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Signature of the existence of the positronium molecule
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The positronium molecule (Ps2) has not been experimentally observed yet because its tiny~4.5 eV! binding
energy cannot be detected when the molecule annihilates by emitting two photons with energy of 0.51 MeV
each. It is shown in this paper that the electric dipole transition between the recently foundL51 excited state
and theL50 ground state with its characteristic photon energy of 4.94 eV is a clear signature of the existence
of the positronium molecule and the possibility of its experimental observation is realistic. The probability of
this transition is about 17% of the total decay rate. Another Coulomb four-body system containing positron
HPs ~the positronium hydride or hydrogen positride!, is also included for comparison.
@S1050-2947~98!10709-6#

PACS number~s!: 36.10.Dr, 31.15.Pf
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I. INTRODUCTION

Despite the early theoretical prediction of its existen
@1#, the Ps2 molecule has not been experimentally found
date. The difficulty stems from the fact that this system
neutral and therefore it cannot be separated from the pos
nium atoms~Ps! and its primary decay mode, the annihil
tion by two-photon emission, is exactly the same as tha
the Ps atom. The energy of the photons arising from
annihilation is different in principle: The photons carry 1.0
MeV energy due to the annihilation plus the binding ene
of the corresponding system. The binding-energy differe
is, however, less than 1 eV, and adding it to 1.02 MeV,
energy of the photons coming from the Ps atom or Ps2 mol-
ecule cannot be experimentally distinguished. The exp
mental observation of the biexcitons can be considered a
indirect indication of the existence of Ps2 .

In our recent Letter@2# we predicted the existence of
hitherto unknown bound excited state of the Ps2 molecule. In
this paper we give a detailed description of this state.
have investigated possible decay modes of this state wi
special emphasis on the electric dipole (E1) transition to the
ground state. It will be shown that the probability of theE1
transition is comparable to that of the annihilation. T
unique energy of this transition may possibly be utilized a
sign for the experimental identification of the Ps2 molecule.

The stochastic variational method~SVM! @3,4# has been
used to solve the Coulomb four-body problem. In th
method the variational trial functions are optimized by ga
bling: Randomly chosen configurations are probed and m
adequate functions are selected to be the basis states.

The correlated Gaussians~CG! @5# are used as basis func
tions in this procedure. The CG basis has a long history
atomic and molecular physics and highly accurate calc
tions are based on this form of basis functions@2,6–10#. The
angular part is given by the global vector representation@7#.
This approach greatly simplifies the calculations for no
spherical systems by replacing the partial wave expan
with a much simpler representation of the angular motion
PRA 581050-2947/98/58~3!/1918~14!/$15.00
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The hydrogen positride~positronium hydride!, HPs, has
already been the focus of intensive theoretical and exp
mental investigation. This is an ideal system with which
test the SVM. We compare the properties of the Ps2 and HPs
molecules.

The plan of this paper is as follows. In Sec. II we give
brief description of the trial function and the stochastic var
tional method. In Sec. III the results are presented. The m
results of the paper are summarized in Sec. IV. In Appen
ces A–D we collect some basic ingredients that are use
the present study in order to help readers reproduce ou
sults: formulas of the matrix elements in the CG basis,
separation of the center-of-mass motion from the CG ba
the use of the Sherman-Morrison formula in selecting n
linear parameters, and the symmetry requirement for the
wave function of the Ps2 molecule.

II. THE CALCULATION

A system of two electrons with massm and two positive
unit charges of massM is considered. Their relative mass
characterized by the ratios5m/M , and the positronic limit
is realized bys51. ~Though we consider the case ofs51
in this paper, the extension to others values is straightfor-
ward, so we give a formulation assuming an arbitrary m
ratio.! The Hamiltonian of the system reads

H5(
i 51

4

Ti2Tcm1(
i , j

qiqj

ur i2r j u
, ~1!

whereqi and r i are the charges and the position vectors
the particles. Particle labels 1 and 3 denote the posi
charges, while labels 2 and 4 denote the negative charge
relative coordinate system is introduced by definingx1 and
x2 as the distance vectors between the positive and nega
charges in the first and second atom, andx3 as the distance
vector between the center of masses of the two atoms:

x15r12r2 , ~2!
1918 © 1998 The American Physical Society
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x25r32r4 , ~3!

x35
M r11mr2

M1m
2

M r31mr4

M1m
, ~4!

x45R5
M r11mr21M r31mr4

2M12m
. ~5!

We use the abbreviation x5$x1 , . . . ,x4% and r
5$r1 , . . . ,r4%.

A. The wave function

The CG of the form

GA~r !5exp$2 1
2 r̃Ar%5expH 2

1

2 (
i , j 51

4

Ai j r i•r j J ~6!

is very popular in atomic and molecular physics@4–10#.
Here r̃ stands for a one-row vector whosei th element isr i .
The merit of this basis is that the matrix elements are a
lytically available and unlike other trial functions~for ex-
ample, Hylleraas-type functions! one can relatively easily ex
tend the basis for the case of more than three particles.
well-known defects of this basis are that it does not fulfill t
cusp condition and its asymptotics does not follow the ex
nential falloff. This latter problem, especially for boun
states, can be cured by taking linear combinations of
equately chosen CGs.

The CG defined above is spherical and can thus desc
systems with onlyL50 orbital angular momentum. Th
usual way to account for the orbital motion in the case
LÞ0 is the partial-wave expansion. Because of the co
plexities arising from the evaluation of matrix elements t
expansion gets very tedious for more than three particles
avoid this difficulty the global vector representation@7# is
used. In this approach, one defines a vectorv as a linear
combination of the relative coordinates:

v5(
i 51

4

uir i , ~7!

and the nonspherical part of the wave function is represe
by a solid spherical harmonic

YKLM~v!5v2K1LYLM~ v̂!. ~8!

The linear combination coefficientsui are considered to be
variational parameters and their optimal values are to be
termined by the SVM as will be discussed later. The det
and examples can be found in@7,11#. The usefulness of the
global vector representation is shown in@12# by comparing
the results obtained with the partial-wave expansion.

The calculation of the matrix elements for the space p
of our basis function

f KLM~u,A,r !5GA~r !YKLM~v! ~9!

is given in @7#. In the special case ofK50 the matrix ele-
ments can be written in much simpler form. This is shown
Appendix A. In theKÞ0 case, the CG is multiplied by
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polynomial of the relative coordinates. In some cases
might be very useful, it can improve the short-distance
havior, for example, but this role can also be played by
appropriate superposition of the exponentials. We useK50
in this paper.

The translational invariance of the wave function is e
sured by requiring that the parametersA andu fulfill some
special conditions. As is detailed in Appendix B, these co
ditions ensure that the motion of the center of mass is f
torized in a product form.

By combining the CG with the angular and spin parts, t
full basis function takes the form

FkLS5A$xSMS
f KLM~uk ,Ak ,r !%, ~10!

with an appropriate spin functionxSMS
, where ‘‘k’’ is the

index of the basis states andA is an antisymmetrizer for the
identical fermions. In the positronium limit (s51) the
Hamiltonian becomes invariant with respect to the int
change of positive and negative charges. Therefore, the b
function should have a definite parity under the char
permutation operator. See Appendix D for the details of
symmetry requirement on the wave function. For the spe
case withS50 andMS50 in which two spins of positive
charges and two electron spins are coupled to zero, res
tively, the spin part of the wave function reads

x005
1
2 ~ u↑↑↓↓&2u↑↓↓↑&2u↓↑↑↓&1u↓↓↑↑&). ~11!

~Note that particles 1 and 3 are positive unit charges
particles 2 and 4 are electrons.!

Instead of optimizing the parameters ofA it is more ad-
vantageous to rewrite Eq.~6! as

expH 2
1

2(i , j
a i j ~r i2r j !

22
1

2(i
b i r i

2J . ~12!

The relationship betweena i j , b i , andA is

a i j 52Ai j ~ iÞ j !, b i5(
k

Aki , ~13!

wherea j i ( i , j ) is assumed to be equal toa i j . There are
two reasons to choose this form. The first is that in choos
a i j in this way we deal with a correlation function betwee
the particlesi and j , while Ai j has no such direct meanin
and during the optimization it is more difficult to limit th
numerical interval ofAi j to be chosen from. Second, one c
utilize this specific form to make the individual steps of t
parameter selection very fast. By taking a look at the expr
sions of the matrix elements in Appendix A, it is clear th
the main computational load is the calculation of the inve
and determinant of the matrix of the nonlinear paramete
The form in Eq.~C3! offers the possibility of the usage of th
Sherman-Morrison formula to calculate these quantiti
leading to a much faster function evaluation. The details
this step are given in Appendix C.

B. Electric dipole transition rate

In the positronium limit (s51) we deal with antiparticles
and the electron-positron pair can annihilate. The lifetime
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the first excited state withL51 and negative parity is deter
mined by both processes of annihilation and electric dip
transition to the ground state. The widthGdipole for the latter
process is calculated through the reduced transition prob
ity B(E1) for the electric dipole operatorDm5(k51

4 qkur k

2RuY1m(r k2R̂) (m521,0,1)

Gdipole5
16p

9 S E

\cD 3

B~E1;12→01!, ~14!

with

B~E1;12→01!5(
m

z^00uDmu1M & z2, ~15!

whereE is the excitation energy of the first excited state.

C. Annihilation rate

The most dominant annihilation of the first excited sta
of Ps2 is accompanied by the emission of two photons w
energy of about 0.5 MeV each. The decay widthG2g for the
annihilation can be estimated through the decay widthG2g

Ps of
the parapositronium in the spin-singlet state. This de
width has to be multiplied by the numberN0 of positron-
electron pairs that are in the spin-singlet state in the Ps2 . In
the Ps2 excited state we have four positron-electron pa
among which the probability that the pair is in the sp
singlet state is 1/4 because the total spin of the first exc
state of Ps2 is zero, as will be shown later.@N0543(1/4)
51.# Therefore, to derive an estimate for the decay due
the annihilation, we can use formula~2! of @10#:

G2g5N0G2g
Ps, ~16!

with

G2g
Ps54pS e2

mc2D 2

\c^Cud~r12r2!uC&

54pS e2

\cD 4

\ca0
21^d~r 12!&, ~17!

where the probability of finding an electron at the position
a positron,̂ d(r 12)&, is the expectation value ofd(x1) given
in a.u., that is,̂ d(r 12)& is equal toa0

3^Cud(r12r2)uC& with
the Bohr radiusa0 . Roughly speaking, the lifetime is in
versely proportional to the probability of finding an electr
and a positron at the same position.

D. The stochastic variational method

To obtain very precise energy, one has to optimize
variational parametersuki andAki j of the trial function. The
dimension of basis sets is typically between 100 and 10
and each basis state has nine nonlinear parameters.~See Ap-
pendix B.! The optimization of a function with a few thou
sands nonlinear parameters cannot be done efficiently by
ing a deterministic optimization method, since this cou
entail the complete reconstruction of the Hamiltonian ma
and diagonalization every time when some of the nonlin
parameters are altered. Moreover, the deterministic se
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for the optimal value of such a large number of parameter
likely to get trapped in a local minimum.

A procedure based on the stochastic search for the bes
of nonlinear parameters can be programmed efficien
@4,13# and is capable of achieving highly accurate results
most few-body systems@2,4,7,14#. The essence of the stra
egy can be summarized as follows: Let$ui ,Ai% be the non-
linear parameters of thei th basis function out of the set ofK
such basis functions. Then the procedure is as follows.

~i! A succession of different sets o
($ui

1 ,Ai
1%, . . . ,$ui

ns ,Ai
ns%) are generated randomly.

~ii ! By solving the eigenvalue problem, the correspond
energies (Ei

1 , . . . ,Ei
ns) are determined.

~iii ! The parameter set$ui
m ,Ai

m%, which produces the low-
est energy, is then used to replace the existing$ui ,Ai% set.

~iv! The procedure cycles through the different parame
sets ($ui ,Ai%,i 51, . . . ,K), successively choosing differen
sets to minimize the energy until convergence is reached

The essential reason motivating this strategy is the nee
sample different sets of nonlinear parameters as fast as
sible. The main advantage is that it is not necessary to
compute the complete Hamiltonian, nor is it necessary
solve the generalized eigenvalue problem from scratch e
time a new parameter set is generated. By changing the
ments of the parameter set for each basis function indivi
ally, it is necessary to recompute only one row~column! of
the Hamiltonian and overlap matrices each time the par
eter set$ui ,Ai% is changed. Furthermore, the solution of t
generalized eigenvalue problem is also expedited since
Hamiltonian matrix is already diagonal apart from one ro
and one column.

A similar strategy to the above was used when add
additional terms to the basis.

The speed of the calculation can be further increase
one changes the nonlinear parametersAi in a special way.
This is described in Appendix C.

The above way of finding the best parameters is certa
very restricted. Even this simple method gives very accur
energies. A more sophisticated technique may give be
results in a smaller basis size.

III. RESULTS

The results of calculations for the ground state of HPs a
Ps2 and the first excited state of Ps2 are reported in this
section. The ground states of HPs and Ps2 have already been
subject to intensive calculations and some of the results
tained before for these systems serve as validation of
SVM. The calculation of the properties of the excited state
the Ps2 is the primary focus of this paper. We have prev
ously reported the energy of the ground state of the Ps2 and
predicted the existence of an excited state of this molec
This paper reports considerably improved energies by fur
optimization of the nonlinear parameters of the basis. T
further optimization and the increase of the basis dimens
has produced an improved wave function and we pres
different properties of these systems by using that w
function. We show the convergence of the binding energ
and various expectation values as a function of the dim
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TABLE I. Comparision of the results of different calculations for the ground-state energy of HP’s.
proton mass is taken to be infinite. The energy is given in atomic units.

Method Reference Energy

SVM (K5100) Present 20.7891013600
SVM (K5200) Present 20.7891810473
SVM (K5400) Present 20.7891924458
SVM (K5800) Present 20.7891958706
SVM (K51200) Present 20.7891964226
SVM (K51600) Present 20.7891965536
Hylleraas configuration interaction @17# 20.7842
Exponential trial functions @18# 20.7889
Diffusion Monte Carlo @19# 20.789160.002
Diffusion Monte Carlo @20# 20.78917560.00001
Correlated Gaussian basis (K5200) @21# 20.7891794

SVM (K5400)a Present 20.7888681371

aThe proton massM is assumed to beM51836.152701 m.
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sion of the basis. The results in the tables are shown for
basis dimensions ofK5100,200,400,800,1200,1600. Th
basis has been a subject of intensive optimizations at th
dimensions. Once the optimization at a given basis size
been finished, new basis states are added~each of them has
been selected among hundreds of random candidates! to
reach the next basis size where the optimization is sta
again. While the pattern of convergence is very useful inf
mation about the accuracy of the results, one has to kee
mind that this can be distorted by many extraneous fact
This is because one cannot guarantee that the quality of t
optimizations is the same. We expect that the stochastic
lection of the basis is close to being the optimal choice
lower dimensions, but for large dimensions (K
51200,1600) the procedure becomes more time consum
and we have less of a chance to find the optimal parame

A. Hydrogen positride, HPs

The boundness of the exotic molecule, HPs, has b
known theoretically for many years@15# and it has recently
been created and observed in collisions between posit
and methane@16#. The investigation of the stability of
positronic atoms has been attracting much attention beca
positrons can be used as a tool for positron-annihilation sp
troscopy in condensed matter physics. The HPs molecul
the simplest but ideal hydride to test the SVM. It is also ve
intriguing to see the difference between the properties of2
and HPs.

Instead of Eqs.~2!–~5!, the relative and center-of-mas
coordinate system relevant to HPs is defined as follows:

x15r12r2 , ~18!

x25r32r4 , ~19!

x35
M r11mr2

M1m
2

r31r4

2
, ~20!

x45R5
M r11mr21mr31mr4

M13m
, ~21!
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where particle label 1 denotes the proton, label 3 denotes
positron, and labels 2 and 4 denote the electrons.

The energies calculated by SVM and by other meth
are shown in Table I. The proton mass is taken to be infin
~For the sake of reference a sample result for the finite pro
mass is also included in the table.! The two electrons are
assumed to be in the spin-singlet state. The spin states o
proton and the positron can be taken arbitrary. Our res
already at the dimension ofK5200, is better than the prev
ous calculations. The increase of the basis size improves
energy further. The need for improved accuracy can
clearly seen in Table II, where various expectation values
listed. The expectation valuêr e2e2

4 &, for example, is much
less accurate than the energy and it is considerably impro
beyond the dimensionK5200.

One can compare the expectation values of the separ
distances of the particles in the HPs to those in the H and
atoms. The average electron-positron distance is 3.48a0 in
HPs, which is slightly different from that in the positroniu
atom (3a0). The average electron-proton distance in H
and H is considerably different (2.31a0 and 1.5a0). The av-
erage distance between the two positive charges (3.66a0) is
much larger than that in the H2 molecule (1.41a0).

The correlation function defined by

C~r !5^Cud~r i2r j2r !uC& ~22!

gives more detailed information on a system than just v
ous average distances. This quantity can be calculate
using Eqs.~A11! and~A12!. For the spherical wave functio
with L50, C(r ) is a function ofr , that is, the monopole
density, and for theL51 wave function, it consists of two
terms of monopole and quadrupole densities. Figure 1
plays r 2C(r ) for various pairs of the constituents of HP
The two electrons are attracted by the proton, but the pro
electron correlation function is much broader than that in
H atom, while they are separated with its maximum den
being at about 2.8 a.u. The positron moves furthest from
proton and has a peak density at around 2.6 a.u. from
electron.
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TABLE II. Expectation values of various quantities for HPs. Atomic units are used.K is the basis
dimension.

E 2^V&/(2^T&)

K5100 20.7891013600 1.00001
K5200 20.7891810473 1.000003
K5400 20.7891924458 1.000002
K5800 20.7891958706 1.0000007
K51200 20.7891964226 1.0000004
K51600 20.7891965536 1.0000003

^r e2e2
4 & ^r e1e2

4 & ^r e2p
4 & ^r e1p

4 &

K5100 515.42669 525.13203 193.45055 504.56556
K5200 524.98363 531.24425 197.60909 513.48089
K5400 527.33506 532.59188 198.63996 515.59169
K5800 527.88970 532.94707 198.88278 516.06972
K51200 527.94660 532.98328 198.90610 516.11702
K51600 527.96159 532.99639 198.91176 516.13646

^r e2e2
3 & ^r e1e2

3 & ^r e2p
3 & ^r e1p

3 &

K5100 83.599992 83.792382 34.789685 84.226327
K5200 84.337498 84.249983 35.120402 84.911659
K5400 84.507962 84.347282 35.195647 85.064112
K5800 84.544707 84.369687 35.211858 85.094386
K51200 84.548681 84.372106 35.213444 85.097517
K51600 84.549852 84.372949 35.213895 85.098746

^r e2e2
2 & ^r e1e2

2 & ^r e2p
2 & ^r e1p

2 &

K5100 15.803193 15.542251 7.7797451 16.188998
K5200 15.860043 15.575673 7.8062352 16.241186
K5400 15.872464 15.582575 7.8117324 16.252128
K5800 15.874993 15.584009 7.8128668 16.254178
K51200 15.875286 15.584176 7.8129800 16.254399
K51600 15.875377 15.584230 7.8130152 16.254480

^r e2e2& ^r e1e2& ^r e2p& ^r e1p&

K5100 3.5700072 3.4777333 2.3092381 3.6573544
K5200 3.5738023 3.4797561 2.3110943 3.6607696
K5400 3.5745993 3.4801765 2.3114423 3.6614669
K5800 3.5747568 3.4802575 2.3115152 3.6616016
K51200 3.5747763 3.4802676 2.3115221 3.6616167
K51600 3.5747825 3.4802707 2.3115245 3.6616220

^r e2e2
21 & ^r e1e2

21 & ^r e2p
21 & ^r e1p

21 &

K5100 0.37072021 0.41851818 0.72973620 0.34760250
K5200 0.37058889 0.41850815 0.72971467 0.34749891
K5400 0.37056069 0.41849668 0.72970918 0.34746907
K5800 0.37055594 0.41849614 0.72970858 0.34746293
K51200 0.37055519 0.41849601 0.72970874 0.34746209
K51600 0.37055494 0.41849596 0.72970869 0.34746180

^r e2e2
22 & ^r e1e2

22 & ^r e2p
22 & ^r e1p

22 &

K5100 0.21426165 0.34877458 1.2059515 0.17234727
K5200 0.21396622 0.34911573 1.2069510 0.17221620
K5400 0.21392019 0.34912443 1.2070112 0.17217310
K5800 0.21391300 0.34914011 1.2070561 0.17216589
K51200 0.21391137 0.34914210 1.2070629 0.17216413
K51600 0.21391064 0.34914275 1.2070632 0.17216372
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TABLE II. ~Continued!.

E 2^V&/(2^T&)

^re
a
2e

b
2•re

a
2e1& ^re1e

a
2•re1e

b
2& ^r pe

a
2•r pe

b
2& ^r pe1•r pe2&

K5100 7.9015967 7.6406546 20.12185159 4.2132458

K5200 7.9300217 7.6456510 20.12378653 4.2358745

K5400 7.9362320 7.6463425 20.12449962 4.2406428

K5800 7.9374963 7.6465132 20.12462952 4.2415176

K51200 7.9376432 7.6465328 20.12466320 4.2416014

K51600 7.9376883 7.6465421 20.12467313 4.2416325

2^¹e2
2 & 2^¹e1

2 & ^¹e
a
2•¹e

b
2& ^¹e1•¹e2&

K5100 0.65224870 0.27367198 20.043864431 0.11701815

K5200 0.65232846 0.27369666 20.043999455 0.11707408

K5400 0.65234077 0.27369750 20.044052593 0.11707637

K5800 0.65234481 0.27369980 20.044060768 0.11707718

K51200 0.652345728 0.27370016 20.044063957 0.11707760

K51600 0.652345903 0.27370022 20.044064366 0.11707739

^de2e2& ^de1e2& ^de2p& ^de1p&

K5100 0.0047127 0.0236658 0.1717649 0.001796

K5200 0.0047873 0.0242912 0.1758767 0.001698

K5400 0.0044178 0.0243887 0.1761969 0.001654

K5800 0.0043895 0.0244224 0.1768711 0.001644

K51200 0.0043889 0.0244583 0.1771854 0.001638

K51600 0.0043867 0.0244611 0.1771862 0.001638
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The 2g annihilation rate, calculated from Eq.~16! with
N0523(1/4)51/2 and^de1e2& of Table II, is found to be
G2g52.4722 ns21, improving the previous estimates@23#
by about 0.5%.

B. Positronium molecule, Ps2 : Ground state

The energies by SVM are compared to the best previ
results in Table III. The result of SVM, again, already at t

FIG. 1. The correlation functionsr 2C(r ) for various pairs of the
constituents of the hydrogen positride HPs. For the sake of c
parison, the electron-proton correlation function of the H atom
also drawn.
s

dimension ofK5200, is better than the energy of the prev
ous calculations. The increase of the basis size improves
accuracy and the virial factoru11^V&/(2^T&)u becomes as
small as 0.331029, improving the previously best calcula
tion by more than four orders of magnitude.

The average electron-positron distance is 4.487a0 , which
is about 1.5 times larger than in the positronium atom. T
2g annihilation rate calculated from Eq.~16! by using
^de1e2& of Table II is found to beG2g54.470 ns21.

The electron-electron and the electron-positron corre
tion functions are compared in Fig. 2. The peak position
the electron-electron correlation function is shifted to larg
distances compared to the one of the electron-positron
relation function. The electron-positron correlation functi
in Ps2 has much broader distribution than the correspond
function in a Ps atom.

-
s

TABLE III. Total energies of the Ps2 molecule in atomic units.
K is the basis dimension.

Method Ps2 (L50) Ps2 (L51)

SVM (K5100) 20.516000069 20.334376975
SVM (K5200) 20.516003119 20.334405047
SVM (K5400) 20.516003666 20.334407561
SVM (K5800) 20.516003778 20.334408177
SVM (K51200) 20.5160037869 20.334408234
SVM (K51600) 20.516003789058 20.3344082658
Ref. @21# (K5200) 20.5160024
QMC @22# 20.5160160.00001
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FIG. 2. The correlation functionsr 2C(r ) for the ground state of
the Ps2 molecule. The solid curve denotes the electron-electron
relation and the dashed curve the electron-positron correlation.
the sake of comparison, the electron-positron correlation func
for the Ps atom is drawn by the dotted curve.
C. Positronium molecule, Ps2 : First excited state

In our previous paper we have predicted the existence
the first excited state of the Ps2 molecule. This is a unique
bound state that cannot decay into two Ps atoms due to
Pauli principle. The spin of this state isS50 and the orbital
angular momentum isL51 with negative parity. In this spin
state, the Ps2 molecule can dissociate into two Ps atom
~bosons! only if the relative orbital angular momentum
even. Consequently, the Ps2 molecule withL51 and nega-
tive parity cannot decay into the ground states of two
atoms @Ps(L50)1Ps(L50)#. The energy of this Ps2(L
51) state (E520.334 408 a.u., see Table III! is lower than
the energy of the relevant threshold (20.3125 a.u.), and
this state is therefore stable against the autodissociation
Ps(L50)1Ps(L51). The binding energy of this state i
0.5961 eV, which is greater by about 40% than that of
ground state of Ps2 ~0.4355 eV!.

r-
or
n

ymmetry,

55
99
85
12
13
33

60
11
68
49

354
361
TABLE IV. Expectation values of various quantities for the ground state of Ps2 . Atomic units are used.
The positrons are labeled 1 and 3 and the electrons are 2 and 4. Because of the charge-permutation s
e.g.,^r 12&5^r 14&5^r 32&5^r 34&. K is the basis dimension.

^r 13
4 & ^r 12

4 & ^r 13
3 & ^r 12

3 & ^r 13
2 & ^r 12

2 &

K5100 5161.6174 2786.7091 442.51382 252.36242 46.328357 29.0888
K5200 5194.6167 2803.5558 443.64812 252.94378 46.368857 29.1096
K5400 5199.4736 2805.9782 443.77879 253.00898 46.372453 29.1114
K5800 5201.9725 2807.2389 443.85091 253.04531 46.374698 29.1126
K51200 5201.9467 2807.2264 443.85059 253.04519 46.374696 29.1126
K51600 5202.0371 2807.2718 443.85244 253.04611 46.374735 29.1126

^r 13& ^r 12& ^r 13
21& ^r 12

21& ^r 13
22& ^r 12

22&

K5100 6.0316960 4.4863741 0.22080676 0.36840509 0.073455963 0.303082
K5200 6.0330476 4.4870759 0.22079128 0.36839678 0.073445434 0.303098
K5400 6.0331385 4.4871188 0.22079076 0.36839718 0.073444789 0.303102
K5800 6.0332061 4.4871525 0.22079007 0.36839692 0.073444360 0.303103
K51200 6.0332062 4.4871526 0.22079008 0.36839693 0.073444319 0.30310
K51600 6.0332070 4.4871530 0.22079007 0.36839693 0.073444303 0.30310

^r13•r12& ^r12•r14& ^d(r 13)& ^d(r 12)& ^¹1•¹2& ^¹1•¹3&

K5100 23.164179 5.9246760 0.0006409 0.0219092 0.1307737420.00354409
K5200 23.184429 5.9252702 0.0006309 0.0220330 0.1307723720.00354402
K5400 23.186227 5.9252581 0.0006284 0.0220860 0.1307732620.00354475
K5800 23.186163 5.9252654 0.0006266 0.0221064 0.1307732720.00354466
K51200 23.187348 5.9252652 0.0006267 0.0221075 0.1307732520.00354461
K51600 23.187368 5.9252651 0.0006259 0.0221151 0.130773253820.0035446132

^¹1
2& u11^V&/(2^T&)u

K5100 20.25800339 0.731025

K5200 20.25800073 0.231025

K5400 20.25800178 0.131026

K5800 20.25800188 0.231027

K51200 20.25800188 0.431028

K51600 20.258001894 0.331029



53
13
91
68
21
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903
331
241
476
489
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TABLE V. Expectation values of various quantities for the excited state of Ps2 . Atomic units are used.
See the caption of Table IV.

^r 13
4 & ^r 12

4 & ^r 13
3 & ^r 12

3 & ^r 13
2 & ^r 12

2 &

K5100 17822.007 15534.005 1222.7206 1038.7198 95.950622 80.0938
K5200 17925.902 15603.238 1226.3729 1041.0599 96.072859 80.1665
K5400 17937.861 15611.357 1226.7489 1041.3065 96.084420 80.1735
K5800 17939.361 15612.015 1226.7888 1041.3221 96.085316 80.1737
K51200 17939.589 15612.121 1226.7948 1041.3249 96.085461 80.1738
K51600 17939.574 15612.112 1226.7955 1041.3251 96.085514 80.1738

^r 13& ^r 12& ^r 13
21& ^r 12

21& ^r 13
22& ^r 12

22&

K5100 8.8538933 7.5670069 0.14726627 0.24081436 0.032251179 0.16072
K5200 8.8572758 7.5686805 0.14724521 0.24082305 0.032232174 0.16080
K5400 8.8575704 7.5688316 0.14724464 0.24082544 0.032230800 0.16081
K5800 8.8575804 7.5688194 0.14724481 0.24082635 0.032230213 0.16081
K51200 8.8575826 7.5688189 0.14724482 0.24082644 0.032230197 0.16081
K51600 8.8575844 7.56881891 0.147244820 0.24082648 0.032230158 0.16081

^r13•r12& ^r12•r14& ^d(r 13)& ^d(r 12)& ^¹1•¹2& ^¹1•¹3&

K5100 47.975311 32.118543 0.0001590 0.0108286 0.0916382220.01610247
K5200 48.036429 32.130083 0.0001509 0.0111599 0.0916533020.01610824
K5400 48.042210 32.131381 0.0001482 0.0111781 0.0916559320.01610939
K5800 48.042658 32.131110 0.0001463 0.0112015 0.0916567720.01610973
K51200 48.042730 32.131091 0.00014627 0.0112016 0.0916568320.01610972
K51600 48.042757 32.131079 0.00014591 0.0112091 0.09165685320.016109693

^¹1
2& u11^V&/(2^T&)u

K5100 20.1671740 0.431024

K5200 20.1671984 0.131024

K5400 20.1672025 0.431025

K5800 20.1672038 0.831026

K51200 20.1672039 0.531026

K51600 20.16720401 0.3631026
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We have shown in@2# that the bound excited state
essentially a system where two Ps atoms, one in its gro
state and the other in its first excitedP state, are weakly
coupled. The expectation value of the average electr
positron distance shown in Table V supports this pictu
The value of 7.57a0 in the excited state is 15% larger tha
the average (6.5a0) of the electron-positron distances in th
L50 ground state of the Ps atom (3a0) and theL51 ex-
cited state of the Ps atom (10a0). We can also estimate th
root-mean-square distanced5A^x3•x3& between the two at-
oms by

d25 K S r11r2

2
2

r31r4

2 D 2L 5
1

4
~2^r 12

2 &1^r 13
2 &22^r12•r14&!.

~23!

The symmetry properties of the Ps2 wave function are used
to obtain the second equality. Using the values of Tables
and V yieldsd56.93 a.u. for theL51 excited state andd
54.82 a.u. for theL50 ground state.

Figure 3 displays the electron-electron and electr
positron correlation functions. As mentioned before, the c
nd

n-
:

V

-
r-

relation function for theL51 state consists of the monopo
and quadrupole densities and their shapes depend on
magnetic quantum numberM of the wave function. Of
course theM dependence of the shapes is not independen
each other but is determined by the Clebsch-Gordan co
cient. See Eq.~34!. The quadrupole density is contribute
only from theP wave for the electron-positron relative mo
tion, while the monopole density is contributed by bothS
and P waves. Figure 3~a! plots the correlation functions fo
M50 and Fig. 3~b! the correlation functions forM51. As
the correlation function is axially symmetric around thez
axis and has a reflection symmetry with respect to thexy
plane, the correlation function sliced on thexz plane is
drawn as a function ofx (x>0), z (z>0). The electron-
electron correlation function has a peak at the point co
sponding to the average distance of 7.57 a.u. The elect
positron correlation function has two peaks reflecting the f
that the basic structure of the second bound state is a we
coupled system of a Ps atom in theL50 state and another P
atom in theL51 spatially extended state. The peak locat
at a larger distance from the origin is due to theP-wave
component of the Ps2 molecule.
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FIG. 3. The correlation func-
tions r 2C(r ) @r5(x,0,z)#, multi-
plied by 1000, for the bound ex
cited state of the Ps2 molecule,
which has the orbital angular mo
mentumL51, the spinS50, and
negative parity. The magnetic
quantum numberM is set equal to
0 for ~a! and to 1 for~b!. Plotted
on the xz plane are the contou
maps of the correlation function.
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By using the obtained value for^d(r 12)& in Eq. ~16!, the
lifetime due to the annihilation is estimated to be 0.44
This is about twice the lifetime of the Ps2 ground state. The
B(E1) value is calculated to beB(E1)50.87e2a0

2 . By com-
bining this value with the dipole transition energy of 4.9
eV, the lifetime due to the electric dipole transition has be
found to be 2.1 ns. The branching of the electric dipole tr
sition is thus about 17% of the total decay rate. Therefo
both branches contribute to the decay of the excited stat
the Ps2 molecule. Its lifetime is finally estimated to be abo
0.37 ns. The excitation energy of 4.94 eV found for the Ps2 is
different by 0.16 eV from the corresponding excitation e
ergy ~5.10 eV! of a Ps atom. This difference seems to
large enough to detect its existence, e.g. in the photon
sorption spectrum of the positronium gas.

IV. SUMMARY

We have used the correlated Gaussians combined with
angular functions that are specified by the global vec
Nonlinear parameters of the bases have been determine
the stochastic variational method. We have considerably
proved the results of the previous calculations for the gro
state of HPs and Ps2 . In addition, we have calculated variou
expectation values, correlation functions, and other prop
ties of the excited state of the Ps2 molecule.

The excited state of the Ps2 molecule has the orbital an
gular momentumL51, the spinS50, and negative parity
The excitation energy of the state is 4.941 eV and 0.596
.

n
-
,
of

-

b-

he
r.
by
-
d

r-

V

below the threshold of Ps(L50)1Ps(L51). Though this
state is in the continuum of the Ps(L50)1Ps(L50) chan-
nel, it is stable against autodissociation into that channel
cause of the Pauli principle. The main decay mode of t
state is the annihilation emitting two photons of about 0
MeV each, which, except for the tiny binding-energy diffe
ence, is equal to the photon energies of Ps atoms. The a
hilation decay mode is not useful to confirm experimenta
the existence of the Ps2 molecule. We have discussed
unique decay mode of the excited state, the electric dip
transition to the ground state. The lifetime due to the elec
dipole transition has been calculated to be 2.1 ns, while
lifetime due to the annihilation is 0.44 ns. The electric dipo
transition can be used as a signal for experimental confir
tion of the Ps2 molecule.
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APPENDIX A: EVALUATION OF MATRIX ELEMENTS

In this appendix the matrix elements of the spatial part
the basis functions are given. The method of calculation
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these analytical expressions is detailed in Refs.@7,11#. The
main aim of this section is to convince the reader that
formulas are particularly simple for the case ofK50. The
extension to a generalN-body system is straightforward s
that we assume that the system containsN particles.

The basic idea of the calculation of the matrix element
the usage of the generating functiong:

g~s;A,r !5exp~2 1
2 r̃Ar1 s̃r !. ~A1!

In the special case ofK50, Eq. ~9! is obtained fromg by

f 0LM~u,A,r ![e2~1/2! r̃ArY0LM~v!

5
BL

L! E YLM~ ê!S dL

dlL
g~leu;A,r !D

l50,e51

dê,

~A2!

with

BL5
~2L11!!!

4p
. ~A3!

To abbreviate the expression for the matrix elements
introduce the following notation:

^ f 8uOu f &5^ f 0LM~u8,A8,r !uOu f 0LM~u,A,r !&, ~A4!

where O stands for the unity, kinetic, or potential energ
operators. The operators considered here are rotationa
variant and thus the matrix elements are diagonal inLM .
Note the prime onf , which is a reminder that the paramete
in the ket and the bra may be different.

The use of Eq.~A2! in Eq. ~A4! leads to an expressio
that the matrix element is derived from that between
generating functions, which becomes a function of para
etersl, e, l8, ande8. Here the matrix element between th
generating functions can be obtained easily by using the
pression

E e2~1/2! r̃Ar1 s̃rdr5S ~2p!N

detA D 3/2

e~1/2!s̃A21s ~A5!

and its extended formulas. After a power series expansio
the matrix element between the generating functions in te
of l, e, l8, ande8, the derivative and the integration pre
scribed in Eq.~A2! can be carried out straightforwardl
@7,11#.

The overlap of the trial functions is given by

^ f 8u f &5S ~2p!N

detB D 3/2

BLrL. ~A6!

The kinetic energy is expressed by

^ f 8uT2Tcmu f &5
\2

2
~R1LQr21!^ f 8u f &. ~A7!

The matrix elements of a central potential reads as
e

s

e

in-

e
-

x-

of
s

^ f 8zV~ ur i2r j u!zf &5^ f 8u f & (
n50

L

I ~c,n!
L!

~L2n!! S gg8

cr D n

,

~A8!

where the integral over the radial form of the potential
expressed with use of Hermite polynomials

I ~c,n!5
1

Ap~2n11!!
E

0

`

VSA2

c
xD e2x2

H1~x!H2n11~x!dx.

~A9!

The definitions of the constants in the above expressions

B5A1A8, r5ũ8B21u, r̄5r2
1

c
gg8,

R53Tr~B21A8LA!, Q52ũ8B21ALA8B21u,

c215w~ i j !̃B21w~ i j !, g5cw~ i j !̃B21u, ~A10!

g85cw~ i j !̃B21u8,

where theN3N symmetric matrixL is defined byT2Tcm

5(1/2)( i , jL i j pi•pj andw( i j ) is anN31 one-column matrix
defined by

wk
~ i j !5dki2dk j ~k51, . . . ,N!. ~A11!

The integral in Eq.~A5! can be analytically evaluated fo
several potentials, including Coulomb, exponential,
Gaussian potentials. The numerical evaluation for a gen
potential is a simple matter and one tabulatesI (c,n) for the
necessary values ofc. For power law potentialsV(r )5r k,
for example, including the Coulomb interaction, thec depen-
dence of the integralI (c,n) is factored out:

I ~c,n!5S 2

cD k/2

I n~k!, ~A12!

where the remaining integral can be carried out and
pressed in terms of theG function:

I n~k!5
1

Ap
(

m50

n
~21!m22n22m11

m! ~2n22m11!!
GS n2m1

k13

2 D .

~A13!

In particular, for the Coulomb force (k521) we get

I n~21!5A4

p

~21!n

~2n11!n!
. ~A14!

The correlation function is calculated through the equ
tion
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^ f 8ud~r i2r j2r !u f &5^ f 8u f &c3/2e2~1/2!cr2S r̄

r
D L

(
n50

L

r 2nS gg8

r̄
D n

(
k50

n

CLnk^LM2k0uLM &Y2k0~ r̂ !, ~A15!

where

CLnk5
~21!k~2k21!!! A~2L22k!! ~2L12k11!!

p~2L21!!!2 L11/2~L2n!!k! ~n2k!! ~2n12k11!!!
A4k11

2L11
. ~A16!

APPENDIX B: SEPARATION OF CENTER-OF-MASS MOTION

The transformation between the relative and single-particle coordinates, given by Eqs.~2!–~5! or Eqs. ~18!–~21!, is
expressed as

x5Ur , r5U21x. ~B1!

Herer andx are column vectors containing (r1 , . . . ,r4) and (x1 , . . . ,x4). For the Ps2 the matrixU and its inverseU21 are

U5S 1 21 0 0

0 0 1 21

M

m1M

m

m1M

2M

m1M

2m

m1M

M

2m12M

m

2m12M

M

2m12M

m

2m12M

D , U215S m

m1M
0

1

2
1

2M

m1M
0

1

2
1

0
m

m1M
2

1

2
1

0
2M

m1M
2

1

2
1

D , ~B2!

and for the HPs they are

U5S 1 21 0 0

0 0 1 21

M

m1M

m

m1M
2

1

2
2

1

2

M

3m1M

m

3m1M

m

3m1M

m

3m1M

D , U215S m

m1M
0

2m

3m1M
1

2M

m1M
0

2m

3m1M
1

0
1

2
2

m1M

3m1M
1

0 2
1

2
2

m1M

3m1M
1

D . ~B3!
gl

u
tio

ch
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an-
By this transformation one can express the CG of the sin
particle coordinates by the relative coordinates:

GA~r !5exp$2 1
2 r̃Ar%5exp$2 1

2 x̃Ax%[GA~x!,

A5U21̃AU21. ~B4!

The parametersANi5A iN ( i 51, . . . ,N21) connect the
relative and center-of-mass variables, and give rise to an
desirable center-of-mass dependence of the wave func
To have a translational invariant basis, we require that

ANi50, ANN5c,

that is,
e-

n-
n.

(
j 51

N

(
k51

N

AjkUki
2150 ~ i 51, . . . ,N21!, (

j 51

N

(
k51

N

Ajk5c,

~B5!

wherec is an arbitrary, positive constant common for ea
basis function. The second condition assures the finite n
of the basis function. By this requirement the relative a
center-of-mass motion is separated in the exponential pa
the basis function.

To remove the center-of-mass contamination from the
gular part, let us express the global vectorsv in terms of
relative coordinates:

v5(
i 51

N

uir i5(
i 51

N

ui (
k51

N

Uik
21xk . ~B6!

This identity shows that by requiring
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(
i 51

N

uiUiN
215(

i 51

N

ui50, ~B7!

the global vector becomes translationally invariant.
By fulfilling Eqs. ~A1b! and ~B2! the basis is free from

any problems with the center-of-mass motion. These co
tions fix N11 nonlinear parameters amongN(N11)/21N
5N(N13)/2 parameters. ForN54 there remain nine free
parameters for each basis function.

APPENDIX C: SHERMAN-MORRISON FORMULA

As shown in Appendix A, calculation of the matrix ele
ments requires the evaluation of the determinant and inv
of the matrixB. In the SVM process we probe many rando
trials with different matrices. Let us assume that we cha
the matrixA of nonlinear parameters in such a way that
change the parametera i j ( iÞ j ) of the relative motion be-
tween particlesi and j to a i j 1l but keep all other matrix
elements unchanged. This is certainly a very restricted w
but in this case the computer time required for the evalua
of the matrix elements decreases tremendously. This cha
of a i j produces the following changes in the matrixA @see
Eq. ~13!#:

Ai j→Ai j 2l, Aji→Aji 2l,

Aii→Aii 1l, Aj j→Aj j 1l. ~C1!

It is easy to see that this change does not violate the co
tions of Eq.~A1b!. Thus the wave function with this modi
fication is still translational invariant. The above change
the matrix A can be simply expressed by using the vec
w( i j ) defined in Eq.~A7! as follows:

A→A2lw~ i j !w~ i j !̃. ~C2!

Note thatw( i j )w( i j )̃ is anN3N matrix, whereasw( i j )̃w( i j ) is
just a number. AsB is equal toA1A8, the above change
leads to the following modification ofB:

B→B2lw~ i j !w~ i j !̃. ~C3!

To calculate the inverse and determinant of the ab
special form, the Sherman-Morrison formula can be used

~B2lw~ i j !w~ i j !̃ !215B211
l

12lw~ i j !̃B21w~ i j !

3B21w~ i j !w~ i j !̃B21 ~C4!

and

det~B2lw~ i j !w~ i j !̃ !5~12lw~ i j !̃B21w~ i j !!detB. ~C5!

The advantage of these formulas is apparent: By know
B21 and detB one can easily calculate the right-hand sides
the equations, and thel dependence is given in a ver

simple form. For example,w( i j )̃B21w( i j ) simply reduces to

(B21) i i 1(B21) j j 22(B21) i j . Likewise, B21w( i j )w( i j )̃B21
i-

se

e

y,
n
ge

i-

r

e

g
f

can also be easily evaluated. To changel, therefore, there is
no need for the evaluation of inverses and determina
~which would requireN3 operations! but we get the desired
results by a simple multiplication and division.

APPENDIX D: SYMMETRIZATION
OF WAVE FUNCTIONS

1. Antisymmetrization

The antisymmetrizerA is defined as

A5
1

Anp
(
i 51

np

« iPi , ~D1!

where the operatorPi changes the indices of identical pa
ticles according to the permutation (p1

i , . . . ,pN
i ) of the num-

bers (1,2, . . . ,N), and « i is the phase of the permutation
The effect of this operator on the set of the position vect
(r1 , . . . ,rN) is

Pi~r1 , . . . ,rN!5~r p
1
i , . . . ,r p

N
i !. ~D2!

By representing the permutations by the matrix

~Ci !k j51 if j 5pk
i and ~Ci !k j50 otherwise

~D3!

@for example, the permutation(3124) isrepresented by

C5S 0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1
D , ~D4!

while for (1234) C is a unit matrix#, the effect of the per-
mutation operator on the single-particle coordinates read

Pir5Cir . ~D5!

By using Eqs.~A14! and ~C5!, the permutation of the rela
tive coordinates is expressible as

Pix5Pix with Pi5UCiU
21. ~D6!

The CG’s, after permutation, take the form

PiGA~r !5GCĩACi
~r !5GPĩAPi

~x!5GCiU
21̃ACiU

21~x!.
~D7!

In the spin space the permutation operator interchan
the indices of the single-particle spin functions and can
easily evaluated. As a result, the matrix element of any sp
independent operatorO that is symmetrical with respect t
the permutation of identical particle coordinates can be w
ten in the following form:

^A$xSMS
f KLM~u8,A8,r !%uOuA$xSMS

f KLM~u,A,r !%&

5(
i 51

np

ci^ f KLM~u8,A8,r !uOu f KLM~Cĩu,CĩACi ,r !&,

~D8!
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where the coefficientsci have the form

ci5« i^xSMS
uPi uxSMS

&. ~D9!

Since the antisymmetrizer is a projector onto an antisymm
ric state, only ket~or bra! function needs to be antisymme
trized.

The particular value of the coefficientci depends only on
the spin function of the system. In the case of Ps2 two pos-
itrons must be antisymmetrized and likewise two electro
must be in antisymmetric states. Therefore, the antisym
trizer for this system is given byA5(12P13)(12P24),
wherePi j is the transposition of particle labelsi and j . Thus
A has four permutations (np54) and we can identify

P151, P25P13, P35P24, P45P13P24.
~D10!

The corresponding phases are«151,«2521,«3521,«4
51 and the matricesC are given as follows:

C15S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
D , C25S 0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1
D ,

C35S 1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0
D , C45S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0
D .

~D11!

The spin functionx00 of Eq. ~11! is antisymmetric in both
of the positron spin coordinates and the electron spin co
dinates. Thus the spin matrix element^xSMS

uPi uxSMS
& turns

out to be equal to« i and we havec15c25c35c451.

2. Charge symmetry

The HamiltonianH for Ps2 has charge-exchange symm
try, that is, it is invariant under the exchange of the posit
and negative charges: LettingP denote the charge
permutation operator, we have

HPc5PHc5EPc. ~D12!

Therefore, the nondegenerate eigenstate of the Hamilto
is also the eigenstate of the charge-permutation operato
the Ps2 the ground state is even (p511) underP, while the
L51 excited state turns out to be odd (p521).

Consider the case of Ps(e1e2). This system is repre
sented by the coordinate (r22r1). The charge permutation i
thus equivalent to the parity operation. Since the parity
(21)L for the state with orbital angular momentumL, the
eigenvalue of the charge-permutation operator is a
(21)L. The signs ofx1 and x2 change with respect to th
charge permutationP12P34, while x3 does not. Assume tha
the Ps2 has partial wavesl 1 , l 2 , andl 3 corresponding to the
motion described withx1 , x2 , and x3 , respectively. When
charges are permutated, the wave functionc becomes
t-

s
e-

r-

e

an
In

s

o

(21)l1(21)l2c. Then Pc5c for the S state withl 15 l 250,
while Pc52c for the P state withl 150 andl 251.

The nonvanishing matrix element of the electric dipo
transition supports that the first excitedP state is odd under
the charge permutation. This is because the electric dip
operatorD has the following form except for the constant

D5e~r12R!2e~r22R!1e~r32R!2e~r42R!,
~D13!

which changes sign under the charge permutation. There
if the excitedP state is even under the charge permutati
then the electric dipole matrix element between theP state
and the ground state would identically vanish.

The charge-permutation operatorP is given byP12P34 or
P14P32. When the wave functionc is already antisymme-
trized for two positrons and for two electrons, then we c
see that both operators give the same effect. To unders
this we use the following identity:

P14P32c5~P12P34!
2P14P32~P13P24!

2c

5P12P34P13P24c

5P12P34c.

~D14!

Thus the basis function for the Ps2 molecule with definite
charge-permutation symmetry is given by operating with
following operatorC on the function:

C5
1

A8
~11pP12P34!~12P13!~12P24!. ~D15!

The evaluation of matrix elements between the states w
odd charge symmetry can be done in a similar manne
the preceding subsection by extending Eqs.~D8! and ~D9!.
The antisymmetrizer A is now replaced with C
5(1/A8)( i 51

8 « iPi , where newPi are defined by

P55P12P34, P65P12P34P13,

P75P12P34P24, P85P12P34P13P24,
~D16!

and the corresponding phases are«5521, «651, «7
51, «8521. The matricesCi corresponding toPi are
given below:

C55S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
D , C65S 0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0
D ,

C75S 0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0
D , C85S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
D .

~D17!

It is easy to evaluate the coefficientsci . For the spin func-
tion x00 of Eq. ~11!, we getc55c65c75c8521.
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