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Classical limit states of the helium atom
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The techniques of Rydberg electronic wave packets are used to explore the classical limit states of helium.
A class ofshape-preservingorbits is studied under the classical adiabatic approximation that separates the
dynamics of the two electrons. These states form the classical basis for two-electron wave packet states whose
hydrogenic counterparts are shown to be elliptic states in the presence of a rotating electric field.
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I. INTRODUCTION

The classical simplicity and intuitive appeal of Bohr
atomic model have given the classical hydrogen atom
important and pervasive role in atomic physics. Even tod
the Bohr model remains as a cornerstone underlying qu
tum mechanics. However, the precise role of this class
foundation has been debated since the early days of qua
theory. Recently, a series of experimental and theoret
studies has sought to explore the classical limit of quan
mechanics using Rydberg electron wave packets@1#. These
studies of hydrogenlike atoms have allowed us to unders
some of the essential differences between the quantum
chanical atom and its more familiar classical counterpart

The logical progression of the hydrogenic studies is
extend them to include planetary atoms with multiple v
lence electrons@2–6#. However, even for the simplest suc
atom, helium, this extension is nontrivial because the
quantum theory of Bohr was never successfully modified
include helium. Early in this century a considerable eff
was made to develop a classical model for helium, but
stable planetary orbits were found@see Figs. 1~a! and 1~b!#.
By 1920 Bohr had concluded that for stability, one mu
allow for ‘‘possibilities of more complicated motions,’’@7#
but before these possibilities could be explored, class
atomic physics was abandoned in the wake of wave mec
ics and classical helium was put aside. However, the suc
of the hydrogenic wave packet studies and recent progre
semiclassical dynamics has once again revived interest in
classical limit of multielectron systems@9–11#.

In this paper we discuss an approach that relies heavily
hydrogenic wave packet models while including effects t
are unique to multielectron atoms. If the effects of a seco
valence electron are considered, the resulting dynamics,
classical and quantum mechanical, is in general unsta
The doubly excited system decays rapidly as a result of a
ionization, with one electron ejected and the other falli
back to an ionic ground state@12#. However, some isolated
classes of classical two-electron orbits@see Figs. 1~c! and
1~d!# are known to be stable despite the fact that their ene
is above the one-electron ionization threshold@11,13–15#.
Studies of wave packet states based on such ‘‘planeta
orbits will help to extend our understanding of the classi
581050-2947/98/58~1!/186~10!/$15.00
n
y,
n-
al
um
al
m

nd
e-

o
-

d
o
t
o

t

al
n-
ss
in

he

n
t
d
th

le.
o-

y

’’
l

limit of quantum dynamics involving multiple electrons.
Stable two-electron states are very attractive from the

perimental point of view because they provide an enviro
ment in which electron correlation can be studied over lo
periods of time. Planetary atom states@2# are those in which
the electrons are excited to asymmetric double Rydb
states~i.e., the radial expectation values are unequal,^r 1&
!^r 2&). In a very general way, the correlations in these pla
etary states can be ascribed to the radial and angular dyn
ics of the classical electron-electron interaction@16#. It is the
angular correlation that is of interest in the orbits that we w
discuss in this paper. The polarizing effect of the outer el
tron leads to states whose classical counterparts exhib
coupling between the outer electron and the orbital para
eters of the inner electron.

FIG. 1. A pictorial survey of some classical helium orbits. T
two-electron trajectories shown in~a! and~b! are highly symmetric
unstable orbits which were studied in an attempt to extend the B
model @3,7,8#. The orbits shown in~c! and ~d! are stable orbits in
which the dynamics of the individual electrons is quite dissimil
In these orbits it is difficult to resolve the rapid motion of the inn
electron.
186 © 1998 The American Physical Society
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PRA 58 187CLASSICAL LIMIT STATES OF THE HELIUM ATOM
We will demonstrate that the dynamical picture of a bro
class of these planetary orbits can be greatly simplified
reduction to two coupled single-electron models. This s
plification is accomplished with the help of an adiabatic a
proximation, which can be applied in the case in which o
of the electrons is more highly excited than the other@17#.
For even a modest difference in excitation energies the m
tightly bound inner electron will complete many revolutio
per single revolution of the outer electron. This difference
time scales plays a very important role in the determinat
of the effect of the electron-electron interaction.

This interaction can be divided into two components d
scribing the effect of each electron on the other. The slo
moving outer electron cannot respond to the rapidly cha
ing repulsive Coulomb force due to the inner electron.
stead, it experiences a core screening which, when aver
over the entire orbit of the inner electron, can be replaced
an effective core chargeZeff in a hydrogenic system. Thi
classical outer electron is represented quantum mechani
by a circular orbit wave packet@18# moving about the
screened core. To model the averaged effect of the o
electron on the inner electron, we can replace the outer e
tron by an equivalent electric fieldEeff in a manner similar to
that first suggested by Bohr@7# for dc electric fields and late
evidenced in the experiments of Eichmannet al. @19#. In
contrast to the dc fields results, the orbits discussed in
paper require an equivalent rotating field. The resulting c
sical model with this effective electric field has a quantu
mechanical analog that we will show to be an elliptic state
angular wave packet. Thus we develop two coupled o
electron systems that self-consistently include the effect
both electrons and whose counterparts in quantum mecha
are wave packet states.

In Fig. 2 are shown two orbits for which such an adiaba
separation of the dynamics is appropriate. Extensive stu
@5,10,11,14,17,20–22# of the unusualfrozen planet configu-
rationsshown in Fig. 2~a! were motivated by the experimen
of Eichmannet al. @19# in barium. The inner electron travel
in a linear orbit, spending most of the time near the ou
turning point and completely shielding the core from t
outer electron. In this paper we are concerned with a br
class of two-electron configurations of which the froz

FIG. 2. Numerical simulations of two-electron orbits in helium
~a! In the classical frozen planet configuration the two electrons
found in a collinear arrangement on the same side of the nuc
~which lies at the origin!. For this orbitZeff and the total angular
momentum are zero.~b! The major axis of the inner electron’s orb
adiabatically follows the outer electron in a shape-invariant orbit
which Zeff50.5 and the total angular momentum is nonzero.
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planet is a limiting case. In the general case of this kind
initial trajectory of the inner electron is an arbitrary ellips
while the outer electron initially travels in a high-angula
momentum orbit in the same plane as that of the inner e
tron. An example of such an orbit is shown in Fig. 2~b!. The
shielding of the core by the elliptic inner orbit is incomple
and the outer electron moves slowly in a circle. Orbits su
as those in Fig. 2 are remarkable because there is no
exchange of angular momentum between the electrons
consequence of this is that, although the inner orbit p
cesses, its shape does not change in time. We will refe
this class of orbits asshape preserving.

II. CLASSICAL ADIABATIC MODEL

We begin our formal analysis by treating the case o
single classical electron orbiting an atomic core with cha
Z in the presence of a weak circularly polarized electric fie
The goal is to find the conditions under which a sing
electron orbit in a rotating electric field can mimic the b
havior of the inner orbit shown in Fig. 2~b!. The signature of
this behavior is simply a precession of a shape-preserv
orbit.

The adiabatic analysis is a generalization of the static fi
result first obtained by Bohr@7# and revived more recently in
the study of Rydberg atoms@23–27#. As in the case of the
static field, the interesting dynamics of the system is c
tained entirely in the evolution of the time-averaged orbi
parameters, and not in the rapidly varying position and m
mentum, r and p. We require that the field be weak an
slowly varying so that the time scale of the field-induc
dynamics is much longer than the orbital or Kepler perio
Tk , of the electronic motion. This allows us to average t
orbital parameters over a Kepler period using the adiab
approximation well known in physics@28#.

The orbital parameters of interest are the angular mom
tum, L5r3p, and the scaled Runge-Lenz vector

A5
n

ZS p3L2
Zr

r D . ~1!

~We use atomic units throughout the paper.! The scaled
Runge-Lenz vector is a constant of the field-free motion a
lies antiparallel to the major axis of the orbit and perpendi
lar to the angular momentum vector. Its magnitude is eq
to ne wheree is the eccentricity of the orbit,

e5A12
uL u2

n2
, ~2!

and n corresponds to the energyE52Z2/(2n2). The time
evolution of L and A is found by differentiating the above
equations and by replacing the expressions forṙ and ṗ with
Hamilton’s equations of motion. The Hamiltonian in th
presence of the field is

H5H01r•E~ t !5
p2

2
2

Z

r
1r•E~ t !, ~3!

whereE(t) is an electric field whose amplitude varies slow
compared to the orbital frequency. The rapid oscillations d
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to the motion of the inner electron are removed by averag
the equations forL̇ and Ȧ over one orbital periodTk . The
resulting equations are

^Ȧ&Tk
52

3n

2Z
^E&Tk

3^L &Tk
52vs3^L &Tk

,
~4!

^L̇ &Tk
52

3n

2Z
^E&Tk

3^A&Tk
52vs3^A&Tk

,

wherevs is the Stark frequency vector pointing in the dire
tion of the applied field.

If E is an electrostatic field in the plane of the orbit Eq
~4! describe a well-known Stark oscillation of the angu
momentum and the eccentricity of the ellipse with frequen
vs53nE/(2Z) @7#. The only orbit that remains unchange
by the field is the linear orbit aligned with the field, who
quantum-mechanical counterpart, the extreme Stark stat
an eigenstate of the atom-plus-field Hamiltonian.

The dynamics of̂L &Tk
and^A&Tk

are more complex when
the applied field is a circularly polarized electric field rota
ing slowly with frequencyvr5v r ẑ:

E~ t !5E@cos~v r t !x̂1sin~v r t !ŷ#. ~5!

If v r!2p/Tk , the time averages ofL̇ and Ȧ are still valid
and the equations can be simplified with the introduction
an angular momentum vectorL̃ (t) and a scaled Runge-Len
vector Ã(t) rotating with the electric field

L̃ ~ t !5R~ t !^L ~ t !&Tk
,

Ã~ t !5R~ t !^A~ t !&Tk
, ~6!

R~ t !5S cos~v r t ! sin~v r t ! 0

2sin~v r t ! cos~v r t ! 0

0 0 1
D .

Using the coordinates defined by the orientation of the fi
in Eq. ~5!, the symmetry of the interaction divides the orbit
parameters into two uncoupled vectorsli5(Ãx ,Ãy ,L̃z) and
l'5(L̃x ,L̃y ,Ãz). Orbits whose angular momenta are par
lel to vr are described byli , while l' describes those orbit
whose angular momenta lie in the plane of rotation. Us
Eqs.~4! it is easily shown that these vectors evolve acco
ing to

d

dt
l'52V3l' , ~7!

d

dt
li52V3li , ~8!

whereV5vs1vr . Equations~7! and ~8! describe preces
sion aboutV in the rotating frame. However, if either vecto
li or l' is initially parallel or antiparallel toV, there will be
no precession and the initial vector will remain unchang
In the laboratory frame the orbit rotates with the field wit
g
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out changing its shape. It is these shape-preserving o
that are of interest in describing the two-electron orbits
Fig. 2.

In general, shape-preserving orbits exist in single-elect
systems as long as the initial angular momentum and Run
Lenz vectors lie in the plane defined byvs and vr . How-
ever, for reasons of symmetry, this model is only useful
classical two-electron systems in which both orbits lie in t
same plane@29#. The orbits shown in Fig. 2 satisfy this re
quirement and can be modeled by single-electron orbits
longing to theli class. Simple precession in the laborato
frame is represented by a shape-preserving orbit in the ro
ing frame. For orbits lying in the plane of rotation, Eq.~8! is
easily solved:

L̃z~ t !5L̃z~0!2
vs

V
Ãy~0!sin~Vt !1

vsg

V2
@cos~Vt !21#,

Ãx~ t !5Ãx~0!1
v r

V
Ãy~0!sin~Vt !2

v rg

V2
@cos~Vt !21#,

~9!

Ãy~ t !5Ãy~0!cos~Vt !1
g

V
sin~Vt !,

whereV5uVu5Av r
21vs

2 is a generalized frequency andg
is a parameter defined by

g5 Ȧ̃y~0!5vsL̃z~0!2v r Ãx~0!. ~10!

For a shape-preserving solution, the initial vectorli(0) lies
alongV requiring

Ãy~0!50, ~11!

g50. ~12!

The first of these conditions simply states that the orbit m
be aligned initially with the field. The second condition d
scribes a balance between the rotation of the electric fi
and the Stark evolution of the orbital parameters. Wheng
50 these effects cancel to produce a simple precessio
the orbit analogous to that found in two-electron orbits. F
an elliptical orbit aligned with the field, having initial angu
lar momentuml and eccentricitye, this condition ong can
be rewritten as

v r52vs

l

ne
. ~13!

Any choice of orbit can be made shape invariant over a w
range of field strengths and frequencies related by Eq.~13!.
When rewritten as Eq.~13! it is clear that the handedness
the orbital motion is opposite to that of the rotating field.
two-electron orbits this condition requires that the electro
orbit the nucleus in opposite directions. Kalinski@30# has
shown that if the axis of the inner orbit is aligned antiparal
to the radius vector of the outer electron, a limited range
solutions is allowed in which the two electrons orbit in th
same direction.
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PRA 58 189CLASSICAL LIMIT STATES OF THE HELIUM ATOM
In Fig. 3 we show two orbits in the presence of a rotati
field. Wheng50, Eqs.~9! become time independent and th
shape of the orbit remains unchanged in the rotating fram
the major axis of the ellipse adiabatically follows the field.
the laboratory frame this motion appears as the slow pre
sion of the orbit shown in Fig. 3~a!. This effect produced by
a rotating electric field will allow us to model part of th
two-electron dynamics with this simple single-electr
model. In the limiting casev r→0 it follows that the only
shape-invariant orbit has angular momentuml→0, makingg
trivially zero. This result reaffirms the previous observatio
that the linear orbit is stationary in an electrostatic field.

The dynamics of the orbit shown in Fig. 3~b! appears to
be much more complicated wheng does not equal zero
However, Eqs.~9! reveal that the behavior that looks qui
complicated in the trajectory can be understood simply
terms of an oscillating angular momentum as we see in
3~d!. This behavior is also evident in the two-electron orb
that are examined in the following section. In this case it c
be interpreted in terms of an exchange of angular momen
between the two electrons.

We point out that, despite the similarity of this situation
that of a Trojan wave packet@31,32#, the physics is quite
different. Briefly, a Trojan wave packet is formed when
circular state is placed in a circularly polarized electric fie
rotating at the Kepler frequency. The field couples the ini
state to neighboring circular states forming a wave pac
that does not exhibit the spreading and interference ass
ated with field-free circular-orbit wave packets@18#. The sta-

FIG. 3. The Stark evolution of the electron trajectory in a cla
sical hydrogenic atom~with Z52,n515,l 511) in a rotating elec-
tric field. Initially, the electric field lies along the major axis of th
orbital ellipse. ~a! When g is zero (vs5231025 s21 and v r

52.1631025 s21), the major axis of the orbit adiabatically fol
lows the field. ~b! In this orbit for which g is nonzero (vs52
31025 s21, v r52431025 s21, andg526.2831025 s21), the
field rotates in theoppositedirection at twice the frequency and th
major axis of the orbit doesnot follow the field. The corresponding
angular momenta as functions of time are shown in~c! and~d!. The
labels~i, ii ! indicate the angular momentum for various points
the trajectory in~b!.
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bilization of the Trojan wave packets represents a bala
between the applied field and the dispersion inherent
tween the energy levels of differentn manifolds. In the case
of the shape-preserving orbits discussed in this paper, a w
packet representation would involve states from the samn
manifold and hence no dispersion. The stabilization in t
case is a balance between the two field-generated effe
This type of stabilization is of limited interest in single
electron atoms but is important in discussions of tw
electron dynamics, as we will see in the following section

A close connection between the Trojan wave packets
the multielectron dynamics described here was recently p
posed for rotating molecular systems that have a large e
tric dipole moment@33#. The role of the rotating electric field
is replaced by the presence of the rotating dipole mom
producing a system that is functionally identical to that of t
atomic Trojan wave packets.

III. CLASSICAL MODEL OF DYNAMICAL SCREENING
IN TWO-ELECTRON ATOMS

It now remains to be shown that the model of a sing
electron atom in a rotating field can be used to predict
behavior of the two-electron system. Two parameters m
be calculated: the effective core charge seen by the o
electron and the effective rotating electric field experienc
by the inner electron. The shape-invariant precessing or
are found by coupling these quantities together under
conditiong50.

The motion of the outer electron is modeled by a circu
orbit around a core of chargeZeff . We characterize this orbi
with n2 and l 25n2, and by an orbital periodT2

52pn2
3/Zeff

2 . The inner electron is in an elliptic orbit about
core ofZ52 with n1, l 1, and eccentricitye1. The Bohr ra-
dius of this orbit is given bya15n1

2/Z. The effective radial
force experienced by the outer electron, averaged over
motion of the inner electron, is

Feff5
Zeff~r 2!

r 2
2

52K r 22r 1cosu1

ur22r1u3 L
T1

1
2

r 2
2

. ~14!

Although Eq.~14! has an analytic solution in terms of ellipti
integrals we will express its solution in terms of a multipo
expansion in powers ofr 1 /r 2:

Zeff~r 2!512
3a1e1

r 2
2

3a1
2

4r 2
2 ~119e1

2!1OS a1

r 2
D 3

. ~15!

For helium (Z52) the ratior 2 /a1.5.4 @see Fig. 4~a!# for all
values ofe1, and only the first few terms of the series~15!
are necessary. In the case of a linear inner-electron o
(e151) the expansion for the effective potential coincid
with the one in Ref.@17#.

To complete the analogy of our two-electron model to
single-electron atom in a rotating field, we calculate the
fective field experienced by the inner electron,

Eeff5K r 22r 1cosu1

ur22r1u3 L
T1

, ~16!

-
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which may also be expressed in terms of a multipole exp
sion in powers ofr 1 /r 2:

Eeff~r 2!5
1

r 2
2F11

3a1e1

r 2
1

3a1
2

4r 2
2 ~119e1

2!1OS a1

r 2
D 3G .

~17!

Equation ~13! provides the condition for a shape-invaria
inner-electron orbit. In the coupled single-electron mod
the inner electron interacts with an electric fieldEeff , which
rotates with frequencyv r52p/T2, while the outer electron
sees a core of chargeZeff . Equations~13!, ~15!, and~17! can
be combined into an equation inr 2,

3Eeff~r 2!

2Z
5

e1

l 1
AZeff~r 2!

r 2
3

, ~18!

which is solved numerically to find the radius of the ou
electron that assures that the orbit of the inner electron d
not change shape.

In Fig. 4 are shown plots of the values ofr 2 and Zeff ,
predicted by the coupled one-electron models, as funct
of the eccentricity of the inner orbit. In the same figure a
shown the corresponding values from numerical simulati
obtained by integrating the classical equations of motion
the full two-electron problem. The latter results were o
tained by searching for a configuration that minimized
exchange of angular momentum between the electrons.
agreement between the approximate analytic result and
full numerical simulation is extremely good. As the inn
orbit becomes more eccentric the degree of core shield
increases, reducing the effective chargeZeff to zero. This is
the limit of the frozen planet configurations. In the oth

FIG. 4. The radial position~in units of a1) and the effective
charge seen by the outer electron orbiting an inner electron
n1515. The line in~a! is the solution to equation~18! and these
values of r 2 are then substituted into~15! to give the effective
charge shown in~b!. The points on both plots were calculated b
numerically integrating the equations of motion for the classi
helium problem with a nucleus of infinite mass. In the limit of
linear inner orbit,l 1→0, the inner electron completely screens t
nucleus.
n-
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he
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limit, the orbit of the inner electron becomes circular and t
screened core charge approaches unity. Although in this l
the eccentricity is approaching zero, the adiabatic requ
ment thatv r remain much less than the Kepler frequency
not violated because the strength of the effective field~and
hencevs) is decreasing more rapidly as 1/r 2

2.
The analytic theory derived from the coupled sing

electron models provides an illuminating explanation of t
shape-preserving orbits in Fig. 2~b!, but even for cases in
which g is not equal to zero the preceding analysis provid
insight into the dynamics. Figure 5~a! shows a single-
electron orbit closely matched to the helium orbit in Fi
1~c!. In these orbits there is a sinusoidal exchange of ang
momentum that in the case of helium produces a nonunifo
angular velocity of the outer electron. The magnitude of t
angular velocity oscillates sinusoidally at the same freque
as the angular momentum exchange. Also, instead of a
batically following the outer electron, the major axis of th
inner electron’s orbit now oscillates about a line connect
the nucleus and the outer electron. As can be seen from F
1~c! and 5, many features of these multielectron orbits
explained by the coupled one-electron models but a m
general approach will be required to produce quantitat
agreement.

An obvious extension to the shape-preserving orbits
scribed in the preceding section is to include configuratio
in which the outer electron is in an elliptical orbit with ec
centricity e2. In this case the rotational frequency of th
outer electron will vary around the orbit, as will the effectiv
electric field. To first order both of these quantities vary
1/r 2

2, causing the ratio ofvs /v r to remain constant, thus
maintaining the conditiong50. The constancy of this ratio
was pointed out by Bellomoet al. @27# who used this fact to
develop a simple geometrical interpretation of collision
population of high angular momentum Rydberg states.

This result would seem to indicate that the condition
stable orbits, Eq.~13!, might still be satisfied even when th
outer orbit is elliptical. The adiabatic theory is easily mod
fied to include these cases. At a radiusr 2, the angular fre-
quency of the outer electron is given by

v r5
l 2

r 2
2

. ~19!

Reexpressingl 2 in terms ofZeff , e2, and r 2 we find an ex-
pression analogous to Eq.~18!:

3Eeff~r 2!

2Z
52

e1

l 1
A~12e2!Zeff~r 2!

r 2
3

. ~20!

We can solve this in a manner identical to that used
circular outer orbits and we find that, for a given inner ele
tron orbit, there is a complete set of elliptical orbits for th
outer electron. In Fig. 6 we show these results for an in
orbit of e150.68.

The numerical simulations reveal that these predicted
bits are not a simple extension of the previous sha
preserving orbits. The failure of this prediction lies in th
assumption that the effective electric field was approximat
Coulombic. Equation~17! provides a more accurate expre

th
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sion for this field in which the higher-order terms are n
negligible for any eccentricitye1. The higher-order terms in
the multipole expansion lead to a precession of the o
orbit that is analogous to the precession seen in alkali at
@34#. More eccentric orbits will experience a more rapid p
cession because of the enhanced ‘‘core’’ effects at smal
dii.

Despite the presence of these non-Coulombic effects,
predicted configurations are approximately shape preserv
even for quite eccentric orbits of the outer electron. T
adiabatic model reveals the nature of this class ofdouble

FIG. 5. ~a! This classical one-electron orbit in a rotating elect
field corresponds to the two-electron orbit shown in Fig. 1~c!. The
three plots compare~b! the angle between the major axis of th
inner electron’s orbit and the outer electron or field,~c! the angular
momentum of the inner electron, and~d! the angular velocity of the
outer electron or field. The solid lines represent the two-elect
model and the dashed lines are the results of the hydrogenic ato
a rotating field.
t

er
s

-
a-

he
g,

s

ring @13# orbits and explains why the exchange of angu
momentum is small~though nonzero!.

IV. QUANTUM-MECHANICAL CORRESPONDENCE

The calculations that we have carried out thus far ma
use of classical theory. In single-electron atoms, wave-pa
states have bridged the gap between classical and qua
mechanics. Although in general, two-electron wave pack
require the full two-electron quantum theory we can dem
strate the behavior of the shape-preserving orbits using
drogenic quantum theory. The analysis of a classical elec
interacting with a circularly polarized field did not depend
the exact initial position and momentum, but rather on
initial orbital parameters. The time averages in Eqs.~4! can
be replaced by ensemble averages and Eqs.~9! can now be
interpreted in terms of an ensemble of electrons rather t
in terms of one isolated electron.

A quantum-mechanical analog of such a classical
semble traveling in an elliptic orbit is an elliptic state@35#.
Formally an elliptic state in thexy plane is a coherent stat
in the rotation group in three dimensions, SO~3!, whose gen-
erators are two components of the scaled Runge-Lenz op
tor, Âx andÂy , and a component of the angular momentu
L̂z . These operators form a generalized angular momen
vector l̂ whose classical analog isli .

We will show that elliptic states do display behavior ide
tical to that of a classical ensemble in a rotating electric fi
and, moreover, the elliptic state whose shape is stable in
field is an eigenstate in this field.

n
in

FIG. 6. A numerical simulation involving a noncircular orbit fo
the outer electron. The two-electron orbit is not of the sha
preserving class because of the higher order moments in the ex
sions of the effective core and effective electric field. These corr
tions lead to a precession of the orbit of the outer electron. T
eccentricities of the inner and outer orbits aree150.68 ande2

50.5. The maximum exchange of angular momentum wasD l
53.6.
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A. Quantum theory of hydrogen in a weak rotating
electric field

The derivation in Sec. II was a purely classical calculat
but Eqs.~9! and Eq.~13! can be obtained quantum mechan
cally for a weak dc electric field in which neighboringn
manifolds are not mixed.

Using the Pauli substitution@36# we can write the Hamil-
tonian operator for an atom in a rotating electric field as

Ĥ5Ĥ02vs~ t !•Â. ~21!

For a field rotating in thexy plane, only the evolution of the
operators associated with the classical vectorl i is required.
The Heisenberg equations of motion forÂx ,Ây , and L̂z are
given by

d

dt
Âx~ t !52 i @Âx ,Ĥ#52vsL̂zsin~v r t !,

d

dt
Ây~ t !52 i @Ây ,Ĥ#5vsL̂zcos~v r t !, ~22!

d

dt
L̂z~ t !52 i @ L̂z ,Ĥ#5vs@Âxsin~v r t !2Âycos~v r t !#,

where we have used the commutator relations forÂx ,Ây ,
and L̂z .

We define operatorsÂx , Ây , and L̂z which are rotating
with the field. The resulting operator equations of motion
identical in form to Eqs.~9! with Ãx ,Ãy , andL̃z replaced by
their operator equivalents. In order to reproduce the sha
preserving orbit quantum mechanically, the expectation v
ues of these equations must reduce to Eqs.~9!. The choice
for the initial state is critical but we will show that the ap
propriate choice is an elliptic state.

The elliptic states may be represented as nongeom
rotations of the circular stateun,n21,n21& @37,38#

uC~ t !&5e2 iaÂyun,n21,n21&. ~23!

The anglea parametrizes the rotation to produce the en
range of elliptic states whose major axes lie along thex axis.
The projection of the probability density of an elliptic sta
onto thexy plane is shown in Fig. 7. The wave function

FIG. 7. The probability density of an elliptic state (n515 and
a50.2p) projected on to thexy plane. The probability of finding
an electron is greater in the neighborhood of the outer than in
neighborhood of the inner turning point. This state correspond

^L̂z&511.33 and an eccentricity of«50.55.
n

e

e-
l-

ric

e

tightly localized about an ellipse whose eccentricity« is de-
fined by

«[^ Âx&/n5
n21

n
sina. ~24!

There exists a one-to-one correspondence between the
sical orbits and the elliptic states whose parameters are
lated by

quantum↔ classical

«
n21

n
e

^L̂z&
n21

n
Lz .

~25!

In the limit of largen, the scaling factor becomes unity an
the expectation value of the quantum angular momentum
eccentricity are identical to the classical values. However,
will not require the invocation of the limit of large quantum
numbers and the following derivation applies to all ellipt
states regardless ofn.

Choosing the elliptic state to be the initial state, the init
conditions are given by@35#

^L̂z~0!&5~n21!cosa,

^Âx~0!&5~n21!sin a, ~26!

^Ây~0!&50.

The resulting time evolution of the expectation values
Âx ,Ây , andÂz is

^L̂z~ t !&5~n21!cosa1
vs

V2
gq@cos~Vt !21#,

^Âx~ t !&5~n21!sin a2
v r

V2
gq@cos~Vt !21#, ~27!

^Ây~ t !&5
gq

V
sin~Vt !,

where we have defined a quantum analog tog given by

gq5vs~n21!cosa1v r~n21!sin a. ~28!

When gq50, the quantum state remains unchanged in
rotating frame just as in the classical orbits. The condition
the stabilizing field can be written as

vs52v r tan a, ~29!

which can be shown to be equivalent to Eq.~13! using Eqs.
~26!

v r52
vs^L̂z~0!&

n«~0!
. ~30!

e
to
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In Figs. 8 and 9 we show the evolution of a hydrogen
elliptic state in rotating electric fields. These snapshots of
evolution were obtained by numerically integrating Schro¨d-
inger’s equation in the rotating field. The calculation i
volved only then515 manifold in hydrogen and the fiel
strengths and frequencies were chosen to correspond to
equivalent case shown in Fig. 3 whereZ52. Note the cor-
respondence to the classical orbit, which is perhaps m

FIG. 8. This figure is a schematic representation of the co
spondence between a rotating hydrogenic elliptic state~represented
by the outer contour plots! and a classical helium orbit~inner tra-
jectory!. The elliptic state (a50.238p) evolves in a rotating field
which satisfies Eq.~29!. These snapshots in time reveal a sha
preserving wave packet that is exactly analogous to the sh
preserving classical orbit. The field strength is 2284V/cm andv r

51.0831025. The elliptic state is in fact rotating about the nucle
contained within the contours but each snapshot has been disp
for illustrative purposes.

FIG. 9. Snapshots of the evolution of a hydrogenic (Z51) el-

liptic state corresponding tôL̂z&510.26 in a rotating electric field
The field doesnot satisfy ~29! and the field strength is 2284V/cm
and v r522.1631025. The dashed arrows show the direction
the rotating field at the time of the snapshot and they clearly sh
that the wave packet does not follow the electric field.
e

the

st

striking in Fig. 9 when compared to Fig. 3~b!. The quantum
state evolves identically to the classical orbit, its angular
calization closely matching the eccentricity of the classi
ellipse.

Because of the difference in the classical and quan
definitions of the eccentricities@see Eqs.~25!#, the conditions
given by Eqs.~13! and ~30! lead to slight differences in the
initial conditions of the quantum and classical systems.
the limit of largen the agreement is exact, but for mode
values ofn the discrepancies are noticeable. For the exam
shown in Fig. 8 withn515, the ratiov r /vs is 1.08, leading
to classical initial conditions ofl 511 ande50.68 but quan-

tum initial conditions of̂ L̂z&510.27 and«50.64.

B. Eigenstate of rotating field

When the coherent state Eq.~23! is used as an initial wave
function, we find that the wave function of the state w
remain unchanged except for a rotation. We will now expl
itly show that this state is in fact an eigenstate in this rotat
field @39,40#.

We choose as an initial state the elliptic state represen
by Eq. ~23!. The Hamiltonian for the case of a hydroge
atom interacting with a right-circularly polarized field in
rotating frame is@41#

Ĥ5Ĥ02v rL̂z2vsÂx , ~31!

where we have rewritten the interaction term using the P
substitution. The usual time-evolution operator is rewritt
as

Û~ t,0!5e2 ivr tL̂ze2 i t ~Ĥ02vr L̂z2vsÂx!, ~32!

leading to a time evolution of the elliptic states of

ucn~ t !&5Û~ t,0!ucn~0!&

5e2 ivr tL̂ze2 i t ~Ĥ02vr L̂z2vsÂx!e2 iaÂyun,n21,n21&.

~33!

With the aid of the commutation relations and standard
erator algebra, the product of exponentials can be redu
using

eiaÂy~Ĥ02v rL̂z2vsÂx!e
2 iaÂy

5Ĥ01L̂z~v rcosa2vssin a!

1Âx~vscosa1v rsin a!. ~34!

When the conditionv r sina1vscosa50 is satisfied, opera-
tor Âx vanishes from Eq.~33!. Note that this condition is the
same as Eq.~29!. The state at timet is then

ucn~ t !&5e2 if~ t !e2 ivr tL̂z~e2 iaÂyun,n21,n21&), ~35!

5~phase!3~rotation!3~ initial state!,

wheref(t)5t/2n21t(v rcosa2vssina)(n21) is the time-
dependent phase. Equation~35! states that the wave functio
at time t is just the initial elliptic state rotating in step wit
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-
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the applied field. In other words, an elliptic state is an eig
state of the atom-plus-field Hamiltonian in the rotati
frame, provided that the strength and rotational frequenc
the field satisfy Eq.~30!.

We have shown that the shape-preserving classical o
have as analogs, the elliptic states, which are eigenstate
the circularly polarized electric field. The classical mod
offers a simpler system for studying the properties of
quantum states and it suggests possible approaches fo
ploring two-electron wave packets.

V. CONCLUSIONS

In the orbits that we have described the coordinates
momenta of the two electrons are uncorrelated; instead
coordinates of one electron are correlated with the orb
parameters of the other electron. This classical result ag
with the observation that angular correlations dominate
doubly excited states while radial correlations are found o
when the electronic wave functions have equal extent@16#.
This indicates that explorations of wave-packet states and
classical limit of two-electron atoms might better utilize a
gularly localized wave packets@42# rather than the radia
wave packets that have proven so useful in the case of
electron atoms.

The experimental realization of such two-electron wa
a
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packets is not expected to be a simple matter. To observe
shape-preserving orbits one must excite a state that is es
tially an elliptic state in the presence of a thre
dimensionally localized circular orbit wave packet. Recen
two-electron Rydberg experiments have relied heavily
isolated core excitation@16# to achieve a multistep excitatio
of the final doubly excited state. The two-electron wa
packets suggested here will require a similar stepwise
proach in which wave packets, not eigenstates, are excite
individual electrons. By themselves, each of these sing
electron wave packets represents a significant experime
challenge that must be met before such two-electron w
packets can be realized. The models discussed in this p
suggest that the production of circular orbit wave pack
@43# in alkalis and studies of hydrogenic elliptic states
rotating fields are very important first steps that must
taken in order to develop the techniques required for tw
electron wave packet experiments.
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