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An energy-dependent wave operator theory of quantum dynamics is derived for time-independent and
time-dependent Hamiltonians. Relationships between Green’s functions, wave operators, and effective Hamil-
tonians are investigated. Analytical properties of these quantities are especially relevant for studying reso-
nances. A derivation of the relationship between the Green’s functions and,therfiethod of Peskin and
Moiseyev[J. Chem. Phys99, 4590(1993] is presented. The observable quantities can be derived from the
wave operators determined with the use of efficient iterative procedures. As in the theory of Bloch operators
for bound states, the theory is based on a partition of the full Hilbert space into three subspaces: the model
space, an intermediate space, and the outer space. On the basis of this partition an alternative definition of
active spaces currently considered in large scale calculations is suggested. A numerical illustration is presented
for several model systems and for the Stark effect in the hydrogen §&#f150-294{©8)01709-(

PACS numbsgps): 31.15.Qg, 31.15.Md, 02.70.Hm

[. INTRODUCTION simultaneously dynamical events at various time scales in-
cluding long-lived interacting and/or overlapping reso-
The quantum theory of dynamics is a rapidly developingnances.
field. One has to deal with many time scales and a great Section Il of this paper is devoted to the relationships
number of degrees of freedom, corresponding to the variousetween reduced Green'’s functions, wave operators, and ef-
reversible and irreversible dynamical processes, and thifective Hamiltonians for time-independent and time-
leaves still many questions open. With the aim of developinglependent Hamiltonians. We emphasize the unity of the for-
different efficient computational schemes, we present here salism by using in both cases similar notations. As a by-
unified description of quantum dynamics based on reducegdroduct we obtain a derivation of the,{’) formalism for
Green's functions, energy-dependent wave operators, and gfme-dependent Hamiltoniari§].
fective Hamiltonians. Section 1l is devoted to the determination of energy-
Much attention has been devoted to the time-dependentependent wave operators by solving Bloch-type equations.
wave operator theory of quantum dynamics; the subject ha8s in the theory of effective Hamiltonians for bound states,
been summarized recently in a review artifld. Another  the Hilbert space is divided into three subspaces:ntiogel
basic approach to quantum dynamics is based on the spectspace the intermediate spaceand theouter spaceThe rel-
properties of the Hamiltonian. In it priority is given to energy evant dynamics is projected into the model space. The inter-
rather than to a direct investigation of the temporal evolutionmediate space is made up of the states that are strongly
of wave packets. An extended overview of the spectral comeoupled to those of the model spa¢®r example, the
putational methods can be found in a review article of Wyattdressed states of a molecule submitted to a lasep fiehdill
and lung[2]. In its standard form the method of moments be suggested that the direct sum of the model space and of
(Lanczos recursion algorithndoes not provide a full tem- the intermediate space could define active space1,2].
poral description of the system from the initial stésee[2], Finally, all other states that interact weakly with the model
p. 83 and convergence problems may appear, especially inpace define the outer space treated within the framework of
the presence of quasicontinua or continua. However, thperturbation theory including infinite partial summations.
standard Lanczos algorithm can be improved by spectral filThe advantage of introducing an intermediate space for solv-
ters, the most important one being the resolvent operatdng the Bloch equations was previously demonstrated by
[3,4]. It is in this direction in particular that significant Malrieu et al. [7]. The use of an intermediate space is a
progress has been made in the past few yggrsSince we  powerful tool to improve the convergence properties of itera-
are interested in restricted dynamics, e.g., in the study of &ive processes towards either diabatic or adiabatic solutions.
few transition amplitudes, we have to deal with restrictedVarious quasiquadratic Newton-Raphson schemes for the de-
resolvent operators and/or with Green’s functions, which aréermination of wave operators are presented. For a dis-
closely related to energy-dependent wave operators. All useretizedN X N matrix representation of the Hamiltonian, the
ful dynamical information is contained in these wave operacomputational effort is proportional 4. The usefulness of
tors. We emphasize the role of analyticity in the complexthe quasiquadratic approach is demonstrated by treating sev-
energy plandvariablez) because our objective is to compute eral model systems, as presented in Sec. IV.
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Il. GREEN'S FUNCTIONS, WAVE OPERATORS, and
AND EFFECTIVE HAMILTONIANS
. I He"(2)=PoHO(2). 8
A. Time-independent Hamiltonian
The purpose of this paragraph is to introduce the basid? EGs-(7) and(8) we have introduced the energy-dependent

concepts and to specify the notations. Let us consider a wayiave operatof)(z) which establishes a one-to-one corre-
function (t) that fulfills the time-dependent Schiager ~ SPondence between the model space mneixact Green's
equation functions. This step is quite analogous to introducing wave

operators for bound states that establish a one-to-one corre-

d spondence between approximate solutions in the model
(H - lﬁa) %(1)=0. (1) space and exact eigensolutiongsee Appendix B Expres-
sion (7) indicates that the poles of the Green'’s function, al-
Fort>0, the projected wave functiof(t) (t) obeys ways assumed to be analytically continued, can be obtained
by solving the algebraic equations
d
(H—iﬁa)0(t)z/;(t)=—ih5(t)¢. 2 z=Ei(z), i=12,...n. 9)

The E;(2)'s are the complex eigenvalues of the effective
Hamiltonian given by Eq(8). If we assume that the reso-
nances can be identified with the poles of the Green function,
solving Eq.(9) (for example, by an iterative procesgro-
vides a direct way to compute the resonance energes
Ref.[9], p. 162.

In the case of a one-dimensional model space, the inverse
Laplace-Fourier transformation provides the probability am-
plitude of survival of the initial statéautocorrelation func-

0(t) is the Heaviside function. The initial condition appears
as a source on the right-hand side of E2), where §(t) is
the Dirac function andb= (0). ThelLaplace-Fourier trans-
formation of Eq.(2) leads to g—H) ¢(z) = ¢, whereg(z) is
the Laplace-Fourier transform af(t) associated with the
initial condition (0)= ¢ (see Appendix A The solution of
Eq. (2) leads to the Green’s function

1 :
= tion
$(2)= - ¢. (3  ftion)
. . , 1 1 —izt
Hereafter, the generic expression “Green’s function” means (Plep(t))= 2—f dz —E ex | (10
either a function belonging to the Hilbert state as above or a mlc z-E(2)
matrix element of the resolvent as
where
1
G(z)=< ¢ >—h ‘¢> (4) E(z)=(#|HQ(2)|#) 11

o . and the integration path in the complex plane is indicated in
The z-dependent quantities in Eqe3) and (4), unambigu-  Appendix A. Similarly, for ann-dimensional model space,
ously defined for Ime>0, are assumed to be analytically pne can recover the state-to-state probability amplitudes
continued in the second Riemann sheet forzkt0. The

determination ok5(z), given by Eq.(3), does not require the 1 Po —izt
knowledge of the full resolvent, but only of the restricted Ufi(t):ﬁf dz| ¢y et | @i eXF{T)-
resolvent 1/(z—H)]P,, wherePy=|¢)( | is the projector mJe z-H"(2)

onto the one-dimensional subspace spanned by the initial (12)
statt_eq&. In the following, we consider the dynamics implying The initial state¢; and the final statep; are assumed to

n initial or final states¢;, i=1,2,... n. These states span pe|ong to the model space. The effective Hamiltonian in Eq.
the model space whose projectorfg= 34| $)(¢i|. The (12 is given by Eq.(8). Expressiong10) and (12) empha-
projector onto the orthogonal complement@=1-Po.  sjze the major role played by the wave operator from which
The partition techniquésee Ref[8], p. 174 enables us to  the useful transition amplitudes can be obtained immedi-

express the restricted resolvent in the form ately.
z—lH Po=| Po+ z(—gcl’-l H) Peoff , (5) B. Time-dependent Hamiltonian
z-H"(2) With obvious notation Eq(2) becomes
where d
(H(t)—iﬁa) O(t) y(t)=—i%8(t) . (13
HEM(2) = Po| H+ H—2 H)PO. (6) . _
z—H It can be checked immediately that the square-
integrable wave function with respect to time(t
Expressiong5) and(6) can be transformed into =e>?p(— /1) B() it) fulfills P (1)

1 Po d
Z_HPo=Q(Z)Teﬁ(Z) (7 (H(t)—iﬁa—ie)¢(t)=—ifi5(t)d>
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1 [+ iEt Equation(21) shows thatf(t,t’) is identical to the Peskin-

= ﬁﬁx dE exp( 7) b, Moiseyev wave functionj(t’,t). Thus we have established
a direct connection between the Green’s functig(e,t),
(14  which depends on energy and time, and the' | formalism.

_ - ) _ It is interesting to note that the temporal information with
wheree is a small positive number. The linearity of Hd4)  regpect to the initial condition included iA(t)¢ on the
suggests to look fOf_ elementary energy and tlme-dePende'ﬂibht-hand side of Eq(14) has been lost in Eq15): it con-
solutions¢(E,t), which obey tains an exponential term fully delocalized in time. There are

d iEt other ways to expar)ﬂ(t) irj source terms in Eq.1.4)_,.e.g., .
(H(t) —ih——i 6) H(E,1)= exp{ _ _) b. (15 py means Qf a Fpurlgr series, WhICh makes the |n|t|§1l condi-
dt h tion periodic. This direction is important for numerical ap-
L ) plications but it will be not pursued here anymore.
Multiplying both sides of Eq(15) by exp{Et/#%) leads to If we enlarge the dynamics to a set ofstatesé; (i

=1,2,...n), Egs.(7) and(8) become

E+ie—(H(t)—iﬁ%”qﬁ(E,t):(b. (16)

1 P
_ _ | Po=0(2) ———, (22
After introducing the time-dependent operator z—H z—H®¢(2)
d
HO=H(b~ih 5 (17) He"(2)=PoH(2). (23)

The similarity between Eqg7) and (8) and Egs.(22) and

andz=E+ie, Eq.(16) can be written as (23) is not only formal. The discretization of the varialile

[2—H(1)]b(z,1)= ¢ (18) and the use of finite sets of square-integrable time-dependent
' ' functions lead to finite representationstéfand 7. Conse-
the formal solution of which is quently, the same computational schemes can be applied in

both casegsee Sec. I)land the transition amplitudes can be
easily expressed in terms 6f(z) and H®f(z). Let us as-

z—H¢' (19 sume that the generalized Hilbert space is spanned by the
orthonormal basis set

d(z,t)=

The time-dependent wave functigf(t) can be recovered by
means of the inverse Laplace-Fourier transformatisee [k,n)y=]d)-fo(t), (k,nlk’ ,n"))= S Snnr - (24
Appendix A). Expressiond3) and (19) look quite similar.

However, in Eq.(3) H acts in the usual Hilbert space, Hereafter the notations))and({ | )) will be used for vector
whereas in Eq(19) H acts in thegeneralizedHilbert space and scalar products in the generalized Hilbert space. By in-
that is the vectorial product of the usual Hilbert space by theroducing into Eq(22) the closure relation in the generalized
vectorial space arising from the varialileln this extended Hilbert space, the probability amplitude for passing from the
Hilbert space the inner product implies an integration withinitial state¢; to the final statep; at timet can be written in
respect tot. Box normalization can be used €f0=<T), in  the form

which T is the time period in the case of a time-periodic

Hamiltonian; alternatively it can be identified with the finite

duration of an electromagnetic interaction for nonperiodic Uri() =2 Ug (D F4(0). (29
cased1]. Expressiong18) and (19) generalize in the most .

direct way expression@®) and(4), which are valid for time- .
independent Hamiltonians. The price that one has to pay fo+i n(t) is the inverse Laplace-Fourier transformlof; ,(2)
passing from Eq¥3) and(4) to Egs.(18) and(19) is to add  (see Appendix A

the variable time in the full vectorial space. It is interesting

to establish a link between the functiet(z,t) in Eq. (19 N

and the {,t’) formalism introduced by Peskin and Moiseyev Ui n(t) = Uy n(2) = < < f,n
[6]. The inverse Laplace-Fourier transformation performed

on Eqg.(18) with respect to the variable gives

1
T bi) |- (26)

Using a harmonic temporal basis set, E@5) and(26) be-
come

(iﬁ%—?—l(t))f(t’,t)=ih5(t’)¢>. (20)

Un()=2 crin(t)- €' 27
By exchanging the variabldsandt’ and using Eq(17) one "

obtains
and

—H@O) [f(Lt)=ihst) b  (21)

2 d d
| a'i‘@

Cfi,n(t)‘_’éfi,n(z):<<f1n Z_lH‘i,0>>- (29)
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C. Resonances

In Eq. (27) ¢t n(t) is thenth Fourier component of the tran- This expression is rather formal sin&¢z) has to be contin-
sition amplitude. If|i,0)) and|f,n)) belong to the model ued into the second Riemann sheet. This can be done by
spacecy; ,(z) can be derived from the effective Hamiltonian transformingH into a complex rotated Hamiltonian or by
' adding an optical potential to the Hamiltonian as discussed in
. 0 _ Sec. Il C. Since all the information concerning the dynamics
Cti,n(2)= < < f,n —Ho2) |,0>> (29 projected in the model space is contained in the wave opera-
eff tors, we need efficient methods for their determination. The
The advantage in deriving the relevant dynamical quantitie§hethods of moments such as filter diagonalizafie8] or
from the matrix elements dfi®’(2) is that they can be de- harmonic inversiorj5] are well adapted to the discrete vari-
termined by using the same techniques as for bound statedP!e representation of the Hamiltonian, which is far from
An application to the determination of a survival amplitude P€ing diagonal. On the contrary, many problems lead to al-
will be presented in Sec. Ill. most diagonal representations. A good example is the Flo-
quet theory of dressed molecules in laser fields. For usual
laser fields the perturbative approach is the most convenient.
In the following, we present perturbation-iteration schemes
The systematic use of the wave operdi{z) (variablez) that can be considered as generalizations of the recursive
is especially relevant in the study of resonances. For longdistorted-wave approximation and the single-cycle method
lived resonances, much attention must be paid to the urf19-21. These generalizations have two main features.
avoidable spurious reflections that result from the use of fiFirst, as mentioned above, they rely on the partition of the
nite grids or of a finite number of square-integrablefull Hilbert space into three subspac@ghe model, interme-
functions. Some smoothing, or filtering, or an averaging prodiate, and outer spageisistead of two subspacéthe model
cedure is needed to perform analytical continuation. Manyand outer spacgsSecond, these generalizations are well-
techniques have been developed for this purpose. One calefined quasiquadratic approximations of the exact quadratic
make complex the dissociative continuous nuclear and/oNewton-Raphson scheme.
electronic variable§10—14. This approach is very efficient
to determine the poles of a Green’s function, but it does not A model space, intermediate space, and outer space
provide directly the full Green’s function. Another possibil- i )
ity is to add an optical potential to the Hamiltonift5—17. In order to extrapt the relevant mformatlon from large
In the following, we will assume that the Hamiltonian under 9€9€nerate or quasidegenerate matrix representations of the
study contains all the ingredients needed to investigate resi@miltonian, we divide the orthogonal space, complemen-
nances(optical potentials, rotated coordinates, pteve will  t@ry to the model space, into two orthogonal subspaces: an
keep the unique notatioH for any real or complex Hamil- Intermediate space and its complementary space, the outer
tonian. Therefore, Eqs7) and (8) will be our two basic space. This part|t|0n|_n_g has been proved useful in qua_ntum
equations. chemistry for determining th(nT many—ele_-ctron wave functions
of bound stategsee Appendix B The intermediate space
lIl. DETERMINATION OF THE WAVE OPERATOR includes a_II states that interact notably or in certain cases
' strongly with the model space. Let us denoteRyand P,
Hereafter it will be assumed that all operators are reprethe orthogonal projectors into the intermediate and the outer
sented by finite matrices. The discretization comes from thepace, respectivelyQ,=P;+ P,. The reduced wave opera-
use of finite square-integrable functions associated with théor can be split into two terms
molecular electronic and nuclear coordinates and with the
variable time. Multiplying on the left Eq7) by z—H and on X(2)=X1t Xz, X1=P1X(2), X;=P:X(2). (34
the right byz— H®'" gives

The localization of the matrix elements ¥f, and X, is in-
(z—H)Q(2)=P[z—H®'(2)]. (30) dicated in Fig. 1. Multiplying Eq(31) on the left by the
projectorsP, and P, and using Egs(32) and (34) leads to

Equation(30) indicates that the term on the right-hand sidethe two basic equationsee Appendix ¢
acts as a source term containing the information about the

oo o . P
!nmal state. Multiplying both sides of Eq30) by the pro- X, = _1 V(1+X5) P, (35)
jector Qg into the orthogonal complementary space gives z—H
Qo(z—H)Q(2)=0. (31 and
Using Egs.(5) and(7), the solution of Eq(31) can be writ- L
ten in the form X2_z— HOV(1+X1+X2) Po. (36)
O (z2)=Py+X(2), (32)  Equations(35) and (36) look perturbative. All quantities in
_ these expressions can be easily evaluated since the inversion
whereX(z) is the reduced wave operator of P,(z—H)P, is feasible in the intermediate space and the
unperturbed Hamiltoniaky is diagonal in the outer space.
Qo We could try to solve simultaneously Eq85) and(36) by a

X(z)=

HP,. (33

z—H first-order iterative process, which would lead to at best lin-
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several key points important for understanding and comput-
ing the wave operators and their associated effective Hamil-
tonians. We begin by revisiting the Fano model, which con-
X, intermediate space Py tains the basic ingredients illustrating reversible and
irreversible dynamicgresonances This model emphasizes
the importance of the choice of the model space: It is one-
dimensional for an irreversible evolutigweak coupling or

at least two-dimensional for a reversible dynamistong
coupling. The second model, a driven oscillator whose so-
X outer space P, lutions are known, possesses a true continuum. The infinite
matrix representation of its Hamiltonian is truncated in order
to check the accuracy and the convergence properties of the
quasiquadratic scheme described in Appendix C. The influ-
ence of the size of the intermediate space is discussed. Fi-
nally, a hydrogen atom put in a static electric figltark
effec) provides a good example of the efficiency of our ap-
proach to investigate simultaneously the two almost degen-
erate resonances originating from the first excited states of
ear convergence. Experience shows that the procedure geifie hydrogen atom @and 2o, orbitals.

erally fails for large matrices, especially when one increases

the number of basis function and/or the number of points in A. The Fano model

grids for discrete variable representations. The Newton-
Raphson scheme can be conveniently used to solve(&5)s.
and (36). The approximate solutiolXX=X;+ X, is incre-

H(z) model space Py

FIG. 1. Matrix localization of the effective Hamiltoniat®'’(z)
and of the projected reduced wave operaxgr and X,. X=X;
+X2, Q0:P1+ Pz, and POJFQo:l

The infinite matrix representation of the Fano model
[24,8] can be written in the form

mented by the quantitiesX; andA X, given in Appendix C. 0 o v

The linearity of Eqs.(35) and (36) ensures that the exact

expressions foX; and X, could be obtained in one step. v 0 O 0

Obviously, this procedure cannot be used for practical calcu- v 0 -8 0 37)
lations since it would imply the inversion of large matrices; ’

this would require, however, a computational effort as exten- v 0 0 +6

sive as determinating the full resolvent operator. The number

of multiplications would be proportional td4°, N being the

dimension of the_ Hamiltqnian matrix. In Appendix C it is The energy of the discrete stafecoupled to the quasicon-

shown how quasiquadratic Newton-Raphson schemes can bg,um is taken as the origin of the energiéss the constant

obtained, which require a number of multiplications propor-gnergy gifference between the levels of the quasicontinuum

tional ton-N*, n being the dimension of the model space. 54 is the strength of the interaction between the discrete

state and the quasicontinuum statks k=0,=1,=2,....

The above notation as well as the exact solution of this
The principal aim of the wave operator theory of quantummodel can be found in the complemedi of Ref.[8]. The

dynamics, which includes long-lived events such as resophysical results are obtained at the lingit~0 while v%/ 8

nances, is to reduce the dimension of the vector space pafemains constant. The transition rdteto the continuum is
ticipating in the dynamics. Such a subspace is generallgqual to

called an active space. There is extensive literature concern-

ing the definition and the determination of active spaces 2

[1,2,22,23. It must be emphasized that the concept of active I'===. (38
space is more computational than physical. The size of an

active space depends strongly on the choice of the represewe will consider successively two dynamics: an irreversible
tation of the Hamiltonian. In this article, the states that par-dynamics corresponding to a weak couplintfy(<1) and a

ticipate mainly in the dynamics belong either to the modelreversible dynamics corresponding to a strong coupling
space or to the intermediate space. Whatever the selectiqi/y>1). In both cases the initial state ¢

procedure of the intermediate space mightlimsed on some
energy criteria or obtained from the first steps of an iterative 1. Irreversible dynamics (weak coupling)
solution of the Bloch equatiof2]) we suggest to define the

; ) .~ The dynamics is projected into the one-dimensional
active space as the direct sum of the model and of the mtermodel spacer(=1) spanned byb. For timest<2#/8 the

mediate space. With such a definition all usual diagonaliza: itial state ¢ decays into the guasicontinuum whereas for

tions and inversions of operators can be carried out easily o : : .

a workstation. arger times recurrences may appear. The unique matrix term
E(z) representindH®ff(z) [defined by Eq(11)] is given by
the exact expression

B. Discussion

IV. NUMERICAL ILLUSTRATION

We have selected for our study a few model systems con- _ It . mz
o . . . X E(z)=—i Xi co . (39
taining both quasicontinua and true continua. They illustrate 2 S
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FIG. 2. Representation of the real partf¢k) =i cot(nz/6) as a
function ofz for 6=1. This quantity tends to 1 when kmends to
it tends to for the real valueg=ké (k=0,=1,£2,...).

The real part ofi cot(wz/6) is shown in Fig. 2. It is quite
remarkable that all information needed to compute the sur
vival amplitude(|#(t)) (autocorrelation functionis con-
tained InE(z) as given by Eq(39). Note that this informa-
tion is highly singular near the real energy axis, where
distributions appear for the valué$ (k=0,=1,+2,...).

In order to obtain the first terms of the temporal evolution
of the autocorrelation function, from the initial time- 0, we
expandE(z) in the Fourier series

Then 1fz—E(z)] is expanded in power ofx=E(z)
+iI'#/2 in the neighborhood af= —iT'A/2,

o0

2mikz
th ex T
k=1

6

Th
—i—=—i

2

E(2)= (40

1 1 X NG

=— + + +e
z—E(z) z+iThI2 (z+iT#I2)2 (z+iT#/2)3
(41)

The inverse Laplace-Fourier transformation of E4l) and
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FIG. 3. Representation of the irreversible survival probability

the use of the theorem of residues leads to the autocorrelatidit) =l #|#(t))|* as a function oft. Recurrences occur at times

function

ry, o
(¢ z/f(t)>=e><p( - 7) —kgl O(t—t )P T (t—tp)]
o - ). .

In Eqg. (42) N is a positive integer. The polynomid, is
defined by

-1
k=1) |

TR

2mhk
-

k
Pk<x)=|§1<—1)'“

ty

The (_}) are the binomial coefficients. Expressitt®) is
exact whenN approaches infinity. Figure 3 represents the
survival probability|( ¢|y(t))|* as a function ot. It can be

ty=2wk#l/6(k=1,2,... ands=1). The three first recurrences in
(@), (b), and(c) come from the valuebl=1, 2, and 3 in expression
(42) (arbitrary units.

2. Reversible dynamics (strong coupling)

The dynamics is now dominated by the reversible ex-
change that occurs inside the two-dimensional model space
between the initial statpp) and the stat¢0) belonging to
the quasicontinuum. The exact matrix representation of the
two-dimensional effective Hamiltonian is given by

(43

Heff(z): €
v O

wheree=E(z) —v?/z is a small quantity with respect ta It
can be written in the forme=—il'A/2Xi[cot(7Z d)
—(wZ6)~1]. The representation of the real part of
i[cot(mz/6)—(mz/8) 1] is given in Fig. 4. It can be checked
that € is regular atz=0. The analytic continuation of

immediately checked that, as expected, the first recurrencd$®'’(z) can be obtained by expanding’’(z) in a Taylor

correspond to the valuds=1,2,3 ... in Eq.(42).

series neaz=0, which leads to
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B. Driven harmonic oscillator

The electric dipolar interaction between an electromag-
netic wave and a harmonic oscillator can be approximated by
the time-dependent Hamiltonideee[25], pp. 204 and 205

H=fwa'a+#[f(t)a+f*(t)a’]. (47)

If the oscillator is in its ground sta{®) at the initial time, it
develops into a coherent state. We will consider a resonant
interaction and chosg(t) in the formf(t) = aexp(wt). The
exact solution is given by

FIG. 4. Representation of the real part ©fz)=i[ cot(wz/6)

e o] . n
—(wz/8)"1] as a function ok for §=1. Note the disappearance of _ (—ia) n T 29| —inet
the singularity at the origiz=0. ly()) nZO N tlexg —sat’|e In). (48
Po 2 22 The probability amplitude and the occupation numbers of the
¢ TSN ¢)= > RN various states follow an irreversible evolution. In particular,
z—H%"(2) (z=v%) (Z7-v") for the ground state, the autocorrelation function and the sur-
2 vival probability are exactly given by
+——e?+ . 44
(22—v?)3 9 a’t? o2
(O] y(t))=ex |, p=e . (49

In Eq. (44
9. (44 The survival probability has to be compared with the prob-

ability law p(t)=exp(-TI't) that characterizes the temporal
evolution of a Breit-Wigner resonance. The Green’s function
corresponding to the autocorrelation function given in Eq.
(49) is known (see Appendix A

4K 7\ 20— 1)
Ea

5
U
622(775) gl (—1)k(ZT)!sz =

TheB,, are the Bernoulli number8,=1B,=3%, ...). The e
inverse Laplace-Fourier transformation of Ed4) leads to G(z)=-— N7 exp [1/2(z/ﬁa)2]erfc( _

the expansion of the autocorrelation function in powers of Vha

). (50)
(v16)?

(2%

G(z) can be expressg@6] in the form of an infinite con-

ot 1/ mv)2 ot ot ot tinuous fraction
<¢|(ﬂ(t)>=00‘{%)—§(7) CO{E)_ES”’](E) L (ha,)z
G(z)=—%c==, E@=—"T—""—7. 51
o (46) (@) z—E(2) 2) 2(ha)? &y
~ 3(ha)?
Figure 5 shows that the dynamics is not significantly modi- T

fied by the addition of the first correcting term in/@)>2.
The same conclusion would be achieved for higher-ordeyain, the information concerning the autocorrelation func-

terms. tion is contained irE(z). In order to illustrate the efficiency
of the computational scheme presented in Sec. Ill A and in
I'=0.2, §=2.0, h=1 Appendix C, we have used a finite matrix representation of
1.0 AN X the time-dependent operatdi(t) [defined by Eq.(17)].
08 I 3 a A\ '\ Since H(t) is periodic [H(t+T)=H(t), T=27/w], the
calculations were done within the framework of the Floquet
06 L theory [27]. The use of the moment method applied 7o
p(t) provides the relevant basis set in the generalized Hilbert
04 space
02r 1 inwt 52
n))=—=|nye "M,
ool In)) ﬁl ) (52)

The matrix representation f in this basis is given in Fig.

FIG. 5. Representation of the reversible survival probability6(@). Note that this matrix representation is identical except
p(t)=|(#|4(t))]> as a function oft. The full line corresponds to for a multiplicative factor with the matrix representation of
{p| (1)) =cospt/h); the dotted line corresponds ¢@|w(t)) given  the position operatora+ a') acting in the standard basis of
by Eg. (46) (arbitrary unit3. the unperturbed harmonic oscillator.
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0)) 11)) 12)) 13)) |4)) [0)) 1)) 12)) 13)) [4) 0.8 . .

Lo Re B(z) -~
(ojlof1]0j0]0 (©|o|H|H|lo|o @ Im E(z) —
({1]o|vz|o]o (| |-v2| o |-§|-F
«llo]vz]o|v3|o (@] 0 |v3| £ |5 04 r ]
(@] o|o|v3o]|va @[ o|-L2|g|-v4| o
((4| 0 0 0 \/AI 0 ((4| 0 _% g 0 \/Z ol SN e
(a) (b)

FIG. 6. Matrix representation of{=H—i# (d/dt). H is the 04 . L 1.
Hamiltonian of the driven harmonic oscillator given by H¢7) -20 -10 0 10 20
(ho=a=1). (a) basis|n)) given by Eq.(52) and(b) rotated basis Re z
given by Eqgs(53).

0.8

Hereafter, it will be assumed thd0)) spans a one- ' 'Re E() -

dimensional model space. The iterative determination of the (b) -Im E(z) —

reduced wave operatof cannot be obtained directly from
the matrix representation in Fig(#® since all its diagonal

elements are zero. This highly degenerate representation h
to be at least partially diagonalized. This was done by con-
sidering the matrix representation &f in Fig. 6b) in the
rotated basis

%[|i))—|i+1>)], i=13,...

i))= (53

04

0.0

Re z

10

20

%[|i+1>>+|i>>], i=2.,4,....

FIG. 7. Real and imaginary parts &f(z) as a function ofE
=Rez. (a) Im z=0.5 and(b) Im z=4.0.
Although the new representation is very far from being di-
agonal, the iterative process described in Appendix C is veryive of an irreversible processes. The numerical results were
efficient. As expected, the convergence properties of the prgound to be stable and the convergence properties quite simi-
cedure depend strongly on the size of the intermediate spaggr by extending the size of Hamiltonian matriX € 200).
and on the number of terms used in the expansion of
Po/(1—A,,) (see Appendix € The number of iterations
required to obtain approximatively seven digits on the com-
ponents of the wave operator is given in Table |. The calcu- We have chosen to study this well-documented system
lations were carried out using a matrix representation of dibecause its spectrum possesses a true continuum. Moreover,
mensionN=100. The overall results were found to be in there is no simple analytical solution and the hydrogen atom
excellent agreement with the exact valiesven exact fig- has been frequently used as a representative benchmark for
ures. The real and imaginary parts &(z) are represented testing resonance methods using a finite basis set of square-
in Figs. 7@ and 7b) for Im z=0.5 and 4.0, respectively. All integrable [?) functions[28].
dynamical information concerning the survival amplitude is The Hamiltonian in spherical coordinates and in atomic
contained in these dispersion curves, which are representanits (a.u) is given by

C. Stark effect in the hydrogen atom

TABLE I. Number of iterations required for obtaining approximately seven figures in the components of
the wave operatord=10"") (see Appendix Cas a function of the dimensiam of the intermediate space
and of the numbek of terms used in the expansion B /(1—A,,).

z=4i z=10+4i
k\m

2 4 6 8 10 12 14 16 18 20 2 4 6 8
0 18 16 14 12 10 7 5 3 2 1 5 3 2 1
1 8 7 7 6 5 4 3 2 2 1 3 2 2 1
2 10 9 8 7 6 5 4 3 2 1 3 2 2 1
4 7 6 5 5 4 3 3 2 2 1 2 2 2 1
8 4 4 4 3 3 3 2 2 2 1 2 2 2 1




PRA 58 WAVE OPERATOR THEORY OF QUANTUM DYNAMICS 1875

TABLE II. Poles in atomic unitga.u) of the Green’s function z=E(2). (56)
(1s|1/(z—H)|1s)=1[z—E(z)] for the ground state of the hydro-
gen atom in the dc field=0.1 a.u. obtained by the iterative solu- For this well-isolated resonance, which is almost a bound

tion of Eq. (56); 6=0.4. state, it is expected that the first-order iterative procedure
' zk*V=g(z), k=0,1,2 ..., should converge in a few it-
Iteration EKk) erations[9]. The results are given in Table Il. As expected,
0 —05 the convergence is very fast and the converged values are in
1 —0.526876i0.007936 exceller)t agreement with those fc_)und. by Nicolaides and
5 0.5274270.007290 Themelis[28] and Silverman and Nicolaidg¢&9].
3 _0'527419_@'007269 2. First excited state
4 —0.527418:0.007269
Since the two resonances are almost degenerate, it is rel-
Ref.[28] —0.52741910.007268 evant to use the two-dimensional model space spanned by
Ref.[29] —0.5274180.007269 the 2s and 2p, wave functions. We have slightly extended

the flexibility of the basis used for the ground state. This was
done by adding to the previous basis two orbitals sfym-
metry with radial parts proportional to exp(/2) and

r exp(—r/2) and one orbital op symmetry with a radial part
proportional tor exp(—r/2). With this basis we have repro-
where€ is the amplitude of the electric field azekrcosgis  duced exactly the 2and 2o, energies of the isolated atom.
thez coordinate of the electron. Since we limit our numerical The same procedure as above led to a two-dimensipnal
investigation to the energy of the resonances, assumed ttependent effective Hamiltonian whose eigenvalues were de-
correspond to the poles of the analytically continued Green'sioted E;(z) and E,(z). The iterative solution of the two

1
H=—=———¢& cos, (54)

function, it is useful to work with the complex rotated equationsz=E;(z), i=1,2, led to the two resonance ener-
Hamiltonian[14] gies. The values obtained at various iterations are given in
Table Ill. Again, they are in excellent agreement with those
A e’ . previously reported30,28|.
Ho=— Eez")— ———¢&r cos ge'?. (55)

V. CONCLUSION
We have used for the ground and for the first excited state a
basis set of Slater orbitals with angular symmetries up to lec
=7, as in Ref[28]. The radial parts for thesymmetry were
chosen in the form constr' tke™", k=0,1, .. . ,9.

Up to now, the theory of effective Hamiltonians for mo-
ular quantum mechanics was based mainly on the time-
dependent wave operat6(t) [1]. In this paper we adopt
the spectral point of view in which a special importance is
ascribed to the variable enerd)g2]. This approach is espe-
cially relevant for investigating long-lived events, such as
The exact $ wave function spans the model space. Wequantum resonances. We have defined energy-dependent
have considered a diagonal matrix representationHgf wave operator€)(z) that arise naturally from either time-
within each angular symmetry. This required the diagonalindependent or time-dependent Hamiltonians. We have es-
ization of eight small 1& 10 matrices. The iterative proce- tablished the link between our approach and thE ) theory
dure in determining the wave operator was found to be verpf Peskin and Moiseyef6]. With the aim of solving large-
efficient to obtain the values &{(z). From the knowledge of scale molecular dynamics, Bloch-type equations were solved
E(2), the poles of the Green'’s function were easily found byby an iterative procedure based on a partition of the full
solving the equation Hilbert space into a model space, an intermediate space, and

1. Ground state

TABLE lll. Complex eigenvalue€,(z) and E,(z), in atomic units, for the first excited state of the
hydrogen atom in the dc fielfi=0.01 a.u. of the effective Hamiltoniat®’(z) obtained at various iterations;

6=0.4.

Iteration X—2p, state A+ 2p, state
0 —0.125 —0.125
1 —0.160063/0.01161 —0.1031430.00194
2 —0.166166:0.005351 —0.103830:0.001783
3 —0.166088:0.005446 —0.103899:0.001673
4 —0.166088:0.005446 —0.103894i0.001650
5 —0.103890i0.001647
6 —0.103889:0.001647

Ref. [30] —0.16609i0.005442 —0.10389i0.001637

Ref. [28] —0.166088/0.005446 —0.103888{0.001632
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Im z 0(t)— 1
z
[6(t) is the Heaviside functiop
C
\ / P S
\9.—/ e e
f(t)e < ge‘ ZZ/“Ezen‘c( - |2—Z) ,
FIG. 8. Integration patlC in the complex plane. € €
, I 1
an outer space. The investigation of a few model examples a(t)lp(t)H—H(j;
7—

has shown that the concepts of model space, energy-
dependent wave operators, and effective Hamiltonians ar&he time-independent Hamiltonian
useful for understanding both dynamics and effective com- P
putation. In the Fano model one- or two-dimensional model

spaces were required for describing irreversible or reversible APPENDIX B: THE BLOCH WAVE OPERATOR FOR

evolutions, respectively. Although our numerical investiga- BOUND STATES (FROM REFS. [33] AND [2])

tion was purposely limited to small matrices, the iterative  Tne full Hilbert space is the direct sum of a finite
procedure presented in this paper is intended to perforgimensional model space and of its orthogonal complement,
large-scale dynamic calculations. Recently, the procedurgye guter space. The orthogonal projectors associated with

has been successfully applied to the accurate determinatiQRe model space and the outer spaceRy@ndQ,, respec-
of the lifetimes of many electronically and vibrationally ex- tively '

cited states of the LiH molecule decaying through vibronic

interactiong 31]. Po+Qo=1. (B1)
APPENDIX A: THE LAPLACE-FOURIER The theory is based on the Bloch wave operddgrwhich
TRANSFORMATION establishes a one-to-one correspondence betweevjected

solutions in the model space andexact solution in the full
The formulas below were adapted to quantum mechanicgiilbert space. The wave operator obeys the basic nonlinear
from Refs.[32] and[26]. The Laplace-Fourier transform of a equation[34,35
function f(t) is defined by

HO=QHQ, (B2)
R 1 (= _
f(2)= @J dt f(t)e's'". (Al)  whereH is the Hamiltonian of the system. EquatitB2) can
0 be split into two parts and written in the form
Fort>0 the functionf (t) can be recovered by integration in HO=QHe (B3)
the complex plangsee Fig. &
L Hef=PoHQ. (B4)
- i —iztlh
= 2i Ldz f(z)e ' (A2) Equation (B3) is a natural generalization of the time-
independent Schdinger equation for one energy level. The
The Laplace-Fourier transforms are eigenvalues of the effective Hamiltonian defined by &%)
provide n exact eigenvalues oH and the corresponding
f(t)=F(2) eigenfunctions are the projections in the model space of

exact solutions. An advantage of the wave operator approach
is that it makes it possible to investigate simultaneously a

e” Vfef(z+ie), small finite number of almost degenerate states. The diago-
nalization of a low-dimensional effective Hamiltonian pro-

f(t—to) e/ (z), vides exact energies by means of a numerically stable pro-

cedure. Another advantage of the Bloch wave operator

i78(t)—1, approach for bound states is that it is quite similar to the

wave operator formalism of scattering thedB6] in which

dnf 1 the Mdler operators fulfill the wave operator equation
o (2,
dt"  (in)" 2 HQ.=0.H,. (B5)

4t The zeroth-order Hamiltonian describes usually noninteract-
(2) ing particles. EquationeB3) and (B5) possess quite similar
dz" linear structures.

t"f(t)—(—in)"
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One can expand Eg#C6) in the neighborhood of the exact
solution in terms of two small incrementsX; and AX,

We assume that the full Hilbert space has been discretize%\lewmn'R"’lphson scheme

and that the Hamiltonian of the system is represented by a X+ AX;=f1+ApAX,, (C9)
finite-dimensionaN X N matrix. Since we intend to investi-
gate systems up =10, it would be impossible to invert Xo+ AXy=f5+AsAX +AnAX,, (C10
or to diagonalize the corresponding large matrices. There-
fore, we have to look for iterative schemes. This requires avhere
computational effort proportional td? instead ofN® for the =
direct inversion or the full diagonalization of large matrices. A= ! VP,,
In the present approach we extend a computational scheme —H
previously developed within the theory of effective Hamilto- =
nians for bound statel7]. The full N-dimensional Hilbert Ap=—2—VP,, (C1D)
space is split into three subspaces: thedel spaceédimen- z—Hy
sionn), theintermediate spac&imensionm), and theouter =
: . . 2
space (dimension N-n-m). Typically, we could haven Anp= VP,.
=10,m=10?, andN>10*. Diagonalization and inversions z—Ho

can easily be done within the intermediate space, which inyhatever might be approximate values X%f and X,, the
teracts strongly with the model space, whereas the weak ins, 4t Newton-Raphson scheme would lead to the exact so-

fluence of the outer space can be treated by perturbation. Thg;

ion in one iteration. After some elementary algebra, the

orthogonal projectors associated with the model space, thg, | tion of the system of linear EQ&C9) and (C10) is given

intermediate space, and the outer spacePareP,, andP,,
respectively,

Pot+P1+P,=1, P;+P2=Qq,
We assume that the full Hamiltonidd=Hg+V is divided
into an unperturbed Hamiltoniad,, diagonal in its matrix
representation, and a perturbatidh From the definition
(33), the reduced wave operat¥(z) is a solution of

(z—H)X(z)=QuHPy. (C2
Let us splitX(z) into two terms
X(2)=X1+Xa,
where
X1=P1X(z), X,=P,X(z). (C3

Multiplying both sides of Eq(C2) on the left byP, leads to

!
z—H

Multiplying both sides of Eq(C2) on the left byP, leads to

P
Xyp=——2V(1+X;+ X5)Pg. (C5)
Z_Ho
Equations(C4) and(C5) can be written in the form
X1="11, Xy=f,, (Co)
where
Py
f,= _HV(1+X2)P01 (C7)
P>
Z—Hgp

by
Py P,
AXy=— 1-A, (Xl—f1)+A121_—A22(Xz—fz) :
(C12
P, P,
AXo=—|1+ 1—A22A2 l_Azz[Azl(xl_f1)+(X2_fz)],
(C13
where

P, Py
A1=A121_—A22A21' A2=A211_—A1A12- (C14

Since the operator 1A,,, which is defined in the outer
space, cannot be inverted directly, approximate inversion
schemes are required. Quasi-Newton procedures can be ob-
tained by expanding,/(1—Ay):

P2
1_A22

=14+ A+ (Ap)?+---. (C15

The series converges if all the eigenvalig®f A,, have
INi|<1. This can be obtained by using a large intermediate
space. If there are eigenvalues|>1, one can use a proce-
dure based on Chebyshev polynomials or on more general
polynomial expansions of the form

P>

1-A, CotC1AZ2+Ca(Ag))*+ - - -

(C16

(see[37], p. 99. In our program, the iterative process stops
when the quantityEuclidian norm

)||X_f1_f2|| (C1y

1
Vn(N—n

becomes smaller thae=10 P; p provides approximately
the number of exact figures of the componentXpandX.,.
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