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Nonrelativistic two-photon electron bremsstrahlung in a Coulomb field, including retardation

M. Dondera and Viorica Florescu
Faculty of Physics, University of Bucharest, P. O. Box 5211, Bucharest-Magurele, 76900 Romania

~Received 14 October 1997!

We study retardation effects in the two-photon electron bremsstrahlung in a Coulomb field, for the electron
energy range 1–10 keV. The calculation is based on an exact analytic expression for the matrix element of the
process, in a nonrelativistic treatment including retardation. The comparison with previous results for the
Coulomb case~exact Coulomb dipole approximation or Born approximation with retardation! confirms the
importance of retardation effects in the electron energy range under investigation, as indicated before by the
Born approximation.@S1050-2947~98!02009-5#

PACS number~s!: 34.80.2i, 32.80.Wr
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I. INTRODUCTION

The simultaneous emission of two photons in an electr
atom collision, called two-photon or double bremsstrahlu
has received some attention several years ago, stimulate
the experimental observation of Altman and Quarles@1# of
two photons in coincidence in electron–thin-solid-target
teraction. Other experiments have been performed since
Quarles and co-workers~see@2# for the most recent accoun!
and by Hippler@3,4#. The electron energy range was diffe
ent for the two sets of experiments: around 70 keV
Quarles’s case, and around 10 keV in Hippler’s case. P
ticular configurations have been recorded, namely, incid
electron momentum along the bisectrice of the angle 2u be-
tween the two emitted photons~denoted as the6u geom-
etry! for u545° andu590°.

On the theoretical side the situation was briefly revised
@5#. The majority of the calculations reported up to now re
to the case of the electron scattering taking place in the C
lomb field of a fixed nucleus of chargeZ @6–9#. An interest-
ing approach has been developed by Korol@10#, exploiting
the properties of the momentum operator matrix element
tween two continuum states.

The orders of magnitude disagreement between the
perimental data in the645° geometry and the Coulomb fiel
results obtained in nonrelativistic dipole approximation~see
Fig. 2 of Ref. @11#! at electron energies of 70 keV was a
indication of the inadequacy of the dipole approximation.
the same conditions a relativistic Born approximation d
rived by Smirnov@12# was in reasonable agreement with t
experiment@13–15#. The importance of retardation effec
was confirmed afterwards in two different calculatio
@16,17#. In our previous paper@16#, we have adopted a non
relativistic Born approximation including retardation trea
ment, in an exploratory study of retardation effects. We h
found that retardation effects are important even for ener
in the 1–10 keV range. In a recent calculation@17#, Korol
has used the approximate method developed in@10# for the
evaluation of the nonrelativistic matrix element of the dou
bremsstrahlung with retardation included. The numeri
evaluations of the cross section in@17# bring more evidence
on the importance of retardation effects, and are in ag
ment with @16#. Korol’s approach seems to include in a sa
isfactory way the Coulomb effects.
PRA 581050-2947/98/58~3!/2016~7!/$15.00
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Before the completion of our numerical calculation pr
sented here, Korol@18# published analytical and numerica
results on the two-photon bremsstrahlung, taking into
count retardation. It appears that we have used the s
analytic method, but due to different algebraic manipu
tions, we have obtained more compact expressions for
eral invariant amplitudes. For this reason, in this paper~i! we
shall present our analytic results, but we shall omit details
their derivation, which employs the technique used in
dipole approximation by Ve´niard and co-workers@7#, as Ko-
rol also does;~ii ! we shall focus on the numerical predic
tions, in the energy range 1–10 keV for the incident electr
where the neglect of relativistic effect is justified, which
not always the case for energies around 70 keV, conside
by Korol.

The matrix element of two-photon bremsstrahlung, in
exact nonrelativistic treatment, including retardation, is p
sented in Sec. II. Our results for the invariant amplitudes
given in the Appendix, with the exception of one of th
amplitudes, discussed in more detail in Sec. II. This am
tude requires a special treatment, in connection with
d-type behavior of the matrix element in the free electr
case. Section III of this paper contains numerical results
two types of cross sections:s4, which corresponds to the
detection of the emitted photons only@see Eq.~13! here# and
s5, which describes the electron angular distribution at fix
photon geometry. The discussion starts with a compari
with experimental data obtained by Hippler fors4, displayed
in Fig. 1, corresponding to690° geometry. As explained
previously@16#, this geometry is least affected by retardati
effects. Because there are no other experimental data in
incident electron energy range we investigate, the theore
results presented in the other figures are selected in ord
illustrate the importance of the retardation effects and so
of their features, with the hope that new experimental d
will be available.

We use the same notations as in@16# in order to designate
the different approaches used in the Coulomb case:~i!
BNRR—nonrelativistic Born approximation, with retarda
tion included;~ii ! CNRD—nonrelativistic dipole approxima
tion, treating exactly the electron in a Coulomb field;~iii !
CNRR—nonrelativistic ‘‘exact’’ calculation, retardation in
cluded. The cases presented in Sec. III and other case
have considered show that~i! the validity of BNRR calcula-
2016 © 1998 The American Physical Society
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tion ~equations presented in@16#! is restricted to high ener
gies~usually tens of keV!, but not too high because the rel
tivistic effects begin to play a significant role, and lo
atomic numbers;~ii ! the validity of CNRD~see@6,8#! is gen-
erally limited to low electron energies excepting the case o
special emission geometry~the two photons emitted orthogo
nal on the incident electron direction!, for which the retarda-
tion effects are very small. Our study clearly indicates
need to use the CNRR calculation, to cover the range
electron energies between 1 keV and 20 keV, where the
approximations are in difficulty.

II. THE MATRIX ELEMENT

We denote the asymptotic electron momenta bypW 1 and
pW 2, the photon momenta byKW 1 and KW 2, with photon direc-

FIG. 1. The cross sections4 in the CNRR calculations, as
function of the photon energyk2, for Z554 and the geometry
690°. For comparison, Hippler’s experimental points are sho
~without error bars!. The results correspond toT158.82 keV,k1

52.8 keV for dashed curve and solid circles,T1510 keV, k1

52 keV, for upper curve and open circles,T1512.5 keV, k1

52 keV, for lower full curve and open triangles.
lly

e
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a

e
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tions specified by the unit vectorsnW 1 andnW 2, and the photon
polarization vectors bysW1 and sW2. The corresponding ener
giesT1 ,T2 ,k1 , andk2 are connected by the conservation la
T15T21k11k2, and the momentum transfer isDW 5pW 12pW 2

2KW , with KW 5KW 11KW 2.
The amplitudeM of the two-photon bremsstrahlung

given by the Kramers-Heisenberg-Waller matrix element
tween initial and final continuum energy eigenstatesupW 11&
andupW 22&. The asymptotic behavior at large distance is th
of a distorted plane wave plus an outgoing or incoming wa
for ^rWupW 11& or ^rWupW 22&, respectively. The amplitudeM can
be written as

M5 (
i , j 51

3

@P i j ~KW 1 ,KW 2 ,V1!1P j i ~KW 2 ,KW 1 ,V2!#s1i* s2 j*

1OsW1* •sW2* , ~1!

where we have denoted

P i j ~KW 1 ,KW 2 ,V!

5
1

me
K pW 22UexpS 2

i

\
KW 2•RW D PjG~V!Pi

3expS 2
i

\
KW 1•RW D UpW 11 L , ~2!

and

O5 K pW 22UexpS 2
i

\
KW •RW D UpW 11 L . ~3!

The symbolsRW and PW represent, respectively, the positio
and the momentum operators,G(V) is the Coulomb Green
operator, and the two parametersV1,2 are given byV1,2
5T12k1,2.

We have calculated the matrix elementsP i j andO using
integral representations for the Coulomb Green function
the continuum states in the momentum space. The te
with the componentsP i j can be expressed as a linear co
bination of Kronecker tensor and of tensorial products
tween the involved momenta:

n

P i j ~KW 1 ,KW 2 ,V!5Ad i j 1B1
~0!p1i p1 j1B1

~1!~p1iK1 j1p1 jK1i !1B1
~2!K1iK1 j1B2

~0!p2i p2 j1B2
~1!~p2iK2 j1p2 jK2i !

1B2
~2!K2iK2 j1C1

~0!p1i p2 j1C1
~1,1!p1iK2 j1C1

~1,2!p2 jK1i1C1
~2!K1iK2 j1C2

~0!p2i p1 j

1C2
~1,1!p1 jK2i1C2

~1,2!p2iK1 j1C2
~2!K2iK1 j . ~4!
ns,
xi-
me
The 15 coefficients of this linear combination are rotationa
invariant amplitudes~scalar functions!.

Because of orthogonality conditions (sW1•KW 15sW2•KW 250),
the terms containingB1

(2), B2
(2), C1

(1,1), C1
(1,2), and C1

(2) do
not contribute toM. For the remaining ten amplitudes on
finds in this way analytic expressions, which are integ
 l

representations involving hypergeometric Gauss functio
very similar in their structure to those used in dipole appro
mation. Before presenting the amplitudes, we introduce so
notations, used in the following:

l5aZmec, X2522meV, h1,25l/p1,2, t5l/X,
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a1
652~p16 iX !21K1

2 , a2
652~p26 iX !21K2

2 , ~5!

g524X2@~p12p2!22K2#.

We list the expressions for the amplitudes, except
C1

(0) , in the Appendix. The amplitudeC1
(0) deserves specia

attention because it retains a singularity of the matrix e
ment. One can understand this singularity, observing tha
the limit Z→0 ~free electron!, the term of zeroth order fo
te

is

s

D
ne

-
in
R

n
s

s

g

-
in

P i j @Eq. ~2!# is proportional with ad function of momentum

transferDW . Its contribution vanishes because energy cons

vation does not allowDW to vanish. As a consequence, th
expression forC1

(0) is only apparently of zeroth order inaZ.
By an integration by parts, we were able to remove a te
which in fact vanishes and to get an expression forC1

(0)

showing its true order inaZ ~first order!. The expression we
get this way is
C1
~0!52t~12 ih1!~12 ih2!

Kg

p1p2
E

0

1

dr r2tta
12 i ~h11h2!

~2t12!
221 ih1t21

221 ih2

3@ ta~12r2!2F1~22 ih1,22 ih2 ;2;z!18tX4r2
2F1~22 ih1,22 ih2 ;3;z!#, ~6!
pre-

e

-

-

nt
are

eir
where we have defined several functions of the parame
introduced before, and of integration variable, denotedr:

ta5~a1
12a1

2r!~a2
12a2

2r!1gr,

t125@~pW 12KW 1!21X2#~12r!~a2
12a2

2r!

14X2@~pW 12KW !22p2
2#r,

t215@~pW 21KW 2!21X2#~12r!~a1
12a1

2r!

24X2@p1
22~pW 21KW !2#r,

and

tb5@~pW 12KW 1!21X2#@~pW 21KW 2!21X2#~12r!214X2D2r.

The variablez of the hypergeometric Gauss function
z512tatb /t12t21, and the constantKg has the expression

Kg5
8me

p2
Ap1

3p2
3X3G~12 ih1!G~12 ih2!expS p

h22h1

2 D .

We notice that the amplitudeC1
(0) is ~up to factor! the one

Korol @18# denotes byC. Our result is much simpler than hi
result ~36c! in Ref. @18#.

We have considered also several limiting cases.
~i! For KW 15KW 250W we reobtain the equations of CNR

calculation @8#. Comparing the two sets of equations, o
observes that the retardation manifests in two ways:~1!
through supplementary terms inP i j ; and ~2! through some
modifications of the amplitudes~the variable of Gauss func
tions and the functions which multiply these ones under
tegrals are modified and more complicated than in the CN
calculation!.

~ii ! For aZ→0, keeping only the terms of first order i
this parameter~i.e., the contribution of the amplitude
B1

(0), B1
(1), B2

(0), B2
(1), C1

(0), and O), and neglecting the
others~which are of second order!, we reobtain the equation
of BNRR calculation@16# ~note also that in this limitB1

(1)

52B1
(0), andB2

(1)5B2
(0)).
rs

-
D

~iii ! For one low-energy photon~‘‘soft’’ photon, k1→0),
one obtains an equation in agreement with the general
diction of QED:

M ;
k1→0

M ~s-ph;1![2
1
k1

~sW1* •dW 1!~sW2* •TW !, ~7!

where

dW 15
pW 1

12~1/mec!~nW 1•pW 1!
2

pW 2

12~1/mec!~nW 1•pW 2!
, ~8!

and

TW5 K pW 22UexpS 2
i

\
KW 2•RW D PW UpW 11 L . ~9!

From the vectorTW is constructed the matrix element of th
single bremsstrahlung.

~iv! When both photons have low energy (k1,2→0), by
keeping in Eq.~1! only the terms corresponding to the am
plitudesB1

(0), B2
(0), andC1

(0), and neglecting the others~their
contribution is negligible!, we obtain an equation which fac
torizes the contributions of the two photons:

M ;
k1,2→0

M ~s-ph;2![2
h1

8p2me

G~12 ih1!

G~11 ih1!

3S sin
ue

2 D 2~211 ih1! 1

k1k2
~sW1* •dW 1!~sW2* •dW 2!,

~10!

wheredW 1 was defined in Eq.~8! anddW 2 is obtained from it by
changingnW 1 to nW 2. We mention that the Eq.~10! can be
obtained from Eq.~7!, taking k2→0, afterk1→0. Equation
~10! is valid for nonforward electron scattering (ueÞ0).
Equations~7!–~10! show that the retardation effect is prese
even in the case of soft photons. The retardation effects
present in the denominators of the terms indW 1 and dW 2

through the quantities (nW 1,2•pW 1)/mec and (nW 1,2•pW 2)/mec,
which do not contain the photon magnitudes but only th
directions. This result is the same as Eq.~65! of @18#. It is
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interesting that a relativistic Born approximation, soft-phot
calculation leads to the same result@15#, showing that, at
least in the two-soft-photon limit there are no relativis
corrections comparable with the corrections shown he
This is in fact the result predicted from QED, by success
application of the low-energy theorem@19#.

The existence of the simple relation,

M ~s-ph;2!5
G~12 ih1!

G~11 ih1!S sin
ue

2 D 2ih1

M ~B;s-ph;2!, ~11!

betweenM (s-ph;2) and its limitM (B;s-ph;2) in Born approxi-
mation is connected with the particularity of the Coulom
field for which, in the nonrelativistic case, the first Bo
approximation leads to the exact elastic cross section~Ruth-
erford cross section!. The difference between the two amp
tudes in the preceding relation is a phase factor, irrelevan
the cross sections. This implies that for soft photons
CNRR and BNRR calculations give the same results, eve
the conditions for Born approximation to be valid are n
fulfilled.

For the case of near forward scattering (ue'0), the situ-
ation is quite different: in Born approximation one can de
onstrate analytically that the terms linear in photon and e
tron momenta have a contribution of the same order as
of the terms quadratic in electron momenta. We mention
in a CNRR treatment, this property seems to be confirmed
our numerical calculations. As a consequence, for near
ward scattering the matrix elementsM (s-ph;2) and
M (B;s-ph;2) differ not only by a phase factor, and also th
corresponding cross sections are different.

III. NUMERICAL RESULTS AND CONCLUSIONS

We consider two types of the possible multiple differe
tial cross sections for double bremsstrahlung, denoted bys5
ands4. The most completely differential cross section~with-
out observation of electron spin and without photon polari
tion detection! is obtained from the amplitudeM in Eq. ~1!
as

s55
r 0

2

2

k1k2

mec
2T1

(
sW1 ,sW2

uMu2. ~12!

For the experiments performed up to now, the scatte
electron being not observed, the quantity of interest is

s45E s5dVe . ~13!

All the results presented here consider the rather low e
tron energy of several keV.

We start by illustrating in Fig. 1 the present status of t
comparison between theory and experiment for incident e
tron energies around 10 keV. For this energy range, we r
to Hippler’s experimental results, presented in Ref.@3# ~to
our knowledge, there are no other experimental data!. We
already have compared a part of Hippler’s data with the t
oretical results in dipole approximation in a previous pa
~Fig. 1 in @11#, corresponding to Fig. 1 of@3#!. Now we
consider the data presented in Fig. 2 of@3#. The comparison
e.
e
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is done for the cross sections4, as a function of photon
energyk2, at Z554, for several values of electron energyT1
~8.82, 10, and 12.5 keV! and the other photon energyk1
fixed ~2 or 2.8 keV!. While for high photon energyk2 the
agreement between theory and experiment is reasonable
notices a serious discrepancy at low photon energy, not
derstood up to now.

We mention that all the experimental data of Hippler co
respond to a690° geometry, for which the inclusion o
retardation is practically without effect~see also Fig. 3,
here!. This situation was noticed before, and it is connec
with the argument given in Ref.@16#, that due to the sym-
metry of the process amplitudes to the interchange ofkW 1 and
kW 2, the linear terms in photon momenta ins4 will appear
only in the scalar productpW 1•(kW 11kW 2), or in the690° ge-
ometry pW 1•kW 15pW 1•kW 250. It was one of the conclusions o
our previous paper@16# that retardation effects may be su
pressed by picking configurations for whichpW 1•(kW 11kW 2)
50.

In what follows we shall present theoretical results whi

FIG. 2. The values ofs4 /Z2 in the CNRR~full line!, CNRD
~dot-dashed line!, and BNRR~dashed line! calculations, as a func-
tion of the ratiok2 /T1, for T1510 keV, k151 keV, and the ge-
ometry645°.

FIG. 3. The cross sections4 ~CNRR full line, CNRD dot-
dashed line!, and the ratios4

(CNRD)/s4
(CNRR) as functions of the

angleu between each photon and the incident electron moment
for Z518, T158.82 keV,k152.8 keV, andk251 keV.
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illustrate the importance of retardation effects for the cr
sectionss4 ands5.

Figure 2 illustrates theZ dependence of retardation e
fects fors4, in the case of645° geometry. The four panels
each one corresponding to a different atomic numberZ,
present a comparison between CNRR~full line!, CNRD ~dot-
dashed line!, and BNRR~dashed line! results, for an incident
electron energy of 10 keV. The quantity represented
s4 /Z2, as a function of the ratiok2 /T1, the energyk1 of the
other photon being fixed atk151 keV. One observes tha
~1! the dipole approximation is not valid for this energy~a
similar conclusion was obtained in Ref.@16#, working in
Born approximation!; ~2! the Born approximation is accep
able for the case of the panel corresponding toZ51 ~except
the case of low final electron energy!, but unacceptable fo
the other cases. Born approximation requires bothh1 andh2
@Eq. ~5!# to be much smaller than 1. At fixedk1, h2 increases
with increasingk2, up to`, reached forT250. This explains
why, even for lowZ, for k2 approaching the maximum valu
T12k1, Born approximation results deviate from the exa
Coulomb ones.

The dipole approximation predicts identical results for t
geometries6u and 6(p2u). This symmetry is lost in
CNRR theory, as one can see in Fig. 3~CNRR full line,
CNRD dot-dashed line!, where we represent the dependen
of the cross sections4 on the angleu between each photo
momentum and the incident electron momentum. We h
considered the process of emission of two photons with
ergies 2.8 keV and 1 keV, by an electron with the ene
8.82 keV, scattered by a target withZ518 ~one of the cases
investigated by Hippler@3#, but only for the geometry
690°). In the CNRR calculation, the emission of photons
the forward directions is more probable than in backw
directions. We represent also~dashed line! the ratio of
CNRD and CNRR values fors4. This ratio is close to 1 for
u590°, a feature met also in the Born approximation~see
Ref. @16#!, and having the explanation mentioned before.

Information about the importance of retardation effe
for the most detailed cross section in its dependence on
electron scattering angleue is given in Fig. 4. The left pan-
els, ~a! and~c!, give CNRR results, and the right panels,~b!
and ~d!, CNRD results. The emission geometries are645°
for upper panels~a! and ~b!, and690° for lower panels~c!
and ~d!. The different curves correspond to different valu
of the electron azimuthal anglefe , in a reference frame with
z axis along the incident electron momentum and the p
tons in thex-z plane. The energies areT1510 keV, k1
51 keV, and k255 keV. A large retardation effect
strongly dependent on the final direction of the electron
observed for geometries645°. On the contrary, for geom
etries690°, the CNRR and CNRD theories give close r
sults.

Finally, in Fig. 5, we consider the emission of two ve
low-energy photons, namely,k1 /T15k2 /T150.001, at very
low electron scattering angles (ue,1°). Two sets of curves
are represented, given by CNRR and BNRR theories. O
observes that forue.0.5°, the two curves practically coin
cide; this is so, not because the Born approximation is va
but because for this angular range the matrix elements di
with a good approximation, only by a phase factor, as
plained at the end of Sec. II. The situation is different
s
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very small scattering anglesue,0.2°, where Coulomb field
effects come into play in a more complicated manner. W
all this difference, our numerical results seem to indicate th
the order of magnitude of the amplitudeM as function ofk1
andk2, in the soft-photon regime, does not change drama
cally when approaching the limit of forward scattering. Th
is in contrast with the results established in@18#, for higher
electron energies.

In conclusion, our paper demonstrates the importance
the retardation effects in the energy range considered~around
10 keV!, for the two-photon bremsstrahlung in the Coulom
field. With the exception of some geometries, these effe
cannot be ignored in an exact calculation. Unfortunate

FIG. 4. The cross sections5, as a function of the scattered
electron angleue , for Z513, T1510 keV, k151 keV, andk2

55 keV. The upper panels~a! and~b! are for the geometry645°,
the lower for690°. In each panel, the curves correspond to diffe
ent values of the azimuthal anglefe , starting from below: 180°,
0°, 135°, 45°, and 90°. In~d!, the curves for 180° and 0° are
identical, as also are those for 135° and 45°.

FIG. 5. The values of the cross sections5, in the CNRR~full
line! and BNRR~dashed line! calculations as a function of the angle
ue , for three valuesfe (0°,45°,90°), Z513, T1510 keV, k1

5k2510 eV. The emission geometry is645°.
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their neglect does not appear to be the cause of the disc
ancy between theory and the experimental data of Hip
@3#. For a precise comparison with experimental data scre
ing effects should be included. An opinion on their effe
was expressed at the end of Sec. I of Ref.@16#; taking the
one-photon bremsstrahlung case as a guide, one may
that they will reduce the value of the cross section, but w
still indicate their order of magnitude.
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APPENDIX: THE EXPRESSIONS
OF THE AMPLITUDES

We give here the list of amplitudes which enter in Eq.~4!.
Some of the notations and the amplitudeC1

(0) are given in
Sec. II.
A52h1h2KgE
0

1

dr r12tta
2 i ~h11h2!

~2t12!
211 ih1t21

211 ih2
2F1~12 ih1,12 ih2 ;2;z!, ~A1!

B1
~0!5gBE

0

1

dr r12tta
22 i ~h11h2!

~2t12!
231 ih1t21

211 ih2Fa2

ta
2F1~22 ih1,12 ih2 ;2;z!

1
12 ih2

2 S b2

t21
2

a2

ta
wD 2F1~32 ih1,22 ih2 ;3;z!G , ~A2!

with gB54(12 ih1)(22 ih1)h2(X/p1)Kg , a25a2
12a2

2r2, b25@(pW 21KW 2)21X2#(12r2), andw512z;

B1
~1!52

gB

22 ih1
E

0

1

dr r12tta
12 i ~h11h2!

~2t12!
221 ih1t21

211 ih2@x~ I!
2F1~22 ih1,12 ih2 ;2;z!1x~ II !

2F1~32 ih1,22 ih2 ;3;z!#,

~A3!

with

x~ I!5S 12 ih12 ih2

ta
2

22 ih1

t12
Da22~12 ih2!

b2

t21
,

and

x~ II !52
~22 ih1!~12 ih2!

2 F S 1

ta
2

1

t12
Da22S 1

t21
2

1

tb
Db2Gw,

C2
~0!5gC2

E
0

1

dr r22tta
12 i ~h11h2!

~2t12!
221 ih1t21

221 ih2
2F1~22 ih1,22 ih2 ;3;z!, ~A4!

with gC2
528h1h2(12 ih1)(12 ih2)X2Kg ;

C2
~1,1!52

2gC2

12 ih2
E

0

1

dr r22tta
2 i ~h11h2!

~2t12!
211 ih1t21

211 ih2F 1

t12
2F1~12 ih1,12 ih2 ;2;z!

2
12 ih2

2 S 1

t12
2

1

tb
Dw2F1~22 ih1,22 ih2 ;3;z!G , ~A5!

C2
~2!5216h1h2X2KgE

0

1

dr r22tta
2 i ~h11h2!

~2t12!
211 ih1t21

211 ih2@y~ I!
2F1~12 ih1,12 ih2 ;2;z!

1y~ II !
2F1~22 ih1,22 ih2 ;3;z!#, ~A6!
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with

y~ I!5
i ~h11h2!

ta
1

12 ih1

t12
1

12 ih2

t21
,

and

y~ II !5
~12 ih1!~12 ih2!

2 S 1

ta
1

1

tb
2

1

t12
2

1

t21
Dw.

The expressions of amplitudesB2
(0), B2

(1), andC2
(1,2) ~not

listed here! are obtained from the expressions ofB1
(0),

2B1
(1), and 2C2

(1,1) with the interchangespW 1↔2pW 2 and

KW 1↔KW 2.
For the amplitudeO, using the same technique as forP i j ,

and defining new parametersta5(p11p2)22K2, tb5
ys

ys

ys

.

2D2, t125p2
22(pW 12KW )2, andt215p1

22(pW 21KW )2, we have
established the expression

O52
Kg

8

l

p1p2X3
ta

2 i ~h11h2!~2t12!
211 ih1t21

211 ih2

3F ~12 ih1!S p11p2

p12p2
1

ta

t12
D 2F1~22 ih1,12 ih2,2;zo!

1~12 ih2!S p11p2

p22p1
1

ta

t21
D 2F1~12 ih1,22 ih2,2;z0!G ,

~A7!

with z0512tatb /t12t21. One notes that the amplitudeO
does not contribute toM in the dipole approximation~for
K50, the coefficients of2F1 functions are zero!.
tt.
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