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[. INTRODUCTION tion apparatus on each of these copies. Hence classical tele-
rT[I:)ortation is also impossible.

However, the impossibility of all these devices cannot be
the end of the story. For example, while the no-teleportation

th . h th tual i theorem declares it impossible to determine a quantum state
eorem, In muc € same way as perpetual motion ma\iy the classical data obtained in a single measurement, it is

chines are forbidden by the second law of thermodynamics,jeary possible to determine quantum states by a run of sta-
are defined as follows: A copier takes one quantum systefgyica| experiments. In fact, according to the statistical inter-
as input and produces as output two systems of the saM§etation, a quantum state is nothing but a mathematical en-
kind. If one now runs experiments in which each input IScoding of all data that can be collected in this way.
prepared according to the same density matrix, either one ofherefore, it must be possible to construct devices that take
the outputs is discarded, and some measurement is then pgeveral identically prepared quantum systems as an input,
formed on the remaining output, one should get the samgnake a measurement, and thereby determine the density ma-
statistical results as measured directly on the inputs, for arrix describing the preparation to any desired degree of ac-
bitrary initial preparations and final measurements. curacy. This is the problem of quantum state estimation,
The impossibility of cloning machines is intimately con- which has been studied by many authf8s-6]. Of course,

nected to other impossible tasks of quantum theory, notablywe can use this classical information to prepare many new
“joint measurement” and “teleportation.” It is well known Systemg'clones”) in a state that is a close approximation of
that there are some pairs of quantum observatdash as the input state. Clearly, the quality of the clones will depend
different spin componentghat cannot be measured jointly on the number of initially available input systems. On the
on the same device. This statement implies the no-cloningther hand, there will be no limit to the number of clones
theorem, since a quantum copier could be operated as a uribtainable in this way because the classical measuring result

versal joint measuring device: One simply applies the twof@n be copied and used arbitrarily often. _ _
measuring devices in question to the two outputs of the More recently, there has been an interesting twist to this

copier. Hence a copier is a more powerful machine than roPlem coming from the observation that if only a given

joint measuring device. On the other hand, there is a hypoir-::i;nrfneé dioa:tedcs)?aesel?s rl?)id\?visggfm]pr?:c?ggc;e i';”ﬁai Elglesrs‘lcal
thetical machine even stronger than the copier: the ‘“tele- 9 ) '

orter” which is hence also forbidden by the no-clonin shown|[8] that there is, in general, a trade-off between the
P ' L ¥ o y : 9 humber of clones and their quality. Clearly, the optimal clon-
theorem. By definition, “teleportation,” or “classical tele-

S id fusi ith the fund | ing machine giving a fixed number of copies from a fixed
portation™ to avoid coniusion with the fundamental process,,, her of identically prepared systems cannot operate via an

of entanglement enhanced teleportati@h, is the transmis-  jyiermediate classical stage: It has to stay entirely in the
sion of quantum state®r “quantum information’) on clas-  quantum world. This paper is a contribution to the theory of
sical channels. A teleporting device would consist of a meagch optimal cloning machines.
suring apparatus, which produces some classical output  There are several variations of the optimal cloning prob-
measuring resulfrom a quantum input, and a reconstruction |em, which are perhaps best described in the form of a game.
apparatus, which prepares quantum systems, taking the rgixed parameters in this game are the Hilbert sphcde-
sults of the previous measurements into account. The critescribing the type of systems making up the inputs as well as
rion for successful teleportation is again the impossibility ofthe outputs to the cloning device. Italways finitg dimen-
distinguishing the outputs of the overall device from the in-sion will be denoted byd=dim H. Most work so far has
puts by statistical experiments. To make a copier from aeen done on the “quantum bigubit) case” d=2. Also
teleporter would be easy: One simply has to make copies dixed will be the numbeN of input systems and the number
the intermediate classical measuring resulighich is a M of output systems. The game is played by two physicists
trivial operation for classical datand to run the reconstruc- called Alice and Clare(lf the paradigmatic eavesdropper is

Eve, why should the paradigmatic cloner not be Clara®

ice’s first step is to choose a preparation for quantum sys-

*Electronic address: R.Werner@tu-bs.de tems with Hilbert spacét, as described by a density matrix

One of the fundamental features distinguishing quantu
theory from classical theories is epitomized by the “no clon-
ing theorem”[1]. The “quantum copiers” forbidden by this
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o, say. She then proceeds to run her preparing procedure very (infinitely) many copies is equivalent to the cloning
times, thus producing a composite system in the Hilberprocedure via classical measurement and subsequent prepa-
spaceH®---@H=H®N (a tensor product oN copieg in  ration. This connection, which requires the explanation of
the statec®N, and sends the prepared particles to Claremore formalism than this paper can take, will be explored in
Clare’s move is to run a cloning device of her choice, & later paper.

making M>N systems out of the giveN systems.(The

m.athematic;al objects qualifying as “devices.” in this context Il STATEMENT OF THE PROBLEM
will be defined in Sec. ). The next step is to compare
Clare’s M output systems with the state®™, which Alice In order to state the optimal cloning problem precisely we

supplies by running her original preparatibhtimes. Clare must first state what the admissible “quantum devices” are
scores in this game whenever her output is sufficiently simiamong which we are looking for an optimal one. There are
lar to o®M. There are different “figures of merit” on which two ways of approaching this problem, which are fortunately
Clare’s scores might be based, resulting in different versiongquivalent: In either case, each device is characterized by its
of the cloning game and possibly in different “optimal” action on quantum states. Thus if the input systems are de-
cloning devicesT. Some of the simplest are based on ascribed in a Hilbert spacé/ and consequently the input
simple extension of the game: We allow Alice a further states are density matrices dhand the output systems are
move, challenging the quality of Clare’s clones, by choosingdescribed in a Hilbert spad€, a quantum device is given by
some observable. The two then each measure the expectatianmapT taking density matrices ovét into density matrices
value of this observable on their respectMeparticle states over K. The first approach to characterizing the admissible
and the overall score is based on the difference of thesmapsT is the axiomatic one: A minimal requirement forto
expectation values. be consistent with the statistical interpretation of quantum
Apart from the fine points of the comparison, two basictheory is thaflT must respect convex combinatiofiscoher-
choices have to be made in the rules of this game, leading tent mixture$ of states. This allows the extension Bfto a
four different versions of the game. The first choice concerndinear operator from the space of trace class operators over
constraints on the initial preparatiendone by Alice. For the H into the trace class operators ovér This linear operator
discussion of eavesdropping on quantum cryptography charas to take positive elements into positive elements, which is
nels it is often of interest to allow only a small number of usually expressed by calling a positive (supejoperator. If
states(e.g., twg [9]. Orthogonal states can obviously be this condition remains valid iT is applied only to a part of
cloned perfectly. However, we are interested in so-calledh larger systeml is calledcompletely positiveSinceT takes
universal cloning machineqg10], which work on generic density matrices into density matrices, it also has to respect
(and unknowi inputs. Still there is a choice to be made, normalization(i.e., the tracg Therefore, according to the
namely, whether or not Alice is required to preparpuae  axiomatic definition, an admissible machine must be given
stateo=|¢)(¢| given by a wave vectop. Here the present by a completely positive trace preserving linear operator
paper follows most of the current literature by imposing pu-The second definition of “admissible devices” is construc-
rity. The reason is mostly that the full mixed-state problemtive. It allows only operations that can be done by first cou-
seems to be a lot more involved, even in the classical cas@ling the given system to an auxiliary orfeften called the
and it seems wise to gain a full understanding of the simplef'ancilla” ), then making the two interact, as described by a
case first. unitary transformation, and finally restricting to a suitable
The second choice to be made in the rules is whethesubsystem of the combined system by taking a partial trace
Alice really challenges Clare’s fuM-particle output state or over the ancilla and perhaps further subsystems. Each of
just one clone at a time. That is, we could constrain her tdhese steps is a completely positive trace preserving opera-
challenge Clare’s result by selecting only one of thle tion, so clearly every quantum device admissible in the con-
clones and demanding a one-particle observable of hestructive approach is also admissible by the axiomatic ap-
choice to be measured on it. This constraint on Alice is inproach. However, the converse is also tthg virtue of the
keeping with the definition of the quantum copier, which Stinespring dilation theorerfil5]): Every linear completely
also imposes only conditions on one output at a time. Thigositive trace preserving map can be constructed in the way
“ one-particle-test version of the cloning problem has been described.
considered in the qubit case in several recent pdpeésl]. Let us now turn to the description of figures of merit for
It turns out, however, that it is the more difficult problem for quantum cloning devices, i.e., on quantitative ways of ex-
d>2. Therefore, in this paper we will give a full analysis of pressing the “closeness” between the outpiic®N) of
the “pure-state—many-particle-test” cloning problem for ar- Clare’s cloning device and the stai€™, which the nonex-
bitrary d. istent ideal cloner would achieve. This question has to be
The pure-state—one-particle-test version is settled in th&reated rather carefully for the mixed state versions of the
d=2 casq7], where the representation theory of Stdakes cloning game. Possible candidates here are the trace norm
a full analysis relatively simple. The optimal cloning device differencel| T(a®N) — o®M||; or perhaps anothgr norm[16]
found by Gisin and Massar is the same as the one found iauch as the Hilbert-Schmidt norm or the relative entropy
the present paper for the many-particle test version. The cas¥T(o®"N),0®™) [17]. In principle, the optimal cloner might
of general is solved in[21]. The optimal cloning devices fit depend on the figure didemerit chosen. However, in the
perfectly into the framework for thelassical limit (in this  pure state case they all lead to the same optimum. In this
case, of Siy-spin systemys set up in[12—14. In this way, a  paper we will use an even simpler figure of merit, which
precise meaning can be given to the intuition that cloningnakes sense only in the pure case, namely, fitlelity



PRA 58 OPTIMAL CLONING OF PURE STATES 1829

t o®MT(a®N)], which would be 1 for the nonexistent ideal between the clones, makiny perfect copies andN—M
cloner. Good cloning means to bring this quantity as close t&tates, which are the worst possible “copies.” Moreover, it

1 as possible for all input states The worst result does not map to states on the Bose se@idt", which
would certainly be desirable, as the target staté$' are

AT)=inf tr[o®MT(c®M)] (1) supported by that subspace. An easy way to remedy both

o.pure defects is to compress the operator to the symmetric sub-

Space with the projectiosy, . With the appropriate normal-
ization this is our definition of the cloning map, later shown
to be optimal:

is taken as the figure of merit. So Clare’s and our problem i
to maximize 7/(T) by a judicious choice of, givenH, N,
andM. The optimum will be denoted b§?=supr]-"(T) and
depends on the three integets:dim 7, N, andM. R d[N] S(M_N)

We note in passing that so far we have only considered T(p)= diM] su(p®1 )Sm - 4
the problem of minimizing the worst case losses for Clare in
a game of the type descr_ibgd. It would b_e interesting to tak‘%:omplete positivity is obvious from the form &. So in
the game theoretic description more seriously and to ask fog,qer to verify that this is a legitimate cloning map, we only

the equilibrium points of the variants of this game in thehaye to check that the normalization factor is chosen cor-
sense of von Neumann'’s theory of two-person gafiés rectly to makeT trace preserving. To begin with, 'i'r(p) is

a linear functional ofp and can hence be written asdX)
for a suitable positive operatot on H?N. From thecova-

riance of T, i.e., the property

Ill. DESCRIPTION OF THE OPTIMAL CLONING
MACHINES

In this section we will define the cloning maps, which will
be shown to be the unique optimal ones in Sec. IV. Since we T(UENpU* Ny =UEMT(p)u* =M, (5
are considering only pure input state$’N, it suffices to o eN )
consider the action of on such states and their linear com- ©N€ concludes thax commutes withU™" and, by irreduc-
binations. These will be operators on the span of the vector®ility, X must be a _mult_lple of the |_dent|ty_ It remains to be
of the forme®- -+ ® o= ®Ne 1 ®N. Our first task is to col- shown that this multiple is 1 or, equAlvaIentIy, that the trace of
lect some of the basic properties of this space. somedensity matrix is preserved bly. To this end we con-

The span of the tensor powegs’™N can be described very sider the maximally mixed density matrix;=d[N] sy on
easily: It is precisely the space of vectors that are invariant{ ", which is also characterized as the unique density ma-
under all permutations, or the “Bose subspace™fNin  trix on H®N invariant under sitewise rotations
physical terminology. We will denote it by V. A conve- p—>U2NpU*EN - Then T(7y)=d[M] tsy(sy@ 1M Msy
nient paS|s in thls'space is the “occupation number bas!s”= d[M] !sy=ry . HenceT as defined in Eq(4) is trace
canonically associated with some basis in the One'part'dﬁreserving.
spaceH. It is labeled by tuplesr(q,...,ng) with =,n, =N.

A generating function for this basis is given by the tensor
power vectorsp®N, the variables in the generating function
being the components, ,...,¢q4 Of ¢ in the given basis oH.

The value of7(T) is determined by observing that, for a
pure statec on H, o®M is a one-dimensional projection,
which is smaller than botky, and (@®"N®1*M~N), Hence

Explicitly,
. g AT)= g[[l\'\/l”] t o®Msy (o®N@12M-N)g, ]
@N_ P
¢ \/m nl;ynd I];[l \/n—K!|n1,...,nd>- (2 _ d[N] tr(U®M): d[N] ©
dlM] diM]’

It is easily checked, using this basis that the dimension of

HEN is We conclude this section by computing the performance
of T with respect to the one-particle test version of the clon-

3) ing problem. Some of our considerations will be valid for

any cloning mapr (not necessarilyr=T), which maps den-
sity matrices onH 2™ into density matrices ol M and

satisfies the covariance conditi¢d). For any density matrix
ponH®N, we denote byR(p) its one-site restriction defined
by tf R(p)A]=tr[ p(A®1®(N~1)]. Consider the one-site re-
striction R(T(o®N)). By covariance ofT, this must be a
density matrix on the one-site Hilbert spakg commuting

—d d+N-1
d[N]:(_l)N< N):< N

whered=dim H. We will denote bysy the orthogonal pro-
jection of £ ®N onto?—(fN . A crucial feature of the symmet-
ric subspace is that the unitary operator&\ leave it invari-
ant and act on it irreducibly. That is to say, any operator
supported by}{?“ (A=Asy=spyA), which commutes with

®N i i i i .
2|rlati)r On;:ﬁg?} be a multiple o8y, i.e., of the identity op with all unitariesU, which commute witho. Hence we can

o L
The optimal cloning map has to take density operators Or\{vnte Itas

HN to operators or{ ®M. An easy way to achie\{e such a R(T(e®")N)=y(T)o+[1—y(T)]m, (7)
transformation is to tensor the given operagomith the
identity operators belonging to tensor factdts-1 through ~ wherer;=d 1 is the totally mixed density matrix oH. By
M, i.e., to takep—p®1®(M~N) This breaks the symmetry covariance ofl, the numbery(T) does not depend am and
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is called theBlack Cow factof of T. Surprisingly, itis useful sum 2,6 commutes with permutations and hence with
also for the discussion of “cloning in stages” froh to M . Solving for y(T), we find the Black Cow factor of Eq.
to R systems, even though in the second stage the cIonqn) to be

from M to R systems no longer finds a product density ma-

trix o®M. In fact, on the right-hand side of E¢7) we can N d+M
write R(o®N) for o and it is clear that Eq7) becomes Y= % N M 9
R(T(p))=v(T)R(p)+[1—¢(T)]tr(p) 8  Thisis a quotient, as expected. Specializinglte2, we find

this result also in agreement with the value foundlf] by
combining the Black Cow concatenation argument with the
previously determined optimal value for state determina-
tions. Again this is to be expected because the optimal cloner
found in the one-particle-test version of the probl&or d

=2) agrees with Eq(4). Moreover, this result agrees with
the special casbl=1, M =2, with arbitraryd attained by an
example in[20], but not proved to be optimal. The optimal

for all p in the linear span of the operatoss’. However,
these arall density matrices oft{ ?N: This can be seen by
inserting the expansiof®) into e®N=|¢®N)(©®N| and ob-
serving that from the resulting power seriesdpando, the
coefficientsn)(m| can be extracted. Hence E®) holds for

all cloning mapsT satisfying the assumptions stated at the

beginning of this paragraph. solutions to the one-particle-test and many-particle-test ver-

As a corollary we o'btai'n the equqtiory(TRMTMN) sions of the cloning problem coincide also fdr>2 and
= y(Trm) Y(Tmn) for cloning in stages. Since the family of generalM >N [21]
optimal cloners defined by Ed4) obviously satisfies the '

concatenation propertfigyTun=Trn, We find that the

Black Cow factor for these must be of the forg(Tyn) ) ) . o .
= ! Ym - In this section we will prove the optimality of the cloning

To computey(Tyy) for Eq. (4), we use the normalization MapT, defined in Eq(4), with respect to the figure of merit

property of T in the form trgyo®Ne1oM-N)  Ffrom Eq.(1). Let

=d[M]/d[N] for any pureg. Then, on the one hand, we A
find that F=supAT) (10

IV. PROOF OF OPTIMALITY

t oRT(a®N) = y(T)+[1— y(T)]/d, be the best bound faF(T). SinceF is an infimum of con-
tinuous functions, it is an upper semicontinuous function,
and since the set of admissibleis compact(bounded and
closed in a finite dimensional vector spacthe supremum

(10) is attained, i.e., optimal cloners with(T)=F do exist.

and, on the other hand,

toRT(o")] For a pure stater, rotated by unitaryU on H, we will
A 1 . write oy=UcoU*. The average of any cloning map with
=t (c®@1®*M~D)T(o®N)]= i Ek: t W T(®N)] respect to sitewise rotations will be denoted by
— *®M ®N *®N @M
Mdcg[d] S tots, (0 Ve 1o Vs, ] To)= [ du UremTUeNpUr Uy,
d[N] wheredU denotes the integration with respect to the _normal—
= Md[M] Ek [ e®W(a®N@12M-N)g ized Haar measure of the unitary group ®f ThenT is
again an admissible cloning map ameT if and only if T
d[N] d[M] d[M] satisfies the covariance conditi@®).
= mMam] | N dN +(M— )m TheoremFor any cloning map fronN to M systems,
N M-NN+1 HT)<d[N]/d[M],

+
M Mo dFN’ with equality if and only ifT=T.

Proof. Let T be an optimal cloning device, i.eZ(T)

where in the second line we used the abbreviatiéfl for = F. Then, for every purer, we have

the tensor product d¥l operators, all of which aré except
the kth, which iso. At the fourth equality we used that the
tr[a®MT(a®N)]—f dU oM T(o5™)]

The reason for this terminology is that this factor plays a central Bf du ]:(T):j:_
role in discussions of the cloning problem started by Chiara Ma-

chiavello and Artur Ekert and further clarified in collaboration with

Dagmar Bruf{19)]. | learned about this line of argument from an Since the left-hand side is independentoofit is also equal

unpublished work by Nicolas Gisin and Sandu Popescu. to ]—'(T) hence]-"(T)>}' By definition of F we also have
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F=AT), i.e., A(T)=F. Hence the integral over the posi- To further exploit the optimality condition, we introduce
tive quantities7—tr{ o™ T(o )] vanishes, which implies the Stinespring dilatiof15] of T in the form
that T(p)=FV* (p& 1V,

oM T(e )= AT)=F whereV:H %M -1 “Ng K for some auxiliary Hilbert space
for all o. K and p is an arbitrary density matrix ofit . We have

Next consider the rotation invariant density matry  included the factof in this definition, so that for an optimal
=d[N] !sy on the symmetric subspace. SifE@ommutes  cloner V*V=1. The optimality condition(13) written in

with rotations, ry has to be mapped into a likewise rotation t€rms ofV becomes
invariant density matrix ort{ ®™. In particular, because the OM \ j% oN oM
representatiot) ®M restricted to the symmetric subspace is (e V* (sy— o) @l ]Ve™™)

irreducible, we must have =|[(sy—o®NM®1,]Ve®M|?=0,
Sn Sm whereg is the one-dimensional projection ¢oe H. Equiva-
T = +(1-MR . f
‘(d[N]> )\d[M] (1=MRest, lently, [(sy—o®M)®1]Ve®M=0, which is to say that

o _ . Ve®M must be in the subspaee®Ne K for every ¢.
where “Rest” stands for a density matrix orthogonalsig So we can writeVe®M= N £(p), with £(e) ek
and O<s\<1. We now use thaf (sy—o®") must be a posi- some vector depending in a generally nonlinear way on the
tive operator. Taking its trace with®™ we thus find that unit vectore € H. From the above observation thétmust
be an isometry we can calculate the scalar products of all the

O$tr[o®M?(sN—o®N)]=)\%—ff, (12  Vvectorsé(e):
Hence F<\d[N]/d[M]<d[N]/d[M]. Since we have al- (@M= ("M, =)= (VM vy=)
ready seen in Eq(6) that F(T)=d[N]/d[M], we have =(e®N@ &), yNB E(1))

shown thatZ is equal to this value antl is indeed optimal.

It remains to be shown thak is the only cloning map
achieving this value. From the last string of inequalities; ¢
e see that for any optimal cloner we must have 1. This
is equivalent to saying that(c®") is supported by the (€(@), &) c=( @, )M " N= (M7, y=M=T),

symmetric subspace for ali and sinceT is an integral This information is sufficient to compute all matrix elements
over rotated copies of, the same conclusion also holds for P

&M ®Ny/ ®N|y oMy - - -
T. Moreover, for an optimal clonéF, the right-hand side of (%1 T(ler )er )¢2™), i-e., T is uniquely determined
Eq. (12 has to vanish. This is again an integral with respecnd equal tor. Q.E.D.
to dU over a positive function, which hence has to vanish
too:

=@, 9)N(E(@), E(P))
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