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and the Hartree-Fock densities by the line-integral method
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The line-integral method developed by van Leeuwen and Baerends@Phys. Rev. A51, 170~1995!# is applied
to the calculation of the differences of correlation energy functional valuesDEc

DFT5Ec
DFT@rHF#

2Ec
DFT@rexact#, where rHF is the Hartree-Fock density andrexact is the near-exact one~DFT is density-

functional theory!. From the Kohn-Sham wave functions yielding Hartree-Fock and the near-exact densities,
the corresponding noninteracting kinetic energies and the exchange energies are calculated. An approximate
relation betweenEc

DFT@rHF# and the conventional quantum chemistry correlation energy is presented, accurate
to <4m hartree for the isoelectronic series of He, and Li, and for the Be atom.@S1050-2947~98!12309-0#
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I. INTRODUCTION

A fundamental component of the total electronic ene
functional in density-functional theory~DFT! is the
exchange-correlation energy functionalExc

DFT@r#. Recently
van Leeuwen and Baerends@1# advanced energy expressio
in DFT using the line-integral method. The exchang
correlation energy differences for example, can be expres
as

DExc
DFT@r2 ,r1#[Exc

DFT@r2#2Exc
DFT@r1#

5E
0

1

dtE dr vxc„@g~ t !#,r …
dg~ t !

dt
, ~1!

where g(0)5r1(r ), g(1)5r2(r ), and vxc„@g(t)#,r … is
the exchange-correlation potential corresponding to the in
mediate densityg(t). The main difficulty for a direct appli-
cation of Eq.~1! is to obtain the exchange-correlation pote
tial vxc„@g(t)#,r … for te@0,1#.

Various methods for the construction of the effecti
Kohn-Sham~KS! potential v̂s , necessary to obtain a KS
wave function yielding a given density, have been develo
in recent years@2–10#. The exchange-correlation potenti
can be extracted from the effective KS potential, and Eq.~1!
can be applied to calculate the differenceDExc

DFT@r2 ,r1#.
In the present work the differencesDExc

DFT@r2 ,r1# and
DEc

DFT@r2 ,r1#5Ec
DFT@r2#2Ec

DFT@r1# are calculated for the
two densitiesr15rexactandr25rHF for the He isoelectronic
series (Z52, 3, 4, 5, and 10!, for the Li isoelectronic se-
ries (Z53, 4, 5, 6, and 8! and for the Be atom. Correlatio
or exchange-correlation energy differences are importan
fitting the parameters of any approximated correlation a
exchange-correlation functionals, and in assessing the qu
of these functionals when Hartree-Fock~HF! ground-state
densities instead of exact ones are used to evaluate the
ergy values. If the differencesDEc

DFT andDExc
DFT are found
PRA 581050-2947/98/58~3!/1954~6!/$15.00
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to be small, then the common use of the Hartree-Fock d
sities in fitting procedures will be justified.

The same differences for the noninteracting kinetic e
ergy Ts@rHF#2Ts@rexact# can be calculated in two ways: b
the line-integral method~see Sec. II!, and directly from the
KS wave functions yielding Hartree-Fock and near-ex
densities. The availability of accurate values for this diffe
ence will provide a means for estimating the accuracy of
numerical procedure. In Sec. IV, the numerical results
discussed, and the differencesDEc

DFT for the He isoelec-
tronic series are compared with the nondynamical correla
energy@11# and with the magnitudeD introduced recently
Ref. @12#.

II. BASIC FORMALISM

In all systems considered in this paper no degenera
occur. LetĤv denote theN-electron Hamiltonian which de
scribes the systems

Ĥv5T̂1V̂ee1 v̂, ~2!

whereT̂ is the kinetic-energy operator

T̂5(
i 51

N S 2
1

2
¹ i

2D , ~3!

V̂ee is the electron-electron interaction operator

V̂ee5
1

2(iÞ j

N
1

ur i2r j u
, ~4!

and v̂ is an one-particle local external potential

v̂5(
i 51

N

v~r i !. ~5!
1954 © 1998 The American Physical Society
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A basic quantity in DFT is the noninteracting kineti
energy functional@13,14#

Ts@r#5 inf
FD→r

^FDuT̂uFD&5^FD
KS@r#uT̂uFD

KS@r#&, ~6!

whereFD is a single-Slater determinant that yields the on
particle densityr. Lieb @15# showed that the infimum occur
at a minimum and, thus, that there exists a wave func
FD

KS@r#. FD
KS@r# is the KS wave function for a given den

sity r, and it is the ground-state wave function of a non
teracting Schro¨dinger equation with an effective local pote
tial v̂s5( i 51

N vs(@r#,r i),

$T̂1 v̂s%FD
KS@r#5EsFD

KS@r#. ~7!

The noninteracting total-energy functional is the expec
tion value of the interacting Hamiltonian@Eq. ~2!# with re-
spect to the KS determinantFD

KS@r#,

Ev
KS@r#5^FD

KS@r#uĤvuFD
KS@r#&5FKS@r#1Eext@r#, ~8!

whereFKS@r# is the KS energy functional andEext@r# is an
external potential-energy functional. Introducing t
Hohenberg-Kohn~HK! functional @16#

FHK@r#5 min
C→r

^CuT̂1V̂eeuC&5^CHK@r#uT̂1V̂eeuCHK@r#&,

~9!

where the variational wave functionC associates with a
given one-electron densityr, one can define the DFT corre
lation energy@16# as

Ec
DFT@r#5FHK@r#2FKS@r#. ~10!

Next, we introduce the difference of energy functiona
calculated for two densitiesr1 and r2 . The energy differ-
enceDExc

DFT of the exchange-correlation functional
at
e

m
ia
-

n

-

-

Exc
DFT@r#5^FD

KS@r#uV̂eeuFD
KS@r#&2

1

2E E r~r !r~r 8!

ur2r 8u
dr dr 8

1Ec
DFT@r# ~11!

is expressed through Eq.~1!, whereg(t) is a path between
the two densitiesr1 andr2

g~ t !5r1~r !1t„r2~r !2r1~r !…, ~12!

andvxc„@g(t)#,r … is an exchange-correlation potential

vxc~@r#,r !5vs~@r#,r !2E r~r 8!

ur2r 8u
dr 82v~r !, ~13!

with r5g(t).
For the noninteracting kinetic-energy difference, t

equation

DTs@r2 ,r1#[Ts@r2#2Ts@r1#

52E
0

1

dtE dr vs„@g~ t !#,r …
dg~ t !

dt
~14!

also holds. The proof of Eq.~14! is straightforward from the
Euler equation

dTs@r#

dr~r !
1vs~@r#,r !5m. ~15!

From the additivity of the exchange-correlation function
Eq. ~11!, i.e., Exc

DFT@r#5Ex@r#1Ec
DFT@r#, it follows that

DEc
DFT@r2 ,r1#5DExc

DFT@r2 ,r1#2DEx@r2 ,r1#, ~16!

whereDEx@r2 ,r1# is the difference of the exchange energ
which can be calculated directly from the KS wave functio
DEx@r2 ,r1#[Ex@r2#2Ex@r1#5^FD
KS@r2#uV̂eeuFD

KS@r2#&2^FD
KS@r1#uV̂eeuFD

KS@r1#&

2
1

2E E „r2~r !1r1~r !…„r2~r 8!2r1~r 8!…

ur2r 8u
dr dr 8. ~17!
xact
re
m
nto
ac-
of
f

III. CALCULATIONS AND RESULTS

The differences given by Eqs.~1!, ~14!, ~16!, and ~17!
between near-exact and HF densities have been calcul
The near-exact densities for the He isoelectronic series w
taken from Ref.@17#; these densities were obtained fro
204-term Hylleraas-type wave functions leading to var
ed.
re

-

tional energies no more than 16 nhartree above the e
ones@17#. The densities for the Li isoelectronic series we
taken from Ref.@18#. These densities were obtained fro
164–233-term Hylleraas-type wave functions that take i
account 99.13 %–99.88 % of the correlation energy. The
curate density of Be atom employed in this work is that
the ‘‘exact’’ 650-term nonrelativistic wave function o
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TABLE I. Noninteracting kinetic-energy functional values~hartree!.

Species Ts@rexact# 2DTs5Ts@rexact#2Ts@rHF# 2DTs
LIM @Eq. ~14!# uDTs2DTs

LIM u
DTs

3100%

H2 0.500003 0.012073 0.012071 0.017

He 2.867259 0.005579 0.005579 <0.02

Li1 7.240085 0.003670 0.003670 <0.03

Be12 13.614083 0.002784 0.002784 <0.04

B13 21.988478 0.002244 0.002244 <0.04

Ne18 93.862252 0.001139 0.001139 <0.09

Li 7.436127 0.003722 0.003722 <0.03

Be11 14.279995 0.003029 0.003029 <0.03

B12 23.377965 0.002439 0.002441 0.082

C13 34.727641 0.002063 0.002071 0.39

O15 64.179125 0.001584 0.001588 0.25

Be 14.593123 0.020652 0.020656 0.019
n
e

s.
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Bunge@19#, which reproduces 99.55% of the correlation e
ergy. The HF densities are of the numerical type, and w
calculated with the program of Froese Fischer@20#. The
scheme of our calculations consists of the following step

~i! Path parametrizationg(t)5rexact1t(rHF2rexact).
~ii ! Kinetic-energy minimization@Eq. ~6!# and determina-

tion of wave functionsFD
KS@g(t)# for mesh points oft

50,0.1, . . . ,1.
~iii ! Definition of the effective KS potentialvs„@g(t)#,r …

@Eq. ~7!# and the exchange-correlation potent
vxc„@g(t)#,r … @Eq. ~13!#.

~iv! Calculation of the differencesDExc
DFT @Eq. ~1!#, DEx

@Eq. ~17!#, DEc
DFT @Eq. ~16!#, andDTs @Eq. ~14!#.

Steps~ii ! and~iii ! are performed by a modified version
the method based on local-scaling transformations~LST’s!
@3,4# described in the Appendix. The existence of an eff
tive KS potential and, consequently, of an exchan
correlation potential corresponding to a densityr5g(t),
would be guaranteed by the noninteractingv representability
@16# of the densityr. In the present work we leave aside
comparison between KS results obtained by the LST-ba
method and other methods@2–7,9,10#.

The noninteracting kinetic-energy differences were ca
lated both directly from the formulaDTs5Ts@rHF#
2Ts@rexact# and by the line-integral method@Eq. ~14!#
~which allows us to obtain theDTs

LIM values!. The values of
Ts@rexact# and the differencesDTs andDTs

LIM are reported in
Table I. It is seen in the last column of Table I that the er
of the line integral method numerical procedure is sm
This error is due to the inaccuracy in thevs„@g(t)#,r … defi-
nition. Because the potentialvxc has the same inaccuracy
the potentialvs , it follows that the line-integral method nu
merical procedure for the exchange-correlation differen
@Eq. ~1!# should have the same order of precision asDTs

LIM ,
i.e., an order of 0.5 %~see Table I!.

The differencesDExc
DFT calculated by the line-integra

method@Eq. ~1!#, and the differencesDEx andDEc
DFT calcu-

lated by Eqs.~17! and ~16!, are reported in Table II. The
values of the nondynamical correlation energyEc

nd(II) @11#
-
re

l

-
-

ed

-

r
l.

s

and of the magnitudeD5Ec,exact
QC 2Ec,exact

DFT ~introduced Ref.
@12#! for the He isoelectronic series are presented for co
parison. It is seen that the three last columns of Table II h
the same values within a fewmhartree. Using the quantity
DEc

HF-KS ~introduced by Go¨rling and Ernzerhof@21#!, we can
write

DEc
DFT5Ec

DFT@rHF#2Ec
DFT@rexact#.D1DEc

HF-KS@rHF#.

~18!

Equation ~18! is an approximate expression that follow
from Eq. ~14! of Ref. @11# and the approximate relatio
DEc

DFT.Ec
nd(II) .

Rearranging terms in Eq.~18!, one obtains an approxi
mate equation for the conventional quantum chemistry~QC!
correlation energy

Ec,approx
QC 5Ec

DFT@rHF#2DEc
HF-KS@rHF#, ~19!

whereDEc
HF-KS@rHF# is @21#

DEHF-KS@rHF#5$^FHF@rHF#uT1VeeuFHF@rHF#&

2^FKS@rHF#uT1VeeuFKS@rHF#&%.

~20!

Equation ~19! corresponds to the zeroth-order term of t
functional Taylor-series expansion of the functional min
mized in Eq.~9! @22#.

FunctionalEc,approx
QC Eq. ~20! is the functional of the HF

density, and it approximates the exact quantum chemi
correlation energy. In Table III, we compare the values
quantum chemistry correlation energy calculated by Eq.~19!
with those calculated directly,

Ec,exact
QC 5Eexact2EHF, ~21!
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TABLE II. The DEx andDEc
DFT differences (mhartree) and comparison ofDEc

DFT with Ec
nd(II ) andD.

Species DEx DEc
DFT Ec

nd(II ) a Db5Ec,exact
QC 2Ec,exact

DFT

H21 214502 2168 2174
He 21183.7 63.6 63.2 63
Li1 2623.7 17.0 17.2
Be12 2440.7 7.6 7.7 7
B13 2346.5 4.3 4.4
Ne18 2173.5 0.8 -1

Li 290.6 57.6
Be1 295.9 31.1
B12 2134.8 28.2
C13 2142.4 28.3
O15 2129.9 15.5

Be 7821 1224

aReference@11#.
bReference@12#.
fs
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where Eexact are the total-energy values reported in Re
@17–19#, and EHF are the Hartree-Fock total energy valu
@23#. It is seen that Eq.~19! is exact with a precision
<4mhartree for the systems calculated. This means that
term which is omitted in Eq.~19! is of the order of
4mhartree.

IV. DISCUSSION

Near-exact densities of atoms and molecules are diffi
to obtain. Extensive efforts to construct them are neces
@17–19#. On the other hand, the HF densities are known
atoms and many more complex systems. For this reason
important to calculate the exact total energy through
‘‘single-shot’’ correlation energy calculation, adding the co
relation energy to a HF calculation, i.e., using just the
density@24#. Levy @24# formulated the existence theorem f
exact quantum-chemical correlation energies from HF
exchange-only densities, i.e., there exists the appropriate
versal quantum chemistry correlation energy functional

TABLE III. Approximate and exact values of the quantu
chemistry correlation energy~in mhartree).

Species 2Ec,approx
QC 2Ec,exact

QC

H2 39827.4 39821.4
He 42044.4 42044.4
Li1 43498.2 43498.2
Be12 44266.8 44266.8
B13 44737.1 44737.1
Ne18 45692.9 45693.0

Li 4532.4 4532.4
Be1 4735.7 4735.6
B12 4860.5 4860.6
C13 4943.7 4944.4
O15 5048.5 5049.0

Be 93875.1 93878.8
.

he

lt
ry
r
is

a
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f

rHF or rx only density ~see also Harris and Pratt@25#!. The
numerical results of Table III show thatEc,approx

QC @Eq. ~19!# is
a very close approximation to this functional.
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APPENDIX: DETERMINATION OF KOHN-SHAM
ORBITALS AND POTENTIAL BY MEANS

OF LOCAL-SCALING TRANSFORMATIONS

In the constrained variation@Eq. ~6!#, the condition that
requires the one-particle densityr for the noninteracting sys
tem to remain fixed during minimization procedure is im
posed through the use of local scaling transformations@3#.
These transformations, carrying a vectorrPR3 into another
vector f(r )PR3, connect a trial densityr0 ,

r0~r !5(
i 51

N

uc0i~r !u2, ~A1!

to another given densityr by means of the relation

r~r !5J„ f~r !;r …r0„f~r !… ~A2!

whereJ„f(r );r … is the Jacobian of the transformations. Intr
ducing into Eq.~A2! the explicit form of the Jacobian, on
obtains a first-order differential equation for the functio
f(r ). For spherically symmetric one-particle densities, t
equation is written explicitly as

d f~r !

dr
5

r 2

f 2~r !

r~r !

r0„f ~r !…
, ~A3!

and the transformed orbitals are given by
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c i~@r#;r !5A r~r !

r0„f ~r !…
c0i„f~r !…, ~A4!

wheref(r )[„f (r ),u,f… and r[(r ,u,f).
Clearly, the single-Slater determinant

FD@r#5
1

AN!
det$c i~@r#;r j !% ~A5!

yields the densityr independently of the trial densityr0 @Eq.
~A1!#.
ec
w

s
cc
en
e
b-

on
f-

l.

.

The orbitals@Eq. ~A4!# which minimize the noninteract
ing kinetic energy@Eq. ~6!# are the noncanonical Kohn-Sha
orbitals; they satisfy the noncanonical Kohn-Sham equati

$2 1
2 ¹21vs~@r#,r !%c i

KS~@r#;r !5(
j

e i j
KSc j

KS~@r#;r !,

~A6!

wherevs(@r#,r ) is the effective Kohn-Sham potential. Mu
tiplying Eq. ~A6! by c̄ i

KS(@r#;r ) and summing equations, w
obtain the following expression for the potential:
vs~@r#,r ![vs~@r#,r ;e i j
KS!5

(
i j

e i j
KSc̄ i

KS~@r#;r !c j
KS~@r#;r !1

1

2
¹2(

i
uc i

KS~@r#;r !u2

(
i

uc i
KS~@r#;r !u2.

~A7!
.
r-

mic
In Eq. ~A7!, we emphasize the dependence of the eff
tive potential expression on the eigenvalues, because
must determine them. In Ref.@4# the effective potential wa
calculated by an iterative procedure, and the highest o
pied molecular-orbit eigenvalue was taken from experim
i.e., as the ionization energy. In the present work the eig
valuese i j

KS were calculated from the minimization of the a
solute value difference integral of the densityr, and the
ground-state density coming from the solutions of the n
interacting Schro¨dinger one-particle equations with the e
fective potentialvs(@r#,r ;e i j ) @Eq. ~A7!#

d5min
e i j

E U(
k

Uck
KS~r !U2

2(
k

Uck
v~e i j !~r !U2Udr

5E U(
k

Uck
KS~r !U2

2(
k

Uck
v~e i j

KS
!
~r !U2Udr , ~A8!
-
e

u-
t,
n-

-

whereck
v(e i j )(r ) are the eigenfunctions of the Hamiltonian

ĥv52 1
2 ¹21vs~@r#,r ;e i j !. ~A9!

We repeat the main steps of our numerical procedure
~i! Noninteracting kinetic-energy minimization and dete

mination of noncanonical KS orbitals@Eqs. ~6! and ~A1–
~A5!#.

~ii ! Determination of the KS eigenvaluese i j
KS @Eqs.~A8!–

~A9!#.
~iii ! Calculation of the effective KS potential@Eq. ~A7!#.
We have expanded the trial orbitalsc0i @Eq. ~A1!# in

terms of the 12-term exponential-type even-tempered ato
orbitals@26#. The typical value of thed value in Eq.~A8! is
1028 for the He isoelectronic series, and is 1023 for the Li
isoelectronic series and for the Be atom.
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