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The positronium molecule (Pshas not been experimentally observed yet because it$4iBye\) binding
energy cannot be detected when the molecule annihilates by emitting two photons with energy of 0.51 MeV
each. It is shown in this paper that the electric dipole transition between the recentlylfeuhexcited state
and theL =0 ground state with its characteristic photon energy of 4.94 eV is a clear signature of the existence
of the positronium molecule and the possibility of its experimental observation is realistic. The probability of
this transition is about 17% of the total decay rate. Another Coulomb four-body system containing positron
HPs (the positronium hydride or hydrogen positrides also included for comparison.
[S1050-294@8)10709-6

PACS numbsgs): 36.10.Dr, 31.15.Pf

I. INTRODUCTION The hydrogen positridépositronium hydride HPs, has
already been the focus of intensive theoretical and experi-
Despite the early theoretical prediction of its existencemental investigation. This is an ideal system with which to
[1], the Ps molecule has not been experimentally found totest the SVM. We compare the properties of thg & HPs
date. The difficulty stems from the fact that this system ismolecules.
neutral and therefore it cannot be separated from the positro- The plan of this paper is as follows. In Sec. Il we give a
nium atoms(P9 and its primary decay mode, the annihila- brief description of the trial function and the stochastic varia-
tion by two-photon emission, is exactly the same as that ofional method. In Sec. IlI the results are presented. The main
the Ps atom. The energy of the photons arising from théesults of the paper are summarized in Sec. IV. In Appendi-
annihilation is different in principle: The photons carry 1.02 ces A-D we collect some basic ingredients that are used in
MeV energy due to the annihilation plus the binding energythe present study in order to help readers reproduce our re-
of the corresponding system. The binding-energy differencéults: formulas of the matrix elements in the CG basis, the
is, however, less than 1 eV, and adding it to 1.02 MeV, theseparation of the center-of-mass motion from the CG basis,
energy of the photons coming from the Ps atom ariel-  the use of the Sherman-Morrison formula in selecting non-
ecule cannot be experimentally distinguished. The experilinear parameters, and the symmetry requirement for the trial
mental observation of the biexcitons can be considered as amave function of the Bsmolecule.
indirect indication of the existence of Ps
In our recent Lettef2] we predicted the existence of a Il. THE CALCULATION
hitherto unknown bound excited state of thg Rmlecule. In ] »
this paper we give a detailed description of this state. We A System of two electrons with mass and two positive
have investigated possible decay modes of this state with @nit charges of mash is considered. Their relative mass is
special emphasis on the electric dipo&l( transition to the Ccharacterized by the ratie=m/M, and the positronic limit
ground state. It will be shown that the probability of i@ IS realized byo=1. (Though we consider the case @f= 1
transition is comparable to that of the annihilation. Thein this paper, the extension to othervalues is straightfor-
unique energy of this transition may possibly be utilized as vard, so we give a formulation assuming an arbitrary mass
sign for the experimental identification of the,Amolecule.  ratio) The Hamiltonian of the system reads
The stochastic variational meth@g8VM) [3,4] has been 4 4
used to solve the Coulomb four-body problem. In this _ o iM]
method the variational trial functions are optimized by gam- H= 21 Tim Tem .2<, Iri—r;|’ @
bling: Randomly chosen configurations are probed and most
adequate functions are selected to be the basis states.  whereq; andr; are the charges and the position vectors of
The correlated Gaussiaf8G) [5] are used as basis func- the particles. Particle labels 1 and 3 denote the positive
tions in this procedure. The CG basis has a long history irtharges, while labels 2 and 4 denote the negative charges. A
atomic and molecular physics and highly accurate calcularelative coordinate system is introduced by definiggand
tions are based on this form of basis functipp—-10. The  x, as the distance vectors between the positive and negative
angular part is given by the global vector representdfidn  charges in the first and second atom, agds the distance
This approach greatly simplifies the calculations for non-vector between the center of masses of the two atoms:
spherical systems by replacing the partial wave expansion
with a much simpler representation of the angular motion. X{=r1—TIo, 2
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Xp=T3— T4, ®) polynomial of the relative coordinates. In some cases this
might be very useful, it can improve the short-distance be-
Mri+mr, Mrg+mry, havior, for example, but this role can also be played by an
= Em  Mam (4 appropriate superposition of the exponentials. We Kised
in this paper.
Mry+mry+Mrg+mr, The transla.tipnal invariance of the wave fun_ction is en-
X,=R= M 12 (5) sured by requiring that the parametérsandu fulfill some
m special conditions. As is detailed in Appendix B, these con-
We use the abbreviationx={x, ... x; and r ditions ensure that the motion of the center of mass is fac-
Y torized in a product form. .
1 na By combining the CG with the angular and spin parts, the
) full basis function takes the form
A. The wave function
The CG of the form Py s= A xsmg Frem (Ui, Ak, N}, (10)

i~ 14 with an appropriate spin functiomSMS, where ‘k” is the
Ga(r)=exp{—zrAr}=exp — Eijzl AijliT; ®)  index of the basis states antlis an antisymmetrizer for the
' identical fermions. In the positronium limito(=1) the
is very popular in atomic and molecular physigs-10]. Hamiltonian becomes invariant with respect to the inter-
HereT stands for a one-row vector whoith element is; . change of positive and negat@vg charg_es. Therefore, the basis
The merit of this basis is that the matrix elements are anaUnction should have a definite parity under the charge-
lytically available and unlike other trial functiondor ex- ~ Permutation operator. See Appendix D for the details of the
ample, Hylleraas-type functionene can relatively easily ex- symmej[ry requirement on t_he wave functlop. For the _s.peC|aI
tend the basis for the case of more than three particles. THS€ WithS=0 andMs=0 in which two spins of positive
well-known defects of this basis are that it does not fulfill thecharges and two electron spins are coupled to zero, respec-
cusp condition and its asymptotics does not follow the expoliVely; the spin part of the wave function reads

nential falloff. This latter problem, especially for bound _1 _ _
states, can be cured by taking linear combinations of ad- Xoo= 2 (ITTLL=[TLD=LTTDH+ L) (A1

equately chosen CGs. . _(Note that particles 1 and 3 are positive unit charges and
The CG defined above is spherical and can thus describg,ticies 2 and 4 are electrops.

systems with onlyL=0 orbital angular momentum. The " |nstead of optimizing the parameters Afit is more ad-
usual way to account for the orbital motion in the case ofyantageous to rewrite E46) as

L#0 is the partial-wave expansion. Because of the com-

plexities arising from the evaluation of matrix elements this 1 , 1 5

expansion gets very tedious for more than three particles. To exq’ - 52" aij(ri—ry°— 52 Biri - 12
avoid this difficulty the global vector representatipn| is = '

used. In this approach, one defines a vestas a linear e relationship between;; , B, andA is

combination of the relative coordinates:

4 ai=—A;  (i£)), Bi=> Aq, (13)
v:;luiri, (7 J ] @

where a;; (i<]) is assumed to be equal tg;. There are
and the nonspherical part of the wave function is representetivo reasons to choose this form. The first is that in choosing

by a solid spherical harmonic aj; in this way we deal with a correlation function between
. the particles andj, while A;; has no such direct meaning
Vam(V) =02 LY (V). (8)  and during the optimization it is more difficult to limit the

numerical interval ofA;; to be chosen from. Second, one can
The linear combination coefficients are considered to be utilize this specific form to make the individual steps of the
variational parameters and their optimal values are to be dexarameter selection very fast. By taking a look at the expres-
termined by the SVM as will be discussed later. The detailssions of the matrix elements in Appendix A, it is clear that
and examples can be found|[in,11]. The usefulness of the the main computational load is the calculation of the inverse
global vector representation is shown[it?] by comparing  and determinant of the matrix of the nonlinear parameters.

the results obtained with the partial-wave expansion. The form in Eq.(C3) offers the possibility of the usage of the
The calculation of the matrix elements for the space parsherman-Morrison formula to calculate these quantities,
of our basis function leading to a much faster function evaluation. The details of

this step are given in Appendix C.
feim(UA ) =GA(r) Vkm(V) ©)

is given in[7]. In the special case d =0 the matrix ele- B. Electric dipole transition rate
ments can be written in much simpler form. This is shown in  In the positronium limit ¢=1) we deal with antiparticles

Appendix A. In theK#0 case, the CG is multiplied by a and the electron-positron pair can annihilate. The lifetime of
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the first excited state with=1 and negative parity is deter- for the optimal value of such a large number of parameters is
mined by both processes of annihilation and electric dipoldikely to get trapped in a local minimum.
transition to the ground state. The widily,q for the latter A procedure based on the stochastic search for the best set
process is calculated through the reduced transition probabibf nonlinear parameters can be programmed efficiently
ity B(E1) for the electric dipole operath#ZE‘k‘=lqk|rk [4,13] and is capable of achieving highly accurate results for
_ R|y1#((_\R) (u=-1,0,1) most few-body syste_n{§2,4,7,14. The essence of the strat-
egy can be summarized as follows: et ,A;} be the non-

1 8 o linear parameters of thigh basis function out of the set &f

1ﬂdipolezT( %) B(EL;1 —07), (14 such basis functions. Then the procedure is as follows.

(i) A succession of different sets of
({ul Al ... {u's,A'}) are generated randomly.
(i) By solving the eigenvalue problem, the corresponding
B(El;l‘eOﬂz% 00D, [1M)P, (15 energiesEL, . .. ) are determined.
(iii ) The parameter sét™ , A"}, which produces the low-
whereE is the excitation energy of the first excited state. est energy, is then used to replace the exisfingA;} set.
(iv) The procedure cycles through the different parameter
C. Annihilation rate sets (u;,Aj},i=1,... K), successively choosing different
sets to minimize the energy until convergence is reached.

with

The most dominant annihilation of the first excited state

of Ps is accompanied by the emission of two photons withthe essential reason motivating this strategy is the need to
energy of about 0.5 MeV each. The decay wilithy for the g5 pje different sets of nonlinear parameters as fast as pos-
annihilation can be estimated through the decay widihof  gjple. The main advantage is that it is not necessary to re-
the parapositronium in the spin-singlet state. This decayompute the complete Hamiltonian, nor is it necessary to
width has to be multiplied by the numbé¢, of positron-  splve the generalized eigenvalue problem from scratch each
electron pairs that are in the spin-singlet state in the RS time a new parameter set is generated. By changing the ele-
the Ps excited state we have four positron-electron pairsments of the parameter set for each basis function individu-
among which the probability that the pair is in the spin-g|ly, it is necessary to recompute only one réwolumn of
Singlet state is 1/4 because the total Spin of the first eXCitefhe Hamiltonian and Over|ap matrices each time the param-
state of Psis zero, as will be shown latefNo=4X(1/4)  eter set{u; ,A;} is changed. Furthermore, the solution of the
=1.] Therefore, to derive an estimate for the decay due tgeneralized eigenvalue problem is also expedited since the

the annihilation, we can use formu(@) of [10]: Hamiltonian matrix is already diagonal apart from one row
. —N.IPS 16 and one column.
2y~ N0t 2y (16) A similar strategy to the above was used when adding

additional terms to the basis.
The speed of the calculation can be further increased if
g2 |2 one changes the nonlinear paramet®ysn a special way.
F5§:4W(W) he(W|S(ri—ry)|¥) This is described in Appendix C.
The above way of finding the best parameters is certainly
g2\ 4 very restricted. Even this simple method gives very accurate
=4w(%> ﬁcagl(é(rlz», 7 energies. A more sophisticated technique may give better
results in a smaller basis size.

with

where the probability of finding an electron at the position of
a positron{5(r1,)), is the expectation value @f(x;) given Il. RESULTS
in a.u., that is{ 6(r 1,)) is equal toa3(¥|8(r,—r,)|¥) with
the Bohr radiusay. Roughly speaking, the lifetime is in-
versely proportional to the probability of finding an electron
and a positron at the same position.

The results of calculations for the ground state of HPs and
Ps and the first excited state of Pare reported in this
section. The ground states of HPs and Pave already been
subject to intensive calculations and some of the results ob-
tained before for these systems serve as validation of the
SVM. The calculation of the properties of the excited state of

To obtain very precise energy, one has to optimize thehe Ps is the primary focus of this paper. We have previ-
variational parameters,; andAy;; of the trial function. The ously reported the energy of the ground state of thedpsl
dimension of basis sets is typically between 100 and 100(predicted the existence of an excited state of this molecule.
and each basis state has nine nonlinear paraméB8ss.Ap-  This paper reports considerably improved energies by further
pendix B) The optimization of a function with a few thou- optimization of the nonlinear parameters of the basis. The
sands nonlinear parameters cannot be done efficiently by usdrther optimization and the increase of the basis dimension
ing a deterministic optimization method, since this couldhas produced an improved wave function and we present
entail the complete reconstruction of the Hamiltonian matrixdifferent properties of these systems by using that wave
and diagonalization every time when some of the nonlineafunction. We show the convergence of the binding energies
parameters are altered. Moreover, the deterministic sear@nd various expectation values as a function of the dimen-

D. The stochastic variational method
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TABLE |. Comparision of the results of different calculations for the ground-state energy of HP’s. The
proton mass is taken to be infinite. The energy is given in atomic units.

Method Reference Energy
SVM (K=100) Present —0.7891013600
SVM (K=200) Present —0.7891810473
SVM (K=400) Present —0.7891924458
SVM (K=2800) Present —0.7891958706
SVM (K=1200) Present —0.7891964226
SVM (K=1600) Present —0.7891965536
Hylleraas configuration interaction [17] —0.7842
Exponential trial functions [18] —0.7889
Diffusion Monte Carlo [19] —0.7891+0.002
Diffusion Monte Carlo [20] —0.789175-0.00001
Correlated Gaussian basik € 200) [21] —0.7891794
SVM (K =400y Present —0.7888681371

&The proton mas# is assumed to b&1 =1836.152701 m.

sion of the basis. The results in the tables are shown for thevhere particle label 1 denotes the proton, label 3 denotes the
basis dimensions oK=100,200,400,800,1200,1600. The positron, and labels 2 and 4 denote the electrons.
basis has been a subject of intensive optimizations at these The energies calculated by SVM and by other methods
dimensions. Once the optimization at a given basis size hasre shown in Table |. The proton mass is taken to be infinite.
been finished, new basis states are ad@edh of them has (For the sake of reference a sample result for the finite proton
been selected among hundreds of random candidates mass is also included in the tablélhe two electrons are
reach the next basis size where the optimization is startedssumed to be in the spin-singlet state. The spin states of the
again. While the pattern of convergence is very useful inforproton and the positron can be taken arbitrary. Our result,
mation about the accuracy of the results, one has to keep @ready at the dimension &f= 200, is better than the previ-
mind that this can be distorted by many extraneous factorsous calculations. The increase of the basis size improves the
This is because one cannot guarantee that the quality of theseergy further. The need for improved accuracy can be
optimizations is the same. We expect that the stochastic selearly seen in Table Il, where various expectation values are
lection of the basis is close to being the optimal choice foristed. The expectation va|qg:_e_>, for example, is much
lower dimensions, but for large dimensionsK ( |ess accurate than the energy and it is considerably improved
=1200,1600) the procedure becomes more time consumingeyond the dimensioK = 200.
and we have less of a chance to find the optimal parameters. One can compare the expectation values of the separation
distances of the patrticles in the HPs to those in the H and Ps
A. Hydrogen positride, HPs atoms. The average electron-positron distance isa3.48

The boundness of the exotic molecule, HPs. has beeHPs, which is slightly different from that in th_e positrqnium
known theoretically for many yeafd5] and it has recently &M (3o). The average electron-proton distance in HPs
been created and observed in collisions between positrord'd H IS considerably different (2.84 and 1.2,). The av-
and methand[16]. The investigation of the stability of ©rage distance between the two positive charges §3)66
positronic atoms has been attracting much attention becau§aUch larger than that in thezHnolecule (1.4a).
positrons can be used as a tool for positron-annihilation spec- The correlation function defined by
troscopy in condensed matter physics. The HPs molecule is

the simplest but ideal hydride to test the SVM. It is also very C(r)=(w[&(ri—rj—r)|¥) (22)
intriguing to see the difference between the properties of Ps
and HPs. gives more detailed information on a system than just vari-

Instead of Eqs(2)—(5), the relative and center-of-mass ous average distances. This quantity can be calculated by
coordinate system relevant to HPs is defined as follows: using Eqs(A11) and(A12). For the spherical wave function
et (19) with L=0, C(r) is a function ofr, that is, the monopole
1= 2 density, and for the.=1 wave function, it consists of two
(19 terms of monopole and quadrupole densities. Figure 1 dis-
plays r2C(r) for various pairs of the constituents of HPs.
The two electrons are attracted by the proton, but the proton-
(20) electron correlation function is much broader than that in the
H atom, while they are separated with its maximum density
being at about 2.8 a.u. The positron moves furthest from the
___ Mry+mrp+mrg+mry proton and has a peak density at around 2.6 a.u. from the
Xy =R= M +3m ’ @) glectron

X2: r3_r4,

Mri+mry, ra+ry
X3= -
3 M+m 2
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TABLE Il. Expectation values of various quantities for HPs. Atomic units are ukeds the basis

dimension.
E —(V)I(T))
K=100 —0.7891013600 1.00001
K=200 —0.7891810473 1.000003
K=400 —0.7891924458 1.000002
K=800 —0.7891958706 1.0000007
K=1200 —0.7891964226 1.0000004
K=1600 —0.7891965536 1.0000003
(rg’e*> (r:+e*> <r2*p> <r2+p>
K=100 515.42669 525.13203 193.45055 504.56556
K=200 524.98363 531.24425 197.60909 513.48089
K=400 527.33506 532.59188 198.63996 515.59169
K=800 527.88970 532.94707 198.88278 516.06972
K=1200 527.94660 532.98328 198.90610 516.11702
K=1600 527.96159 532.99639 198.91176 516.13646
3 3 3 3
<re*e*> <re+e*> <re*p> (re+p>
K=100 83.599992 83.792382 34.789685 84.226327
K=200 84.337498 84.249983 35.120402 84.911659
K=400 84.507962 84.347282 35.195647 85.064112
K=800 84.544707 84.369687 35.211858 85.094386
K=1200 84.548681 84.372106 35.213444 85.097517
K=1600 84.549852 84.372949 35.213895 85.098746
2 2 2 2
(re*e*> <re+e*> <re*p (re+p>
K=100 15.803193 15.542251 7.7797451 16.188998
K=200 15.860043 15.575673 7.8062352 16.241186
K=400 15.872464 15.582575 7.8117324 16.252128
K=800 15.874993 15.584009 7.8128668 16.254178
K=1200 15.875286 15.584176 7.8129800 16.254399
K=1600 15.875377 15.584230 7.8130152 16.254480
(re*e* (re+e’> <re’p> (re+p>
K=100 3.5700072 3.4777333 2.3092381 3.6573544
K=200 3.5738023 3.4797561 2.3110943 3.6607696
K=400 3.5745993 3.4801765 2.3114423 3.6614669
K=800 3.5747568 3.4802575 2.3115152 3.6616016
K=1200 3.5747763 3.4802676 2.3115221 3.6616167
K=1600 3.5747825 3.4802707 2.3115245 3.6616220
<r;’le’ <r;+le’> <r;’1p <r;+lp
K=100 0.37072021 0.41851818 0.72973620 0.34760250
K=200 0.37058889 0.41850815 0.72971467 0.34749891
K=400 0.37056069 0.41849668 0.72970918 0.34746907
K=800 0.37055594 0.41849614 0.72970858 0.34746293
K=1200 0.37055519 0.41849601 0.72970874 0.34746209
K=1600 0.37055494 0.41849596 0.72970869 0.34746180
-2 -2 -2 -2
(re*e*> (re+e*> <re*p> (re+p>
K=100 0.21426165 0.34877458 1.2059515 0.17234727
K=200 0.21396622 0.34911573 1.2069510 0.17221620
K=400 0.21392019 0.34912443 1.2070112 0.17217310
K=800 0.21391300 0.34914011 1.2070561 0.17216589
K=1200 0.21391137 0.34914210 1.2070629 0.17216413
K=1600 0.21391064 0.34914275 1.2070632 0.17216372
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The 2y annihilation rate, calculated from EL6) with
No=2X(1/4)=1/2 and({e+.-) of Table II, is found to be
I,,=2.4722 ns!, improving the previous estimatg¢23]
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TABLE Il. (Continued.

E —(I(XT))
<re;eg're;e+> <re+e;'re+eg> <rpe;'rpeg> <rpe+'rpef>
K=100 7.9015967 7.6406546 —0.12185159 4,2132458
K=200 7.9300217 7.6456510 —0.12378653 4.2358745
K=400 7.9362320 7.6463425 —0.12449962 4.2406428
K=800 7.9374963 7.6465132 —0.12462952 4.2415176
K=1200 7.9376432 7.6465328 —0.12466320 4.2416014
K=1600 7.9376883 7.6465421 —0.12467313 4.2416325
—(Ve-) —(VZ.) (Ver-Ver) (Ver-Ver)
K=100 0.65224870 0.27367198 —0.043864431 0.11701815
K=200 0.65232846 0.27369666 —0.043999455 0.11707408
K=400 0.65234077 0.27369750 —0.044052593 0.11707637
K=800 0.65234481 0.27369980 —0.044060768 0.11707718
K=1200 0.652345728 0.27370016 —0.044063957 0.11707760
K=1600 0.652345903 0.27370022 —0.044064366 0.11707739
( 5e*e* < 5e+e*> < 5e’ p> < 5e+ p>
K=100 0.0047127 0.0236658 0.1717649 0.0017964
K=200 0.0047873 0.0242912 0.1758767 0.0016985
K=400 0.0044178 0.0243887 0.1761969 0.0016542
K=800 0.0043895 0.0244224 0.1768711 0.0016440
K=1200 0.0043889 0.0244583 0.1771854 0.0016386
K=1600 0.0043867 0.0244611 0.1771862 0.00163857

by about 0.5%.

B. Positronium molecule, Ps: Ground state

dimension ofK =200, is better than the energy of the previ-
ous calculations. The increase of the basis size improves the
accuracy and the virial factdd +(V)/(2(T))| becomes as
small as 0.%10°°, improving the previously best calcula-
tion by more than four orders of magnitude.

The average electron-positron distance is 4a487vhich
is about 1.5 times larger than in the positronium atom. The

The energies by SVM are compared to the best previous,, annihilation rate calculated from Eq16) by using
results in Table Ill. The result of SVM, again, already at the(s_. ) of Table Il is found to bel',,=4.470 ns?.

The electron-electron and the electron-positron correla-

— ¢ -¢ tion functions are compared in Fig. 2. The peak position of
0.04 . Lo ;
A, e - et the electron-electron correlation function is shifted to larger
. distances compared to the one of the electron-positron cor-
=== €-p i i i i i
003 . _relatlon function. The eIec'Fror)-polsnron correlation functpn
5 -1 - = € -p in Ps, has much broader distribution than the corresponding
= ! ‘\ -------------- e - p (H atom) function in a Ps atom.
o 002 3 TABLE lll. Total energies of the Bsmolecule in atomic units.
3 K is the basis dimension.
(\Ik
0.01 i Method Ps (L=0) Ps (L=1)
SVM (K=100) —0.516000069 —0.334376975
0.00 SVM (K=200) —0.516003119 —0.334405047
’ SVM (K=400) —0.516003666 —0.334407561
SVM (K=800) —0.516003778 —0.334408177
SVM (K=1200) —0.5160037869 —0.334408234
FIG. 1. The correlation functiongC(r) for various pairs of the ~ SVM (K=1600) —0.516003789058  —0.3344082658
constituents of the hydrogen positride HPs. For the sake of comRef.[21] (K=200) —0.5160024

parison, the electron-proton correlation function of the H atom isQMC [22]
also drawn.

—0.51601-0.00001
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LAY C. Positronium molecule, Ps: First excited state
ooz0fF i %
~ ootk In our previous paper we have predicted the existence of
g ) the first excited state of the Psnolecule. This is a unique
~ bound state that cannot decay into two Ps atoms due to the
2 0.010 Pauli principle. The spin of this state 0 and the orbital
S _ angular momentum i =1 with negative parity. In this spin
Y state, the Rsmolecule can dissociate into two Ps atoms
0.005 |4 . : . .
i (bosong only if the relative orbital angular momentum is
even. Consequently, the Psolecule withL=1 and nega-
0.000 tive parity cannot decay into the ground states of two Ps

atoms [Ps(L=0)+Ps(L=0)]. The energy of this B§L
ro(auw) =1) state E=—0.334 408 a.u., see Table)lik lower than
the energy of the relevant threshold-0.3125 a.u.), and

FIG. 2. The correlation functions’C(r) for the ground state of this state is therefore stable acainst the autodissociation into
the Ps molecule. The solid curve denotes the electron-electron cor- IS'S 1S S gains utodissociation 1

relation and the dashed curve the electron-positron correlation. Fd?S(LIO)—" Ps(lj: 1)' The binding energy of this state is
the sake of comparison, the electron-positron correlation functiof-5961 €V, which is greater by about 40% than that of the

for the Ps atom is drawn by the dotted curve. ground state of Bs(0.4355 eV.

TABLE V. Expectation values of various quantities for the ground state of Rtomic units are used.
The positrons are labeled 1 and 3 and the electrons are 2 and 4. Because of the charge-permutation symmetry,
e.g.,(r1)=(r1)=(rs»=(ras. K is the basis dimension.

(r1d (rty (r$d (r3y G (r$y
K=100 5161.6174 2786.7091 442.51382 252.36242 46.328357 29.088855
K=200 5194.6167 2803.5558 443.64812 252.94378 46.368857 29.109699
K=400 5199.4736 2805.9782 443.77879 253.00898 46.372453 29.111485
K=800 5201.9725 2807.2389 443.85091 253.04531 46.374698 29.112612
K=1200 5201.9467 2807.2264 443.85059 253.04519 46.374696 29.112613
K=1600 5202.0371 2807.2718 443.85244  253.04611 46.374735 29.112633
(riy (ri (rs (rz (rig (r
K=100 6.0316960 4.4863741 0.22080676 0.36840509 0.073455963 0.30308260
K=200 6.0330476 4.4870759 0.22079128 0.36839678 0.073445434 0.30309811
K =400 6.0331385 4.4871188 0.22079076 0.36839718 0.073444789 0.30310268
K =800 6.0332061 4.4871525 0.22079007 0.36839692 0.073444360 0.30310349
K=1200 6.0332062 4.4871526 0.22079008 0.36839693 0.073444319 0.30310354
K=1600 6.0332070 4.4871530 0.22079007 0.36839693 0.073444303 0.30310361
(riarip (r1r14) (6(r13) (6(r2) (V1-Vy) (V1-V3)
K=100 23.164179 5.9246760 0.0006409 0.0219092 0.130773740.00354409
K=200 23.184429 5.9252702 0.0006309 0.0220330 0.1307723%0.00354402
K=400 23.186227 5.9252581 0.0006284 0.0220860 0.130773260.00354475
K =800 23.186163 5.9252654 0.0006266 0.0221064 0.1307732%#0.00354466
K=1200 23.187348 5.9252652 0.0006267 0.0221075 0.130773250.00354461
K=1600 23.187368 5.9252651 0.0006259 0.0221151 0.13077325880035446132
(V%) |1+ (V) (2(T))

K=100 —0.25800339 0.%10°°
K=200 —0.25800073 0.210°°
K=400 —0.25800178 0.x10°°©
K=800 —0.25800188 021077
K=1200 -0.25800188 04108
K=1600 —0.258001894 08107°
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TABLE V. Expectation values of various quantities for the excited state of Romic units are used.
See the caption of Table IV.

(ria (rip (r3a (r3p (rip (rip
K =100 17822.007 15534.005 1222.7206  1038.7198  95.950622 80.093853
K =200 17925.902 15603.238 1226.3729  1041.0599  96.072859 80.166513
K =400 17937.861 15611.357 1226.7489  1041.3065  96.084420 80.173591
K =800 17939.361 15612.015 1226.7888  1041.3221  96.085316 80.173768
K=1200 17939.589 15612.121 1226.7948  1041.3249  96.085461 80.173821
K=1600 17939.574 15612.112 1226.7955  1041.3251  96.085514 80.173836
(rig (P (riz) (rz) (rig) (riz)
K =100 8.8538933 7.5670069 0.14726627 0.24081436 0.032251179  0.16072903
K =200 8.8572758 7.5686805 0.14724521  0.24082305 0.032232174  0.16080331
K =400 8.8575704 7.5688316 0.14724464  0.24082544 0.032230800  0.16081241
K =800 8.8575804 7.5688194 0.14724481 0.24082635 0.032230213  0.16081476
K=1200 8.8575826 7.5688189 0.14724482  0.24082644 0.032230197  0.16081489
K=1600 8.8575844 7.56881891  0.147244820 0.24082648 0.032230158 0.16081514
(riz-rip (riz-rg (8(r19) (8(r12)) (V1-Vp) (V1-V3)
K =100 47.975311 32.118543 0.0001590 0.0108286 0.091638220.01610247
K =200 48.036429 32.130083 0.0001509 0.0111599 0.091653300.01610824
K =400 48.042210 32.131381 0.0001482 0.0111781 0.091655930.01610939
K =800 48.042658 32.131110 0.0001463 0.0112015 0.091656770.01610973
K=1200  48.042730 32.131091 0.00014627 0.0112016 0.09165683.01610972
K=1600  48.042757 32.131079 0.00014591  0.0112091 0.0916568%8016109693
(VD |1+(V)/(2(T))]
K=100 —0.1671740 0.%10 4
K=200 —0.1671984 0.x10°*
K=400 —0.1672025 0.%10°5
K=800 —0.1672038 0.810°6
K=1200 —0.1672039 05106
K=1600 —0.16720401 0.3810°°

We have shown if2] that the bound excited state is relation function for the. =1 state consists of the monopole
essentially a system where two Ps atoms, one in its grounand quadrupole densities and their shapes depend on the
state and the other in its first excitél state, are weakly magnetic quantum numbe¥ of the wave function. Of
coupled. The expectation value of the average electronsourse theM dependence of the shapes is not independent of
positron distance shown in Table V supports this pictureeach other but is determined by the Clebsch-Gordan coeffi-
The value of 7.5, in the excited state is 15% larger than cient. See Eq(34). The quadrupole density is contributed
the average (6dy) of the electron-positron distances in the only from theP wave for the electron-positron relative mo-
L=0 ground state of the Ps atomgg and theL=1 ex- tion, while the monopole density is contributed by b&h

ri+ry, rstry
2 2

S P 2
> =Z(2<r12>+<r13>—2<r12~ r4))-

cited state of the Ps atom (4§). We can also estimate the andP waves. Figure @) plots the correlation functions for
root-mean-square distande= \/(x5-X3) between the two at- M =0 and Fig. 8b) the correlation functions foM =1. As
oms by the correlation function is axially symmetric around the
axis and has a reflection symmetry with respect to xke
d2=< plane, the correlation function sliced on the plane is
drawn as a function ok (x=0), z (z=0). The electron-
(23 electron correlation function has a peak at the point corre-
sponding to the average distance of 7.57 a.u. The electron-
The symmetry properties of the Pwave function are used positron correlation function has two peaks reflecting the fact
to obtain the second equality. Using the values of Tables I\that the basic structure of the second bound state is a weakly
and V yieldsd=6.93 a.u. for thd.=1 excited state and coupled system of a Ps atom in the-0 state and another Ps
=4.82 a.u. for thee=0 ground state. atom in theL=1 spatially extended state. The peak located
Figure 3 displays the electron-electron and electronat a larger distance from the origin is due to tRewave
positron correlation functions. As mentioned before, the corcomponent of the Bsmolecule.
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(a) T _e

rZC(r) (a.u.)
rZC(r) (a.u.)

FIG. 3. The correlation func-
tions r2C(r) [r=(x,02)], multi-
plied by 1000, for the bound ex-
cited state of the Bsmolecule,
which has the orbital angular mo-
mentumL =1, the spinS=0, and
negative parity. The magnetic

z (au.)

(b) e quantum numbeM is set equal to
0 for (a) and to 1 for(b). Plotted
on the xz plane are the contour
maps of the correlation function.

~ 5
=1 <
s &
= S
= ]
Nk: Nk

‘0

x (a.u) > o @ z(@u,)

By using the obtained value fdi(r;,)) in Eq. (16), the  below the threshold of Pk(E0)+Ps(L=1). Though this
lifetime due to the annihilation is estimated to be 0.44 nsstate is in the continuum of the Rs¢0)+ Ps(=0) chan-
This is about twice the lifetime of the Pground state. The nel, it is stable against autodissociation into that channel be-
B(E1) value is calculated to bB(E1)=0.87%%a3. By com-  cause of the Pauli principle. The main decay mode of this
bining this value with the dipole transition energy of 4.94 state is the annihilation emitting two photons of about 0.5
eV, the lifetime due to the electric dipole transition has beerMeV each, which, except for the tiny binding-energy differ-
found to be 2.1 ns. The branching of the electric dipole tranence, is equal to the photon energies of Ps atoms. The anni-
sition is thus about 17% of the total decay rate. Thereforehilation decay mode is not useful to confirm experimentally
both branches contribute to the decay of the excited state ahe existence of the Psmolecule. We have discussed a
the Pg molecule. Its lifetime is finally estimated to be about unique decay mode of the excited state, the electric dipole
0.37 ns. The excitation energy of 4.94 eV found for thgiBs transition to the ground state. The lifetime due to the electric
different by 0.16 eV from the corresponding excitation en-dipole transition has been calculated to be 2.1 ns, while the
ergy (5.10 eV) of a Ps atom. This difference seems to belifetime due to the annihilation is 0.44 ns. The electric dipole
large enough to detect its existence, e.g. in the photon altransition can be used as a signal for experimental confirma-
sorption spectrum of the positronium gas. tion of the Ps molecule.
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ties of the excited state of the Pmolecule. _ APPENDIX A: EVALUATION OF MATRIX ELEMENTS
The excited state of the Psnolecule has the orbital an-
gular momentunL =1, the spinS=0, and negative parity. In this appendix the matrix elements of the spatial part of

The excitation energy of the state is 4.941 eV and 0.596 eVWhe basis functions are given. The method of calculation of
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these analytical expressions is detailed in REfsl1]. The L LI yy'\
main aim of this section is to convince the reader that the (f'|V(|r;—r;|)|f)=(f" |f>2 I(c,n) |(—) ,
formulas are particularly simple for the case W&0. The (L=mt cp
extension to a gener®dl-body system is straightforward so

that we assume that the system contadinparticles.

The basic idea of the calculation of the matrix elements igvhere the integral over the radial form of the potential is
the usage of the generating functign expressed with use of Hermite polynomials

SA,r)=exp — sTAr+sr). Al 1 ” 2
g( ) A3 ) (A1) I(c,n)=—f V( \/;x) e_X2H1(X)H2n+1(X)dX-
In the special case & =0, Eq.(9) is obtained fromg by Vm(@n+)tle (A9)

(A8)

— a—(L2TAr - . ;
form(u.Ar)=e Yorm(V) The definitions of the constants in the above expressions are

_BL dt .
=1 f Y. m(® Lg()\eu Ar) de, 5 o 1
N=0e=1 B=A+A", p=u'B7u, p=p-_77,
(A2)
with R=3Tr(B 'A’AA), Q=2u'B 'AAA'B!
2L+ 1) —~ - —~
L:%. (A3) cl=wB W) y=cwiB 1y, (A10)

To abbreviate the expression for the matrix elements we ' e DR=1y
. - - y'=cw'B7 U,
introduce the following notation:

where theN XN symmetric matrixA is defined byT—T,

=(12)S; jAijpi-pj andw™) is anNX 1 one-column matrix

where O stands for the unity, kinetic, or potential energy defined by
operators. The operators considered here are rotational in-

(f'|O|f)=(foLm(u",A",1)[OfoLm(u,A 1)), (A4)

variant and thus the matrix elements are diagonal M. wil=68i—8; (k=1,...N). (Al1)
Note the prime orf, which is a reminder that the parameters
in the ket and the bra may be different. The integral in Eq(A5) can be analytically evaluated for

The use of Eq(A2) in Eq. (A4) leads to an expression several potentials, including Coulomb, exponential, or
that the matrix element is derived from that between theGaussian potentials. The numerical evaluation for a general
generating functions, which becomes a function of parampotential is a simple matter and one tabuldtgsn) for the
etersk, e, \', ande’. Here the matrix element between the necessary values af. For power law potential®/(r)=rX,
generating functions can be obtained easily by using the exor example, including the Coulomb interaction, thdepen-
pression dence of the integrdl(c,n) is factored out:

ki2

_ _ 2 N\ 3/2 -
fe-<1’2>fAf+S'dr:<—( W)) giZns  (as) I(c,n)z(é In(k), (A12)

detA

and its extended formulas. After a power series expansion of
where the remaining integral can be carried out and ex-
the matrix element between the generating functions in termy.
, pressed in terms of thE function:
of A\, & \’, and€’, the derivative and the integration pre-
scribed in Eq.(A2) can be carried out straightforwardly

[7,11]. 1 O (—1)mp2n-2m+1 K+ 3
The overlap of the trial functions is given by In(k)= Vo mi(2n—2m+1)! Iin—m+—
(2m)N| 32 (A13)
(f']f)= deB ) Bup". (A6)
In particular, for the Coulomb forcekE —1) we get

The kinetic energy is expressed b
ay p y 4 (-1
n? W(=D=NTZnron (ALl4)
(F'IT=Tenf)= - (R+LQp *)T'|f). (A7)

The correlation function is calculated through the equa-
The matrix elements of a central potential reads as tion
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(F7]8(ri—r;—n)|fy=(f"|f)c¥2e"(1/2er O Z ( )2 CLn{LM2&0|LM)Y3,(1), (A15)
p

where

(—1)*(2k— )1 J(2L—2K)! (2L +2k+1)! \/4K+1

. A16
a(2L— N2V T YL —n)l k!l (n— k)1 (2n+2k+ 1)1 Y2L+1 (A1)

Lnk—

APPENDIX B: SEPARATION OF CENTER-OF-MASS MOTION

The transformation between the relative and single-particle coordinates, given by(2Eg®) or Egs. (18)—(21), is
expressed as

x=Ur, r=U"x. (B1)
Herer andx are column vectors containing(, . . . ,r,) and X, . .. X,). For the Psthe matrixU and its inversdJ !
m 1
0 = 1
1 -1 0 0 m+M 2
0 0 1 -1 -M 1
0 - 1
U M m -M -m U-1e m+M 2 B2
| mtM m+M m+M m+M | a 0 m L B2)
M m M m m+M 2
2m+2M 2m+2M 2m+2M 2m+2M 0 —M 1 1
m+M 2
and for the HPs they are
m 2m
0 1
1 -1 0 0 m+M 3m+M
0 0 1 -1 -M 0 2m 1
M m 1 1 . m+M 3m+M
U=l oM mem 2 2 |0 VT 0 1 m+M L ' B3
M m m m 2 3m+M
3m+M 3m+M 3m+M 3m+M 0 1 m+M 1
2 3m+M

By this transformation one can express the CG of the single- N

N N
particle coordinates by the relative coordinates: > D2 AUGT=0 (i=1,...N-1), > > A
j=lk=1 j=1k=1
(BS)

Ga(r)=exp[— 3TAr}=exp{— $XAx}=G(X)
wherec is an arbitrary, positive constant common for each
.y basis function. The second condition assures the finite norm
A=U"tAu~L (B4)  of the basis function. By this requirement the relative and
center-of-mass motion is separated in the exponential part of

The parametersAy;=A;y (i=1,... N—1) connect the the basis function.

To remove the center-of-mass contamination from the an-
relative and center-of-mass varlables and give rise to an un- ar art, let us express the global vectorn terms of
desirable center-of-mass dependence of the wave functloﬁela“vg coordinates: P 9
To have a translational invariant basis, we require that

N N
AN|:O, ANN:C, 2 2 2 Urlxk' (BB)

i=1 k=1

that is, This identity shows that by requiring
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N can also be easily evaluated. To changeherefore, there is

N
> uUt=> u=0, (B7)  no need for the evaluation of inverses and determinants
=1 =1 (which would requireN® operation but we get the desired

the global vector becomes translationally invariant. results by a simple multiplication and division.

By fulfilling Eqgs. (Alb) and (B2) the basis is free from
any problems with the center-of-mass motion. These condi- APPENDIX D: SYMMETRIZATION
tions fix N+ 1 nonlinear parameters amohfN+1)/2+ N OF WAVE FUNCTIONS
=N(N+3)/2 parameters. FAd=4 there remain nine free 1. Antisymmetrization
parameters for each basis function. . . . )
The antisymmetrizen is defined as
APPENDIX C: SHERMAN-MORRISON FORMULA 1 M

As shown in Appendix A, calculation of the matrix ele- A= \/Tp = &P, (B
ments requires the evaluation of the determinant and inverse
of the matrixB. In the SVM process we probe many randomwhere the operatoP; changes the indices of identical par-
trials with different matrices. Let us assume that we changéicles according to the permutatiop(, . . . ,py) of the num-
the matrixA of nonlinear parameters in such a way that webers (1,2...,N), ande; is the phase of the permutation.
change the parametes; (i#j) of the relative motion be- The effect of this operator on the set of the position vectors

tween particled andj to «;;+\ but keep all other matrix (ry, ... ry) is
elements unchanged. This is certainly a very restricted way,
but in this case the computer time required for the evaluation Pi(ry, - i) =(rpis oMl (D2)

of the matrix elements decreases tremendously. This change _ _ .
of a;; produces the following changes in the matfisee By representing the permutations by the matrix

Eq. (13)]: :
a. (13)] (Cxj=1 if j=p and (Cj);=0 otherwise

Aij—Aij—N,  Aji—Aji—N\, (D3)
A AN Ai—oAc+ N (C1) [for example, the permutatiof8124) isrepresented by
i i A ii jj A
It is easy to see that this change does not violate the condi- 0010
tions of Eq.(Alb). Thus the wave function with this modi- 1 0 0 O
fication is still translational invariant. The above change in C=lo 1 0o ol (D4)
the matrixA can be simply expressed by using the vector
w(l) defined in Eq(A7) as follows: 0 001
A A— AW, (C2)  while for (1234) C is a unit matriy, the effect of the per-

mutation operator on the single-particle coordinates reads as
Note thatw( w1 is anNx N matrix, whereasv(Dw(1) s
just a number. ASB is equal toA+A’, the above change

leads to the following modification dB: By using Eqs(A14) and (C5), the permutation of the rela-
tive coordinates is expressible as

Pir=Cir. (D5)

B—B—awhw), (C3
Px=P;x with P;=UCU™ L (D6)
To calculate the inverse and determinant of the above .
special form, the Sherman-Morrison formula can be used: The CG’s, after permutation, take the form

N PiGa(r)=Ggac,(r)=Gpap,(X) =G u=iacu-X).
(D7)

(B—awliwiy-1=g-14 2 -

. In the spin space the permutation operator interchanges
% B~ wlihyw(ihg-1 (C4)  the indices of the single-particle spin functions and can be
easily evaluated. As a result, the matrix element of any spin-
and independent operatdd that is symmetrical with respect to
the permutation of identical particle coordinates can be writ-

detB—Aw(iw@) = (1-\wiB~1wli))deB. (C5 ten in the following form:

The advantage of these formulas is apparent: By knowing {(A{xsmgfkim(u”A”1)}HOA{xsmefkim(uAN)})
B~ ! and deB one can easily calculate the right-hand sides of
the equations, and th& dependence is given in a very

simple form. For exampla;va‘lw(‘” simply reduces to
(B~ Hi+(B™H;;—2(B™1);;. Likewise, B~ twlw(DB~1 (D8)

n

p
=§1 ci{ fkm(u’ A7)0l m(Ciu,CAC 1)),



1930 J. USUKURA, K. VARGA, AND Y. SUZUKI PRA 58

where the coefficients; have the form (—1)'%(—1)2. ThenPy=y for the S state withl;=1,=0,
while P= — ¢ for the P state withl;=0 andl,=1.
Ci=ei(Xsmg Pil Xsmg)- (D9) The nonvanishing matrix element of the electric dipole

_ _ o _ _ transition supports that the first excit@dstate is odd under
Since the antisymmetrizer is a projector onto an antisymmette charge permutation. This is because the electric dipole
ric state, only ketlor bra function needs to be antisymme- operatorD has the following form except for the constant:
trized.

The particular value of the coefficien depends only on D=e(r;—R)—e(r;—R)+e(r3—R)—e(r;—R),
the spin function of the system. In the case of Rgo pos- (D13
itrons must be antisymmetrized and likewise two electronsWhich changes sign under the charge permutation. Therefore,

must be in antisymmetric states. Therefore, the antisymmelf the excitedP state is even under the charge permutation
trizer for this system is given byd=(1—Pq3)(1—P,,), ge p '

whereP,; is the transposition of particle labeland]. Thus then the electric dipole matrix element between Ehstate

! - ; ' and the ground state would identically vanish.
A has four permutationsnp=4) and we can identify The charge-permutation operat®ris given byP,,P5, or

- — — — P14P3,. When the wave function) is already antisymme-
P1=1, Pr=Pi3, P3=Pyy, Ps=P13Po. 14732 :
! 2w e v (D10)  trized for two positrons and for two electrons, then we can
see that both operators give the same effect. To understand
The corresponding phases ag=1e,=—1lez=—1g, this we use the following identity:

=1 and the matrice€ are given as follows: 5 )
P14P32tf= (P12P34) “P14P32( P13P24) “¢

1 0 00O 0 010
=P1oP34P13P o) (D14)
0 1 00 0 1 00 P
Ci=lo o 1 0| C=[1 0 0 of: =P1Past
00 0 1 00 0 1 Thus the basis function for the Psnolecule with definite
charge-permutation symmetry is given by operating with the
(D11)  following operatorC on the function:
1 0 00 0 010
1
0001 0001 C="=(1+mPP3)(1-P1)(1-Py).  (D15)
Cs=|o 0o 1 0| G=|1 0 0 0 V8
0 1 00 0100 The evaluation of matrix elements between the states with

odd charge symmetry can be done in a similar manner to

The spin functionygo of Eq. (11) is antisymmetric in both  the preceding subsection by extending E@@8) and (D9).
of the positron spin coordinates and the electron spin coorlhe antlgymmetrlzer A is now replaced with €
dinates. Thus the spin matrix elementsu Pilxswy) turns =(1/\8)=_ 1P, where newP; are defined by

out to be equal te; and we havee;=c,=cC3=c,=1.
a ! R Ps=P12P34,  Pe=P15P34P13,

(D16)
2. Charge symmetry P7=P1P34P2s,  Pg=P15P34P13P24,

The HamiltonianH for Ps has charge-exchange symme- .
k; g ge 5y and the corresponding phases arg=—1, eg=1, ey

try, that is, it is invariant under the exchange of the positive™ B h X di
and negative charges: Letting® denote the charge- =1, ESF __1' The matricesC; corresponding tap; are
permutation operator, we have given below.

HPy=PHy=EPy. (D12)

Therefore, the nondegenerate eigenstate of the Hamiltonian Cs=
is also the eigenstate of the charge-permutation operator. In
the Ps the ground state is evenr& + 1) underP, while the
L=1 excited state turns out to be odd£€ —1).
Consider the case of Rs(e”). This system is repre-
sented by the coordinates—r,). The charge permutation is
thus equivalent to the parity operation. Since the parity is
(—1)* for the state with orbital angular momentum the C,=
eigenvalue of the charge-permutation operator is also
(—1)-. The signs ofx; andx, change with respect to the
charge permutatioR ,P34, while X3 does not. Assume that
the Ps has partial wavek,, |,, andl; corresponding to the
motion described withx;, x,, andxs, respectively. When It is easy to evaluate the coefficierds. For the spin func-
charges are permutated, the wave functignbecomes tion yqo Of EqQ. (11), we getcg=cg=Cc;=Cg=—1.

o O -, O
O O O -
=~ O O O
o B, O O
&
Il
o O +» O
o » O O
= O O O
o O O Bk

(D17)

=~ O O O
o O O -
o O -, O
o B, O O
=~ O O O
o » O O
o O +—» O
o O O Bk
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