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Failure of multiconfiguration Dirac-Fock wave functions in the nonrelativistic limit
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Multiconfiguration Dirac-Fock~MCDF! wave functions for a specificJ quantum number may not reduce to
the appropriate nonrelativistic limit for theL andSquantum numbers. Transition probabilities calculated from
such MCDF wave functions for spin-forbidden transitions are unreliable. Remedies for this problem are
discussed, including the advantages of using nonorthogonal radial orbitals. It is also shown that transition
probabilities for weak transitions are sensitive to the way the Breit interaction is introduced.
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PACS number~s!: 31.25.2v, 31.30.Jv
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We show that in the nonrelativistic~NR! limit some mul-
ticonfiguration Dirac-Fock~MCDF! wave functions for at-
oms may not reflect the correct total orbital angular mom
tum L and total spinS, and consequently lead to serious
erroneous transition probabilities for weak transitions, su
as spin-forbidden ones. We also demonstrate that the B
interaction affects MCDF wave functions sufficiently so
to alter transition probabilities for weak transitions by 20
30 %.

In the MCDF method, a relativistic total wave function
constructed in analogy to the NR multiconfiguration Hartre
Fock ~MCHF! method. The MCDF method uses relativist
four-component one-electron orbitalscnkm—with principal
quantum numbern, Dirac quantum numberk, and m the
projection of the angular momentumj—to build a configu-
ration state function~CSF! FJM using jj coupling to be an
eigenfunction of the total angular momentumJ, its projection
M, and parity. Then, a MCDF wave functionCJM is con-
structed as a linear combination of the CSF’s. The coe
cients of this linear combination are known as the confi
ration mixing coefficients.

As is commonly done in the MCHF method, the config
ration mixing coefficients and radial functions are det
mined in the MCDF method by applying the self-consiste
field ~SCF! procedure to both of them. The level of electro
correlation represented by a MCDF wave function is de
mined by the type and number of CSF’s included inCJM .

For example, the most significant part of the electron c
relation in the 2s2p, J51 level of Be can be represented b
introducing one additional NR configuration 2p3d ~the K
shell is omitted for simplicity!:
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CJ515aF~2s1/22p1/2!1bF~2s1/22p3/2!

1cF~2p1/23d3/2!1dF~2p3/23d3/2!

1eF~2p3/23d5/2!. ~1!

The MCDF method produces more compact wave fu
tions to account for the electron correlation than other me
ods in which radial functions are kept frozen and only t
mixing coefficients are subjected to the SCF process, s
CSF’s with singly excited configurations need not be
cluded in the MCDF method.

We found an unexpected source of error in the transit
probabilities calculated from MCDF wave functions. Th
error occurs only when both radial functions and configu
tion mixing coefficients are determined through the SCF p
cedure, and hence this is a problem peculiar to relativi
formulations with fully relaxed radial functions, such as
the MCDF method.

A MCDF wave function is required to be an eigenfun
tion of J, but not L and S separately. For a MCDF wave
function to be a simultaneous eigenfunction ofL, S, andJ in
the NR limit, the relativistic one-electron orbitals with th
same orbital angular momentuml but differentj must have a
certain ratio in this limit. If this ratio is different in two or
more configurations used in a MCDF wave function, th
this wave function will not have definite values ofL andS in
the NR limit. Computationally, the NR limit of a relativistic
wave function is attained by letting the speed of light i
crease to infinity—actuallyc>104 in atomic units~the actual
value ofc is 137.036 in a.u.! is sufficient.

The Schro¨dinger equation is correct in the NR limit; on
can easily show that the Dirac-Fock equation for a ma
1885 © 1998 The American Physical Society
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TABLE I. Aki (s21) for the 2s2p 3P1→2s2 1S0 transition of B1 and C21.

Source Aki(B
1) Aki(C

21)

Weiss, large scale MCHF@8# 106.7
Froese Fischer and Gaigalas, large scale MCHF@9# 10.2760.20 103.060.4
Present work, MCDF

Orthogonal orbitals, without the Breit interaction
2s2p12p3d without the NR offset subtracted 341.3 301.7

with the NR offset subtracted 11.43 113.2
Orthogonal orbitals, with the Breit interaction

2s2p12p3d without the NR offset subtracted 317.2 248.2
with the NR offset subtracted 7.38 81.4

Nonorthogonal orbitals
2s2p12p83d without the Breit interaction 11.46 113.7

with the Breit interaction 7.37 81.8
n<41Breit1core excited configurations 9.01 94.4
n<51Breit1core excited configurations 9.13 100.1

Jönsson and Froese Fischer, relativistic,n<8 @10# 102.961.5
Doerfertet al., experiment@11# 102.960.14
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electron atom reduces correctly to the matching Hartr
Fock equation in thec→` limit @1#. Hence, one must selec
among the solutions of the MCDF equation those that h
the correct NR limit. For the last 30 years during whi
many researchers have used the MCDF method, it wasas-
sumedthat MCDF wave functions would reduce to the co
rect NR limit, without verification of the limiting values ofL
and S in each case. We found thatthe calculated MCDF
wave functions sometimes fail to reduce to the eigenfunct
of L and S, when the ratios of the one-electron orbitals w
j 5 l 21/2 and j5 l 11/2 in all configurations are not the
same.

An example of this difficulty is seen in the MCDF wav
function shown in Eq.~1!. For the 3P1 level, the square of
the ratio of the 2p1/2 and 2p3/2 orbitals in the first two rela-
tivistic configurations is 2:1 in theLS limit; while the square
of the ratio in the last three relativistic configurations is 1
In contrast, the squares of the same ratios for the1P1 level
are 1:2 in both sets of configurations@2#.

Thus a MCDF wave function with the configurations i
dicated in Eq.~1! will have an incorrect NR limit for the3P1
level ~the lowestJ51), while it will have the correct limit
for the 1P1 level ~the second lowestJ51 level!. This im-
plies that the MCDF wave function for the lowestJ51 level
will be a mixture of differentLS states in the NR limit.
Among theLS states that can be formed by the 2s2p and
2p3d configurations, we found that the MCDF wave fun
tion for the lowestJ51 level contains a trace of the1P1
level in the NR limit.

The 1P1→1S0 transition is dipole allowed and its prob
ability ~expressed in terms of the EinsteinAki coefficient
between an upper levelk and a lower leveli! is very large
even in the NR limit, while the3P1→1S0 transition is spin
forbidden and should vanish in the NR limit. A small admi
ture of the singlet configuration in the triplet wave functio
introduces a nonvanishing contribution in the NR lim
which remains as a residue in the transition matrix elem
We call this ‘‘residue’’ a NR offset, and we can determine
magnitude easily from the transition matrix element betwe
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appropriate MCDF wave functions calculated in thec→`
limit.

To get the correct magnitude of the transition matrix e
ment, this NR offset must be subtracted from the same tr
sition matrix element calculated with the correct value ofc.
In Table I we compareAki for the 2s2p3P1→2s2 1S0 tran-
sition in Be-like ionsB1 andC21 to demonstrate,inter alia,
the effect of the NR offset when MCDF wave functions a
used.

The rows marked ‘‘2s2p12p3d’’ used MCDF wave
function in Eq.~1! for the 2s2p3P1 level and

CJ505a8F~2s1/2
2 !1b8F~2p1/2

2 !1c8F~2p3/2
2 !

1d8F~3d3/2
2 !1e8F~3d5/2

2 ! ~2!

for the ground state, 2s2 1S0 .
The NR offset in the3P1→1S0 transition of Be-likeB1

affects theAki value by a factor of 30. Results forC21 are
also compared in Table I. Similar large NR offsets in theAki
values for this transition from MCDF wave functions can
found in Ref.@3#.

Another example of a NR offset resulting from incorre
NR limits of MCDF wave functions is found in the calcu
lated fine-structure splitting of some open-shell atoms@4#.
Errors in such a case can also be corrected by subtrac
appropriate NR offsets.

The magnitude of this NR offset depends on the num
and type of extra configurations used in a MCDF wave fu
tion. It turns out that the occurrence of a nonvanishing N
offset in the transition matrix element is the rule rather th
an exception when MCDF wave functions with many co
figurations are used. The1P1 level ~the second lowestJ
51) from the MCDF wave function in Eq.~1! is an excep-
tion because the ratios of the 2p1/2 and 2p3/2 orbitals for the
1P1 limit are the same in the 2s2p and the 2p3d configu-
rations.

Subtraction of NR offsets from MCDF transition matr
elements is a straightforward way to correct for the unp
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dictable errors introduced when MCDF wave functions
not converge to the correct NR limit.

Another obvious remedy is to give up on the MCD
method and rely solely on a large set of frozen radial fu
tions. For instance, one can generate an initial set of ‘‘c
figuration average’’ radial functions that correspond to
2J11 weighted average of all possibleJ’s that can be con-
structed from the configurations included in a calculatio
This choice, however, usually requires very many configu
tions to achieve high accuracy in representing electron
relation.

A third option for remedy is the use of nonorthogon
radial functions. For instance, if we use 2p in the 2s2p
configurations and 2p8 in the 2p83d configurations in Eq.
~1!, then the relativistic 2p and 2p8 radial functions, which
are not orthogonal to each other, can maintain separate r
for j 51/2 and 3/2, and converge to the common, correct
limits of L andS. The NR offset results from the requireme
that the one-electron orbitals with the same quantum n
bers be identical in all configurations in a MCDF wave fun
tion. Once we remove this requirement, NR offsets van
The row marked ‘‘2s2p12p83d’’ in Table I contains such
results, and they are in excellent agreement with the res
with orthogonal orbitals from which the NR offsets ha
been subtracted.

Nonorthogonal orbitals offer more flexibility than o
thogonal orbitals, and the former represent electron corr
tion better. For instance, it is easy to introduce core-vale
correlation using two nonorthogonal orbitals, one for cor
lating to core orbitals, and the other to account for the
lence shell correlation. The former will have the radial s
of the core orbitals, while the latter will have the size of t
valence shell.

The row marked ‘‘n<51core excited configurations’’ in
Table I contains results from MCDF wave functions th
included nonorthogonal orbitals withn<5 and single and
double excitations of the 1s electrons to 2p. These MCDF
wave functions include the relativistic equivalent of less th
a dozen NR configurations, clearly demonstrating the h
efficiency of nonorthogonal radial functions in represent
electron correlation. To generalize the use of nonorthogo
radial functions, however, we must modify much of t
atomic-structure theory, and keep overlap integrals betw
nonorthogonal radial functions in all expressions for atom
properties, such as the total energy and transition proba
ties.

In summary, for strong transitions, the NR offset is ma
orders of magnitude smaller than the transition matrix e
ment, and hence its omission does not cause any notice
error. For weak transitions, however, NR limits of MCD
wave functions must be examined carefully lest the results
spoiled by erroneous and unpredictable NR offsets. For
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transition that is forbidden in the NR limit, one can check f
the existence of a nonvanishing NR offset by simply calc
lating theAki value while settingc→`. If a nonvanishing
NR offset exists, then that value must be subtracted from
transition matrix element calculated using the correct va
of c.

In the MCDF method, it is common to include only th
Dirac one-electron Hamiltonian and the Coulomb repulsi
e2/r ik , between thei th andkth bound electrons in the SC
process@5,6#. Then, the Breit interaction, which is the rela
tivistic correction to the Coulomb repulsion, is calculated
the first order perturbation. In this way, only the total ener
but not the wave function is affected by the Breit interactio

In our version of the MCDF code@5,7#, we have the op-
tion to include the magnetic interaction part of the Breit i
teraction in the SCF process and rediagonalize the Ha
tonian matrix after including other contributions from th
Breit interaction. Another option is not to include any part
the Breit interaction in the SCF process, but include them
in the Hamiltonian matrix after the SCF process and dia
nalize the matrix. The former procedure will modify bo
one-electron radial functions and the configuration mixi
coefficients through the Breit interaction, while the latt
procedure will change only the configuration mixing coef
cients. Although these two alternatives lead to almost
same result for light atoms as expected, the former proced
will lead to a better result for heavy atoms, where relativis
effects are significant. The results marked ‘‘with the Br
interaction’’ in Table I clearly demonstrate the importance
incorporating changes in the wave function due to the B
interaction before transition probabilities are calculated.This
requirement applies to all types of wave functions, not j
MCDF wave functions.

Finally the results in Table I also indicate the importan
of including a large number of configurations to accou
fully for electron correlation, which still remains as the mo
difficult and challenging aspect of atomic-structure theory

The use of nonorthogonal one-electron radial functions
not only a proven way to avoid nonvanishing NR offsets, b
is also a promising way to account for the core-valence c
relation, which has been difficult to achieve with an orthog
nal set of one-electron radial functions. A more systema
study of nonorthogonal radial functions is desirable to e
plore their full potential.
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