We note that these effects are con-
defined—experience very little impulse. As a result, a tran- sistent with there being some mechanisntausing capture
sition tends not to proceed unless the massive particles ad particles with relatively lowL to be suppressed near
momentarily situated so that their momenta are nearly thelosed shells. We further note that this would be consistent
same in both the initial and final states. with there being some sort af-dependent interference that
The FCP is ordinarily thought of only with regard to ra- also depends on shell structure.
dial motion; and most of the discussion in the present paper EAF is not well understood theoretically, especially with
is with regard to radial motion. We shall, however, raise theregard to the distribution of energy and angular momentum
guestion as to the possible relevance of angular separation the newly captured hadron or muon. This has occasionally
between points on a two-dimensional classical trajectorypeen noted in the literatuf@0,11. The number of theoreti-
where a transition can be thought of as occurring, especiallgal papers on EAF is vast, stretching back over half a century
a transition that occurs during exotic atom format{&hF). [12]. Even within the past few years there have been more
Although most of the calculations in the present paper arénvestigations/13—15. A variety of approaches have been
guantum-mechanical and are for radial motion alone, weemployed, many of them making use, in one way or another,
shall in some instances speak in terms of classical traject®f the assumption that the stopping particle behaves in some
ries in two dimensions, and we shall assume that it would beespects like a classical particle. Also, it has long been rec-
meaningful to associate quantum-mechanical phases witbgnized that the response of the electrons in the capturing
such trajectories, as has been done for some chemical reaatom to the stopping particle is in some respects almost adia-
tions[3], though usually in just one dimension. Specifically, batic. However, the possibility that in some instances a de-
we shall conjecture that a phase difference due to differentisive role might be played by interference between two dif-
angular momenta on segments of different, almost classicdérent contributions to the transition amplitude—each
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associated with a fairly well-defined position of the stoppingfor the p, treated as a classical particle, to complete an inte-
particle, in accord with the FCP—seems not to have beegral number of half-cycles of motion in the initial state. Fur-
considered in any previous study. The present paper seeks fifermore, theangular action that would be associated with
establish that this possibility is entirely consistent with anthe nearly classical motion on the adiabatic surfaces is used
elementary example of the hadronic Auger effect. in some instances to estimate quantum-mechanical phases

For simplicity, we restrict our attention to hypothetical and phase differences that might be present if the time-
instances for which the calculation of Auger rates becomeslependent transition amplitude were to be expressed as a
relatively easy, but our primary purpose is to uncover feasum of terms, each associated with a different, more or less
tures of Auger transitions that might be important in EAF.classical, path leading to the same final s{&@0,21.
We present no calculations for muonic, pionic, or kaonic Our probability currents are computed using Born-
atoms. Instead, we restrict our attention to antiprotonic he©OPpenheimer(BO) wave functions, but within the frame-
lium (pHe"), which consists only of a helium nucleuspa  WOrk Of the modern BO approximatiof22,23. There are

: L -~ two reasons why we use BO functions. One reason is that
with large principal quantum numb&, and an electron in

it d state. M for this at K their use is conceptually convenient: in principle, the final
IS ground state. Moreover, even for this alom we make SOMgq .ty wave function can be related to the time-dependent
simplifications. We assume the mass of the helium nucleu

L . g _ CleU& ansition amplitude, and the relative phases of the contribu-
to be infinite, which frees us from having to include a Fried- . . . —

i ) ] — tions to this wave function from separate encounters opthe
Martin correction16]. Although our calculations gb radial  ith the avoided crossing can be specified approximately in
motion are in most instances quantum mechanical, we rgrms of integrals of a diagonal element of the vector poten-
quire N to be large enough so that titenperturbediradial g that characterizes the modern BO approximation. The
motion is almost classical, except for circular and nearly cirsecond reason is to call attention to some of the difficulties,
cular orbitals. We also require the energy difference betweegnq also to some of the advantages, of using BO functions
adjacent principal levels to be large enough to permit Augepng the modern BO approximation to calculate Auger rates
ejection. Specifically, we consider only instances in whichfor the much more highly excited states mifle’ that have
N=10 or 15. Thep mean orbital radius is then at least 15 actually been observgd 7).
times smaller than that of the electron, which greatly simpli- The electronic BO wave functions used in this paper are
fies the computation of wave functiori@hese examples are ot exact. Though it is possible to determine the adiabati-

indeed hypothetical becaupéle” with N<15 does not ex- cally varying electronic BO function fopHe™ precisely for

ist: the p is initially captured into an atomic orbital with the initial statg 24,25, the calculation would be lengthy, and

much highemN and, sooner or later, is annihilated before it for this reason we use first-order perturbation theory. The

can reactN=15[17].) final electron wave function is approximated with a Coulomb
Accurate Auger rates for these simple hypothetical exawave. Our electronic functions are believed to be accurate

amples are easily computed with the golden rule, and wenough for the low-lying transitions considered here.

shall use these rates as a basis for comparison. In our golden Our calculations are carried only to lowest nonvanishing

rule calculations the wave functions for the unperturbedyrger in thep-nucleus separation. We use atomic units.

states are assumed to be hydrogenic, and the perturbing in-

teraction is assumed to be the dipole electrostatic interaction

between the electron and t& Though we present no sys-
tematic description of these calculations, which are similar to Section 1l is devoted to a calculation of wave functions.

ones performed many years ago for muonic atoms by BurThe initial and final states of the, together with the vector
bidge and de BordEL8], we will note from time to time the  potential necessary to specify the nonadiabatic coupling be-
Slmllarlty of some of their features to those of the CalCUla'tween them, are discussed in Sec. Il A. Our approximate
tions that are the subject of most of the present paper.  electronic functions are presented in Sec. Il B. These func-
In this paper we devise another way of computing Augeftions are then used in Sec. Il C to estimate off-diagonal ele-
rates in order to argue that a transition can usefully benents of the vector potential. Section Il D is devoted to three
thought of as occurring at a fairly well-defined radial sepa-equivalent sets of coupled differential equations, each de-

ration between the and the nucleus, in accord with the scribing the radial motion of the, but in different ways. The
FCP.(A preliminary report of these calculations has alreadyfirst of these, which is a set of equations obtained directly
appeared19].) Our estimates of Auger rates are made usingrom the modern BO approximation, contains first deriva-
probability currents forp motion on two coupled one- tives in its coupling terms. The second set is obtained from
dimensional adiabatic potential surfaces with an avoidedhe first by a unitary transformation that achieves a diabatic
crossing. We are able to use probability currents because thiepresentation in which the coupling terms contain no first
motion on the adiabatic surfaces is almost classical in somderivative, thereby ensuring that the sum of probability cur-
instances. In effect, we treat an Auger transition between twoents remains precisely constant. The third set is obtained
almost stationary bound states as a Landau-Zenefrom the second by another unitary transformation that re-
Stickelberg(LZS) process, which is ordinarily thought of as sults in equations for motion on adiabatic potential surfaces,
a special type of inelastic scattering. We shall regard thevhere the radial motion is almost classical in some instances.
probability current for the final state as being proportional to  Section Ill is devoted to the calculation of Auger rates, in
the absolute square of a time-dependent transition amplitudejost instances with probability currents. As outlined in Sec.
with the time in each instance being the total time requiredll A, our calculation of an Auger rate using currents begins

Outline of paper
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with a truncated set of starting values of a regular solution ofvary linearly withf,. The only exception is a phase differ-
the radial wave equation fqu motion on the diabatic sur- €nce shown in Figs. 13 and 14. This exception is carefully
faces, obtained at a very small radial separation by usin§iscussed in Sec. Ill E 4.

procedures described in Sec. Il D. These starting values are

chosen so that there is appreciable relative amplitude on only Il. WAVE FUNCTIONS

one of the two surfaces. It is combined with another suitably We work within the framework of a two-state approxima-
chosen, independent set of starting values to give a travelingy, and we use some of the mathematical apparatus of the
wave initially moving outward, but only on the one surface. modern BO approximation. The initial and final electron
The wave is determined at larger separations by numericgave functions are denoted I (R,r) and¢»(R,r), where
integration of coupled differential equations. As outlined iny js the position of the electron. Both functions are assumed
Sec._III B, approximations of several successive ref!ectlon§0 depend adiabatically on the positieh of theE as in a

of this wave are found by further numerical Integration. 1Ny~ gitional BO calculation. The initial electron is bound in a
Sec. lll C, some arguments are presented to justify a preI'm"lightly distorted & state. The final electron is in the con-
nary expression for the Auger rate in terms of unreflecte inuum with momentunk' In most applications of the BO
outgoing currents on the diabatic surfaces. This expression 'z?pproximation, electronié energies depend in a significant

batc surfaces. A brief ciscussion of AUGer rates n terms f/2Y O (e SPACIT) between the massive particles, but we
) 9 can write them here simply as

time-dependent probabilities rather than probability currents

is also included, partly to emphasize some of the shortcom- (initial electron energy=e; = — 1,
ings of our two-state model, and partly to note the seeming
importance of the contributions to the actual time-dependent (final electron energy= e,= + k.

transition amplitude from separate half-cycles (@most

classical Hmotion. Numerical estimates of Auger rates ob- This is correct by definition in the latter instance and correct
tained with probability currents are presented in Sec. Il D.to first order inR in the former. The final electron wave
These estimates are made using reflected as well as unrnction ¢ is, of course, degenerate with respect to a non-
flected waves on the adiabatic surfaces, with further suitablédenumerably infinite number of other states. This will be
modifications of the expression for the Auger rate. Our nudaken into account later in estimating transition rates, but it is
merical results, together with some considerations prompteflot taken into account in our BO calculations, as we are
by work of chemistg3,20,21, lead us to conclude that the restricting ourselves to the consideration of just two coupled
actual time-dependent transition amplitude can be thought dftates. Some of the complexities associated with degenera-
as a sum of many terms, all of them of nearly equal magni€ies in @ modern BO calculation are ignored hié).

tude, and each of them due to a radially rather well-defined The initial and final states of the are denoted b (R)

encounter of thep with an avoided crossing between two and¥,(R). They are assumed to be nearly hydrogenic with
adiabatic potential surfaces, in accord with the FCP. It is
concluded in Sec. Il E that effectively random phase differ-
ences between the contributions from these encounters must
exist if agreement with the golden rule is to be achieved, and

(initial principal quantum numbegs= N,

(final principal quantum numbgs N— AN,

it is argued that radial angberhapg angular motion of thq; (initial angular momentum arzl componenit= L
would produce the required differences if the finite width of '

conjectured that phase differences due to angular motion
might be important in EAF, and that they could be estimatedf transitions are caused predominantly by tB& interac-

using classical mechanics. _ _tion, as should be the case if tpeis deep within the atom,
The discussion in Sec. IV is devoted to two items. One ipe injtial and final angular momenta can differ by only one

the possibility of using the modern BO approximation in a it Golden rule calculations show that transitions with a

golden rule calculation of Auger rates for the highly excneddecrease irﬁ angular momentum are much more favored

states opHe" that have actually been observed. The other ispan those with an increas@his can be understood in terms
our conjecture that phase differences due to angular motiogs he FCP[19].) The reason for assuming that the angular
might account for the experimental results reported in Refsq,omentum and itz component are equal to each other in
[4-9]. , . both the initial and the final state is that the rate for a tran-
One other matter is worth mentioning here. Many of oUrgjiion hetween these two states is equal to the rate obtained
numerical results depend on a multiplicative factor denoteci)y taking into account all possibtecomponents of the ini-

by f,. As explained in more detail in Sec. Il D 4, our com- 5| and final angular momenta, with a sum over the latter
puter program was unable in most instances to obtain solusnq an average over the former.

tions of the radial wave equations unless the perturbing in-
teraction responsible for Auger transitions was multiplied by
f,<1.0. In most instances we skt=0.01. We believe this
procedure did not lead to any significant inaccuracy, because In all of our calculations the final electron energy is

in almost all of our calculations the transition amplitudes andassumed to be such that the two BO statg(R) ¢ (R,r)

the relevant differences in energy and phase were found tand¥,(R) ¢»(R,r), have equal energies, as computed in the

A. Antiproton wave functions
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traditional way without taking into account any coupling be-

tween them. However, our computation'¥f, and¥, does

take into account coupling. We write the initial and fir[_al
wave functions in the form
)- 1

Wﬂm»}
¥,(R)] R

u1(R)Y_ L (R)

‘I’(R)=< .
Ua(R)YL -1 -1(R)

Later in this paper, in Sec. lll, radial wave functions obtained

by a unitary transformation from the functiong and u,

appearing in Eq(l) are used to estimate Auger rates. To

computeu, andu,, we employ the modern BO approxima-
tion, and weattemptto regard the two-component column
matrix ¥ as an eigenfunction of the effective Hamiltonian

1
[P=A(R)]-[P-A(R)]+V(R),

Hett =5y 2
whereM is the mass of thq?, andP, A, andV are
(1 0
P=-iV 0 1)’
A(R)—( 0 A12(R)) 3
Ax(R) Ax(R)/)’
2
- ﬁ + €1 O
V(R)= )
0 - ﬁ"r‘ €y

The matrix A is the vector potential characteristic of the
modern BO approximatiof22,23. Its elements are defined

by
Amn=A:m=if d* yn(RDVeyn(RI), (4

whereVy, is the gradient with respect . Its off-diagonal
elements are responsible for coupling betweengh&ates

¥, andW¥,. As discussed later, in Sec. Il D 1, there are other

states coupled t&, and¥,, but we shall ignore them. The

FRANCK-CONDON PRINCIPLE AND THE HADRONIC ...

207
Heﬁ:H0+H,, (5)
where
Hy= 1 P-P+V(R 6
TV (R), (63

H’:%[—P-A(R)—A(R)-P+A(R)-A(R)]- (6b)

Except for the constant terneg ande, in V, the elements of
the diagonal matriH, are energy operators for a particle of
massM moving in the Coulomb potentiat 2/R. We shall
obtain coupled differential equations describing motion that
takes into account onlgi) those eigenfunctions of the (1,1)
element ofH, that are proportional t&/ | , and (ii) those
eigenfunctions of the (2,2) element that are proportional to
Y_-1.-1, the coupling being due to the perturbatiéti.
Furthermore, as outlined in Sec. 11 D 4, we shall require the
radial functionsu, andu, appearing in regular wave func-
tions of the form given in Eq(1) to resemble hydrogenic
functions with principal quantum numbeksandN—AN.

The diagonal elemer;; vanishes becaus#; has con-
stant phas¢27]. Though the diagonal elemeAt,, does not
vanish, we shall assume in our calculations that

Ax(R)=0. (7)
This simplifies the calculations, and we believe it should not
significantly affect our estimates of transition rates with un-
reflected waves. However, the calculation of rates using re-
flected or multiply reflected waves is an entirely different
matter, and the possible relevance (af suitably modified
form of) A,, to interference effects is discussed later, in Sec.

Il E 3. To compute the radial functions; andus, in theE
wave functionW, it is first necessary to obtain an explicit
expression forA,; using suitable approximations 6, and

;.
B. Electron wave functions

We approximate the initial adiabatic electron wave func-
tion as

P1(R.1) = this(r) + ihp(R,1),

diagongl elements of are the sums of the potential energy \ynere
of the p in the field of the doubly charged nucleus and the

initial or final electron energyH¢s can be obtained using

YN =Rys(r)I\Adm, Rygr)=2e",

standard methods if the final electron state is treated as a

nondegenerate bound state. As usual, a small term involving

other electronic states has been neglected. We notédthat

Pp(R1)=Ry(R,1)\3/4m P1(R-T).

is the Hamiltonian for a model that is not realistic. The actualThe term ¢4 is, of course, the normalized ground-state

initial state ofEHe+ is not stationary. In our model it is one
of just two components of what will prove to be approxi-
mate eigenfunction ofH ;. We shall use this approximate

eigenfunction of the Hamiltonian,

1 1
HO = Jve- =,

eigenfunction in Sec. Ill as a starting point to compute an r

outward-traveling wave, which is then used to estimate
transition rate.

a

for an electron bound to an infinitely massive, singly charged

. . : . 0 -
The following equations are pertinent to the approxima-nucleus. We regart ) as taking into account not only the
tions that will be made in Sec. Il D 1, and they will also be interaction of the electron with the doubly charged nucleus,

referred to in Sec. IV AH 4 can be written in the form

but also(approximately its EOQ interaction with thep, the
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latter interaction being equated tor ldven if r<R. (H o Fakn .

and ¢, are also the unperturbed Hamiltonian and initial 4mie! Tt — = Y1(K)Y1(r).

wave function in our golden rule calculatiopnghe distortion

i is assumed to be small and to vary linearly whThere-  There is a one-to-one correspondence between this term and
fore, ¢, is normalized to first order iR. We estimateR,,,  y., which means that the density of states, as a function of
the radial amplitude ofj,, with first-order perturbation  is the same for both. For these reasons we find it conve-
theory. We take into accourtapproximately only the E1  pjent to approximatey, as

interaction between the electron and fhethis interaction
being equated to Fa(kr) -
l/fz(k'r):VArﬂ'TYl,l(r)- (1)

2 * 5 -
(4m/3)(RIT )% Yim(R)Y1m(T) As indicated explicitly in Eq(11), we regardy, as beingk
dependent, but with a value that depends only on the magni-

even ifr<R. (This is also the perturbing interaction in our tude ofk, not its direction. Likeygg, it satisfies the normal-
golden rule calculationslt is convenient to write ization condition

Ro(RO=R (RN +R (R, J d3k’fd3r U5 (K d(k,r) = (2m)>.

whereR ) is due to excited bound statest$f”) andR ) is _ _ _ _
P i i o s with ¢4, our choice ofy, is not accurate if <R. Fur-
due to the continuum. A straightforward calculation shows” 1 2 ~R.

that thermore, it does not take into account a small distortion at
r>R associated with the momentary positi@hof the p.
© o Fi(kr) This adiabatic distortion, which would be represented by
Ry (R,r)=Rf0 dk B(k) kr (8)  small added terms due to the saf# interaction that was

taken into account in our approximation t, would be
proportional toR and consequently should be unimportant if

where . . . . . .
the calculation ofA,, is carried only to first order iR, since
K2 " F(kr) V rifs vanishes.
B(k)= —f dr Rls(r)T. 9
V3 (€1~ €) )0 C. Off-diagonal elements of vector potential
F,(kr) is the regular Coulomb wave function formwave The calculation ofA,; proceeds by standard methods. De-

electron with energye,=1k2. Our approximate expression f[erminin.g the components &Ryxl is straightforward. The
for 4, should be rather accurate for most values ofow- integration over electron coordinates that must then be per-
ever, it is not accurate if<R because we have not used the formed is easily_ accomplished ysing orthogona_lity r(_alations.
proper functional forms of th&0 andE1 interactions for The orthogonality of energy eigenfunctions with different

r<R, and also because we have negled&i and higher eigenvalues causeA,; to be independent of bound-state
multipole interactions. contributions toR,,, and the relation

We approximate the final electron wave functigp with " .
a suitable modification of the only important term in the J dr Fy(kr)F,(k'r)== 8(k—k")
partial wave expansion of the function used in our golden 0 2

rule (GR) calculations. That function was ) ) ]
permits the integral ovek in Eq. (8) to be evaluated after the

~Fy(kr) R R integration over in Eq. (4) has been performed. The spheri-
Yer(K- r)=4772|: i'el TE Y m(K)Y) m(r). cal components oA,; are
m
(10 Asrr=C(K)SIN® e i, (129
Yer IS a Coulomb distorted plane wave, and deandF, _ D i
are the usual Coulomb phase shifts and wave functiggg. Agre=C(k)cos® e, (12b
is an eigenfunction oH(®) with eigenvaluee,= k2. It has _ e
Az e=—iC(k)e™'?, (129

unit density, and it satisfies the normalization condition

where

j dgk,f dr Yer(k'-T) per(k-1)=(2m)3.
C(k)=—i(m/k)?B(k)/~2,

Because onl\E1 transitions are important, and also because ] _

we only had to consider transitions between states in whicRnd ® and @ are the angular coordinates of tipe The

the angular motion is described b§  or Y,_,,_,, the Validity of these simple expressions, which are independent

only term in Eq.(10) that gave an appreciable contribution to of R sinceR,=R, depends on the mean orbital radius of the

our golden rule rates is p being much smaller than that of the electron.
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D. Antiproton radial wave equations

1. Equation obtained from modern BO approximation
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(15

[L Bk
_ 32
D=7\ 5571 K2

We now introduce further approximations and obtain a set
of relatively simple differential equations for the functions The precise value oE for a regular solution of Eq(14)
u, andu, appearing in Eq(1). For the time being, we ne- depends orN, L, AN, and the assumed value kf It also

glect the term irH . containingA- A, as it should lead only
to second-order effects. Watemptto write
HeV=EWV. (13

All derivatives with respect to thg angular coordinate®

depends on the assumed relative sigrupfand u, at very
smallR.

We shall refer to the diagonal elemebts andit,, as the
unperturbed initial and final effective radial potentials. It is
argued in Sec. Il that an Auger transition can be thought of
as occurring in the vicinity of the point where these two

and® on the left-hand side of this equation can be evaluateghotentials become equal to one another. The perturbation re-

analytically. It is obvious from Eqs(1)—(3), (7), and (12

sponsible for Auger transitions is proportional 19 (k),

that each term in a given component of the resulting expreswshich appears in the off-diagonal elementsiofWe note

sion has the same dependencedonThis is not true of the
dependence 08. The vector potentiah, as we have written
it in Eq. (12), couples the state¥; and V,, as we have

that even though Eq.14) is for the radial wave functions

alone, the perturbation coupling andu, depends on angu-
lar motion. The term iri4,, containing the derivative with

written them in Eq.(1), not only to each other but also to respect toR obviously is associated only with the radial

states with angular momenta different frammandL —1. We

component ofA,;. But the other term, the one proportional

remedy this difficulty by simply neglecting the coupling with to L/R, is a sum of contributions associated with the angular
these other states. For the purpose of estimating Auger ratespmponents as well as the radial component. A detailed ex-
this should be an acceptable procedure because we are ordynination of these contributions reveals that the one associ-
considering transitions whose rates can be calculated reliablgted with the componer&,, ¢ is relatively quite small un-
using first-order perturbation theory. We eliminate couplinglessL is quite small. But the contribution associated with

to these other states by multiplying both sides of @) by

FLR) 0
0 ¥R

azimuthal motion is relatively large if is relatively large.

This provides part of the basis for a conjecture, outlined in

Secs. Il E 3 and IV B, that phase differences due to angular
motion might be important in EAF and that they could be
estimated using classical mechanics.

_ _ R _ _ Our method of estimating Auger rates, as outlined in Sec.
and '_“tenga“”g OVeR. ngAn(Xe rt}ha’; if we had reta;(r;ehd the Ill, depends on the radial motion of thebeing nearly clas-
term inHeg proportional toA - A, this integration would have  gieq) for certain values oR. If this condition is to be ful-
caused its contribution to vanish. The resulting equation for, . —

filled, it is necessary not only that the local wavelengths

u,; andu, can be written as the eigenvalue equation X . :
! 2 9 q not be changing too rapidly, but also that the coupling be-
tween the electronic states depend adiabatically on the posi-

tion of the p. An approximate description of adiabatic mo-
tion can be achieved by a unitary transformation. The motion
is indeed adiabatic if it is permissible to ignore the off-
diagonal elements in the transformed equation. This is not
always possible; but it is possible to cause the off-diagonal
elements in a transformed equation to be truly important only
for a comparatively narrow range &. Because of the pres-
ence of a derivative in the off-diagonal elementsiffwe
accomplish this by two successive transformations, both ex-
pressed in a familiar general forf@2,28.

(14

where

_ ( Ul(R)) 1= (ull( R) U R))
u(R)/’ Un(R) Uxp(R)/

The elements of/ are given by

CL(L+1) 2

" uRe R

2. Equation for diabatic representation

The purpose of the first transformation is to obtain an
d expression similar to Eq14), but containing no first deriva-
TR/’ tive. We accomplish this by writing

1 d u:UaU, (16)
u21(R):MDL(k) §+d_R)' Where
(L—1)L 2 cosQ), -—sinQ, vl(R))
UpfR) = ———— —=+e,, = . v=
22R) JMRZ R Va (sta cos(), "Tlus(R) (7
where and
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Q=D (KR .
3' L
The equation fow then becomes S 0.00
o
L& =k 18 i
VT (18 = _0.04
m
where the elements of <
o -0.08
B ( Vi(R) Vi R)) b |
VaR) VaoR) =
. 002 004 006 008 0.10
are given by RADIAL SEPARATION (a.u.)
2 L(L+1) 1 2 FIG. 1. The matrix elemenY;, for L=2 and 14, in both in-
V= - R + 2MR2 + 61) CoS 0, W[D'—(k)] stances foN=15 andAN=—1.
(L=1)L ) 1 L . (e,—€;)=2.41 a.u. if N=15 (20)
+ WJr €, | SifQ,+ D) & sin 20,
is small enough in every instance so that the angular motion
1/ L(L+1)—(L-1)L associated with the uppé@ower) component ob should not
Vip=— = +e— 52) sin20, be very different from that associated with the up@lewer)
2 2MR? component of.
+ %DL(k) %cos A),, 3. Equation for adiabatic representation
A description of nearly adiabatic motion is achieved by a
Vo=V second transformation, which we write as
21 12
. 2+ (L—l)L+ 20 1 DT v=Upw, (21)
=——+4+|——+e€]cCO -
* R 2MR? ’ * oM where
+ L(L+1)+ infQ 11) k L 20 s() inQ R)
—_— — — = . in w
SMR2 €1SIM2a= | L( )Rsm a szuglz C‘_J b SINiy , _ 1 .
sinQ}, —cos(y w,(R)

Though more complicated in form, the diagonal elements
V,; and V,, are not very different from the unperturbed ef- It is straightforward to show that
fective radial potentialg/;; andi4,,. SinceV;,=YV,,, the
Wronskian—or, equivalently, the total probability current—
for Eq. (18) is constant. The off-diagonal elementstan UblVUbZWZ(
be thought of as causing transitions from one of the diabatic
potential surfacesy;; or V,,, to the other));, is shown in
Fig. 1 for L=2 and 14, in both instances fod=15 and Where
AN=—1. The range oR in this figure includes all separa-
tions relevant to our calculation¥, is very nearly propor- We=3(Vir+t V) £ 5V (Vii— Vo) *+(2V10)%,
tional to Q,=D, (k)R, which makes it difficult to think of a
transition betwee;; andV,, as occurring at a well-defined  if
separation. Partly for this reason, but mostly becauses
generally not small enough to permit motion on the diabatic

W, (R) o)
0 W.(R)

surfaces to be regarded as almost classical, we SEi” consider sin20,= szz 5 (223
adiabatic potential surfaces, where the motion ofhis in V1= V50 %+ (2V1))
some instances much more nearly classical. We note that the
angle Q, specifying the transformation between the radial Vi Voo
wave functionsu andv, which is given approximately by cos2A),= NOPSYSENEY, 2)2. (22b
11 2 1
VlZ
Qa~ €— € (19 W, (R) andW_(R) are, of course, the usual expressions for

adiabatic potentials with an avoided crossing that appear in
where many discussions of LZS transitions. The equationwois
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. i dz_W + + i % 2 L | ‘| I uppcler adiabaltic potenltial
2M dR2 2M\ dR W 5L {1\ — — lower adiabatic potential |
- Py total energy of system
1/0 -1 40 dw  d20 L \ @ avoided crossing i
b b
+m 1 0) ﬁd—R-f—WW =Ew. (23 -10 -
-15 -
Figure 2 shows the upper and lower adiabatic potentials
W, and W_ for several values oL, in each instance for T T
N=15 andAN=—1. A different energy scale is used for L T T T T [ 7
. upper adiabatic potential
eachL. The total energy of the system is also shown, but - 'l — — lower adiabatic potential |
only for separations classically allowed for both potentials. -0~ 1 total energy of system
In each instance the avoided crossing is located well within i | ® avoided crossing
the classically allowed region, in accord with the FCP. To o0 17
the level of accuracy visible in Fig. 2/, and W_ are !
indistinguishable from the diagonal elementd06r V, pro- i \ » AN=—1
vided the solid and the dashed curves to the right of the -80 - N
avoided crossings are thought of as being interchanged. - L=11
Equation(23), like Egs.(14) and (18), has off-diagonal s s e
elements that cannot in general be ignored. However, the i ! ' ' !
off-diagonal elements in Eq23) depend on derivatives of — T _
Qy, and these derivatives are large only for a relatively g -20 - /N/=1’5 7
small range ofR. As illustrated in Figs. 3 and 4, the off- ~ -l ]
diagonal elements in E@23) are truly important only within > 40 |- ‘\ AN=-1 |
a narrow range, which makes it possible to think of a transi- &D: L g . L=8 _
L . R upper adiabatic potential
tion (or the lack of ongfrom one adiabatic surface to the W g | ' ,°  — — loweradiabaticpotential |
other as occurring at a fairly well-defined separation. 5 D total energy of system
Figure 3a) shows(), for all separations classically al- I L 'flvoilded Icroslsingl L i
lowed on bothW, and W_. This angle, which is nearly !
zero for most separations below the avoided crossing, sud- ] S
denly approaches- 7/2 asR passes the crossing; but then, 50 | N=15 i
for all but the largest, Q, slowly rises a bit. As discussed : |
in Sec. Il D, this slow rise proves to be troublesome in es- | AN=—1
timating Auger rates. A detailed view of the increase(dp -100 1 L=5 N
at largeR is given in Fig. 3b), which also shows its mini- e upper adiabatic potential -
mum. The slight rise if),, at large separations notwithstand- -150 H 7 lower adiabatic potential _
. ’ ; . . N B T S e total energy of system
ing, the overall behavior of this angle, as shown in Fig)3 L/ @ avoided crossing .
together with the very small values ©¥, estimated in Sec. s N R I RN B
II D 2, indicate that, at all separations not too near the cross- ' T T
ing, the angular motion associated with a componentvof N=15 i
should not be very different from that associated with one or -500 ’ n
the other of the components af This provides part of the h AN=-1 -
basis for a conjecture, outlined in Secs. Ill E 3 and IV B, that _1000 - L=2 i
phase differences due to angular motion might be important rI upper adiabatic potential -
in EAF. ! — — lower adiabatic potential
Figure 4 shows three functions that resemble, more or Rl S total energy of system n
less, functions which appear—or can be thought of as r | | ‘a"°i|ded °r°s|5i”9 | 1

appearing—in Eq(23), and which not only depend on a
derivative of )y, but also multiply a component ofi. The
functions shown in Fig. 4 are defined by
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0.02 004 006 008 0.10

RADIAL SEPARATION (a.u.)

211

1

Kc
, T3_W

™

da,
dR

d2Q,

1 [dQ)\?

2M\| dR

T]_:

wherek. is the local wave number far; andv, at the point
where the diabatic potentials;; andV,, cross.T,, T,, and
T4 are all very sharply peaked near the crossifig.is not

FIG. 2. Upper and lower adiabatic potentiadé, andW_ for
several values df, in each instance fo=15 andAN=—1. The
avoided crossing is marked. The total energy of the system is
shown, but only for separations classically allowed for both poten-
tials. A different energy scale is used for edch

being responsible for a very small contribution to the energy
E. We shall refer taV. + T, as a corrected adiabatic poten-
tial. T, causes these corrected potentials to be greater&han

associated with transitions. It is a diagonal term that must bat points very near the crossinD, is a rough estimate of the
added to both adiabatic potentials. It can be thought of asagnitude of7,, which we define as
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FIG. 3. The angl«},, for several values of, in each instance 107" é— —é
for N=15 andAN= —1. (a) For all separations classically allowed E 3
on bothw, andW_ . (b) For a small range of),,, attainable only 10° 3 E
beyond the avoided crossinf),, is shown on a greatly expanded B E ; : ]
. . . . 10 i 4
scale, and its minimum is marked. 002 004 006 008 040

1 dQ, dw; 1 o RADIAL SEPARATION (a.u.)

"M dR dR wy FIG. 4. The functiond y, T,, andT; for several values df, in
each instance fol=15 andAN=—-1. T, andT5; are shown only

This function, which contains the reciprocal wf, can be for radial separations classically allowed on b¥th andW_.

thought of as appearing in qus) and r_nuIt|pIy|ng.w1. . surfaces should momentarily be almost classical at the point
There would, of course, be a similarly defined function with\\hereq), has a minimum, provided the local wavelengths on
the opposite sign multiplying/,. The terms in Eq(23) con-  poth surfaces are not changing too rapidly. However, even
taining first derivatives of botkl, and a component af aré  though T, has no quantitative significance at large separa-
the terms generally believed to be of paramount importancgons, it seems clear that a certain amount of coupling be-
in LZS transitions. Because of our introduction of the wavetweenw, and w, reappears at largR in some instances.
numberk,, the functionT, can have quantitative signifi- This point is discussed again in Sec. lll Dy is the absolute
cance only near the avoided crossing, and even there only fealue of 73, which we define as
a solution of Eq(23) representing a traveling wave; but this
. s L. . . . 2
is not very restrictive, since our estimates of Auger rates in 1 d°Q,
Sec. lll are obtained with traveling waves, and our results are T"’:W 2 (25

' dR
due largely to changes in currents occurring in the vicinity of
crossingsT, vanishes at the point whef@, has a minimum  The function7; appears in Eq(23) and multipliesw. It
and then increases somewhatRabecomes larger. Because varies rapidly near the avoided crossing, where it changes
of the near absence of coupling, motion on the adiabatisign.
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4. Numerical procedures For given values oN, L, AN, andk, there are two regular
A knowledge of any one of the solutions v, or w of solutions, which are linearly independent and which have

Egs.(14), (18), or (23) suffices to specify the other two. As slightly different energy eigenvalues. The ratig/v,—or,

will be explained in Sec. Ill B, aegular solution of Eq.(18) equivalently,u, /u, or wy /w,—is positive at very smalR
was used in obtaining approximate expressions for the r for one solution and negative for the other. The eigenvalues
9 app P ?ror these solutions are denoted By and E~. (Our two-

flections of traveling waves on the diabatic surfaces; as wi : .
Y ' state model bears a passing resemblance to an asymmetric

be explained in Sgcs: ”.I c anq lll D, these reflected WaveHsuble well, the principal difference being that tunneling
were used to obtain similarly directed waves on the ad|abat|f.r0m one well to the other occurs at the crossing point, not at
surfaces, which were then used to estimate Auger rates. FQr .|5ssical turning pointlt was found thaE* —E is véry

these reasons we describe in some detail the procedures u rly proportional td, .

to obtain accurate regular solutions of E¢s4), (18), and For given values oN, L, AN, andk, and for a given

(23). relative sign ofw; andw, at very smallR, the determination
We used Gear's method, as implemented by the IMSLof the correct value o and the correct relative valueswf

(International Mathematics and Statistics Libresybroutine  andw, and their derivatives is equivalent to a determination

DIVPAG, to obtain numerical solutions of one or another of of the vibrational quantum numbaer, for the final state with
the differential equations. It was decided not to integrate Egthe integral value

(14) anywhere because at very smRllits coupling terms

diverge, while at very larg® they are not obviously less

difficult to deal with than those of Eq$18) or (23). It was n,=N—AN-L. (26)
decided to integrate E@18) rather than Eq(23) in the clas-

sically allowed region, since the coupling terms in the latter o o

vary so rapidly near the avoided crossing, but to integratd his matter is discussed again in Sec. lll C 1, wheyglays

Eq. (23) at low separations because its coupling terms thei fole in our estimates of Auger rates.

become marginally smaller. Equatiog23) was again se- Within the framewprk of our modek is a constant. We
lected at the very large separations for which classical mohave already stated in Sec. Il A thet=3k? is assumed to
tion is forbidden, in this instance because the potential®€ such that the energies of the BO states); and W,y
specified by thediagonalelements ofW, to a much greater are the same, provided all coupling between them is ignored.
extent than those of, are not too different from those of N practice we assume thhtis adequately specified by

At extremely large separations, a suitable solution of the

equation foru, with the coupling termét,, andif,, equated

to zero, was calculated with standard methods, and then used Lo am_em 1
to provide approximate starting values for an inward integra- 25 N2 (N—AN)2 2’
tion of the equation fow. A somewhat similar procedure

was used at a very small separation to provide starting values

for an outward integration. _since the initial and final states of both the electron ancpthe
Though we have, in effect, used uncoupled hydrogenig, e nearly hydrogenic. Numerical calculations were always

functions to estimate starting values for regular solutions ofjgne using this expression. This matter is discussed again.
Eq. (23) at extremely small and very larg® the subsequent

outward and inward numerical integrations to the region of
classically allowed motion did take into account the coupling IIl. ESTIMATES OF AUGER RATES
betweenw,; andws,. In the case of the inward integration, the
two pairs of (uncoupled starting values on the upper and  Most of our estimates of Auger rates are proportional to
lower adiabatic surfaces were each multiplied by suitablyatios of suitably specified probability currents for radial mo-
adjusted factors so as to obtain a solution that joined contion of thep on the one-dimensional adiabatic potential sur-
tinuously near the higher classical turning points with thefaces)V. appearing in Eq(23). In essence, what is done is
one obtained by the outward integration. A solution that var-irst to construct, at a suitably chosen small radial separation,
ied smoothly everywhere was then achieved by adjusting thg solution to this equation with a large outward current on
energyE and the relative values of; andw, and their )V, and a negligible current ov/_ . An outward numerical
derivatives at extremely sméR. integration to a suitably chosen large separation is then per-
We were not always able make the preceding schemfyrmed, and the change in the currents is used to estimate the
work without a modification. In many instances our com-transition probability. Further calculations take into account
puter program could not integrate H@3) inward unless the some subsequent reflections. However, before presenting de-
quantity D defined in Eq.(15) was multiplied by a factor tails of this seeminglyd hocprocedure, it is convenient to
f,<1. We usually setf,=0.01. This improvisation ulti- discuss probability currents for a simpler case, motion on the
mately led to satisfactory results because it was found imliabatic potential surfacés; andV,, appearing in Eq(18).
every instance that the probability current assumed to be pro- Obtaining expressions for probability currents associated
portional to the Auger rate varies almost preciselﬁasAll with solutions to Eq(18) is trivial. The procedure is essen-
of the Auger rates reported in this paper that were estimatetially the same as for single-component wave functions, and
using probability currents were computed by settihg the results are essentially the same. The currenfg;pand
=0.01 and then dividing the result 4y . V,, are

(27)
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. i ,dvy dof £1(Rio) = o[ + 72(Ryp)sin 6 cose +a; 71(R)o)cosb],
=~ T GR T aRY) o1
_ . §2(Rio) = as[ — 71(Ryp)sind cosg+a; 7,(R;,)cosb],
i [ du, dud (31b)

£3(Rio) = azl + 74(Rpp)sin b sing—a,73(R)coso],

Their sum is (319
i dv  dot £4(Rio) = az — 73(Ryp)sin G sing—a, 74(Ry)cosh],
ju:jvl+jv2:_m de_R_d_RU)- (28) (Sld)
where

This sum is constant for all values Bfbecause it is propor- 5 o 12
tional to a Wronskian of a second-order differential equation a1 ={[ 71(Rio)]“+ [ 72(R) 17} 75,
containing no first derivative. ) 12
Probability currents can be meaningfully compared to ex- az={[73(Rio) 1°+ [ 74(Ri0) 17} ™5,

periment only if the motion is nearly classical. Because of
this, we compute currents only in the region of positive ki-and
netic energy, which we define for the time being to be the

range of separationR,,<R<Rj,; for which both of the po- =l .
tential energied’;, andV,, are less thai. Vet a2 P o+ a2

A. Unreflected wave on diabatic surfaces The anglesy and ¢ in Eq. (31) can assume any values.

. ) ) _ With the real and imaginary parts of defined to bey?
To compute the desired currents, we first specify a suitynq,b the currents oy, andV,, at R, are

able wave function aR;,. We want to construct a function

that can be thought of—if only in an approximate way—as _ 1

describing purely outward motion. At separations nBar Ju,(Rig) = = 7—-siné cosé,

this motion should be almost exclusively on the surfigg !

We begin by picking aextremely smakeparatiorRy<R,,, 1

and we select the regular solution of E8) at R=R, with jp.(Ro)=———sind sin¢.

energyE=E™, as defined in Sec. Il D 4Choosing the regu- 2 Ma;

lar solution withE=E" results in an estimated Auger rate

almost the same as obtained wHit.) However, we retain

only v, and |t_s derivative. We equatg gnd its de_rlvat|ve to possible. In each instance investigated(R,,) was found to

zero atR,. This truncated solution provides starting values of , 2

a solution that will be denoted hy?. We then integrate Eq. P€ vastly smaller tharj, (Ry,). It was also found that

(18) outward toRy,. At this pointvs has acquired a finite J,(Rio) is much smaller than the currefyf, at separations

value, but it is still quite small compared to what it would nearRy,;, as ultimately determined after an outward numeri-

have been otherwise. For the time being we define the reaal integration.

part of our complex wave functiom to bev?. This definition We now modify our complex wave function. Though this

will be slightly modified later. We represent the componentsmodification has no effect on the relative values of unre-

of v® and their derivatives by a four-component vector func-flected currents at any separati®y the procedure itself

tion n»(R) defined by proves to be useful in obtaining acceptable expressions for
reflected waves. We rewrite as

We choose to specif§ and ¢ by requiring that the currents
at R, be directed outward, and that their sum be as large as

a dvf a dv3
m=vi, m=ggn. M=V mmggn- (29 v=0v+ifo®, (32)

We now determine an independent solutioh to Eq. wheref is a complex constant. Wwe c_ietermiﬁde)y requiring
(18). For the time being we define it to be the imaginary partv to resemble a conventional outgoing wave. We are unable

of our complex wave function. This definition will be dras- :[/Sa?/grii?nttr)ﬁ ;%qeuslrﬁg?igtngﬁ C'Csoerlétgjr:taavxzv\?vewg %ietéotcﬁé
tically modified later. We represent the componentsy Bf '

: o ) . WKB approximation for guidance. We requive when inte-
??Ig) tgz;irnceigrg/; tives by a four-component vector fur]Ctlongrated outward fronRR, to some pointRg where the radial

motion of theE can reasonably be expected to be more or
less semiclassical, to be such thatand its derivative satisfy

dvj dv} )
&1=0%, fzzﬁ, £3=v9, §4=ﬁ. (30)  the relation
dv, . ki(Rs)
We choose to requiré to be orthogonal to at R,. We ar|_ ~iKi(Re)— 2k(RY) v1(Rs), (33
satisfy this condition by writingt(R,,) in the form Rq B
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wherek, andk; are the local wave number and its derivative specifies the components and derivatives of the complex

on the diabatic surfac¥,,, as specified by wave functionv. It is convenient to write it as
4
ki (R)=\2M[E—V;y(R)]. (34) ‘
( [ 1u(R)] g;jZl ax, (37)

Equation(33) is satisfied by a WKB function for outward

motion onVy;. However, it doesiotlead to a unique speci- where thea; are complex constants and thé€’(R) are four
fication ofv becausé then depends somewhat on the choicesyitably chosen, real, linearly independent vector functions,

of Rs. Itis given by each satisfying the equation
R.)—0g4(R R dyd _
f(Ry=i 72(Rs) —91(Rs) 71( s), X ZBX(J).
gZ(Rs)_gl(Rs)gl(Rs) dR

where We choose to require thg!)) to be orthonormal aR
, =R,,. We also require each component of two of these vec-

(R =iky(Ry)— ki(Rs) (35 tors, (¥ and @, to become vanishingly small &— .
91{Fs BT 2kq(Ry) Each component of the two remaining vectors should di-

verge in this limit. Because our Auger computations are done
Several values dRg were employed in our numerical cal- with E equated to the eigenvalle" of Eq. (18), we choose

culations. They are the components of*) to be proportional to the components
@ ) ) . and derivatives of the regular solution of this equation with
Rg”=R atfirst maximum ofv, |, (363 this eigenvalue, as obtained using the procedures outlined in

Sec. 11 D 4. The components ¢f?) at R, are equated to
R#=R atfirstnode ob; with R>R,,, (36b)  expressions almost identical in form to those used in(&4).
to specifyé(R,,), the only difference being that the compo-
Rs<3)= R atfirstnode ob, with R>R,,, (360  nents ofp(R,) are replaced with those af*(R,,); and the
anglesd and ¢ in these expressions are then adjusted by trial
R¥=R atsecond node af; with R>R,,, (36d  and error until each of the components @) vanishes as
R—o, as determined by numerical integration wigs-E .
R(®=R atsecond node of] with R>R,,, (368  However, the components af?), unlike those ofy®, pre-
sumably all diverge aR—0. The remaining two vector
wherev; andv, are the components of the real, nearly functions, x®® and x*), whose components presumably all
hydrogenicregular solution to Eq.(18) obtained withE  diverge not only aR— but also aR—0, are then deter-
=E™. In every instance considered, the real and imaginarynined in a straightforward manner by requiring thatRa
parts of f are roughly equal in magnitude, with 18<|f|  both of them be orthogonal tg!*) and x?) and also to each
<1072 |f| decreases with decreasing angular momentumgther. Once the four orthonormal vectop!(R,) are
but it is fairly insensitive toRs. Our estimated Auger rates known, the complex coefficients; in Eq. (37) are readily
prove to be not very sensitive to the choiceRyf. (There is ~ determined.
no dependence oR; if the rates are estimated using unre- A complex vector functiony”(R) specifying the compo-
flected current$.Most of the rates reported in this paper nents and derivatives of the reflected waveis written as
were computed using{? . .
M= (1)
B. Reflected waves on diabatic surfaces ¢ jzl oI (39
Some of our estimates of Auger rates will be made with,here
waves that have undergone one or more reflections. For this

reason we now obtain an inward-traveling wavethat can dv} dv)

be thought of as being due to the outward-traveling wave G=vi, O=gge (BT GegRe
specified by Eq(32). As with v, our expression fos" is not

unique. The complex coefficienty; in Eq. (38) are determined by

In order to specify", it is convenient to rewrite our €x- requiring ¢' to satisfy appropriate conditions. We require
pressions fow and the differential equation that it satisfies. gach component of the combined wave functiohv' to
We work with the entirely equivalent relations vanish asR— . This leads to

; d¢ b;=—a b,=—a
= —_—= 3 3 4 4 -
[=n+ité, G5=B,

The two remaining coefficientd; andb,, are determined
where » and ¢ are the vector functions defined in E429) by requiringv andv) to resemble inward-traveling WKB
and (30), f is the complex constant appearing in E§2), functions at some suitable separation. In a manner very simi-
and B is an R-dependent matrix whose elements are easiljar to our determination of the constahtin Eq. (32), we
obtained from Eq(18). The complex vector functiog(R) choose a separatid®;, where the relations
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not too far fromR, and Ry;, and to the extent that the
computed current;';,}l andj,,2 do not change very much as

Rio, andRy,; are then allowed to approaét), andRy,, the

probability of a transition during the first half-cycle of tipe
orbital motion should be proportional to the ratio of currents
in Eq. (40). As explained later, the assumption about motion
being nearly classical not too far froRy, is not fully justi-

can reasonably be required to be satisfied. The local wave.q tor the potentialg’;; and V..

numbersk; andk, in Eq. (39) are defined either by E¢34)
or by

Ko(R)=V2M[E—V,(R)].

(i) The factor 2 in EQ.(40) is due to there being two
paths possible for @ with an angular momentunh #0
whose initial radial motion is specified at some point. One
path is clockwise, the other counterclockwise. Although we

The calculation ob; andb, then becomes straightforward. obtained Eq(18) by assuming that the initiad component of
Subsequent reflections are taken into account in a similathe p angular momentum is-L, it can also be obtained with

fashion.

C. Preliminary expressions for Auger rate
1. In terms of currents on diabatic surfaces

For reasons presented below, teatativelywrite a semi-

—L. To put the argument another way, the factor 2 takes into
account the fact that Eq18) is compatible with the com-
ponent of the final electron angular momentum being either
+1or—1.

(iii) The factorf, in Eq. (40) is the number of final elec-
tron states per unit energy. The need to incldden our

classical estimate of the Auger rate in terms of currents omstimate of the Auger rate arises from an obvious inadequacy

the diabatic surface®,;; and),, as

j v2( Rhi)

Ra=2feloln ] Ry
U1

(40

The factorsfe, f};, andf, in Eqg.(40) are defined by

27 2
fo=4mp(ey), fp=7—2, f71=7_—1, (41
where
\/262
(€y)= (42)
Pl €z (277)3
and
_wN® ~ w(N—=AN)® 3
T1= 2M ’ To= 2M . (4 )

7, and 7, are the periods of thg for the initial and final

states, as calculated with classical mechanics for Kepler or-

bits with energies

™M oM
N2 N2 (N—AN)?

En,= (44)

En, and En, are the quantum-mechanical energieq;_)(vﬁith
a principal quantum numbét or N— AN bound in a hydro-

genic state to an infinitely massive, doubly charged nucleus.
Though Eq.(40) proves to be unsatisfactory, it provides a

convenient starting point for a more accurate estimate of the
Auger rate. The arguments leading to this equation are as

follows.

of our two-state model: the final electron is in the continuum.
(Even with the inclusion of the factof., our two-state
model is expected to give an acceptable result only if the
transition probability is small.Our expression fof ., follows
from the one-to-one correspondence between
k-dependent wave functionggr and ¢, specified in Egs.
(10) and (11). The functionygg is normalized to unit den-
sity, and ink space the number of states in the volume ele-
mentd3k is

the

d3k

(2m)° =p(ex)ded()y,

wherep(e€,) is defined by Eq(42) andd(), is an element of
solid angle. For a fixed total energy

E= EN2+ €p,

the final electron energy, is, at least in principle, specified
precisely once the fina;TenergyE,\]2 is determined.

(iv) The factor f; appears in Eq(40) becauseEy, is
determined in practice by a trial-and-error variation of the
total energyE, with e, assumed to be fixed and specified by
Eg. (27). In principle, howeverEy, is determined by an
integration over a final vibrational quantum numbef,
which can be thought of as varying continuously with an
energyE,’\,z, but which must really be equal to the valog
specified by Eq(26). To obtain our expression fdr,, we
make use of the relation

! 27T !
3(n}=n,) =" &(E},~ Ev),

(i) Probability currents can be related to experiment if thewhich is obtained with the aid of the WKB approximation by
motion is nearly classical. To the extent that radial motion ofassuming that the functional dependencengfon E,Qz is

theEis indeed nearly classical at separatiétys, andRy;_

given by
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(L_ 2)2
2MR?

2

R'

=\2M A e \/EN2
lo

(A somewhat similar procedure is used in the theory of the

classicalS matrix [3].)
(v) The ratio of currents in Eq40) is proportional to a

transition probability, but the equation itself specifies a tran-

sition rate. This accounts for the presence of the faf:19r

The condition specified in the first of the preceding five
arguments is not really satisfied. The wave functiois not

a solution of an equation that can be related to truly classical

motion at largeR. If theamotion is to be almost classical, it

is necessary not only that the local wavelength not be chang-
ing too rapidly but also that the coupling with the other state

be negligible. As illustrated in Fig. 1, the off-diagonal ele-
ments ofV are not truly negligible neaR,,—in fact, they
increase in magnitude with increasify For this reason we
shall modify Eq.(40) so as to use instead a solution of Eq.

(23), since its off-diagonal elements, as illustrated in Figs.p in the initial state is computed with classical mechanics.

4(b) and 4c), are truly large only within a comparatively

narrow range near the avoided crossing. There will still be i

some difficulty at largeR, but in Sec. 1l D we shall attempt
to circumvent it, first by evaluating our expression for the
current associated with the final state at some suitably chos

Ryi, and then by taking into account reflections.

2. In terms of currents on adiabatic surfaces

The total current, as expressed in E88), can also be
written in terms of a complex solutiow to Eq. (23) if the
transformation specified by Ed21) is employed. It then
takes the form

o wa dw'
L= w=7 5\ gr™ ar W
| de + 0 _1
"TMAaRYIl1 o/
We choose to rewrite this as
jU:jW:jW1+jW2!
where
b =i =i i
and
i dw; dwy
= m(wfﬁ SR W1, (459
(D) i dQ,
Jw, =~ M dR(W1W2 W3 W), (45b)
) i dw, dw;
l(v?ﬁ:_m<wgﬁ_ﬁw2’ (459
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FIG. 5. The Auger transition probability per half-cycle, as ob-
tained by multiplying the transition rate byj/2. The transition rate
is computed with the golden rule, and the period of mottpiof the

dQy

(1) _
*2M dR

b= (450

—5 (W W —wWiw,).

®fhe expressions fof;) and j{) are identical in form to
radial separation that is in most instances rather smaller than

those forj, andj, . The termsl(l) and j{;)—which are

equal to each other—are due to the presence i ZE3).of a
first derivative ofw. Assigning half of their sum to each of
our expressions for the currents o, and W_ is admit-
tedly arbitrary, but it proves to be of little importance in
estimating Auger rates.

An Auger transition occurs if the outward movinqgre-
mains on the adiabatic potential surfadg . For this reason
we now write downanother tentative estimatf the transi-
tion rate. This estimate is

(46)

where the factors,, f, andfTl are the same as before, but

R, andRy,; are now lower and upper bounds of the range of

separations for which classical motion is allowed on the up-

per adiabatic surface. The important difference between Egs.
(40) and (46) is the difference betweerj, (Ry) and

jw,(Rn), which can be considerable.

In Eq. (46), as in Eq.(40), we have not taken into account
reflections of the outgoing wave. To put the matter another
way, we have taken into account only one of the many op-

portunities thaia has to remain on an adiabatic surface. In

each of the instances considered in the present paper, a
initially on one adiabatic surface is very unlikely to remain
on that surface as it passes the avoided crossing. This is
illustrated in Fig. 5, which shows the Auger transition prob-
ability per half-cycle, as obtained from our golden rule cal-
culations by multiplying the transition rate hby/2. This fig-

ure shows that a transition becomes likely to have occurred

only after there have been many encounters ot_)tlwéth the
crossing. Nevertheless, using E@6), or some variation
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thereof, would appear to be a reasonable procedure, since the
many contributions to the transition amplitude, each associ-
ated with one such encounter, should contribute incoherently

1-5||||||||| LA LI L AL L B B

14 |-® - = —
to the rate because of phase differences. The matter of phase _"".";0'."63'0"'_ L N=15
differences and incoherence will be discussed in Sec. Il E. sl L AN=-1 |
The preceding arguments notwithstanding, there is still a e |
problem with Eq.(46). The difficulty is due to the presence L N=10 [ o%s®sveoveeve
of some not entirely negligible, velocity-dependent, off- | AN=-1 1L i

diagonal terms in Eq23) at largeR. A very rough approxi-
mation to the magnitude of these terms is shown in Hig) 4
for a traveling wave. As explained in more detail later, in N IR P N | B A B B B
Sec. lll D, these terms are responsible in some instances for ' 2 4 6 8 2 4 6 8 10 12 14
a troublesome increase in probability current at ldrRgthat INITIAL ANGULAR MOMENTUM

ultimately is of little or no consequence.

11 —H+ —

R,(t=1,/2) / (GOLDEN RULE RATE)

FIG. 6. The ratio of the rat®,, evaluated at timé= 7,/2, to
3. In terms of probabilities rather than currents the Auger rate computed using the golden rule. The dotted lines

) ) show the values of; /7,. 7, and 7, are the periods of the initial
To the extent that our model is valid, Auger rates shouldyng final states, as computed with classical mechanics.

also be expressible in terms of time-dependent probabilities.

It should suffice to determine the time-dependent probability ) .
— tered in Sec. lll D 2, where estimates of the Auger rate are
of the p being in the upper or the lower component of a

suitably specified approximate solutianof Eq. (14). computed using probability currents for reflected and multi-

- X . ply reflected waves.
We obtain an estimate by assuming that at timd, the Probabilities varying quadratically witlh are also ob-

p is initially in the nonstationary state tained with time-dependent perturbation theory. This is, of
course, a feature of some derivations of the golden rule. In
N _ the case of the golden rule, this difficulty can be circum-
\/E[u (R+u™(R)], vented[29]. It is also possible to circumvent it in the case of
Ra. As explained below, nearly exact agreement with nu-

whereu* andu~ are the linearly independent regular solu- merical results obtainable faHe™ by using the golden rule
tions of Eq.(14) with slightly different eigenvalueg* and should also be obtainable with our model—though in a not
E~, as discussed in Sec. Il D 4. To a very good approximagspecially elegant way—h() allowingN andM to become
tion, u; has appreciable amplitude only for the upper compo=ufficiently large,(ii) discarding all values oR, exceptthe
nent ofu. The probability at some later tinteof theabeing one fort=7,/2, (iii) then considering times that are not only
in the nonstationary state;, defined by large gwough to ensure that many half-cyclegatrihost clas-
sica) p motion have occurred but are also small enough to
1 ensure that the initial state remains largely undepleted, and
us(R)=—=[u"(R)—u"(R)], (iv) simply assumingthat the separate contributions to the
V2 actual time-dependent transition amplitude from the many
o half-cycles ofp motion not only have magnitudes that are all
is given exactly by nearly equal to the magnitude of the amplitude leading to our
P value ofR, att= 7,/2 but also have phases that ammehow
(E"-E )t> effectively random, thereby permitting the cross terms in the
2 ’ absolute square of the amplitude to be neglected.
Our assertion of being able to achieve nearly exact agree-
To a very good approximatiomy; has appreciable amplitude ment with the golden rule is based on Fig. 6, which shows
only for the lower component af. As long as the probabil- the ratio ofR,, as evaluated at=7,/2, to the golden rule
ity of the p being in the initial statel; remains nearly equal rate. Ry was computed by first setting=0.01 and then
to unity—and to the extent that our model is valid—the Au-dividing the result byfZ. (it will be recalled from Sec. Il D 4
ger rate should be given approximately by that the small energy differendg” —E~ is very nearly pro-
portional to the multiplicative factof,.) Our values ofR,
1 differ from the golden rule rate by a factor not very different
Ra=2fefp Pi(1), from unity. In every instance this factor is nearly equal to
7,/ 7,. Therefore, nearly exact agreement with the golden

wheref, andf are defined in Eq(41). Our reasons for the rule should be achieved N, as it appears in the expressions

factors 2,f., andfy in the preceding equation are the same';:)Or the period|57-1 and 72 given by Er?'(ﬁ's)' deaIIow?d.to
as they are for Eq40). ecome very large(lf agreement with the golden rule is to

If P¢<<1, our expression foR, varies linearly witht. It bg gch|eved b.y .all?w'n@l to t_)ecomr;e _ver%/ large, Wh'ls. r?'
is, therefore, generally incorrect, which implies that ourtaining our original assumptions thé) the mean orbital

model—or, at the very least, some of the results obtaine@dius of thep is much less than that of the electron, &iig
with it—must be modified. The same difficulty is encoun- the spacing between adjacent principal levels of thés

1
ui(R)=—

P,(t)=sir?
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large enough to permit Auger ejection, it would also be nec- [ L L L R
essary to think oM as being much larger. 10 ' ‘\ ANe—i |
0.8 ) -
D. Numerical results 06 |- Lo NS
3 Jw1><10 L=14 .
1. Estimates with unreflected waves 04 - . 7
Figure 7 shows the unreflected currggt on the upper 021 b 10 by £20.01 ]
adiabatic surface at radial separations in the raRge:R oor o ]
<Ry;. This current was calculated in each instance vfjth — T T T
=0.01. It is shown on two scales because it changes very 10 L I ]
; ; ; L ; f=0.01 AN=-1 ]
rapidly near the avoided crossing. The unreflected current 08 L / b ]
jw, on the lower surface is also shown, but only at separa- 06 [ % : ‘\\. 1o N=15 1
tions below the crossing. Using a different valuef pivould b ‘ AR L=11 1
cause both currents to change, though their sum would re- 04 - 5 AN ]
main constant. However, except at separations so near the 02 - b <10 il SR
crossing as to be practically invisible on the scales used in i ]
Fig. 7, these changes can be specified rather accurately in = S Y Y S S
terms of the currents obtained wifh=0.01. In the case of 5 RN
jw, there would be no visible dependence fnbelow the g or 10 fogor AN
crossing, while at all separations perceptibly beyond this = 08 / ; ‘\ ' N=15 7]
point the current would be almost precisely proportional to 2 o6 b : ‘\ j.x10° L=8 7
fr2 . The curreni w, shown in Fig. 7 for separations below the & oal i x10° ooy 1 min .
crossing is also very nearly proportionalftp. (It was found E 02 A _i o 5
in all of our calculations, including those involving reflected W 00 - —
waves, that the current assumed to be proportional to the % I B R BT N BRI
Auger rate is almost exactly proportional fp.) UnlessL is =) TRt
relatively large,j w, has a minimum at a separation between O f1or : AN=—1 ]
the crossing point anB,,. This minimum, which is marked 08 / i =001 Nas 7
in Fig. 7, occurs at the same radial separation where the 06 - . : ‘\ L=5 7
angle(),, specified by Eq(22) has a minimum, as shown in 04 |- ; '\ jw1><106 —
Fig. 3b). This separation will be denoted I®,. Since the 02 [ iux10° HER /m'“ _
velocity-dependent coupling term in EQ3) vanishes aR;,, 00 bl NS T~ N
the p motion at this point should be almost classical if the R T B R R
local wavelengths on both adiabatic surfaces are not chang- IS L B L B B
ing too rapidly. In those instances whejr\,;'.-l has no mini- 10 :: £ -0.01 AN=-1
mum belowRy,;, we simply defineR,, to be equal t&Ry,;. The 0.8 - f ! T N=15
increase ian1 at separations beyonR,,, which is quite 08 j, | in L=D 5
small if L is large, becomes relatively large bsdecreases. 04 | 6:'l ) . —
For example, the ratio dif,, atRy; to its value afR,, for the 0.2 Hwx107, l Jwﬁ“o\ ]
transition from the state witNN=15 andL=1 is~7. These 0.0 _\‘ R il ]
increases inj, are troublesome because Ed6), without I R N R MR B

further modification, would lead to an unacceptable overes- 0.02 004 006 008 010

timate of the Auger rate in many instances. However, these RADIAL SEPARATION (a.u.)
overestimates would be of little significance because, as ex- ) . _
plained in Sec. 1D 2, once a reflection is taken into ac- FIG. 7. The unreflected curreny, at radial separations where

count, the increase if, at large separations—or much of motion is classically allowed on tl)oth. the upper and lower adiabatic
it—has no lasting eﬁect surfaces. The unreflected currey, is also shown, but only at

. . i bel th i int. Th ini jQf i
Figure 8 shows the ratio of the Auger ra®, as com- separations helow e crossing pon e minimum gy 1S
. e . marked in every instance where it occurs below the upper bound for
puted using anodificationof Eq. (46), to the rate obtained

. o - classical motion.
using the golden rule. The modification is that the unre-

flected curreniWl in the numerator of Eq46) is evaluated ] )
at Ry, rather tharR,,;. Except for transitions between orbitals both fairly small and very Iargd'; would be_ o!ue to |nad-_
equacy of the arguments leading to our original expression

with fairly small or very large angular momenta, the agree RY b dinSec D2 i likel
ment between the two rates is good, in most instances ver! Ra. bUt, as argued in Sec. , It seems more likely at
airly small L that this is simply due t&,, not always being

good, but we acknowledge that further justification should b ) _ ;
provided for ignoring the(sometimes relatively largein- 2 §U|table point to e\(alugtﬁNl. It must be added t.ha.t the
creases irj,,, at classically allowed separations beydRg.  ratios of rates shown in Fig. 8 are not changed mugh fis

At first glance it might seem that the lack of agreement atpproximated by\(,fl), as specified by Eq459: the changes
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FIG. 8. The ratio of the Auger rate% , as computed using the 0.02 1« % . ¢ —
unreflected curren’ﬁWl on the upper adiabatic surface Ry rather r oo . 1
) ; o & ® ® ¥V | 1)
thanRy;, to the rate computed using the golden rule. 5 4 5 8 10 12 1a
are less than 1%, usually much less, except for circular or INITIAL ANGULAR MOMENTUM
nearrlly CII’CU!)aI’ orblltls, in which case the ratios become as FIG. 9. The classical turning points, approximate bounds of the
much as 13% smaller. transition region, and the location of the avoided crossing for tran-
9 g

The question arises as to whether accurate rates could Rgions with AN= —1 from states witiN= 10 or 15.
obtained by using currents on the diabatic surfaces. Such
rates would be specified by E¢40) or some reasonable  Good agreement with golden rule rates notwithstanding,
modification thereof. Since the outgoing currepfsandj,  our procedure clearly demands more scrutiny, if only be-
are practically identical aR, if L is not too high, the ad- cause our largelyad hoc modification of Eq.(46) might
equacy of this equation should be revealed by the relativeever have been introduced had it not been for the trouble-
differences betweef,, andj,, at large separations. A de- some increases ify,, for smallL and largeR evident in Fig.

tailed investigation of this question has shown that satisfac?. There is, however, a second reason. In some instances the

tory overall agreement with the golden rule could not bep motion atR,, is not semiclassical, which makes it awkward
achieved if unreflected currents on the diabatic surfaces wefg relatej,, to experiment. This is obviously the case in
1

to be employed, no matter wheggz would be evaluated. those instances whel®,=Ry,. It is also the case in a few

This conclusion is not surprising: the fundamental nature Obther instances, where the classical action on the corrected
the adiabatic representation in reactions involving electronigpper adiabatic surface, as computed betwReandRy,, is
rearrangement has long been recognifdl]. (A similar  quite small. Therefore, rates were also estimated using re-
conclusion does not apply to some of the estimates presentgg@cted waves, together with further modification of E4f).

in Sec. Il D 2, because the inward traveling curre]r\)\tzsand

ju, are very nearly the same By, if L is not too high) 2. Estimates with reflected waves

Figure 9 shows some radial separations relevant to the Some results obtained with reflected waves are shown in
transitions being considered. It shows the lower and uppeFig. 10. This figure, like Fig. 8, shows ratios R to golden
classical turning point&, andRy;, approximate bounds of rule rates. However, in obtaining the ratios in Fig. 10, the
the transition region, and the location of the avoided crosscurrent in the numerator of Eq46) was replaced with a
ing. The approximate bounds of the transition region are decurrent computed with a reflected or multiply reflected wave
fined arbitrarily to be the lowest separations whigfe and  that had experienced two, three, or four encounters with the
le are equal to twice the value m,l atR,. These approxi- avoided crossing. This current fentativelyassumed to be

mate bounds are unaffected by the choice of the multiplicaProportional to the probability that a transition occurs at
tive factor f,. We argue that the results in this figure, to- some time during the first two, three, or four half-cyclegpof
gether with those in Figs. 7 and 8, suggest that an Augemotion. Because of the longer periods of time, the expression
transition can be thought of as occurring on an adiabatifor Ry was again modified: it was decreased by a factor
surface at a relatively well defined radial separation. equal to the number of half-cycles. The reflected waves and
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L R I | I B R I even ifL is low, we suspect that these decreases are due not

L N=10 1 N=15 . so much to inadequacy of the arguments leading to our origi-
50 L AN=-1 AL AN=—1 | na! expression quVAV as they are tdr, §imply not .always
@ R_R® being an appropriate choice of separation to evaljigtdor
[o R=R, .e o ] the final state.
40 22020 Il e ete®eees® A simple, classical argument lends qualitative support to

our suspicion thaRy, is not always a suitable place to evalu-
atejWl in a rate estimate. If the FCP is to be satisfied, an

N VT i | e T Auger transition should be inhibited at any separation where

. 1L T | there would be a relatively large change in the local, classi-
ox o |loonx i ca!ly computed radial momentum. A straightforward calcu-
20 [;00020% %0 02000000 lation has shown that, whilg, would indeed appear to be an
x acceptable lower bound in many instances to the range of

large, classically allowed separations where the radial mo-

1.0 |- ®4halfcycles menta on the two adiabatic surfaces are comparatively dif-

® 4 half cycles

(RATE OBTAINED WITH CURRENTS)/(GOLDEN RULE RATE)

x 3 half cycles x 3 half cycles - .
| 02 half Cxc,es 1 o 2 half C;des | ferent, a more realistic lower bound to this range would be
appreciably greater thaR,, if L is fairly low. We therefore
P I T T P N T T I I i i i i ifi i i i
PRRERr— PEER Ty believe that there is some physical justification for discarding

the ratios for lowL shown in Fig. 8 in favor of ratios ob-
tained withj,, evaluated at somewhat higher separations.

FIG. 10. The ratio of the Auger ratR, as computed using An examination of Figs. 7—9 indicates that this would not
radial waves that have been reflected one, two, or three times, to '[h@quire abandoning our interpretation of the transition as oc-
rate computed using the golden rule. curring within a range of separations small compared to the

classically allowed range. Similarly, for waves that have

the currents associated with them were calculated using tHeeen reflected twice, the discrepancies with the golden rule,
procedures outlined in Secs. 11l B and Ill C. The former pro-@s shown in Fig. 10, could be made more nearly a uniform
cedure requires the aid of the WKB approximation at somdactor~3. _
suitable separatiof to ensure, as much as we are able Complications of the sort encountered at large separations
within the framework of our model, that a reflected wave isd0 notarise if the number of half-cycles is even, and because
going in the desired direction. The ratios shown in Fig. 100f this we conclude that the relatively small deviations of the
were all obtained usin@s(z), as specified by Eq36b). If ratios in Fig. 10 from 2.0 and 4.0 for two and four half-
the number of half-cycles was even, the already twice modi€YCles are largely a consequence of our use of the WKB
fied Eq.(46) was modified again by replacing the current in approxmgtlon at some separatiBgon t.he (_:habatlc surfacgs
its numerator with the inward-traveling currefi, on the © determine that waves are proceeding in the proper direc-
lower adiabatic surface . Except for transitizons from tion on the adiabatic surfaces. We believe that this conclu-
. o lo- sion is supportedto some extentby ratios computed, when
nearly circular 9rb|ta|SjW2 was found to be almost constfe\nt possible, with each of the five choices B listed in Eq.
throughout an interval betweeR,, and some nearby point (36). Results were obtained for transitions from states with
that. is not only wejl below the lower bound of the transition N=15 andL=2, 5, 8, 11, 13, or 14, in each instance for two
region shown in Fig. 9 but also such that the WKB approxi-half-cycles. Except for the transition between circular
mation should be falrly reliable. The-refore, n mOSt- Instan(?e&brbitab_for which our on|y value dRS is beyond[he Cross-
there would appear to be no serious problem in relatingng point and is, therefore, not really an appropriate place to
sz(Rk,) to experiment, even though the motion is not determine that on both surfaces the reflected wave is indeed

semiclassical aR,,. In the case of three half-cycles the out- moving inward at points neaR,—the deviations of these
ward moving current in the numerator of H¢6) was evalu- ratios from 2.0 were found to have the same magnitude and
ated, as before, on the upper adiabatic surfacB,atThe Uusually the same sign as the relatively small deviations
results shown in Fig. 10 areotin agreement with the golden shown for two half-cycles in Fig. 10. o
rule, and it is the aim of the discussion presented in Sec. IIl E It seems clear from some of the results shown in Figs.
to reconcile the two calculations. 7-10 that the net effect of an inward traversal of the crossing
The most striking feature of Fig. 10 is that the ratio of is that much, if not all, of any troublesome increasg,jn at
rates is in many instances roughly equal to the number ofarge separations has no lasting effect, probably because of
half-cycles. This is generally true if the number of half- the relatively large momentum changes that must accompany
cycles is even. However, it is not true of the ratios for threetransitions occurring at separations much beyond the cross-
half-cycles ifL is relatively low. The overall behavior of the ing. Because of the results shown in these figures, and also
ratios for three half-cycles in Fig. 10 more or less resemble®ecause of investigations by others which have shown that
that for a single half-cycle in Fig. 8. In both figures the ratio some chemical reactions can be understood in terms of al-
is nearly equal to the number of half-cycleslifis large  most classical trajectories on adiabatic surfd820,21, we
(except for circular orbitals, which are shown only in Fig. 8 conclude that the time-dependent amplitude for an Auger
but it becomes much smaller Rsbecomes small. Because of transition can be thought of as a sum of contributions, each
the near constancy of the ratios for two and four half-cyclesassociated with a radially rather well defined encounter with

INITIAL ANGULAR MOMENTUM
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the avoided crossing during which theemains on the same Which the transition probability is smd82]. We call atten-
adiabatic surface instead of hopping to the other one. Howtion to this lack of agreement because in Sec. Ill E 3 we shall
ever, the large and more or less regular discrepancies witonjecture that the angular analog of the &telberg phase,
the golden rule for rates computed with reflected waves mugts estimated in the traditional way, might be important in

still be resolved. EAF. _
Even though the lack of agreement with the traditional

LZS formula is unsurprising, we can only hazard a guess as
E. Phase differences to why our estimated contributions to the transition ampli-
It is apparent from Fig. 10 that fairly good agreement withtude are so nearly equal in phase. As suggested by the results
the golden rule would be achieved if some reason could b€f an approximate calculation sketched in the next para-
found for dividing each of the ratios in this figure—modified 9raph, differences in the radial action should indeed be im-
in some instances by using an outgoing current evaluated &0rtant. Therefore, it would seem that there must be some
a separation somewhat greater tiRg—by the number of mechgnlsm. that has nearly the opposne_effect as 'ghe Q|ffer-
half-cycles. We can think of no reason why this would be®nce in radlal action. We suspect that this mechamgm is as-
justified after only a small number of half-cycles. However, Sociated in some way with one or both of the off-diagonal
as indicated in Fig. 5, many half-cycles are required before #ms in Eq.(23), which take into account all coupling be-
transition becomes likely to have occurred. If, as we havéween the initial and final states due to both radial and angu-
concluded, the time-dependent transition amplitude is a surr motion. Because all coupling due to angular motion is
of contributions from many radially rather well defined en- taken into account in the radial wave equation, we shall as-

counters of theﬁ with the avoided crossing, and if these sume in Sec. Il E 3 that there is no mechanism that would
many contributions all have nearly the samé magnitude bu(iiiminish a similar difference in angular action, as estimated
effectively random phases, the cross terms in the absolut® Elr']r?etrt?g(ljtilt(ijgr?zglwggkelber hase can be made to appear
square can reasonably be expected to have no net effect. In gp PP

Sec. lll E 4 we shall argue that this would likely be the case'| N approximategolden rule expression. The derivation is

if the finite width of the initial state were to be taken into Similar to that of an approximate expression for the Franck-

account. Our arguments will be based on some estimates 80@% factor given by Millef33]. It is only necessary that
phase differences due to radial motion. But before that, irfhe P radial dipole matrix element not be computed exactly
Sec. 11l E 3, we shall discuss a possible phase difference duit instead be roughly estimated by first replacing the initial
to angular motion that can be estimated using classical orbi@nd final hydrogenic wave functions with WKB functions
(which will be discussed in Sec. Ill E2and we shall con- and therj using the stationary phase approximation to evalu-
jecture that it might be important in the special type of Augerate the integral. The form of the resulting approximate ex-
transition which occurs during EAFThis phase difference is Pression for the transmon rate is proportional to the tradi-
the angular analog of what we shall refer to as the traditionaiional LZS formula, which contains the factor
Stickelberg phase, which is associated with radial motion,
and which is defined and discussed below. -
N } fszcog( b= p1— Z)'
1. Traditional Stuckelberg phase
In obtaining the ratios shown in Figs. 8 and 10 we have in
effect assumed that a current, eittjgr(R;) directed out- where¢; and ¢, are the integrals of the local radial wave
ward orj, (R,,) directed inward, is proportional to the ab- numbers for.the |n|t|§1l and_ final unperturbgd states from the
solute squzare of the amplitude for the occurrence of a tranl—oweSt classmgl twrning pqlnts to the crossing pqlnt. Becausg
sition at some time during a certain number of half-cycles Qf thT:Sp.r.eEelc:)lng exhpressmn, we choose to define the tradi-
Our results imply that the contributions of each half—cyclev[Iona tickelberg phase as
have not only nearly the same magnitude but also nearly the
same phase. This near equality of phase merits discussion, if

only because we have really been treating Auger transi-
tion as a LZS process. It was at one time widely accepted
that the two contributions to the amplitude for a LZS transi- ) )
tion of the usual kindinelastic scatteringshould differ in ~ The absolute square of the sum of two amplitudes, equal in
phase by an amount related in a simple fashion to the differmagnitude but differing in phase bys, would be propor-
ence in radial action along the two possible classical pathonal to fs. We note that an implicit appearance of this
between the encounters with the avoided crossing. We shdfctor in our estimates of Auger rates using probability cur-
refer to this phase difference as the traditionalcBelberg ~ Fents would have been unwelcome. A straightforward calcu-
phase. For the transitions being considered here, it is readikgtion indicates that the presencefefwould cause the esti-
estimated using unperturbed Coulomb potentials, and imated transition rate to depend on fh@ngular momentum
most instances its effect is not negligibly small. Our failurein a way quite different from the dependence obtained with
to achieve agreement with the traditional &elberg phase the presumably accurate golden rule, as shown in Fig. 5. Our
is, by itself, unremarkable because it has been known fofailure to achieve agreement with the traditional &eiberg
some time that the traditional LZS formu[80] leads to phase is almost surely associated with the breakdown of the
incorrect results in some instancg&l], including those in  WKB approximation near the avoided crossing.

T
bs=2(po—p1)— 5 (47)
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2. Relatinngave functions to classical orbits

The FCP should still hold for motion in more than one
dimension: it should still be possible to think of a transition
amplitude as being a sum of contributions, each produced
near a point where both the radial separation and the radial
momentum are the same in the initial and the final states. We
denote this separation By,. To gain some insight into this
matter, we examined some classical orbits. We assumed that
infinite manifolds of coplanar Kepler orbits with energies -010 -008 -006 -004 -002 000 002
given by Eq.(44) adequately describe the initial and the final X coordinate (a.u.)

motion of thea As in our quantum-mechanical calculations,

o

o

I
I

y coordinate (a.u.)
S o
3 8
1 |

E

it was assumed that the squares of the initial and the final g [ T T T T2 Br o T otntots ToT
angular momenta afe(L +1) and L —1)L. If the effective =080 . Ap. 88, A/Aq>2 7]
radial potential for the final orbit is increased by an amount § 50 - 2 ;‘f . “Ar ©88y S, ]
equal to the increase in binding energy of fhdt intersects g 40 - \AQ °o ol "ot * ]
the effective potential for the initial orbit at the separation § 30 1 o+ o—
R.. Two coplanar orbits with suitably different energies and < 20 [ N=10 AL N=15 A%, ]
angular momenta intersect at the required separa®ioif S 0L AN=—1 i | b
they are properly oriented with respect to each other. Fora  § k| | oAb gy
given initial (final) orbit, two orientations are possible for a 2 4 & 8 2 4 6 8 10 12 14
final (initial) orbit. For one of the orientations, radial motion (b) INITIAL ANGULAR MOMENTUM
on both orbits proceeds inward toward the nucleus at the

intersection; and for the other, motion proceeds outward. FIG. 11. Results of calculations using classical mechanics and

Figure 11a) shows both possible orientations of a final Kepler orbits, but with quantum-mechanical values for the energies
orbit with N=14 andL =7 with respect to an initial orbit and the squares of the angular momeg@pOne of the initial orbits
with N=15 andL =8. All of the orbits lie in thex-y plane. and two of the final orbits relevant to the transition witiN=
All points on the two final orbits a distande, from the =~ —1 from the state wittN=15 andL=8. The nucleus is at the
nucleus are marked, even if they are not located at an inte2riain, and the initial orbitsolid line) has its major axis parallel to
section with the pa;ticular initial orbit we have chosen tOthex axis. The two final orbitgdotted line$ are the only ones that
show. Motion on each of these orbits is regarded as I,ocee(i:ﬂtersect the initial orbit at a point where the FCP is satisfied. These
. : . N s ou 9 P intersections occur at a distané® from the nucleus. The two
ing counterclockwise. We defing] (®9") to be the angular
position of the point on the initial orbit with separatiét

points on each orbit a distan& from the nucleus are marked; but
. ] : _ on a given final orbit, one of these points is at an intersection with
and inward(outward radial motion, and we also define

an initial orbit that is not shown(b) The angular separatiors®,
AD. = PO in and A®, on the initial and final orbits between two successive
1 1 1 encounters of thp with separations a distané&g from the nucleus.

The anglesIDi“, ® and A®d, are similarly defined for a er:soﬁlril(:l motion is assumed to be directed inward during the first

final orbit. The magnitude of the angular separation between
the two final orbits in Fig. 1) is A®,~A®;. (If we had Iturning points, and the azimuthal motion is almost classical

instead shown just one final orbit and the two possible initiaever here. Furthermore. the motion is almost two dimen-
orbits associated with it, the magnitude of the angle between. yw ' '

the two initial orbits would also have beeh®,—Ad,.) sional becaus&, | has appreciable amplitude only in the

. o neighborhood of th&-y plane. It is convenient to express the
Figure 11b) showsA®d,; andA®d, for all of the transitions - . .

4 g radial function approximately as the sum of two waves, out-

being consideredThese angles are large, and they have a . . : . )

e 2o ard motion with one and inward with the other:
significant dependence on angular momentum. This will lea
us to conjecture in Sec. Il E 3 that, because of differences in (+) (-)
angular motion, interference between two contributions to R L (R~ (R)+ i (R)-

the transition amplitude could be important in EAF We accomplish this by replacir@y  with a suitably chosen

It is necessary to be. more precise about h.°.W we reIat?eal function and then adding and subtracting a suitably cho-
wave functions to classical orbits. To be specific, we con-

imaaqi i ) (=)
sider a hydrogenic state with principal quantum numider Sen w;gl?arytfunctlon. We shall assume mhﬂ andy ¢
and angular momentur. As in Sec. Il A, we assume that are unctions.

thez component of the angular momentuniisFor the time For the moment, we restrict our attention to the wave
being, we also assume that this state is not coupled to any (I(R)Y, (O,D)

other state. We first write the wave function in the usual way ANL LLAE S

as

which is simultaneously proceeding radially outward and
Ry L(RY L(O,D), azimuthally counterclockwise. At any given point where the
' ' radial motion is almost classical, the phase of this wave can
whereRy | is real. We assume that is large and. is not  be identified with Hamilton’s characteristic functia, for
small. The radial motion is almost classical except near thelassical motion passing through this point, Wi, being
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the momentun® along a locally well defined trajectof@4]. ~ Ssubstantially. By angular action we simply mean that contri-
For a fixed value ofP, there is a different trajectory associ- bution to the integral/P-dR along the(almost classical

ated with each value d? where motion is almost classical. trajectory of thep which is due to components of the mo-
Motion on each of these trajectories has the same total ementumP orthogonal to the radius vector from the origin.
ergy, but the momentur® has a momentary value depend- We are interested in the effects that phase differences
ing onR. We shall think of each of these trajectories as beingmight have on Auger transition probabilities. This involves
in the x-y plane. By the nature of the WKB approximation, motion on two coupled adiabatic surfaces. As already dis-
the difference in phase Q‘ff\fBYL]L at any two points lying cussed in considerable detail, we argue that transitions can be
along a given orbit is given by the integrflP- dR along the  thought of as occurring near radial separations whre
segment of orbit connecting them, provided this segment&R., in accord with FCP. The WKB approximation for ra-
does not include any points where motion is not almost clasdial motion breaks down near such points. For this reason,
sical. This integral is the sum of two terms, the radial and thesemiclassical estimates of phase differences between points

angular action along the segment. on a path corresponding to a transition should be unreliable.
In a manner similar to the way we re'%\éﬂ)YL,L to  We shall assume that our quantum-mechanical computations
classical trajectories, we also associate ' of the radial phases, as presented later, in Sec. Ill E 4, are
reliable.But because the off-diagonal elements of (the radial
XNTL)(R)YL,L((@,‘D) wave) Eq. (14) already take into account all coupling due to

angular motion, and also because currents computed using
with a manifold of locally well-defined trajectories, all moy- the radial wave function w obtained by successive unitary

ing azimuthally counterclockwise, but radially inward. Both }rar&s{orm?r:ions frgm the functtioqhuthappe%ring irl‘ Efq (|14)
radial wavesy{} and x{;{ can be thought of as ultimately oo O "&her good agreement with the goiden fuie it only a

undergoing reflection at a classical turning point, thereby be§|ngle traversal of the avoided crossing is taken into ac-

ing turned in to each other in the usual way of WKB func- count, we shall further assume that reliable estimates of

tions. For this reason, the outgoifiggoing local trajectory zihn?sle %'griregticﬁs tdhueeatg i?grufétgstggnca?hzeaomgnfigtgy
for given values ofR and ® can be associated with the e Eniznts oFf) clasgsical orbg}ts 9 pprop
ingoing (outgoing local trajectories forother combinations 9

of R and® to form parts of a continuous orbit. There would If the perturb_atlon re_spo_nS|bIe for transitions is taken into
account—and if we think in terms of classical paths—the

be a nondenumerably infinite number of such orbits, all pro- . . ; N
. . . . . - CP would require each path associated with the initial state
ceeding counterclockwise, and with orientations distribute . ; . O
. ; 0 spawn a path associated with the final state every time it
uniformly in the x-y plane. For every value o, there . ; . .
. . . _passes a point with the radial separat®n Each path, in-
would be two of these orbits passing through every poin . o X i
specified by a classically allowed value Rf one with mo cluding those originating with a transition, would have asso-
P y y ciated with it a phase that is continually increasing as the

tion _d|rected inward, the other with motion ou_tvyard. By motion proceeds. As outlined below, we argue that there
making use of the usual procedures for determining reflec- Id be sianifi diff in oh b diff
tions of WKB waves, we can assign a well-defined phasecouh I e§|gn| icant di e][gntlzest:n phase between different
difference betweeanytwo points on a given orbit—even if patlnswf\?at ']% %;3\/: %\I/\éeghz;ﬂacoor:silger waves movifeffec-
all of the segment of orbit connecting them does not lie in,. ; NI ; .

the region \?vhere quantum-mechan?cal motion is almosPvely in two dimensions on adiabatic surfaces that have

classical—provided the two points themselves do lie in thisairly well-defined angular momenta, except near the
region Thg anaular contribuﬁion 10 this phase difference iSavoided crossing. We shall restrict our attention to the phase

gion. gu > P difference associated with just two successive encounters
LA®, whereAd is the angular separation between the two

. : : ; . with the crossing. Furthermore, we shall consider only the
points. W.h'le the_precedlng dls_cussmn ha? been deyot_ed top"jhase difference associated with angular motion. We shall
hydrogenic function, most of it also applies to a similarly :

o . . Lo assume that the first encounter occurs as the motion proceeds
specified wave function for almost classical motion in any.

central field, the essential difference being that the classic |i1ward, the second as it proceeds outward. Except for the

orbits would aenerallv not be closed. as thev would be for Absence of a term- /2, which arises in the reflection of a
U0 generally k y &KB radial wave, the phase difference would be the angular
hydrogenic function with larg&l andL.

analog of the traditiona{radia) Stickelberg phaseps, as
we have defined it in Eq47).

In estimating the phase difference due to angular motion,
we consider three Kepler orbits more or less similar to those
The numerical results presented in Figs. 1 and 3 and Eqshown in Fig. 11a), the difference being that we now con-

(19 and(20) indicate that the successive transformatios  sider two initial orbits and just one final one, not the other
and U, relating the radial functions; andu, appearing in way around. However, even though it is convenient to deal
Eq. (1) to the functionsw; andw, in Eq. (21) are such that with Kepler orbits, our general definitions of the radial sepa-
the angular momenta on the two paths between encounteration at crossing points and the angles between these points,
with the avoided crossing effectively differ by 1 unit, ex- and also our method of estimating phase differences, would
cept near the crossing. As outlined below, a difference irbe unchanged if we had chosen to consider orbits that are not
angular action—which has not been taken into account in ouelosed(or trajectories that are not bounded

Auger calculations using the modern BO approximation and We assert that the phase difference due to angular motion
probability currents—could reduce constructive interferenceshould be approximatelf®,. The arguments leading to this

3. Possible phase difference due to angular motion
on different paths
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assertion are as follows. A given final orbit would have as-differences due to different angular momenta on different
sociated with it two initial orbits whose relative orientation paths should have no further effect on an estimated transition

differs by the angleA®,—A®;. One of these initial orbits rate ofpHe* if the width of the initial state and radial phase
would have a crossing for inward motion, the other for out-differences are first taken into accourbwever, we conjec-
ward motion.(These two initial orbits would be just one of tyre that the phase differenced, might be important in the
many pairs of initial orbits—all with the samerelative  rather different type of Auger transition resulting in EAF. In
orientation—that would have to be taken into account in de'such an instance there presumab|y would be On|y two en-
Scribing a transition from an initial state with angular depen-counters with an avoided Crossing7 and a |arge phase differ-
denceY , to a final state withY, _;, _;.) We consider mo- ence due to angular motion might be important.

tion directed initially inward, and starting on both initial The preceding considerations are relevant to our Auger
orbits at the largest possible classically allowed radial sepamtes obtained with the modern BO approximation and prob-
ration. Even though these starting points are not in the regiogpility currents. We note that®, can be related, by means
where quantum-mechanical motion is almost classical, Wf an obvious generalization of the vector potentiadefined
can assign to the two paths the initial phase difference in Eq. (4), to the change in phase of adiabatically varying

L(AD,—AD,) final electron wave function as themoves on a final orbit
’ from its first encounter with the crossing to its second. Our

which is simply the difference in phase between the relevantuger calculations fopHe" have thus far have not taken
values ofY, | . The orbit with the larger phase is the one into account any adiabatic change in phase of this function,
associated with a transition occurring as ﬁgnoves out- and for this reason it is necessary to redefine it. We also give
ward. The phases for the two separate paths leading to thiea more suitable normalization. We write

same final orbit can be written as :
¢2,a({k!er) = lpZ(k!r)e_lq)/(Zﬂ-)slzl

D, +(L-1)AD,, . , :
where, is defined in Eq(11). The phase of};, ,qdepends
and on the azimuthal coordinat® of the positionR of the p.
This function has the normalization
LA®,—AD,)+ D, +LAD,.

The first of these phases is associated with a transition oc- f d3k’j d3r g5 KR, o ad K,R,1)=1.

curring at the separatidR, as thep moves inward on one of

the two initial orbits, the second with a transition occurringWe now assume that the diagonal elemés} in Eqg. (3)

atR. as it moves outward on the other. In writing down theseshould be given, not by Ed4), which is really appropriate

two expressions, we have evaluated both phases at that poisily for bound states, but instead by

on the final orbit where the second transition occurs, and we

have let®;, denote the angular action that accumulates on i 31 3, % ,

either initiéj orbit as radial ?notion proceeds inward from its Az If dk J dr V2ad K RODVRY22dKRT).

starting point to the first encounter with a point having the

separatiorR;. The phase that accumulates between the !

successive encounters with the separatiBp is (L R,

—1)A®, on the first path and.A®, on the second. The A(I)zzf *A(R)-dR,

difference between the phases for these two paths leading to Re,

the same final orbit iA®.. . L .
If phase differences due to angular motion—as estimatet"€re the integration is over the path in they plane be-

above for the special case of just two successive encountef¥€en the two successive crossing poiRts andR., on a

with the avoided crossing, without even considering thefinal orbit.

width of the initial state—were the only phase differences

that have to be taken into account, and if the motion were to 4. Relative phases of reflected radial waves

proceed on true Kepler orbits, the separate contributions to Within the framework of the procedures described in

the transition amplitude from not just two but many encoun-Secs. Il A and Ill B, our numerical computations of outgo-

ters of thep with the crossing would have just one of two ing, reflected, and multiply reflected radial waves were

phases. Half of them would have one phase, and half woullighly accurate. We were able to determine that there are

have the other(This would not generally be true for motion small phase differences between waves traveling in the same

in a central field, but it would be true for closed orbit§he  direction on the same one-dimensional potential surface after

difference between them would ed,. However, we be- having been reflected a different number of times. Partly

lieve there should be other, much smaller phase differencdsecause of the way our computer program had been written,

that would result in total incoherence. These other phase difsut mostly because of the troublesome but transitory in-

ferences would be due to radial motion, and would take intccreases in the amplitude of the final state at separations much

account the finite width of the initial state. As outlined in beyond the crossing, we found it convenient to examine only

Sec. Il E 4, radial phase differences by themselves shoulthe wave functiorv for motion on the diabatic surfaces, and

result in incoherence if the width of the initial state were toevaluated only at the lower boumtj, for classical motion on

be taken into account. To put the matter another way, phashe upper adiabatic surfac&he functionsy andw for mo-

is obvious thatA®, is given by
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8 L N=10 s o] Zr:zv:;_l,

A | L = _ 7T

w 0.00010 I AN=—1 ] 0.0010 N .. ]

(ZJ 0.00008 | o - o0o00s - T e® i where 7; is the classically computed period of the initial

I&J L . 1 L o® i state. This can be used to write

L 000006 ~ ® - 00006 - g8 —

& - _ - i Ap=mAn,= 1 AE2~7/(274),

) 0.00004 —  0.0004 (5 R=R? . . .

= o°R=R.?] ® s where A¢ is the approximate range of the change in the

('-',g 0.00002 |- 4 om0zl f_0.01 i radial action on the upper diabatic surface for a single half-

% | f=0.01 | T i cycle. Our approximate expression e in terms ofr; and

o I P e 75 IS numerically equal to the transition probability per half-
2 4 68 2 4 6 8 101214

cycle shown in Fig. 5. ThoughA¢ is small, its effect is
INITIAL ANGULAR MOMENTUM cumulative: it should be multiplied by the number of half-
cycles taken into account. This cumulative range of phase

upper diabatic surface &, after two complete cycles relative to its change inv; should ultimately exceed the phase difference

phase after just one complete cycle. The phase scalés=fdi0 and for any tWC_’ successive half-cy_cl_es, as estimated viith
15 differ by a factor of 10. =1.0 for a fixed value oE. (In arriving at an estimate of the

phase difference for any two successive half-cycles, we sim-

tion on the diabatic and adiabatic surfaces are nearly thply assume that, for a fixed value Bf this phase difference
same aRy, if the initial and final orbitals are not circular or can be equated to the product b,Tl and half the phase
nearly circular) difference for the first two successive full cycles, as com-

We first consider an example that is simple and instrucputed atR,, and shown in Fig. 12 fof,=0.01) The number
tive, though not directly relevant. Figure 12 shows the phasef half-cycles required for this to occur is fairly small com-
at R, of the inward traveling wave, on the upper diabatic pared not only to the number required for the transition to
surface after two complete cycles of radial motion relative tobecome likely but also to the number required for the change
its phase at this point after just one complete cycle. Resultis phase o ; to exceed zr if E is fixed. For example, in the
were computed in each instance witR= Rs(z) and f, case of the transition from the state with=15 andL=38,
=0.01. These phase differences are quite small, but thethis number is only~60, as compared te- 1500 and~ 160.
were found to vary linearly wittf, . These results, together In most other instances, the relative values of these three
with the transition probabilities shown in Fig. 5, indicate thatnumbers are even more favorable to our argument. It there-
in the realistic casé, =1.0 a net change in phase exceedingfore seems reasonable to conclude that the width of the ini-
27 would be achieved after the completion of a number oftial state should ultimately cause the phases of most of a set
half-cycles an order of magnitude smaller than the largedf multiply reflected waves);, each evaluated after the
number required before the transition becomes likely to haveéompletion of an integral number of half-cycles, to be effec-
occurred. For example, in the case of the transition from théively random.
state withN=15 andL=8, these two numbers are 160 The preceding discussion is only indirectly relevant to the
and~ 1500. In most other instances the relative difference igjuestion at hand. The relative phases of meostributions
even larger. However, there is every reason to believe that i v,, each produced during a different half-cycle of motion,
our calculations were to be extended to take into accounmot the phases of many successive values,paire what are
many more reflections, the successive changes in the phagiectly relevant to our estimates of transition rates. Results
of v, atR,, would be nearly the same as those shown in Figof some calculations pertinent to this question are shown in
12. This presents a problem because we want to argue thktgs. 13 and 14. Figure 13 shows the absolute value of the
the phases of many values of, each obtained at the end of phase ofv, at R, after two complete cycles relative to its
ahalf-cycle of radial motion, should not be almost uniformly phase after just one complete cycle. The sign of this relative
spaced but should instead ultimately become a set of randofihase is identified in every instance. As before, results were
numbers. We believe this could be accomplished by takingbtained withRs=RJ? and f,=0.01. Unfortunately, both
into account the finite width of the initial state. the magnitude and the sign of this phase difference vary with

If this width were to be taken into account, would be a L. However, the behavior of this phase difference seems to
superposition of many contributions, each corresponding to hecome less complicated ds becomes larger. Figure 14
different value ofE. The finite timer, required for the tran-  shows this phase difference—though on a different scale—if
sition implies thatE should have a rangdE~7,*. This  f,=0.001, 0.01, or 0.1. It seems possible to extrapolate the
would introduce a range of phases associated with the radiagsults shown in Fig. 14, and obtain more or less reliable
motion. (There should also be a variation in phase associateguessed values of the phase differendg # 1.0. We believe
with angular motion, but we have not attempted to estimatéhe results in Figs. 12—14 suggest that in the realistic case
this.) f,=1.0 the range of th€presumably evenly spacedhases

The range of phases is easily estimated for radial motionof the contributionsto v, after not too large a number of
The vibrational quantum numbem, for the initial state half-cycles, as computed for a fixed value Bf should be
should be given rather accurately by the WKB approxima-comparable to the net change in the phase,ofWe further
tion. It can be regarded as a continuous functiok pand its  believe it would be reasonable to assume that these phases,
derivative is given by like the phases of values of; obtained after integral num-

FIG. 12. The phase of the inward-traveling wawe on the



PRA 58 FRANCK-CONDON PRINCIPLE AND THE HADRONIC ... 227

= ® phase difference is negative ready been calculated precisely for the metastable states
2 o phase difference is positive [25,26]; and it seems possible to obtain, if necessary, precise
W 107 e 107 electronic BO functions for the final statgg5]. Nonetheless,

o N=10 ¢ a golden rule calculation for a metastable state would appear
@ N=15 to be difficult—perhaps even ill advised if the two-state ap-
o2 LANlel 402 Loaney - proximation used in the present paper were to be retained—
u R =R %e . and we briefly mention some of the problems, and also some
< T R-R® ® of the advantages.

&10-3 - ® | 0% L ° 7 e - One problem is the possible importance of second-order
o 00000 effects. The states in question are metastable, not because the
< Ooo ° ° perturbing interaction is in general especially small, but be-
§'1O'4 S * - cause the final electron—which has a low enefgybstan-

i o =001 £=0.01 tially less than 1 a.)i.and a high angular momentura L

3 ' =4)—has very little overlap with the initial electron.
g10° Lblbld qo° Lblilillll Though taking into account only first-order transitions

K 2 4 6 8 2 4 6 8 101214 X .

< should lead to estimates that are at least approximately cor-

INITIAL ANGULAR MOMENTUM rect, the very low rates seem by themselves to be no guaran-

FIG. 13. The absolute value of the phase of the inward-travelinge€ that these estimates would be highly accurate. The first
wave v, on the lower diabatic surface &, after two complete rate estimates for metastabpeiet were made using some
cycles relative to its phase at this point after just one completasery simple variational wave functions and the golden rule,
cycle. The sign of this relative phase is identified in every instancewith the initial electron wave function having no angular

) dependence on the position of the slowly movimand with
bers of half-cycles, would become effectively random aftefie perturbation being the electrostatic interaction of multi-

not too large a number of reflections if the width of the initial —
state weregto be taken into account, thereby causing the cm‘?—OIe orderAL between thep and the elgctrorﬁ36]. Subse-
tributions to the transition amplitude from separate half_quently, Fat.es have been computed using vastly more accu-
— . ) rate variational wave functiond37-43. But to our
cycles ofp motion to be incoherent. knowledge there has, within the framework of the modern
BO approximation, been no reliable determination that vir-
IV. DISCUSSION tual transitions of lower multipole order to and from inter-
mediate states introduce no significant correction.

Metastablep orbitals are circular or nearly circular. As
We have used the modern BO approximation to estimat@lustrated in Fig. 8, rate estimates obtained with probability
Auger rates for some unrealistically low-lying states of currents for relatively low-lying circular orbitals are not very
pHe". The question arises as to whether it could also beaccurate. If only for this reason, we believe that an Auger
used to calculate rates for the metastable states, which agalculation for metastable states using BO wave functions
much more highly excited. We believe that this could beshould employ the golden rule, not probability currents. In at
done, at least in principle. But as explained below, we alsdeast one respect, the modern BO approximation would ap-
believe that it should be done with the golden rule, not probpear to be especially suited for a golden rule calculation: it
ability currents. Such a calculation would, of course, requiredistinguishes that part of the-electron interaction which is
traditional BO wave functions and energies. These have akesponsible for the transition from that part which merely
distorts the initial and final wave functions. It would be

A. Auger rates for metastablepHe*

0010 T T 71 T T 177 analogous to the distorted-wave Born approximation. The
g F R.R®@ N=15 - Hamiltonian for thep would be written in the form given in
~ 0.005 * 4 o ANe_1 Egs.(5) and(6), but withM now being the reduced mass of
c'; ' o the p and the He nucleus, and with(R) now being
e _ oo 2
lene®Ree | i
LI&J 0.000 @R 2 L =t €1(R) 0
E B [ ] 7 V( R) = 2 ’
(L}J) —0.005 O factor=0.1 - 0 R Te
< ® factor = 0.01 z
I I A factor = 0.001 . . .
o where e;,—which now depends oR—is the energy of the
0010 e e 12 adiabatically varying initial electronic state, as obtained in a
traditional BO calculation. As with the transitions considered
INITIAL ANGULAR MOMENTUM in the present paper, the energyof the final electronic state

FIG. 14. The phase of the inward-traveling wavg on the should be constant and equal #&? because this state is in
lower diabatic surface &,, after two complete cycles relative to its the continuum. The unperturbed wave functions would sim-

phase at this point after just one complete cycle, as computed witaly be p functions computed with the traditional BO ap-
different values of the multiplicative factd, . proximation. The perturbing interactidd’ would be given
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by Eq.(6b). A second advantage of a golden rule calculation Our conjecture is contingent upon EAF being a nonreso-
using the modern BO approximation is that center-of-massant reaction. We imagine EAF as occurring during just one,
corrections of the type discussed in REE6] are included simple, almost classical collision of the stopping hadron or
implicitly in the expression foH' if the electronic BO wave  muon with the capturing atom. Even though it is a reaction,
functions are computed precisely. not a decay, there are clear similarities to the sort of Auger
The interactionH” and its matrix elements would prob- transition considered in the present paper. As noted in Sec. I,
ably not be easy to calculate accurately for highly excitedt has long been widely believed that EAF is an almost adia-
states, even if only first-order transitions have to be takemygatic process; so it should be possible to describe it within
Into acfcountl. tL_Jnlllkel thel ‘?St'm?tf‘s p;ﬁsent?d Imt'the preslz’ﬂt\e framework of the modern BO approximation. As we
aper for relatively low-lying states, the calculations cou . —
Eofbe carried onlyyto Iow);stgnonvanishing ordeRwhich have concluded for Auger transitions jpHe" ' the FCP
means that the determination Afwould be more difficult, ShOUId. be rellevant: one should be ablle to think of EAF.as
largely becaus® g, (R,r) would no longer be independent °CCUTTiNg during rgdlally rather well-defined encounters with
of R, as it is in the calculations outlined in Sec. Il C. More- &N @voided crossing. Presumably, there would be just two
encounters, not the large numbers considered in the present

over, because of the large change in theangular momen- . "
tum, it would be necessary to determine accurately that ver aper. Therefore, one should be able to th'r.]k qf the transition
mplitude as a coherent sum of two contributions, one pro-

small part ofH’ which transforms under rotations about thed d as the Stoppi ficle first . dt d th
7 axis as expLiALa). uced as the stopping particle first moves inward toward the

nucleus of the capturing atom, the other as it then attempts
to move away. There might be a significant difference
in phase between these two contributions. In general, this
We now present a summary and a slightly more detaile@jifference could be due to both radial and angular motion. In
discussion of our conjecture about the role in EAF of phasgne present paper we have found, for the special case of
differences due to angular motion. This conjecture, whichsyccessive encounters with an avoided crossing in low-lying

was made in Sec. |l E 3, is based in part @hour conclu- levels ofpHe™, that there is only a small difference in phase
sion in Sec. lll D 2 that an Auger transition from a low-lying prie -, tha y >IN p
due to radial motion, but we have found there is a large,

= .
L?Vf?r: O(fi pHi?]t C?: be t?glﬁm ?; alszggcﬁnri'gg art ra:ihn?rtwell— L-dependent differencA®, due to angular motion.
efinéd points, In acco € ' our estimates The present calculations give no clear indication as to

of a large, L-dependent angular separatidib, between how theL dependence ak ®, would vary with atomic num-

such points, as shown in Fig. () for Kepler orbits. How- : ;
ever, we must acknowledge that our estimates of Auger rate er in the case of EAF._Bu_t_|t does seem reasonaple 10 expect
at there could be a significant dependence. This phase dif-

using the modern BO approximation and probability currents ; )
do not really demand that phase differences due to angulzia?dr%g;?, 5‘;‘”0“ldarbendeé?fremcpeedrgé’_;]e c?tlgr?t'glr;deShae??er?g;ge
motion be important irpHe". As explained in Sec. Il E 4, ! icaly varying v ' p ! xpert

our estimates can very likely be made to agree fairly WeIIby the stopping particle in both the initial and final states,
with the golden rule by taking into account only phase dif_and also by the energy this particle loses when it is captured.

. . : . ; The detailed behavior of these potentials, as well as the en-
ferences associated with radial motion, together with th%rgy loss, should depend on atomic numk@he possible

width of the initial state. But our calculations are entirely relevance of atomic size to EAF was noted many years ago
consistent with the presence of phase differences due to aBS/ Condo[44].) The very fact thatAd, could depend in
gular motion, and we believe their presence is in fac . 2

. tmore than one way on atomic number is itself encouraging,
strongly suggested. These results—together with the regdiecause x-ray yiel?j/s accompanying EAF, unlike most s%eﬁ-

._dependent properties of atoms, appear to vary more or less

ture about EAF. Specifically, we have conjectured that th gmoothly in the vicinity of closed shell#—6]. This suggests

. '%hat more than one atomic property must be taken into ac-
x-ray data can largely be accounted for by a difference "#ount. These questions are being investigated.
a

angular action along different paths leading to the same fin
state. Furthermore, we have suggested that the phase differ-
ence due to this difference in angular action could be esti-

mated by employing classical trajectories for the initial states 3. Oldendick gave valuable assistance in the preparation
and a classical orbit for the final state, much as we have dongf some of the figures. Some of the work reported here was

B. Exotic atom formation
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