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The line-integral method developed by van Leeuwen and Baef@iys. Rev. A51, 170(1995] is applied
to the calculation of the differences of correlation energy functional valdd=™ =E> " py]
—EX [ peyacd» Where pe is the Hartree-Fock density angl,.. is the near-exact on€DFT is density-
functional theory. From the Kohn-Sham wave functions yielding Hartree-Fock and the near-exact densities,
the corresponding noninteracting kinetic energies and the exchange energies are calculated. An approximate
relation betweerEE’FT[pHF] and the conventional quantum chemistry correlation energy is presented, accurate

to <4u hartree for the isoelectronic series of He, and Li, and for the Be di8t050-294®8)12309-0
PACS numbeps): 31.15.Ew

I. INTRODUCTION to be small, then the common use of the Hartree-Fock den-
sities in fitting procedures will be justified.

A fundamental component of the total electronic energy The same differences for the noninteracting kinetic en-
functional in density-functional theory(DFT) is the ergy Ty puel— T4l pexacd CaN be calculated in two ways: by
exchange-correlation energy function&f: '[p]. Recently the line-integral methodsee Sec. )| and directly from the
van Leeuwen and Baerenfl advanced energy expressions KS wave functions yielding Hartree-Fock and near-exact
in DFT using the line-integral method. The exchange-densities. The availability of accurate values for this differ-
correlation energy differences for example, can be expresseghce will provide a means for estimating the accuracy of the
as numerical procedure. In Sec. IV, the numerical results are

discussed, and the differencaEl"" for the He isoelec-
DFT, _ DFT, DFT, tronic series are compared with the nondynamical correlation
ABc Lp2,p1]=Ec [p2] =B Tpd] energy[11] and with the magnitudé introduced recently
2 dy(t) Ref.[12].
- ot ar v @vo10 I, @
Il. BASIC FORMALISM

where y(0)=py(r), ¥(1)=po(r), and v [ ¥(t)],r) is In all sxstems considered in this paper no degeneracies

the exchange-correlation potential corresponding to the inteleccur. LetH, denote theN-electron Hamiltonian which de-

mediate densityy(t). The main difficulty for a direct appli- Scribes the systems

cation of Eq.(1) is to obtain the exchange-correlation poten-

tial v,o([ ¥(t)],r) for te[0,1]. H,=T+Veetv, 2
Various methods for the construction of the effective

Kohn-Sham(KS) potential l;s: necessary to obtain a KS whereT is the kinetic-energy operator

wave function yielding a given density, have been developed

in recent year§2—10. The exchange-correlation potential N 1
can be extracted from the effective KS potential, and (Ey. Tzz ( — EV? , 3)
can be applied to calculate the differens&2 [p,,p;]. =1

In the present work the differenceSEL [p,,p1] and . _ _
AEP [ py,p1]1=E% [ p,]—EPT[p,] are calculated for the Ve iS the electron-electron interaction operator

Cc ! Cc Cc
two densitiegp = pexact@ndp,= pye for the He isoelectronic N
series £=2, 3, 4, 5, and 1) for the Li isoelectronic se- ~ 1 1

Veer 52 T (4)

ries Z=3, 4, 5, 6, and Band for the Be atom. Correlation
or exchange-correlation energy differences are important in
fitting the parameters of any approxmated cor relation angandz} is an one-particle local external potential
exchange-correlation functionals, and in assessing the quality
of these functionals when Hartree-Fo@dF) ground-state N
densities instead of exact ones are used to evaluate the en- ~ 2 _ 5

: DFT DFT v=_2, v(ry). ®
ergy values. If the differenceSE;"" andAE,; " are found i=1
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A basic quantity in DFT is the noninteracting kinetic-

energy functional13,14 £ )= (@STo Vbt Tl 5 [ %dr ar’
r—r
Tdpl= int (Dol T|o)=(@SpITIOSpD, (©
o +EXp] (1)

where®dy, is a single-Slater determinant that yields the one-
particle density. Lieb[15] showed that the infimum occurs s expressed through E¢L), where y(t) is a path between
at a minimum and, thus, that there exists a wave functiofne two densitiep, andp,
O p]. DK p]is the KS wave function for a given den-
sity p, and it is the ground-state wave function of a nonin- _
teracting Schrdinger equation with an effective local poten- V(D)= pa(r) +tpa(r) = pa(r)), (12)
tial vs=={L1vs([p],1), _ _ ,
anduv, ([ y(t)],r) is an exchange-correlation potential

{T+0o @5 p]=E5Tp). (7 (1)

vxc<[p],r>=vs<[p],r>—j dr'—v(r), (19

The noninteracting total-energy functional is the expecta- [r=r’|
tion value of the interacting HamiltonidiEq. (2)] with re- )
spect to the KS determinadtSy p], with p=y(t). , o ,
For the noninteracting kinetic-energy difference, the
equation

Ey L p]=(@5Lpl|H,P5Tpl)=F*Tp]+Eed pl, (8
AT p2,p1]=Tdp2]—Tdp1]
whereFXS[p] is the KS energy functional arf,,{ p] is an 1
external potential-energy functional. Introducing the =_f dtJ dr v ([ y(t)],r)
Hohenberg-KohrHK) functional[16] 0

dy(t)
dt

(14)

) ~ A A~ A also holds. The proof of Eq14) is straightforward from the
FH€Lp]= min(W[T+VdW)=(¥ [ p]|T+ V¥ p]), Euler equation

Y—p
9 ST
ﬂJrl)s([p].r)ﬂt- (15

where the variational wave functio associates with a op(r)
given one-electron densify, one can define the DFT corre-

lation energy[16] as From the additivity of the exchange-correlation functional

Eq. (1), i.e., EX Tp]=Ep]+E>Tp], it follows that

Ec [p]=F"™[p]—F*p]. (10)
A ECDFT[Pz p1]=A EECFT[Pz p1]—AELp2,p1], (16)
Next, we introduce the difference of energy functionals
calculated for two densitiep; and p,. The energy differ- whereAE,[ p,,p4] is the difference of the exchange energy,
enceAEL ' of the exchange-correlation functional which can be calculated directly from the KS wave functions

AE L p2.p1]=El p2]— El p1]=(PET po]| Ved 5T p21) — (P 11| Ved PET p1])

1 (p2(r)+ p1(N)(p2(r’) —pa(r’))
—EJ f dr

=]

dr’. (17)

ll. CALCULATIONS AND RESULTS tional energies no more than 16 nhartree above the exact
ones[17]. The densities for the Li isoelectronic series were
The differences given by Eqgl), (14), (16), and (17) taken from Ref.[18]. These densities were obtained from
between near-exact and HF densities have been calculatelb4—-233-term Hylleraas-type wave functions that take into
The near-exact densities for the He isoelectronic series weraccount 99.13 %—-99.88 % of the correlation energy. The ac-
taken from Ref.[17]; these densities were obtained from curate density of Be atom employed in this work is that of
204-term Hylleraas-type wave functions leading to varia-the “exact” 650-term nonrelativistic wave function of
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TABLE I. Noninteracting kinetic-energy functional valuésartreg.

Species Td Pexact —ATs=Td pexacd — TsLPHE] _ATIS_IM [Eg. (14)] |ATS_AT;|M‘
A—Ts X 100%
H™ 0.500003 0.012073 0.012071 0.017
He 2.867259 0.005579 0.005579 =0.02
Li* 7.240085 0.003670 0.003670 =<0.03
Be'? 13.614083 0.002784 0.002784 =<0.04
B3 21.988478 0.002244 0.002244 <0.04
Ne*® 93.862252 0.001139 0.001139 <0.09
Li 7.436127 0.003722 0.003722 =<0.03
Be'! 14.279995 0.003029 0.003029 =<0.03
B*?2 23.377965 0.002439 0.002441 0.082
c*s 34.727641 0.002063 0.002071 0.39
o+ 64.179125 0.001584 0.001588 0.25
Be 14.593123 0.020652 0.020656 0.019

Bunge[19], which reproduces 99.55% of the correlation en-and of the magnitude\ = EcQ,gxacl_ Eg';lacl (introduced Ref.

ergy. The HF densities are of the numerical type, and were12)) for the He isoelectronic series are presented for com-
calculated with the program of Froese Fischi@0]. The  parison. It is seen that the three last columns of Table Il have
scheme of our calculations consists of the following steps. the same values within a feyehartree. Using the quantity

(i) Path parametrization(t) = pexactt t(PHF— Pexacd - AEF®S (introduced by Gding and Ernzerhof21]), we can
(i) Kinetic-energy minimizatiodEq. (6)] and determina-

) . Ks : write
tion of wave functions® y(t)] for mesh points oft
=0,01....1 DFT_ =DFT, DFT] HF-K
(iii) Definition of the effective KS potential ([ y(t)],r) AESF =B [ pue] —E¢" [pexacd =A + AEST T pyel.
[Eq. (7)] and the exchange-correlation potential (18

vxe([ ¥(1)1,1) [Eq. (13)].

(iv) Calculation of the differenceAERXTT [Eq. (1)], AE,  Equation (18) is an approximate expression that follows

[Eq. (17)], AEDFT [Eq. (16)], andA T, [Eq. (14)]. from Eq. (14) of Ref. [11] and the approximate relation
Steps(ii) and(iii) are performed by a modified version of AE = Egd(_") . _ _ _
the method based on local-scaling transformatir3T’s) Rearranging terms in E18), one obtains an approxi-

[3,4] described in the Appendix. The existence of an effec-mate equation for the conventional quantum chemi&Qg)
tive KS potential and, consequently, of an exchangecorrelation energy

correlation potential corresponding to a density y(t),

would be guaranteed by the noninteractingepresentability EQC  _ EDFT _ AEHFK 19
[16] of the densityp. In the present work we leave aside a Capprot Ec LPHF] ¢ Lowel, (19
comparison between KS results obtained by the LST-based

method and other metho@2—7,9,14. where AES T pe] is [21]
The noninteracting kinetic-energy differences were calcu-
lated both directly from the formulaATs=Tg pye] AEMFRY o] = H{ O ppe] | T+ Ved 7 pre]
— Ty pexacd @nd by the line-integral methodEq. (14)] el =1 ‘s vl o ‘s Hel)
(which allows us to obtain thAT:"™ values. The values of (D el T+ Ved @ prel) }-
T pexac] and the differenced T, andATL™ are reported in (20)

Table I. It is seen in the last column of Table | that the error
of the line integral method numerical procedure is small.
This error is due to the inaccuracy in the([ y(t)],r) defi-
nition. Because the potential,. has the same inaccuracy as . .
the potential, it follows that the line-integral method nu- mleed ":. Eq.l(g)QE:ZZ]. Eq. (20) is the functional of the HF
merical procedure for the exchange-correlation differences unctional Eg ;,5r0x EQ. (20) is the functional of the

[Eq. (1)] should have the same order of precisioma&™ density, and it approximates the exact quantum chemistry
ie .an order of 0.5 %see Table )l ' correlation energy. In Table Ill, we compare the values of

quantum chemistry correlation energy calculated by (E§)
with those calculated directly,

Equation(19) corresponds to the zeroth-order term of the
functional Taylor-series expansion of the functional mini-

The differencesAEY ' calculated by the line-integral
method[Eq. (1)], and the differenceAE, andAED™T calcu-
lated by Egs.(17) and (16), are reported in Table Il. The
values of the nondynamical correlation energ§f" [11] EQtxac Eexact Ene» (21
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TABLE II. The AE, andAED™T differences ghartree) and comparison afE2FT with ENUY and A.

Species AE, AEDFT Endin a AP=EQ, . EXT et
H-! —14502 2168 2174
He —1183.7 63.6 63.2 63
Lit —623.7 17.0 17.2
Be'? —440.7 7.6 7.7 7
B*+3 —346.5 4.3 4.4
Ne*® -173.5 0.8 -1
Li —-90.6 57.6
Be* -95.9 31.1
B*? -134.8 28.2
c*3 —142.4 28.3
o*s -129.9 15.5
Be 7821 1224
%Referencd11].
bReferenced 12].

where E,..; are the total-energy values reported in Refs.PHF OF Pxony density (see also Harris and Prds]). The
[17-19, and E, are the Hartree-Fock total energy values"umerical results of Table I1l show th& ;oor0x[EQ- (19)] is
[23]. It is seen that Eq(19) is exact with a precision & Very close approximation to this functional.
<4uhartree for the systems calculated. This means that the
term which is omitted in Eqg.(19) is of the order of ACKNOWLEDGMENTS
4uhartree. ~
The authors thank Professor Eduardo V. Lualéor valu-
able discussions, and Dr. Juan Rivero for a critical reading of
the manuscript. This work was partially supported by the
Near-exact densities of atoms and molecules are difficulfEomission of European Communities through Contract No.
to obtain. Extensive efforts to construct them are necessary!1*-CT93-0333.
[17-19. On the other hand, the HF densities are known for
atoms and many more complex systems. For this reason it is
important to calculate the exact total energy through a
“single-shot” correlation energy calculation, adding the cor-
relation energy to a HF calculation, i.e., using just the HF
density[24]. Levy [24] formulated the existence theorem for ~ In the constrained variatiofEg. (6)], the condition that
exact quantum-chemical correlation energies from HF andequires the one-particle densjiyfor the noninteracting sys-
exchange-only densities, i.e., there exists the appropriate uriem to remain fixed during minimization procedure is im-
versal quantum chemistry correlation energy functional ofposed through the use of local scaling transformatic@js
These transformations, carrying a vectar R into another

IV. DISCUSSION

APPENDIX: DETERMINATION OF KOHN-SHAM
ORBITALS AND POTENTIAL BY MEANS
OF LOCAL-SCALING TRANSFORMATIONS

TABLE Ill. Approximate and exact values of the quantum Vvectorf(r) e R3, connect a trial density,,
chemistry correlation energyn whartree). N
_ 2

. ry= ()4, Al
Species =T e por)= 2, [t(r)] (A1)
H™ 39827.4 39821.4 to another given density by means of the relation
He 42044.4 42044.4

i+
Y 43498.2 43498.2 p(r)=3(F(r );iNpo(H(r)) (A2)
Be'? 44266.8 44266.8
+3
B g 44737.1 44737.1 whereJ(f(r);r) is the Jacobian of the transformations. Intro-
Ne 45692.9 45693.0 ducing into Eq.(A2) the explicit form of the Jacobian, one
Li 4532 4 4532 .4 obtains a first-order differential equation for the function
Be' 4735.7 4735.6 f(r). For spherically symmetric one-particle densities, this
B+2 4860.5 4860.6 equation is written explicitly as
c*3 4943.7 4944.4 df(ry 2 p(r)
o*® 5048.5 5049.0 = , (A3)
dr  £2(r) po(f(r))

Be 93875.1 93878.8

and the transformed orbitals are given by
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p(r) The orbitals[Eq. (A4)] which minimize the noninteract-

Gi([plin)= (f(r))z/;O,(f(r)) (Ad4)  ing kinetic energyEq.(6)] are the noncanonical Kohn-Sham
orbitals; they satisfy the noncanonical Kohn-Sham equations

wheref(r)=(f(r),0,¢) andr=(r, 6, ).
Clearly, the single-Slater determinant [—1V24u([p] r)}w S([p]ir)= 2 f KS([pT:r),
S [
1 (A6)
Pplp]= Wdel{l/ﬁ([p];r-)} (A5)

' wherev ([ p],r) is the effective Kohn-Sham potential. Mul-

yields the density independently of the trial densipy [Eq.  tiplying Eq. (A6) by %S([p];r) and summing equations, we
(AD)]. obtain the following expression for the potential:

vellpl,)=ve([p],1; kS =— (A7)
Z | S([pTin)|?

— 1
P A (VIR NN (VA Halk

In Eq. (A7), we emphasize the dependence of the effecwherez,//”(f”)(r) are the eigenfunctions of the Hamiltonian
tive potential expression on the eigenvalues, because we

must determine them. In Rd#4] the effective potential was L 192 )

calculated by an iterative procedure, and the highest occu- h,==2V"+udllplrie) (A9)
pied molecular-orbit eigenvalue was taken from experiment,
i.e., as the ionization energy. In the present work the eigen-
valueSeIl were calculated from the minimization of the ab-
solute value difference integral of the densjy and the
ground-state density coming from the solutions of the non-
interacting Schirdinger one-particle equations with the ef-
fective potential (([p].r;€;) [Eq. (A7)]

2 2
=min| |3 o] -3 “/";“Wr)

We repeat the main steps of our numerical procedure.
(i) Noninteracting kinetic-energy minimization and deter-
mination of noncanonical KS orbitalEgs. (6) and (A1-
(A5)].

(ii) Determination of the KS eigenvaluegS [Egs.(A8)—
(A9)].

(iii ) Calculation of the effective KS potentifiEq. (A7)].

We have expanded the ftrial orbital,; [Eqg. (A1)] in
terms of the 12-term exponential-type even-tempered atomic
orbitals[26]. The typical value of theS value in Eq.(A8) is
108 for the He isoelectronic series, and is £0for the Li

‘2 ‘zﬁﬁs(r) 2 zp”(é'l )(r) r,  (A8) isoelectronic series and for the Be atom.
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