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Failure of multiconfiguration Dirac-Fock wave functions in the nonrelativistic limit
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Multiconfiguration Dirac-FocKMCDF) wave functions for a specifi& quantum number may not reduce to
the appropriate nonrelativistic limit for tHeand S quantum numbers. Transition probabilities calculated from
such MCDF wave functions for spin-forbidden transitions are unreliable. Remedies for this problem are
discussed, including the advantages of using nonorthogonal radial orbitals. It is also shown that transition
probabilities for weak transitions are sensitive to the way the Breit interaction is introduced.
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PACS numbd(s): 31.25-v, 31.30.Jv

We show that in the nonrelativistitNR) limit some mul- W, =ad(2s,,2P10) + bD(25,,2P3/0)
ticonfiguration Dirac-FocKMCDF) wave functions for at-
oms may not reflect the correct total orbital angular momen- +0®P(2py/23d3p) +dP(2pg3ds))
tum L and total spinS and consequently lead to seriously +ed(2ps3dsy,). 1)

erroneous transition probabilities for weak transitions, such
as spin-forbidden ones. We also demonstrate that the Breit The MCDF method produces more compact wave func-
interaction affects MCDF wave functions sufficiently so astions to account for the electron correlation than other meth-
to alter transition probabilities for weak transitions by 20—ods in which radial functions are kept frozen and only the
30 %. mixing coefficients are subjected to the SCF process, since

In the MCDF method, a relativistic total wave function is CSF’s with singly excited configurations need not be in-
constructed in analogy to the NR multiconfiguration Hartree<cluded in the MCDF method.
Fock (MCHF) method. The MCDF method uses relativistic ~ We found an unexpected source of error in the transition
four-component 0ne-e|ectron Orbitahkm_with principa' probabilities calculated from MCDF wave functions. This
quantum numben, Dirac quantum numbek, and m the  €rror occurs only when both radial functions and configura-
projection of the angular momentua-to build a configu-  tion mixing coefﬂments are determined through the SCE pro-
ration state functioiCSP ®,,, usingjj coupling to be an cedure, and hence this is a problem peculiar to relativistic
eigenfunction of the total angular momentunits projection Iﬁrml\lﬂlgg?:ns V\ftlrt]hJU”y relaxed radial functions, such as in
M, and parity. Then, a MCDF wave functioh ;,, is con- € method. Lo . .

. S ; . A MCDF wave function is required to be an eigenfunc-

structed as a linear combination of the CSF’s. The coeffi-.
cients of this linear combination are known as the confi u_t|on of J, but notL and S separately. For a MCDF wave

i . . 9%%unction to be a simultaneous eigenfunctionLofS andJ in
ration mixing coefficients.

. : . the NR limit, the relativistic one-electron orbitals with the
As is commonly done in the MCHF method, the configu-game orpital angular momentunbut differentj must have a

ration mixing coefficients and radial functions are deter-ceriain ratio in this limit. If this ratio is different in two or
mined in the MCDF method by applying the self-consistentyore configurations used in a MCDF wave function, then
field (SCH procedure to both of them. The level of electron thjs wave function will not have definite valueslondSin
correlation represented by a MCDF wave function is deterthe NR limit. Computationally, the NR limit of a relativistic
mined by the type and number of CSF’s includedligy, . wave function is attained by letting the speed of light in-
For example, the most significant part of the electron corcrease to infinity—actuallg=10* in atomic units(the actual
relation in the 22p, J=1 level of Be can be represented by value ofc is 137.036 in a.l).is sufficient.
introducing one additional NR configurationp2d (the K The Schrdinger equation is correct in the NR limit; one
shell is omitted for simplicity. can easily show that the Dirac-Fock equation for a many-
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TABLE I. A, (s} for the 2s2p °P;—2s? 1S, transition of B” and G*.

Source A(BT) Ai(C*)
Weiss, large scale MCHES] 106.7
Froese Fischer and Gaigalas, large scale MCBF 10.27£0.20 103.:0.4

Present work, MCDF
Orthogonal orbitals, without the Breit interaction

2s2p+2p3d without the NR offset subtracted 341.3 301.7
with the NR offset subtracted 11.43 113.2
Orthogonal orbitals, with the Breit interaction
2s2p+2p3d without the NR offset subtracted 317.2 248.2
with the NR offset subtracted 7.38 814
Nonorthogonal orbitals
2s2p+2p’3d without the Breit interaction 11.46 113.7
with the Breit interaction 7.37 81.8
n<4+ Breit+core excited configurations 9.01 94.4
n=<5+ Breit+core excited configurations 9.13 100.1
Jonsson and Froese Fischer, relativisties 8 [10] 102.9+1.5
Doerfertet al., experimen{11] 102.9-0.14

electron atom reduces correctly to the matching Hartreeappropriate MCDF wave functions calculated in the> oo
Fock equation in the— oo limit [1]. Hence, one must select limit.

among the solutions of the MCDF equation those that have To get the correct magnitude of the transition matrix ele-
the correct NR limit. For the last 30 years during which ment, this NR offset must be subtracted from the same tran-
many researchers have used the MCDF method, itagas sition matrix element calculated with the correct valuecof
sumedthat MCDF wave functions would reduce to the cor- In Table | we comparé\,; for the 252p3P;— 2s? 1S, tran-

rect NR limit, without verification of the limiting values &f  sition in Be-like ionsB* andC?" to demonstratdnter alia,

and S in each case. We found th#te calculated MCDF the effect of the NR offset when MCDF wave functions are
wave functions sometimes fail to reduce to the eigenfunctiongsed.

of L and S, when the ratios of the one-electron orbitals with The rows marked “22p+2p3d” used MCDF wave

j=1—1/2 and j=1+1/2 in all configurations are not the function in Eq.(1) for the 2s2p°P* level and
same
An_ example c_)f this difficulty issseen in the MCDF wave \IfJ=0=a’(I>(23§,2)+b’d>(2pf,2)+c’<1>(2p§,2)
function shown in Eq(1). For the °P; level, the square of 5 )
the ratio of the p,, and 25, orbitals in the first two rela- +d'®(3d3,) +e'P(3d5),) v

tivistic configurations is 2:1 in theSlimit; while the square

of the ratio in the last three relativistic configurations is 1:5.for the ground state, & 1S,.

In contrast, the squares of the same ratios fortRe level The NR offset in the’P;— 1S, transition of Be-likeB™

are 1:2 in both sets of configuratiof]. affects theA,; value by a factor of 30. Results f@?* are
Thus a MCDF wave function with the configurations in- also compared in Table I. Similar large NR offsets in &g

dicated in Eq(1) will have an incorrect NR limit for théP;  values for this transition from MCDF wave functions can be

level (the lowestJ=1), while it will have the correct limit  found in Ref.[3].

for the P, level (the second lowesl=1 leve). This im- Another example of a NR offset resulting from incorrect

plies that the MCDF wave function for the lowebkt 1 level ~ NR limits of MCDF wave functions is found in the calcu-

will be a mixture of differentLS states in the NR limit. lated fine-structure splitting of some open-shell atdek

Among thelS states that can be formed by the2p and  Errors in such a case can also be corrected by subtracting

2p3d configurations, we found that the MCDF wave func- appropriate NR offsets.

tion for the lowestJ=1 level contains a trace of th&P; The magnitude of this NR offset depends on the number

level in the NR limit. and type of extra configurations used in a MCDF wave func-
The P, —1'S, transition is dipole allowed and its prob- tion. It turns out that the occurrence of a nonvanishing NR

ability (expressed in terms of the Einstef; coefficient offset in the transition matrix element is the rule rather than

between an upper levéd and a lower level) is very large  an exception when MCDF wave functions with many con-

even in the NR limit, while the’P;— 1S, transition is spin  figurations are used. ThéP; level (the second lowesd

forbidden and should vanish in the NR limit. A small admix- =1) from the MCDF wave function in Ed1) is an excep-

ture of the singlet configuration in the triplet wave function tion because the ratios of theg, and 25, orbitals for the

introduces a nonvanishing contribution in the NR limit, 1P, limit are the same in thes2p and the 3d configu-

which remains as a residue in the transition matrix elementations.

We call this “residue” a NR offset, and we can determine its  Subtraction of NR offsets from MCDF transition matrix

magnitude easily from the transition matrix element betweerelements is a straightforward way to correct for the unpre-
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dictable errors introduced when MCDF wave functions dotransition that is forbidden in the NR limit, one can check for
not converge to the correct NR limit. the existence of a nonvanishing NR offset by simply calcu-
Another obvious remedy is to give up on the MCDF l|ating the A,; value while settingc—. If a nonvanishing
method and rely solely on a large set of frozen radial funcNR offset exists, then that value must be subtracted from the
tions. For instance, one can generate an initial set of “contransition matrix element calculated using the correct value
figuration average” radial functions that correspond to thegs ¢,
2J+1 weighted average of all possibls that can be con- In the MCDF method, it is common to include only the
structed from the configurations included in a calculation.pjrac one-electron Hamiltonian and the Coulomb repulsion,
This choice, however, usually requires very many conﬁgura-ez/r_k, between theéth andkth bound electrons in the SCF
tions_ to achieve high accuracy in representing electron Corf)roc;eSS[S,G]. Then, the Breit interaction, which is the rela-
relat|on_. . . tivistic correction to the Coulomb repulsion, is calculated in
A third option for remedy is the use of nonorthogonal the first order perturbation. In this way, only the total energy

radial functions. For, instance, ,if we us@dn the 252p — p,, not the wave function is affected by the Breit interaction.
configurations and 2 in the 2p’3d configurations in Eq. In our version of the MCDF codES, 7], we have the op-

o >4 &8 : .
(1), then the relativistic @ and 2" radial functions, which 45 1 include the magnetic interaction part of the Breit in-

are_not orthogonal to each other, can maintain separate ratiQs.,ction in the SCF process and rediagonalize the Hamil-
f.or.J =1/2 and 3/2, and converge to the common, cqrrect NRonian matrix after including other contributions from the
limits of L andS The NR offset results from the requirement gejt interaction. Another option is not to include any part of
that the one-electron orbitals with the same quantum nuMg,e Breit interaction in the SCF process, but include them all
bers be identical in all configurations in a MCDF wave func-;, the Hamiltonian matrix after the SCF process and diago-
tion. Once we remove this requi.rement, NR offgets vanishp slize the matrix. The former procedure will modify both
The row marked “22p+2p’3d” in Table | contains such  ,ne_glectron radial functions and the configuration mixing
results, and they are in excellent agreement with the resuligyeficients through the Breit interaction, while the latter
with orthogonal orbitals from which the NR offsets have procedure will change only the configuration mixing coeffi-
been subtracted. _ o cients. Although these two alternatives lead to almost the

Nonorthogonal orbitals offer more flexibility than or- game result for light atoms as expected, the former procedure
thogonal orbitals, and the former represent electron correlag;jj| jead to a better result for heavy atoms, where relativistic
tion better. For instance, it is easy to introduce core-valencggsacis are significant. The results marked “with the Breit
correlation using two nonorthogonal orbitals, one for correperaction” in Table | clearly demonstrate the importance of
lating to core orbitals, and the other to account for the Vaj,corporating changes in the wave function due to the Breit
lence shell correlation. The former will have the radial sizejyieraction before transition probabilities are calculatus
of the core orbitals, while the latter will have the size of therequirement applies to all types of wave functions, not just
valence shell. ‘ , __ MCDF wave functions

The row marked n<5+ core excited configurations™ in  gina|ly the results in Table | also indicate the importance
Table | contains results from MCDF wave functions thatyt including a large number of configurations to account
included nonorthogonal orbitals with<5 and single and ¢y for electron correlation, which still remains as the most
double excitations of theslelectrons to . These MCDF  fficult and challenging aspect of atomic-structure theory.
wave functions include the relativistic equivalent of less than  The yse of nonorthogonal one-electron radial functions is
a dozen NR configurations, clearly demonstrating the high,t only a proven way to avoid nonvanishing NR offsets, but
efficiency of nonorthogonal radial functions in representingis 5150 a promising way to account for the core-valence cor-
electron correlation. To generalize the use of nonorthogongk|ation, which has been difficult to achieve with an orthogo-
radial functions, however, we must modify much of the na| set of one-electron radial functions. A more systematic

atomic-structure theory, and keep overlap integrals betweegy,dy of nonorthogonal radial functions is desirable to ex-
nonorthogonal radial functions in all expressions for atomlcp|Ore their full potential.

properties, such as the total energy and transition probabili-
ties. The work at NIST was partially supported by NASA In-
In summary, for strong transitions, the NR offset is manyteragency Order No. W-18516, and the work at the Univer-
orders of magnitude smaller than the transition matrix elesity of Lisbon was supported in part by JNICT under Project
ment, and hence its omission does not cause any noticeablNo. PRAXIS/2/2.1/FIS/7223/94. We thank Dr. A. W. Weiss
error. For weak transitions, however, NR limits of MCDF and Professor C. Froese Fischer for providing us with their
wave functions must be examined carefully lest the results beesults prior to publication, and P.l. wishes to thank NIST for
spoiled by erroneous and unpredictable NR offsets. For anigs hospitality and support in the earlier phase of this work.
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