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Wave operator theory of quantum dynamics
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An energy-dependent wave operator theory of quantum dynamics is derived for time-independent and
time-dependent Hamiltonians. Relationships between Green’s functions, wave operators, and effective Hamil-
tonians are investigated. Analytical properties of these quantities are especially relevant for studying reso-
nances. A derivation of the relationship between the Green’s functions and the (t,t8) method of Peskin and
Moiseyev@J. Chem. Phys.99, 4590 ~1993!# is presented. The observable quantities can be derived from the
wave operators determined with the use of efficient iterative procedures. As in the theory of Bloch operators
for bound states, the theory is based on a partition of the full Hilbert space into three subspaces: the model
space, an intermediate space, and the outer space. On the basis of this partition an alternative definition of
active spaces currently considered in large scale calculations is suggested. A numerical illustration is presented
for several model systems and for the Stark effect in the hydrogen atom.@S1050-2947~98!01709-0#

PACS number~s!: 31.15.Qg, 31.15.Md, 02.70.Hm
ing
re
io
th
in
re
ce
d

e
h

c
y

io
m
a
ts

-

y
th

l fi
at
t

of
e
ar
s

ra
le
te

in-
o-

ips
ef-

e-
for-
y-

y-
ns.
s,

ter-
ngly

d of

el
k of
s.
olv-
by
a

ra-
ns.
de-

dis-
e

sev-
I. INTRODUCTION

The quantum theory of dynamics is a rapidly develop
field. One has to deal with many time scales and a g
number of degrees of freedom, corresponding to the var
reversible and irreversible dynamical processes, and
leaves still many questions open. With the aim of develop
different efficient computational schemes, we present he
unified description of quantum dynamics based on redu
Green’s functions, energy-dependent wave operators, an
fective Hamiltonians.

Much attention has been devoted to the time-depend
wave operator theory of quantum dynamics; the subject
been summarized recently in a review article@1#. Another
basic approach to quantum dynamics is based on the spe
properties of the Hamiltonian. In it priority is given to energ
rather than to a direct investigation of the temporal evolut
of wave packets. An extended overview of the spectral co
putational methods can be found in a review article of Wy
and Iung@2#. In its standard form the method of momen
~Lanczos recursion algorithm! does not provide a full tem
poral description of the system from the initial state~see@2#,
p. 83! and convergence problems may appear, especiall
the presence of quasicontinua or continua. However,
standard Lanczos algorithm can be improved by spectra
ters, the most important one being the resolvent oper
@3,4#. It is in this direction in particular that significan
progress has been made in the past few years@5#. Since we
are interested in restricted dynamics, e.g., in the study
few transition amplitudes, we have to deal with restrict
resolvent operators and/or with Green’s functions, which
closely related to energy-dependent wave operators. All u
ful dynamical information is contained in these wave ope
tors. We emphasize the role of analyticity in the comp
energy plane~variablez! because our objective is to compu
PRA 581050-2947/98/58~3!/1867~12!/$15.00
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simultaneously dynamical events at various time scales
cluding long-lived interacting and/or overlapping res
nances.

Section II of this paper is devoted to the relationsh
between reduced Green’s functions, wave operators, and
fective Hamiltonians for time-independent and tim
dependent Hamiltonians. We emphasize the unity of the
malism by using in both cases similar notations. As a b
product we obtain a derivation of the (t,t8) formalism for
time-dependent Hamiltonians@6#.

Section III is devoted to the determination of energ
dependent wave operators by solving Bloch-type equatio
As in the theory of effective Hamiltonians for bound state
the Hilbert space is divided into three subspaces: themodel
space,the intermediate space, and theouter space. The rel-
evant dynamics is projected into the model space. The in
mediate space is made up of the states that are stro
coupled to those of the model space~for example, the
dressed states of a molecule submitted to a laser field!. It will
be suggested that the direct sum of the model space an
the intermediate space could define anactive space@1,2#.
Finally, all other states that interact weakly with the mod
space define the outer space treated within the framewor
perturbation theory including infinite partial summation
The advantage of introducing an intermediate space for s
ing the Bloch equations was previously demonstrated
Malrieu et al. @7#. The use of an intermediate space is
powerful tool to improve the convergence properties of ite
tive processes towards either diabatic or adiabatic solutio
Various quasiquadratic Newton-Raphson schemes for the
termination of wave operators are presented. For a
cretizedN3N matrix representation of the Hamiltonian, th
computational effort is proportional toN2. The usefulness of
the quasiquadratic approach is demonstrated by treating
eral model systems, as presented in Sec. IV.
1867 © 1998 The American Physical Society
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II. GREEN’S FUNCTIONS, WAVE OPERATORS,
AND EFFECTIVE HAMILTONIANS

A. Time-independent Hamiltonian

The purpose of this paragraph is to introduce the ba
concepts and to specify the notations. Let us consider a w
function c(t) that fulfills the time-dependent Schro¨dinger
equation

S H2 i\
d

dtDc~ t !50. ~1!

For t.0, the projected wave functionu(t)c(t) obeys

S H2 i\
d

dtD u~ t !c~ t !52 i\d~ t !f. ~2!

u(t) is the Heaviside function. The initial condition appea
as a source on the right-hand side of Eq.~2!, whered(t) is
the Dirac function andf5c(0). TheLaplace-Fourier trans
formation of Eq.~2! leads to (z2H)f(z)5f, wheref(z) is
the Laplace-Fourier transform ofc(t) associated with the
initial conditionc(0)5f ~see Appendix A!. The solution of
Eq. ~2! leads to the Green’s function

f~z!5
1

z2H
f. ~3!

Hereafter, the generic expression ‘‘Green’s function’’ mea
either a function belonging to the Hilbert state as above o
matrix element of the resolvent as

G~z!5 K fU 1

z2H Uf L . ~4!

The z-dependent quantities in Eqs.~3! and ~4!, unambigu-
ously defined for Imz.0, are assumed to be analytical
continued in the second Riemann sheet for Imz,0. The
determination off(z), given by Eq.~3!, does not require the
knowledge of the full resolvent, but only of the restricte
resolvent@1/(z2H)#P0, whereP05uf&^fu is the projector
onto the one-dimensional subspace spanned by the in
statef. In the following, we consider the dynamics implyin
n initial or final statesf i , i 51,2, . . . ,n. These states spa
the model space whose projector isP05( i 51

n uf i&^f i u. The
projector onto the orthogonal complement isQ0512P0.
The partition technique~see Ref.@8#, p. 174! enables us to
express the restricted resolvent in the form

1

z2H
P05S P01

Q0

z2H
H D P0

z2He f f~z!
, ~5!

where

He f f~z!5P0S H1H
Q0

z2H
H D P0 . ~6!

Expressions~5! and ~6! can be transformed into

1

z2H
P05V~z!

P0

z2He f f~z!
~7!
ic
ve

s
a

ial

and

He f f~z!5P0HV~z!. ~8!

In Eqs.~7! and~8! we have introduced the energy-depende
wave operatorV(z) which establishes a one-to-one corr
spondence between the model space andn exact Green’s
functions. This step is quite analogous to introducing wa
operators for bound states that establish a one-to-one c
spondence betweenn approximate solutions in the mode
space andn exact eigensolutions~see Appendix B!. Expres-
sion ~7! indicates that the poles of the Green’s function,
ways assumed to be analytically continued, can be obta
by solving the algebraic equations

z5Ei~z!, i 51,2, . . . ,n. ~9!

The Ei(z)’s are the complex eigenvalues of the effecti
Hamiltonian given by Eq.~8!. If we assume that the reso
nances can be identified with the poles of the Green funct
solving Eq. ~9! ~for example, by an iterative process! pro-
vides a direct way to compute the resonance energies~see
Ref. @9#, p. 162!.

In the case of a one-dimensional model space, the inv
Laplace-Fourier transformation provides the probability a
plitude of survival of the initial state~autocorrelation func-
tion!

^fuc~ t !&5
1

2p i EC
dz

1

z2E~z!
expS 2 izt

\ D , ~10!

where

E~z!5^fuHV~z!uf& ~11!

and the integration path in the complex plane is indicated
Appendix A. Similarly, for ann-dimensional model space
one can recover the state-to-state probability amplitudes

U f i~ t !5
1

2p i EC
dzK f fU P0

z2He f f~z!
Uf i L expS 2 izt

\ D .

~12!

The initial statef i and the final statef f are assumed to
belong to the model space. The effective Hamiltonian in E
~12! is given by Eq.~8!. Expressions~10! and ~12! empha-
size the major role played by the wave operator from wh
the useful transition amplitudes can be obtained imme
ately.

B. Time-dependent Hamiltonian

With obvious notation Eq.~2! becomes

S H~ t !2 i\
d

dtD u~ t !c~ t !52 i\d~ t !f. ~13!

It can be checked immediately that the squa
integrable wave function with respect to timef(t)
5exp(2et/\)u(t)c(t) fulfills

S H~ t !2 i\
d

dt
2 i e Df~ t !52 i\d~ t !f
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5
1

2p i E2`

1`

dE expS iEt

\ Df,

~14!

wheree is a small positive number. The linearity of Eq.~14!
suggests to look for elementary energy and time-depen
solutionsf(E,t), which obey

S H~ t !2 i\
d

dt
2 i e Df~E,t !5expS 2

iEt

\ Df. ~15!

Multiplying both sides of Eq.~15! by exp(iEt/\) leads to

FE1 i e2S H~ t !2 i\
d

dtD Gf~E,t !5f. ~16!

After introducing the time-dependent operator

H~ t !5H~ t !2 i\
d

dt
~17!

andz5E1 i e, Eq. ~16! can be written as

@z2H~ t !#f~z,t !5f, ~18!

the formal solution of which is

f~z,t !5
1

z2Hf. ~19!

The time-dependent wave functionf(t) can be recovered by
means of the inverse Laplace-Fourier transformation~see
Appendix A!. Expressions~3! and ~19! look quite similar.
However, in Eq. ~3! H acts in the usual Hilbert space
whereas in Eq.~19! H acts in thegeneralizedHilbert space
that is the vectorial product of the usual Hilbert space by
vectorial space arising from the variablet. In this extended
Hilbert space the inner product implies an integration w
respect tot. Box normalization can be used (0<t<T), in
which T is the time period in the case of a time-period
Hamiltonian; alternatively it can be identified with the fini
duration of an electromagnetic interaction for nonperio
cases@1#. Expressions~18! and ~19! generalize in the mos
direct way expressions~3! and~4!, which are valid for time-
independent Hamiltonians. The price that one has to pay
passing from Eqs.~3! and~4! to Eqs.~18! and~19! is to add
the variable time in the full vectorial space. It is interesti
to establish a link between the functionf(z,t) in Eq. ~19!
and the (t,t8) formalism introduced by Peskin and Moiseye
@6#. The inverse Laplace-Fourier transformation perform
on Eq.~18! with respect to the variablez gives

S i\
d

dt8
2H~ t !D f ~ t8,t !5 i\d~ t8!f. ~20!

By exchanging the variablest andt8 and using Eq.~17! one
obtains

F i\S d

dt
1

d

dt8
D 2H~ t !G f ~ t,t8!5 i\d~ t !f. ~21!
nt

e

c

or

d

Equation~21! shows thatf (t,t8) is identical to the Peskin-
Moiseyev wave functionc(t8,t). Thus we have establishe
a direct connection between the Green’s functionf(z,t),
which depends on energy and time, and the (t,t8) formalism.
It is interesting to note that the temporal information wi
respect to the initial condition included ind(t)f on the
right-hand side of Eq.~14! has been lost in Eq.~15!: it con-
tains an exponential term fully delocalized in time. There a
other ways to expandd(t) in source terms in Eq.~14!, e.g.,
by means of a Fourier series, which makes the initial con
tion periodic. This direction is important for numerical ap
plications but it will be not pursued here anymore.

If we enlarge the dynamics to a set ofn statesf i ( i
51,2, . . . ,n), Eqs.~7! and ~8! become

1

z2HP05V~z!
P0

z2He f f~z!
, ~22!

He f f~z!5P0HV~z!. ~23!

The similarity between Eqs.~7! and ~8! and Eqs.~22! and
~23! is not only formal. The discretization of the variablet
and the use of finite sets of square-integrable time-depen
functions lead to finite representations ofH andH. Conse-
quently, the same computational schemes can be applie
both cases~see Sec. III! and the transition amplitudes can b
easily expressed in terms ofV(z) and He f f(z). Let us as-
sume that the generalized Hilbert space is spanned by
orthonormal basis set

uk,n&&5ufk&• f n~ t !, ^^k,nuk8,n8&&5dkk8dnn8 . ~24!

Hereafter the notationsu &&and^^ u && will be used for vector
and scalar products in the generalized Hilbert space. By
troducing into Eq.~22! the closure relation in the generalize
Hilbert space, the probability amplitude for passing from t
initial statef i to the final statef f at timet can be written in
the form

U f i~ t !5(
n

U f i ,n~ t ! f n~ t !. ~25!

U f i ,n(t) is the inverse Laplace-Fourier transform ofÛ f i ,n(z)
~see Appendix A!:

U f i ,n~ t !↔Û f i ,n~z!5 K K f ,nU 1

z2HUf i L L . ~26!

Using a harmonic temporal basis set, Eqs.~25! and ~26! be-
come

U f i~ t !5(
n

cf i ,n~ t !•einvt ~27!

and

cf i ,n~ t !↔ ĉf i ,n~z!5 K K f ,nU 1

z2HU i ,0L L . ~28!
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In Eq. ~27! cf i ,n(t) is thenth Fourier component of the tran
sition amplitude. If u i ,0&& and u f ,n&& belong to the mode
space,ĉf i ,n(z) can be derived from the effective Hamiltonia

ĉf i ,n~z!5 K K f ,nU P0

z2He f f~z!
U i ,0L L . ~29!

The advantage in deriving the relevant dynamical quanti
from the matrix elements ofHe f f(z) is that they can be de
termined by using the same techniques as for bound st
An application to the determination of a survival amplitu
will be presented in Sec. III.

C. Resonances

The systematic use of the wave operatorV(z) ~variablez!
is especially relevant in the study of resonances. For lo
lived resonances, much attention must be paid to the
avoidable spurious reflections that result from the use o
nite grids or of a finite number of square-integrab
functions. Some smoothing, or filtering, or an averaging p
cedure is needed to perform analytical continuation. Ma
techniques have been developed for this purpose. One
make complex the dissociative continuous nuclear an
electronic variables@10–14#. This approach is very efficien
to determine the poles of a Green’s function, but it does
provide directly the full Green’s function. Another possib
ity is to add an optical potential to the Hamiltonian@15–17#.
In the following, we will assume that the Hamiltonian und
study contains all the ingredients needed to investigate r
nances~optical potentials, rotated coordinates, etc.!. We will
keep the unique notationH for any real or complex Hamil-
tonian. Therefore, Eqs.~7! and ~8! will be our two basic
equations.

III. DETERMINATION OF THE WAVE OPERATOR

Hereafter it will be assumed that all operators are rep
sented by finite matrices. The discretization comes from
use of finite square-integrable functions associated with
molecular electronic and nuclear coordinates and with
variable time. Multiplying on the left Eq.~7! by z2H and on
the right byz2He f f gives

~z2H !V~z!5P0@z2He f f~z!#. ~30!

Equation~30! indicates that the term on the right-hand si
acts as a source term containing the information about
initial state. Multiplying both sides of Eq.~30! by the pro-
jector Q0 into the orthogonal complementary space gives

Q0~z2H !V~z!50. ~31!

Using Eqs.~5! and~7!, the solution of Eq.~31! can be writ-
ten in the form

V~z!5P01X~z!, ~32!

whereX(z) is the reduced wave operator

X~z!5
Q0

z2H
HP0 . ~33!
s
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This expression is rather formal sinceX(z) has to be contin-
ued into the second Riemann sheet. This can be done
transformingH into a complex rotated Hamiltonian or b
adding an optical potential to the Hamiltonian as discusse
Sec. II C. Since all the information concerning the dynam
projected in the model space is contained in the wave op
tors, we need efficient methods for their determination. T
methods of moments such as filter diagonalization@18# or
harmonic inversion@5# are well adapted to the discrete var
able representation of the Hamiltonian, which is far fro
being diagonal. On the contrary, many problems lead to
most diagonal representations. A good example is the F
quet theory of dressed molecules in laser fields. For us
laser fields the perturbative approach is the most conven
In the following, we present perturbation-iteration schem
that can be considered as generalizations of the recur
distorted-wave approximation and the single-cycle meth
@19–21#. These generalizations have two main featur
First, as mentioned above, they rely on the partition of
full Hilbert space into three subspaces~the model, interme-
diate, and outer spaces! instead of two subspaces~the model
and outer spaces!. Second, these generalizations are we
defined quasiquadratic approximations of the exact quadr
Newton-Raphson scheme.

A. Model space, intermediate space, and outer space

In order to extract the relevant information from larg
degenerate or quasidegenerate matrix representations o
Hamiltonian, we divide the orthogonal space, complem
tary to the model space, into two orthogonal subspaces
intermediate space and its complementary space, the o
space. This partitioning has been proved useful in quan
chemistry for determining the many-electron wave functio
of bound states~see Appendix B!. The intermediate spac
includes all states that interact notably or in certain ca
strongly with the model space. Let us denote byP1 and P2
the orthogonal projectors into the intermediate and the o
space, respectively:Q05P11P2. The reduced wave opera
tor can be split into two terms

X~z!5X11X2 , X15P1X~z!, X25P2X~z!. ~34!

The localization of the matrix elements ofX1 andX2 is in-
dicated in Fig. 1. Multiplying Eq.~31! on the left by the
projectorsP1 and P2 and using Eqs.~32! and ~34! leads to
the two basic equations~see Appendix C!

X15
P1

z2H
V~11X2!P0 ~35!

and

X25
P2

z2H0
V~11X11X2!P0 . ~36!

Equations~35! and ~36! look perturbative. All quantities in
these expressions can be easily evaluated since the inve
of P1(z2H)P1 is feasible in the intermediate space and t
unperturbed HamiltonianH0 is diagonal in the outer space
We could try to solve simultaneously Eqs.~35! and~36! by a
first-order iterative process, which would lead to at best l
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ear convergence. Experience shows that the procedure
erally fails for large matrices, especially when one increa
the number of basis function and/or the number of points
grids for discrete variable representations. The Newt
Raphson scheme can be conveniently used to solve Eqs.~35!
and ~36!. The approximate solutionX5X11X2 is incre-
mented by the quantitiesDX1 andDX2 given in Appendix C.
The linearity of Eqs.~35! and ~36! ensures that the exac
expressions forX1 and X2 could be obtained in one step
Obviously, this procedure cannot be used for practical ca
lations since it would imply the inversion of large matrice
this would require, however, a computational effort as ext
sive as determinating the full resolvent operator. The num
of multiplications would be proportional toN3, N being the
dimension of the Hamiltonian matrix. In Appendix C it
shown how quasiquadratic Newton-Raphson schemes ca
obtained, which require a number of multiplications prop
tional to n•N2, n being the dimension of the model spac

B. Discussion

The principal aim of the wave operator theory of quantu
dynamics, which includes long-lived events such as re
nances, is to reduce the dimension of the vector space
ticipating in the dynamics. Such a subspace is gener
called an active space. There is extensive literature conc
ing the definition and the determination of active spa
@1,2,22,23#. It must be emphasized that the concept of act
space is more computational than physical. The size o
active space depends strongly on the choice of the repre
tation of the Hamiltonian. In this article, the states that p
ticipate mainly in the dynamics belong either to the mo
space or to the intermediate space. Whatever the sele
procedure of the intermediate space might be~based on some
energy criteria or obtained from the first steps of an iterat
solution of the Bloch equation@2#! we suggest to define th
active space as the direct sum of the model and of the in
mediate space. With such a definition all usual diagonal
tions and inversions of operators can be carried out easil
a workstation.

IV. NUMERICAL ILLUSTRATION

We have selected for our study a few model systems c
taining both quasicontinua and true continua. They illustr

FIG. 1. Matrix localization of the effective HamiltonianHe f f(z)
and of the projected reduced wave operatorX1 and X2. X5X1

1X2 , Q05P11P2 , andP01Q051.
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several key points important for understanding and comp
ing the wave operators and their associated effective Ha
tonians. We begin by revisiting the Fano model, which co
tains the basic ingredients illustrating reversible a
irreversible dynamics~resonances!. This model emphasize
the importance of the choice of the model space: It is o
dimensional for an irreversible evolution~weak coupling! or
at least two-dimensional for a reversible dynamics~strong
coupling!. The second model, a driven oscillator whose s
lutions are known, possesses a true continuum. The infi
matrix representation of its Hamiltonian is truncated in ord
to check the accuracy and the convergence properties o
quasiquadratic scheme described in Appendix C. The in
ence of the size of the intermediate space is discussed
nally, a hydrogen atom put in a static electric field~Stark
effect! provides a good example of the efficiency of our a
proach to investigate simultaneously the two almost deg
erate resonances originating from the first excited state
the hydrogen atom (2s and 2p0 orbitals!.

A. The Fano model

The infinite matrix representation of the Fano mod
@24,8# can be written in the form

S 0 v v v •••

v 0 0 0

v 0 2d 0

v 0 0 1d

] �

D . ~37!

The energy of the discrete statef coupled to the quasicon
tinuum is taken as the origin of the energies.d is the constant
energy difference between the levels of the quasicontinu
andv is the strength of the interaction between the discr
state and the quasicontinuum statesuk&, k50,61,62, . . . .
The above notation as well as the exact solution of t
model can be found in the complementC1 of Ref. @8#. The
physical results are obtained at the limitd→0 while v2/d
remains constant. The transition rateG to the continuum is
equal to

G5
2p2

\d
. ~38!

We will consider successively two dynamics: an irreversi
dynamics corresponding to a weak coupling (d/v!1) and a
reversible dynamics corresponding to a strong coupl
(d/v@1). In both cases the initial state isf.

1. Irreversible dynamics (weak coupling)

The dynamics is projected into the one-dimensio
model space (n51) spanned byf. For timest!2p\/d the
initial state f decays into the quasicontinuum whereas
larger times recurrences may appear. The unique matrix t
E(z) representingHe f f(z) @defined by Eq.~11!# is given by
the exact expression

E~z!52 i
G\

2
3 i cotS pz

d D . ~39!
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The real part ofi cot(pz/d) is shown in Fig. 2. It is quite
remarkable that all information needed to compute the s
vival amplitude^fuc(t)& ~autocorrelation function! is con-
tained inE(z) as given by Eq.~39!. Note that this informa-
tion is highly singular near the real energy axis, whe
distributions appear for the valueskd (k50,61,62, . . . ).

In order to obtain the first terms of the temporal evoluti
of the autocorrelation function, from the initial timet50, we
expandE(z) in the Fourier series

E~z!52 i
G\

2
2 iG\(

k51

`

expS 2p ikz

d D . ~40!

Then 1/@z2E(z)# is expanded in power ofx5E(z)
1 iG\/2 in the neighborhood ofz52 iG\/2,

1

z2E~z!
5

1

z1 iG\/2
1

x

~z1 iG\/2!2
1

x2

~z1 iG\/2!3
1••• .

~41!

The inverse Laplace-Fourier transformation of Eq.~41! and
the use of the theorem of residues leads to the autocorrela
function

^fuc~ t !&5expS 2
Gt

2 D2 (
k51

N

u~ t2tk!Pk@G~ t2tk!#

3expS 2
G~ t2tk!

2 D . ~42!

In Eq. ~42! N is a positive integer. The polynomialPk is
defined by

Pk~x!5(
l 51

k

~21! l 11
S l 21

k21D
l !

xl , tk5
2p\k

d
.

The (k21
l 21 ) are the binomial coefficients. Expression~42! is

exact whenN approaches infinity. Figure 3 represents t
survival probabilityz^fuc(t)& z2 as a function oft. It can be
immediately checked that, as expected, the first recurre
correspond to the valuesk51,2,3, . . . in Eq.~42!.

FIG. 2. Representation of the real part off (z)5 i cot(pz/d) as a
function of z for d51. This quantity tends to 1 when Imz tends to
`; it tends to` for the real valuesz5kd (k50,61,62, . . . ).
r-

e

ion

es

2. Reversible dynamics (strong coupling)

The dynamics is now dominated by the reversible e
change that occurs inside the two-dimensional model sp
between the initial stateuf& and the stateu0& belonging to
the quasicontinuum. The exact matrix representation of
two-dimensional effective Hamiltonian is given by

He f f~z!5F e v

v 0G , ~43!

wheree5E(z)2v2/z is a small quantity with respect tov. It
can be written in the form e52 iG\/23 i @cot(pz/d)
2(pz/d)21#. The representation of the real part
i @cot(pz/d)2(pz/d)21# is given in Fig. 4. It can be checke
that e is regular at z50. The analytic continuation o
He f f(z) can be obtained by expandingHe f f(z) in a Taylor
series nearz50, which leads to

FIG. 3. Representation of the irreversible survival probabil
p(t)5 z^fuc(t)& z2 as a function oft. Recurrences occur at time
tk52pk\/d(k51,2, . . . andd51). The three first recurrences i
~a!, ~b!, and~c! come from the valuesN51, 2, and 3 in expression
~42! ~arbitrary units!.
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K fU P0

z2He f f~z!
UfL 5

z

~z22v2!
1

z2

~z22v2!2
e

1
z3

~z22v2!3
e21•••, ~44!

In Eq. ~44!

e5zS p
v
d D 2

(
k51

`

~21!k
4k

~2k!!
B2kS pz

d D 2~k21!

. ~45!

TheB2k are the Bernoulli numbers (B051,B25 1
6 , . . . ). The

inverse Laplace-Fourier transformation of Eq.~44! leads to
the expansion of the autocorrelation function in powers
(v/d)2

^fuc~ t !&5cosS vt

\ D2
1

3 S pv
d D 2FcosS vt

\ D2
vt

2\
sinS vt

\ D G
1••• . ~46!

Figure 5 shows that the dynamics is not significantly mo
fied by the addition of the first correcting term in (v/d)2.
The same conclusion would be achieved for higher-or
terms.

FIG. 4. Representation of the real part off (z)5 i @cot(pz/d)
2(pz/d)21# as a function ofz for d51. Note the disappearance o
the singularity at the originz50.

FIG. 5. Representation of the reversible survival probabi
p(t)5 z^fuc(t)& z2 as a function oft. The full line corresponds to
^fuc(t)&5cos(vt/\); the dotted line corresponds to^fuc(t)& given
by Eq. ~46! ~arbitrary units!.
f

-

r

B. Driven harmonic oscillator

The electric dipolar interaction between an electrom
netic wave and a harmonic oscillator can be approximated
the time-dependent Hamiltonian~see@25#, pp. 204 and 205!

H5\va†a1\@ f ~ t !a1 f * ~ t !a†#. ~47!

If the oscillator is in its ground stateu0& at the initial time, it
develops into a coherent state. We will consider a reson
interaction and chosef (t) in the form f (t)5aexp(ivt). The
exact solution is given by

uc~ t !&5 (
n50

`
~2 ia!n

A(n!)
tnexpS 2

1

2
a2t2De2 invtun&. ~48!

The probability amplitude and the occupation numbers of
various states follow an irreversible evolution. In particul
for the ground state, the autocorrelation function and the s
vival probability are exactly given by

^0uc~ t !&5expS 2
a2t2

2 D , p~ t !5e2a2t2. ~49!

The survival probability has to be compared with the pro
ability law p(t)5exp(2Gt) that characterizes the tempor
evolution of a Breit-Wigner resonance. The Green’s funct
corresponding to the autocorrelation function given in E
~49! is known ~see Appendix A!

G~z!52
iAp

A2\a
exp2 @1/2~z/\a!2# erfcS 2

iz

A2\a
D . ~50!

G(z) can be expressed@26# in the form of an infinite con-
tinuous fraction

G~z!5
1

z2E~z!
, E~z!5

~\a!2

z2
2~\a!2

z2
3~\a!2

z2•••

. ~51!

Again, the information concerning the autocorrelation fun
tion is contained inE(z). In order to illustrate the efficiency
of the computational scheme presented in Sec. III A and
Appendix C, we have used a finite matrix representation
the time-dependent operatorH(t) @defined by Eq.~17!#.
Since H(t) is periodic @H(t1T)[H(t), T52p/v#, the
calculations were done within the framework of the Floqu
theory @27#. The use of the moment method applied toH
provides the relevant basis set in the generalized Hilb
space

un&&5
1

AT
un&e2 invt. ~52!

The matrix representation ofH in this basis is given in Fig.
6~a!. Note that this matrix representation is identical exce
for a multiplicative factor with the matrix representation
the position operator (a1a†) acting in the standard basis o
the unperturbed harmonic oscillator.
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Hereafter, it will be assumed thatu0&& spans a one-
dimensional model space. The iterative determination of
reduced wave operatorX cannot be obtained directly from
the matrix representation in Fig. 6~a! since all its diagonal
elements are zero. This highly degenerate representation
to be at least partially diagonalized. This was done by c
sidering the matrix representation ofH in Fig. 6~b! in the
rotated basis

u i )&55
1

A2
@ u i &&2u i 11&&], i 51,3, . . .

1

A2
@ u i 11&&1u i &&], i 52,4, . . . .

~53!

Although the new representation is very far from being
agonal, the iterative process described in Appendix C is v
efficient. As expected, the convergence properties of the
cedure depend strongly on the size of the intermediate s
and on the number of terms used in the expansion
P0 /(12A22) ~see Appendix C!. The number of iterations
required to obtain approximatively seven digits on the co
ponents of the wave operator is given in Table I. The cal
lations were carried out using a matrix representation of
mensionN5100. The overall results were found to be
excellent agreement with the exact values~seven exact fig-
ures!. The real and imaginary parts ofE(z) are represented
in Figs. 7~a! and 7~b! for Im z50.5 and 4.0, respectively. Al
dynamical information concerning the survival amplitude
contained in these dispersion curves, which are represe

FIG. 6. Matrix representation ofH5H2 i\ (d/dt). H is the
Hamiltonian of the driven harmonic oscillator given by Eq.~47!
(\v5a51). ~a! basisun&& given by Eq.~52! and~b! rotated basis
given by Eqs.~53!.
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tive of an irreversible processes. The numerical results w
found to be stable and the convergence properties quite s
lar by extending the size of Hamiltonian matrix (N5200).

C. Stark effect in the hydrogen atom

We have chosen to study this well-documented sys
because its spectrum possesses a true continuum. More
there is no simple analytical solution and the hydrogen at
has been frequently used as a representative benchmar
testing resonance methods using a finite basis set of squ
integrable (L2) functions@28#.

The Hamiltonian in spherical coordinates and in atom
units ~a.u.! is given by

FIG. 7. Real and imaginary parts ofE(z) as a function ofE
5Rez. ~a! Im z50.5 and~b! Im z54.0.
ts of
TABLE I. Number of iterations required for obtaining approximately seven figures in the componen
the wave operator (e51027) ~see Appendix C! as a function of the dimensionm of the intermediate space
and of the numberk of terms used in the expansion ofP2 /(12A22).

z54i z51014i

k\ m 2 4 6 8 10 12 14 16 18 20 2 4 6 8

0 18 16 14 12 10 7 5 3 2 1 5 3 2 1
1 8 7 7 6 5 4 3 2 2 1 3 2 2 1
2 10 9 8 7 6 5 4 3 2 1 3 2 2 1
4 7 6 5 5 4 3 3 2 2 1 2 2 2 1
8 4 4 4 3 3 3 2 2 2 1 2 2 2 1
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H52
D

2
2

1

r
2Er cosu, ~54!

whereE is the amplitude of the electric field andz5rcosu is
thez coordinate of the electron. Since we limit our numeric
investigation to the energy of the resonances, assume
correspond to the poles of the analytically continued Gree
function, it is useful to work with the complex rotate
Hamiltonian@14#

Hu52
D

2
e2iu2

e2 iu

r
2Er cosueiu. ~55!

We have used for the ground and for the first excited sta
basis set of Slater orbitals with angular symmetries up tl
57, as in Ref.@28#. The radial parts for thel symmetry were
chosen in the form const3r l 1ke2r , k50,1, . . . ,9.

1. Ground state

The exact 1s wave function spans the model space. W
have considered a diagonal matrix representation ofHu
within each angular symmetry. This required the diagon
ization of eight small 10310 matrices. The iterative proce
dure in determining the wave operator was found to be v
efficient to obtain the values ofE(z). From the knowledge of
E(z), the poles of the Green’s function were easily found
solving the equation

TABLE II. Poles in atomic units~a.u.! of the Green’s function
^1su1/(z2Hu)u1s&51/@z2E(z)# for the ground state of the hydro
gen atom in the dc fieldE50.1 a.u. obtained by the iterative solu
tion of Eq. ~56!; u50.4.

Iteration E~k!

0 20.5
1 20.526876-i0.007936
2 20.527427-i0.007290
3 20.527419-i0.007269
4 20.527418-i0.007269

Ref. @28# 20.527419-i0.007268
Ref. @29# 20.527418-i0.007269
l
to

’s

a

l-

y

y

z5E~z!. ~56!

For this well-isolated resonance, which is almost a bou
state, it is expected that the first-order iterative proced
z(k11)5E(z(k)), k50,1,2, . . . , should converge in a few it-
erations@9#. The results are given in Table II. As expecte
the convergence is very fast and the converged values a
excellent agreement with those found by Nicolaides a
Themelis@28# and Silverman and Nicolaides@29#.

2. First excited state

Since the two resonances are almost degenerate, it is
evant to use the two-dimensional model space spanned
the 2s and 2p0 wave functions. We have slightly extende
the flexibility of the basis used for the ground state. This w
done by adding to the previous basis two orbitals ofs sym-
metry with radial parts proportional to exp(2r/2) and
r exp(2r/2) and one orbital ofp symmetry with a radial part
proportional tor exp(2r/2). With this basis we have repro
duced exactly the 2s and 2p0 energies of the isolated atom
The same procedure as above led to a two-dimensionaz-
dependent effective Hamiltonian whose eigenvalues were
noted E1(z) and E2(z). The iterative solution of the two
equationsz5Ei(z), i 51,2, led to the two resonance ene
gies. The values obtained at various iterations are given
Table III. Again, they are in excellent agreement with tho
previously reported@30,28#.

V. CONCLUSION

Up to now, the theory of effective Hamiltonians for mo
lecular quantum mechanics was based mainly on the ti
dependent wave operatorV(t) @1#. In this paper we adop
the spectral point of view in which a special importance
ascribed to the variable energy@2#. This approach is espe
cially relevant for investigating long-lived events, such
quantum resonances. We have defined energy-depen
wave operatorsV(z) that arise naturally from either time
independent or time-dependent Hamiltonians. We have
tablished the link between our approach and the (t,t8) theory
of Peskin and Moiseyev@6#. With the aim of solving large-
scale molecular dynamics, Bloch-type equations were sol
by an iterative procedure based on a partition of the
Hilbert space into a model space, an intermediate space,
e
;

TABLE III. Complex eigenvaluesE1(z) and E2(z), in atomic units, for the first excited state of th
hydrogen atom in the dc fieldE50.01 a.u. of the effective HamiltonianHe f f(z) obtained at various iterations
u50.4.

Iteration 2s22p0 state 2s12p0 state

0 20.125 20.125
1 20.160063-i0.01161 20.103143i0.00194
2 20.166166-i0.005351 20.103830-i0.001783
3 20.166088-i0.005446 20.103899-i0.001673
4 20.166088-i0.005446 20.103894-i0.001650
5 20.103890-i0.001647
6 20.103889-i0.001647

Ref. @30# 20.16609-i0.005442 20.10389-i0.001637
Ref. @28# 20.166088-i0.005446 20.103888-i0.001632



le
rg
a
m
de
ib
a
ve
or
u
ti

x-
nic

ni
a

in

ent,
with

ear

-
e

f
ach

y a
go-

o-
pro-
tor

the

ct-
r

1876 PRA 58PHILIPPE DURAND AND IVANA PAIDAROVÁ
an outer space. The investigation of a few model examp
has shown that the concepts of model space, ene
dependent wave operators, and effective Hamiltonians
useful for understanding both dynamics and effective co
putation. In the Fano model one- or two-dimensional mo
spaces were required for describing irreversible or revers
evolutions, respectively. Although our numerical investig
tion was purposely limited to small matrices, the iterati
procedure presented in this paper is intended to perf
large-scale dynamic calculations. Recently, the proced
has been successfully applied to the accurate determina
of the lifetimes of many electronically and vibrationally e
cited states of the LiH molecule decaying through vibro
interactions@31#.

APPENDIX A: THE LAPLACE-FOURIER
TRANSFORMATION

The formulas below were adapted to quantum mecha
from Refs.@32# and@26#. The Laplace-Fourier transform of
function f (t) is defined by

f̂ ~z!5
1

i\E0

`

dt f~ t !eizt/\. ~A1!

For t.0 the functionf (t) can be recovered by integration
the complex plane~see Fig. 8!:

f ~ t !5
1

2p i EC
dz f̂~z!e2 izt/\. ~A2!

The Laplace-Fourier transforms are

f ~ t !↔ f̂ ~z!,

e2 et/\ f↔ f̂ ~z1 i e!,

f ~ t2t0!↔e izt0 /\ f̂ ~z!,

i\d~ t !↔1,

dnf

dtn
↔

1

~ i\!n
znf̂ ~z!,

tnf ~ t !↔~2 i\!n
dnf̂ ~z!

dzn
,

FIG. 8. Integration pathC in the complex plane.
s
y-
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-
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u~ t !↔
1

z

@u(t) is the Heaviside function#,

u~ t !e2 et/\↔
1

z1 i e
,

u~ t !e2 e2t2/\2↔
Ap

2i e
e2 z2/4e2

erfcS 2
iz

2e D ,

u~ t !c~ t !↔
1

z2H
f

~the time-independent Hamiltonian!.

APPENDIX B: THE BLOCH WAVE OPERATOR FOR
BOUND STATES „FROM REFS. †33‡ AND †2‡…

The full Hilbert space is the direct sum of a finiten-
dimensional model space and of its orthogonal complem
the outer space. The orthogonal projectors associated
the model space and the outer space areP0 andQ0, respec-
tively,

P01Q051. ~B1!

The theory is based on the Bloch wave operatorV, which
establishes a one-to-one correspondence betweenn projected
solutions in the model space andn exact solution in the full
Hilbert space. The wave operator obeys the basic nonlin
equation@34,35#

HV5VHV, ~B2!

whereH is the Hamiltonian of the system. Equation~B2! can
be split into two parts and written in the form

HV5VHe f f, ~B3!

He f f5P0HV. ~B4!

Equation ~B3! is a natural generalization of the time
independent Schro¨dinger equation for one energy level. Th
eigenvalues of the effective Hamiltonian defined by Eq.~B4!
provide n exact eigenvalues ofH and the corresponding
eigenfunctions are the projections in the model space on
exact solutions. An advantage of the wave operator appro
is that it makes it possible to investigate simultaneousl
small finite number of almost degenerate states. The dia
nalization of a low-dimensional effective Hamiltonian pr
vides exact energies by means of a numerically stable
cedure. Another advantage of the Bloch wave opera
approach for bound states is that it is quite similar to
wave operator formalism of scattering theory@36# in which
the Mo” ller operators fulfill the wave operator equation

HV65V6H0 . ~B5!

The zeroth-order Hamiltonian describes usually nonintera
ing particles. Equations~B3! and ~B5! possess quite simila
linear structures.
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APPENDIX C: DETERMINATION OF WAVE OPERATORS
FOR GREEN’S FUNCTIONS

We assume that the full Hilbert space has been discret
and that the Hamiltonian of the system is represented b
finite-dimensionalN3N matrix. Since we intend to investi
gate systems up toN.106, it would be impossible to inver
or to diagonalize the corresponding large matrices. The
fore, we have to look for iterative schemes. This require
computational effort proportional toN2 instead ofN3 for the
direct inversion or the full diagonalization of large matrice
In the present approach we extend a computational sch
previously developed within the theory of effective Hamilt
nians for bound states@7#. The full N-dimensional Hilbert
space is split into three subspaces: themodel space~dimen-
sionn!, the intermediate space~dimensionm!, and theouter
space ~dimension N-n-m!. Typically, we could haven
.10,m.102, andN.104. Diagonalization and inversion
can easily be done within the intermediate space, which
teracts strongly with the model space, whereas the weak
fluence of the outer space can be treated by perturbation.
orthogonal projectors associated with the model space,
intermediate space, and the outer space areP0, P1, andP2,
respectively,

P01P11P251, P11P25Q0 , P01Q051. ~C1!

We assume that the full HamiltonianH5H01V is divided
into an unperturbed HamiltonianH0, diagonal in its matrix
representation, and a perturbationV. From the definition
~33!, the reduced wave operatorX(z) is a solution of

~z2H !X~z!5Q0HP0 . ~C2!

Let us splitX(z) into two terms

X~z!5X11X2 ,

where

X15P1X~z!, X25P2X~z!. ~C3!

Multiplying both sides of Eq.~C2! on the left byP1 leads to

X15
P1

z2H
V~11X2!P0 . ~C4!

Multiplying both sides of Eq.~C2! on the left byP2 leads to

X25
P2

z2H0
V~11X11X2!P0 . ~C5!

Equations~C4! and ~C5! can be written in the form

X15 f 1 , X25 f 2 , ~C6!

where

f 15
P1

z2H
V~11X2!P0 , ~C7!

f 25
P2

z2H0
V~11X11X2!P0 . ~C8!
ed
a

e-
a

.
e

-
n-
he
he

One can expand Eqs.~C6! in the neighborhood of the exac
solution in terms of two small incrementsDX1 and DX2
~Newton-Raphson scheme!:

X11DX15 f 11A12DX2 , ~C9!

X21DX25 f 21A21DX11A22DX2 , ~C10!

where

A125
P1

z2H
VP2 ,

A215
P2

z2H0
VP1 , ~C11!

A225
P2

z2H0
VP2 .

Whatever might be approximate values ofX1 and X2, the
exact Newton-Raphson scheme would lead to the exact
lution in one iteration. After some elementary algebra,
solution of the system of linear Eqs.~C9! and~C10! is given
by

DX152
P1

12A1
F ~X12 f 1!1A12

P2

12A22
~X22 f 2!G ,

~C12!

DX252F11
P2

12A22
A2G P2

12A22
@A21~X12 f 1!1~X22 f 2!#,

~C13!

where

A15A12

P2

12A22
A21, A25A21

P1

12A1
A12. ~C14!

Since the operator 12A22, which is defined in the oute
space, cannot be inverted directly, approximate invers
schemes are required. Quasi-Newton procedures can be
tained by expandingP2 /(12A22):

P2

12A22
511A221~A22!

21•••. ~C15!

The series converges if all the eigenvaluesl i of A22 have
ul i u,1. This can be obtained by using a large intermedi
space. If there are eigenvaluesul i u.1, one can use a proce
dure based on Chebyshev polynomials or on more gen
polynomial expansions of the form

P2

12A22
5c01c1A221c2~A22!

21••• ~C16!

~see@37#, p. 99!. In our program, the iterative process sto
when the quantity~Euclidian norm!

1

An~N2n!
iX2 f 12 f 2i ~C17!

becomes smaller thane5102p; p provides approximately
the number of exact figures of the components ofX1 andX2.
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