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Optimal cloning of pure states
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~Received 17 April 1998!

We construct a unique optimal quantum device for turning a finite number ofd-level quantum systems in the
same unknown pure states into M systems of the same kind, in an approximation of theM -fold tensor product
of the states. @S1050-2947~98!10109-9#

PACS number~s!: 03.67.2a, 02.20.Hj
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I. INTRODUCTION

One of the fundamental features distinguishing quant
theory from classical theories is epitomized by the ‘‘no clo
ing theorem’’@1#. The ‘‘quantum copiers’’ forbidden by this
theorem, in much the same way as perpetual motion
chines are forbidden by the second law of thermodynam
are defined as follows: A copier takes one quantum sys
as input and produces as output two systems of the s
kind. If one now runs experiments in which each input
prepared according to the same density matrix, either on
the outputs is discarded, and some measurement is then
formed on the remaining output, one should get the sa
statistical results as measured directly on the inputs, for
bitrary initial preparations and final measurements.

The impossibility of cloning machines is intimately co
nected to other impossible tasks of quantum theory, nota
‘‘joint measurement’’ and ‘‘teleportation.’’ It is well known
that there are some pairs of quantum observables~such as
different spin components! that cannot be measured joint
on the same device. This statement implies the no-clon
theorem, since a quantum copier could be operated as a
versal joint measuring device: One simply applies the t
measuring devices in question to the two outputs of
copier. Hence a copier is a more powerful machine tha
joint measuring device. On the other hand, there is a hy
thetical machine even stronger than the copier: the ‘‘te
porter,’’ which is hence also forbidden by the no-clonin
theorem. By definition, ‘‘teleportation,’’ or ‘‘classical tele
portation’’ to avoid confusion with the fundamental proce
of entanglement enhanced teleportation@2#, is the transmis-
sion of quantum states~or ‘‘quantum information’’! on clas-
sical channels. A teleporting device would consist of a m
suring apparatus, which produces some classical outpu~a
measuring result! from a quantum input, and a reconstructio
apparatus, which prepares quantum systems, taking the
sults of the previous measurements into account. The c
rion for successful teleportation is again the impossibility
distinguishing the outputs of the overall device from the
puts by statistical experiments. To make a copier from
teleporter would be easy: One simply has to make copie
the intermediate classical measuring results~which is a
trivial operation for classical data! and to run the reconstruc
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tion apparatus on each of these copies. Hence classical
portation is also impossible.

However, the impossibility of all these devices cannot
the end of the story. For example, while the no-teleportat
theorem declares it impossible to determine a quantum s
by the classical data obtained in a single measurement,
clearly possible to determine quantum states by a run of
tistical experiments. In fact, according to the statistical int
pretation, a quantum state is nothing but a mathematical
coding of all data that can be collected in this wa
Therefore, it must be possible to construct devices that t
several identically prepared quantum systems as an in
make a measurement, and thereby determine the density
trix describing the preparation to any desired degree of
curacy. This is the problem of quantum state estimati
which has been studied by many authors@3–6#. Of course,
we can use this classical information to prepare many n
systems~‘‘clones’’ ! in a state that is a close approximation
the input state. Clearly, the quality of the clones will depe
on the number of initially available input systems. On t
other hand, there will be no limit to the number of clon
obtainable in this way because the classical measuring re
can be copied and used arbitrarily often.

More recently, there has been an interesting twist to t
problem coming from the observation that if only a give
number of clones is needed, the procedure via a class
intermediate stage is too wasteful@7#. Indeed, it has been
shown @8# that there is, in general, a trade-off between t
number of clones and their quality. Clearly, the optimal clo
ing machine giving a fixed number of copies from a fix
number of identically prepared systems cannot operate vi
intermediate classical stage: It has to stay entirely in
quantum world. This paper is a contribution to the theory
such optimal cloning machines.

There are several variations of the optimal cloning pro
lem, which are perhaps best described in the form of a ga
Fixed parameters in this game are the Hilbert spaceH de-
scribing the type of systems making up the inputs as wel
the outputs to the cloning device. Its~always finite! dimen-
sion will be denoted byd5dim H. Most work so far has
been done on the ‘‘quantum bit~qubit! case’’ d52. Also
fixed will be the numberN of input systems and the numbe
M of output systems. The game is played by two physic
called Alice and Clare.~If the paradigmatic eavesdropper
Eve, why should the paradigmatic cloner not be Clare?!. Al-
ice’s first step is to choose a preparation for quantum s
tems with Hilbert spaceH, as described by a density matr
1827 © 1998 The American Physical Society
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1828 PRA 58R. F. WERNER
s, say. She then proceeds to run her preparing proceduN
times, thus producing a composite system in the Hilb
spaceH^¯^H5H ^ N ~a tensor product ofN copies! in
the states ^ N, and sends the prepared particles to Cla
Clare’s move is to run a cloning deviceT of her choice,
making M.N systems out of the givenN systems.~The
mathematical objects qualifying as ‘‘devices’’ in this conte
will be defined in Sec. II.! The next step is to compar
Clare’s M output systems with the states ^ M, which Alice
supplies by running her original preparationM times. Clare
scores in this game whenever her output is sufficiently si
lar to s ^ M. There are different ‘‘figures of merit’’ on which
Clare’s scores might be based, resulting in different versi
of the cloning game and possibly in different ‘‘optimal
cloning devicesT. Some of the simplest are based on
simple extension of the game: We allow Alice a furth
move, challenging the quality of Clare’s clones, by choos
some observable. The two then each measure the expect
value of this observable on their respectiveM -particle states
and the overall score is based on the difference of th
expectation values.

Apart from the fine points of the comparison, two bas
choices have to be made in the rules of this game, leadin
four different versions of the game. The first choice conce
constraints on the initial preparations done by Alice. For the
discussion of eavesdropping on quantum cryptography ch
nels it is often of interest to allow only a small number
states~e.g., two! @9#. Orthogonal states can obviously b
cloned perfectly. However, we are interested in so-ca
universal cloning machines@10#, which work on generic
~and unknown! inputs. Still there is a choice to be mad
namely, whether or not Alice is required to prepare apure
states5uw&^wu given by a wave vectorw. Here the presen
paper follows most of the current literature by imposing p
rity. The reason is mostly that the full mixed-state proble
seems to be a lot more involved, even in the classical c
and it seems wise to gain a full understanding of the simp
case first.

The second choice to be made in the rules is whe
Alice really challenges Clare’s fullM -particle output state o
just one clone at a time. That is, we could constrain he
challenge Clare’s result by selecting only one of theM
clones and demanding a one-particle observable of
choice to be measured on it. This constraint on Alice is
keeping with the definition of the quantum copier, whi
also imposes only conditions on one output at a time. T
‘‘ one-particle-test’’ version of the cloning problem has bee
considered in the qubit case in several recent papers@7,6,11#.
It turns out, however, that it is the more difficult problem f
d.2. Therefore, in this paper we will give a full analysis
the ‘‘pure-state–many-particle-test’’ cloning problem for a
bitrary d.

The pure-state–one-particle-test version is settled in
d52 case@7#, where the representation theory of SU2 makes
a full analysis relatively simple. The optimal cloning devi
found by Gisin and Massar is the same as the one foun
the present paper for the many-particle test version. The
of generald is solved in@21#. The optimal cloning devices fi
perfectly into the framework for theclassical limit ~in this
case, of SUd-spin systems!, set up in@12–14#. In this way, a
precise meaning can be given to the intuition that clon
rt
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very ~infinitely! many copies is equivalent to the clonin
procedure via classical measurement and subsequent p
ration. This connection, which requires the explanation
more formalism than this paper can take, will be explored
a later paper.

II. STATEMENT OF THE PROBLEM

In order to state the optimal cloning problem precisely
must first state what the admissible ‘‘quantum devices’’ a
among which we are looking for an optimal one. There a
two ways of approaching this problem, which are fortunat
equivalent: In either case, each device is characterized b
action on quantum states. Thus if the input systems are
scribed in a Hilbert spaceH and consequently the inpu
states are density matrices onH and the output systems ar
described in a Hilbert spaceK, a quantum device is given b
a mapT taking density matrices overH into density matrices
overK. The first approach to characterizing the admissi
mapsT is the axiomatic one: A minimal requirement forT to
be consistent with the statistical interpretation of quant
theory is thatT must respect convex combinations~incoher-
ent mixtures! of states. This allows the extension ofT to a
linear operator from the space of trace class operators o
H into the trace class operators overK. This linear operator
has to take positive elements into positive elements, whic
usually expressed by callingT a positive~super!operator. If
this condition remains valid ifT is applied only to a part of
a larger system,T is calledcompletely positive. SinceT takes
density matrices into density matrices, it also has to resp
normalization~i.e., the trace!. Therefore, according to the
axiomatic definition, an admissible machine must be giv
by a completely positive trace preserving linear operatorT.
The second definition of ‘‘admissible devices’’ is constru
tive. It allows only operations that can be done by first co
pling the given system to an auxiliary one~often called the
‘‘ancilla’’ !, then making the two interact, as described by
unitary transformation, and finally restricting to a suitab
subsystem of the combined system by taking a partial tr
over the ancilla and perhaps further subsystems. Each
these steps is a completely positive trace preserving op
tion, so clearly every quantum device admissible in the c
structive approach is also admissible by the axiomatic
proach. However, the converse is also true~by virtue of the
Stinespring dilation theorem@15#!: Every linear completely
positive trace preserving map can be constructed in the
described.

Let us now turn to the description of figures of merit f
quantum cloning devices, i.e., on quantitative ways of
pressing the ‘‘closeness’’ between the outputT(s ^ N) of
Clare’s cloning device and the states ^ M, which the nonex-
istent ideal cloner would achieve. This question has to
treated rather carefully for the mixed state versions of
cloning game. Possible candidates here are the trace n
differenceiT(s ^ N)2s ^ Mi1 or perhaps anotherp norm@16#
such as the Hilbert-Schmidt norm or the relative entro
S„T(s ^ N),s ^ M

… @17#. In principle, the optimal cloner migh
depend on the figure of~de!merit chosen. However, in the
pure state case they all lead to the same optimum. In
paper we will use an even simpler figure of merit, whi
makes sense only in the pure case, namely, thefidelity
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PRA 58 1829OPTIMAL CLONING OF PURE STATES
tr@s ^ MT(s ^ N)#, which would be 1 for the nonexistent ide
cloner. Good cloning means to bring this quantity as close
1 as possible for all input statess. The worst result

F~T!5 inf
s,pure

tr@s ^ MT~s ^ N!# ~1!

is taken as the figure of merit. So Clare’s and our problem
to maximizeF(T) by a judicious choice ofT, givenH, N,
andM . The optimum will be denoted byF̂5supTF(T) and
depends on the three integersd5dim H, N, andM .

We note in passing that so far we have only conside
the problem of minimizing the worst case losses for Clare
a game of the type described. It would be interesting to t
the game theoretic description more seriously and to ask
the equilibrium points of the variants of this game in t
sense of von Neumann’s theory of two-person games@18#.

III. DESCRIPTION OF THE OPTIMAL CLONING
MACHINES

In this section we will define the cloning maps, which w
be shown to be the unique optimal ones in Sec. IV. Since
are considering only pure input statess ^ N, it suffices to
consider the action ofT on such states and their linear com
binations. These will be operators on the span of the vec
of the formw ^¯^ w5w ^ NPH ^ N. Our first task is to col-
lect some of the basic properties of this space.

The span of the tensor powersw ^ N can be described ver
easily: It is precisely the space of vectors that are invar
under all permutations, or the ‘‘Bose subspace’’ ofH ^ N in
physical terminology. We will denote it byH1

^ N . A conve-
nient basis in this space is the ‘‘occupation number bas
canonically associated with some basis in the one-par
spaceH. It is labeled by tuples (n1 ,...,nd) with (knk5N.
A generating function for this basis is given by the tens
power vectorsw ^ N, the variables in the generating functio
being the componentsw1 ,...,wd of w in the given basis ofH.
Explicitly,

w ^ N5AN! (
n1 ,...,nd

)
k51

d wk
nk

Ank!
un1 ,...,nd&. ~2!

It is easily checked, using this basis that the dimension
H ^ N is

d@N#5~21!NS 2d
N D5S d1N21

N D , ~3!

whered5dim H. We will denote bysN the orthogonal pro-
jection ofH ^ N ontoH1

^ N . A crucial feature of the symmet
ric subspace is that the unitary operatorsU ^ N leave it invari-
ant and act on it irreducibly. That is to say, any operatoA
supported byH1

^ N (A5AsN5sNA), which commutes with
all U ^ N, must be a multiple ofsN , i.e., of the identity op-
erator onH1

^ N .
The optimal cloning map has to take density operators

H1
^ N to operators onH ^ M. An easy way to achieve such

transformation is to tensor the given operatorr with the
identity operators belonging to tensor factorsN11 through
M , i.e., to taker°r ^ 1^ (M2N). This breaks the symmetr
to
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between the clones, makingN perfect copies andN2M
states, which are the worst possible ‘‘copies.’’ Moreover
does not map to states on the Bose sectorH1

^ M , which
would certainly be desirable, as the target statess ^ M are
supported by that subspace. An easy way to remedy b
defects is to compress the operator to the symmetric s
space with the projectionsM . With the appropriate normal
ization this is our definition of the cloning map, later show
to be optimal:

T̂~r!5
d@N#

d@M #
sM~r ^ 1^ ~M2N!!sM . ~4!

Complete positivity is obvious from the form ofT̂. So in
order to verify that this is a legitimate cloning map, we on
have to check that the normalization factor is chosen c
rectly to makeT̂ trace preserving. To begin with, trT̂(r) is
a linear functional ofr and can hence be written as tr(rX)
for a suitable positive operatorX onH1

^ N . From thecova-

riance of T̂, i.e., the property

T~U ^ NrU* ^ N!5U ^ MT~r!U* ^ M, ~5!

one concludes thatX commutes withU ^ N and, by irreduc-
ibility, X must be a multiple of the identity. It remains to b
shown that this multiple is 1 or, equivalently, that the trace
somedensity matrix is preserved byT̂. To this end we con-
sider the maximally mixed density matrixtN5d@N#21sN on
H1

^ N , which is also characterized as the unique density m
trix on H1

^ N invariant under sitewise rotation

r°U ^ NrU* ^ N. Then T̂(tN)5d@M #21sM(sN^ 1M2N)sM

5d@M #21sM5tM . HenceT̂ as defined in Eq.~4! is trace
preserving.

The value ofF(T̂) is determined by observing that, for
pure states on H, s ^ M is a one-dimensional projection
which is smaller than bothsM and (s ^ N

^ 1^ (M2N)). Hence

F~ T̂!5
d@N#

d@M #
tr@s ^ MsM~s ^ N

^ 1^ ~M2N!!sM#

5
d@N#

d@M #
tr~s ^ M !5

d@N#

d@M #
. ~6!

We conclude this section by computing the performan
of T̂ with respect to the one-particle test version of the clo
ing problem. Some of our considerations will be valid f
any cloning mapT ~not necessarilyT5T̂!, which maps den-
sity matrices onH1

^ N into density matrices onH1
^ M and

satisfies the covariance condition~5!. For any density matrix
r onH ^ N, we denote byR(r) its one-site restriction defined
by tr@R(r)A#5tr@r(A^ 1^ (N21))#. Consider the one-site re
striction R„T(s ^ N)…. By covariance ofT, this must be a
density matrix on the one-site Hilbert spaceH, commuting
with all unitariesU, which commute withs. Hence we can
write it as

R„T~s ^ N!…5g~T!s1@12g~T!#t1 , ~7!

wheret15d211 is the totally mixed density matrix onH. By
covariance ofT, the numberg(T) does not depend ons and
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1830 PRA 58R. F. WERNER
is called theBlack Cow factor1 of T. Surprisingly, it is useful
also for the discussion of ‘‘cloning in stages’’ fromN to M
to R systems, even though in the second stage the clo
from M to R systems no longer finds a product density m
trix s ^ M. In fact, on the right-hand side of Eq.~7! we can
write R(s ^ N) for s and it is clear that Eq.~7! becomes

R„T~r!…5g~T!R~r!1@12g~T!#tr~r!t1 ~8!

for all r in the linear span of the operatorss ^ N. However,
these areall density matrices onH1

^ N : This can be seen by
inserting the expansion~2! into s ^ N5uw ^ N&^w ^ Nu and ob-
serving that from the resulting power series inwk andwk the
coefficientsun&^mu can be extracted. Hence Eq.~8! holds for
all cloning mapsT satisfying the assumptions stated at t
beginning of this paragraph.

As a corollary we obtain the equationg(TRMTMN)
5g(TRM)g(TMN) for cloning in stages. Since the family o
optimal cloners defined by Eq.~4! obviously satisfies the
concatenation propertyT̂RMT̂MN5T̂RN , we find that the
Black Cow factor for these must be of the formg(T̂MN)
5gN /gM .

To computeg(T̂MN) for Eq. ~4!, we use the normalization
property of T̂ in the form tr(sMs ^ N

^ 1^ (M2N))
5d@M #/d@N# for any pures. Then, on the one hand, w
find that

tr@sRT̂~s ^ N!#5g~ T̂!1@12g~ T̂!#/d,

and, on the other hand,

tr@sRT̂~s ^ N!#

5tr@~s ^ 1^ ~M21!!T̂~s ^ N!#5
1

M (
k

tr@s~k!T̂~s ^ N!#

5
d@N#

Md@M # (
k

tr@s~k!sM~s ^ N
^ 1^ ~M2N!!sM#

5
d@N#

Md@M # (
k

tr@s~k!~s ^ N
^ 1^ ~M2N!!sM#

5
d@N#

Md@M # H N
d@M #

d@N#
1~M2N!

d@M #

d@N11# J
5

N

M
1

M2N

M

N11

d1N
,

where in the second line we used the abbreviations (k) for
the tensor product ofM operators, all of which are1, except
the kth, which iss. At the fourth equality we used that th

1The reason for this terminology is that this factor plays a cen
role in discussions of the cloning problem started by Chiara M
chiavello and Artur Ekert and further clarified in collaboration wi
Dagmar Bruß@19#. I learned about this line of argument from a
unpublished work by Nicolas Gisin and Sandu Popescu.
er
-

sum (ks
(k) commutes with permutations and hence w

sM . Solving forg(T̂), we find the Black Cow factor of Eq
~4! to be

g~ T̂!5
N

d1N

d1M

M
. ~9!

This is a quotient, as expected. Specializing tod52, we find
this result also in agreement with the value found in@19# by
combining the Black Cow concatenation argument with
previously determined optimal value for state determin
tions. Again this is to be expected because the optimal clo
found in the one-particle-test version of the problem~for d
52! agrees with Eq.~4!. Moreover, this result agrees wit
the special caseN51, M52, with arbitraryd attained by an
example in@20#, but not proved to be optimal. The optima
solutions to the one-particle-test and many-particle-test v
sions of the cloning problem coincide also ford.2 and
generalM.N @21#.

IV. PROOF OF OPTIMALITY

In this section we will prove the optimality of the clonin
mapT̂, defined in Eq.~4!, with respect to the figure of meri
F from Eq. ~1!. Let

F̂5sup
T
F~T! ~10!

be the best bound forF(T). SinceF is an infimum of con-
tinuous functions, it is an upper semicontinuous functio
and since the set of admissibleT is compact~bounded and
closed in a finite dimensional vector space!, the supremum
~10! is attained, i.e., optimal cloners withF(T)5F̂ do exist.

For a pure states, rotated by unitaryU on H, we will
write sU[UsU* . The average of any cloning map wit
respect to sitewise rotations will be denoted by

T̄~r!5E dU U* ^ MT~U ^ NrU* ^ N!U ^ M, ~11!

wheredU denotes the integration with respect to the norm
ized Haar measure of the unitary group ofH. Then T̄ is
again an admissible cloning map andT5T̄ if and only if T
satisfies the covariance condition~5!.

Theorem.For any cloning map fromN to M systems,

F~T!<d@N#/d@M #,

with equality if and only ifT5T̂.
Proof. Let T be an optimal cloning device, i.e.,F(T)

5F̂. Then, for every pures, we have

tr@s ^ MT̄~s ^ N!#5E dU tr@sU
^ MT~sU

^ N!#

>E dU F~T!5F̂.

Since the left-hand side is independent ofs, it is also equal
to F(T̄), henceF(T̄)>F̂. By definition of F̂ we also have

l
-
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PRA 58 1831OPTIMAL CLONING OF PURE STATES
F̂>F(T̄), i.e.,F(T̄)5F̂. Hence the integral over the pos
tive quantitiesF̂2tr@sU

^ MT(sU
^ N)# vanishes, which implies

that

tr@s ^ MT~s ^ N!#5F~T!5F̂

for all s.
Next consider the rotation invariant density matrixtN

5d@N#21sN on the symmetric subspace. SinceT̄ commutes
with rotations,tN has to be mapped into a likewise rotatio
invariant density matrix onH ^ M. In particular, because th
representationU ^ M restricted to the symmetric subspace
irreducible, we must have

T̄S sN

d@N# D5l
sM

d@M #
1~12l!Rest,

where ‘‘Rest’’ stands for a density matrix orthogonal tosM

and 0<l<1. We now use thatT̄(sN2s ^ N) must be a posi-
tive operator. Taking its trace withs ^ M we thus find that

0<tr@s ^ MT̄~sN2s ^ N!#5l
d@N#

d@M #
2F̂. ~12!

Hence F̂<ld@N#/d@M #<d@N#/d@M #. Since we have al-
ready seen in Eq.~6! that F(T̂)5d@N#/d@M #, we have
shown thatF̂ is equal to this value andT̂ is indeed optimal.

It remains to be shown thatT̂ is the only cloning map
achieving this value. From the last string of inequaliti
e see that for any optimal cloner we must havel51. This
is equivalent to saying thatT̄(s ^ N) is supported by the
symmetric subspace for alls and sinceT̄ is an integral
over rotated copies ofT, the same conclusion also holds f
T. Moreover, for an optimal clonerT, the right-hand side of
Eq. ~12! has to vanish. This is again an integral with resp
to dU over a positive function, which hence has to van
too:

tr@s ^ MT~sN2s ^ N!#50. ~13!

Since the second term in this expression was already sh
to be equal toF̂ for all s, we conclude that tr@s ^ MT(sN)#

5F̂ for all s. The operatorss ^ M span the space of operato
on H1

^ M . Hence this equation is equivalent toT(sN)

5F̂sM .
re

m

ry
t

n

To further exploit the optimality condition, we introduc
the Stinespring dilation@15# of T in the form

T~r!5F̂V* ~r ^ 1K!V,

whereV:H1
^ M→H1

^ N
^K for some auxiliary Hilbert space

K and r is an arbitrary density matrix onH1
^ N . We have

included the factorF̂ in this definition, so that for an optima
cloner V* V51. The optimality condition~13! written in
terms ofV becomes

^w ^ M,V* @~sN2s ^ N! ^ 1K#Vw ^ M&

5i@~sN2s ^ N! ^ 1K#Vw ^ Mi250,

wheres is the one-dimensional projection towPH. Equiva-
lently, @(sN2s ^ N) ^ 1K#Vw ^ M50, which is to say that
Vw ^ M must be in the subspacew ^ N

^K for everyw.
So we can writeVw ^ M5w ^ N

^ j(w), with j(w)PK
some vector depending in a generally nonlinear way on
unit vectorwPH. From the above observation thatV must
be an isometry we can calculate the scalar products of all
vectorsj(w):

^w,c&M5^w ^ M,c ^ M&5^Vw ^ M,Vc ^ M&

5^w ^ N
^ j~w!,c ^ N

^ j~c!&

5^w,c&N^j~w!,j~c!&K ,

i.e.,

^j~w!,j~c!&K5^w,c&M2N5^w ^ M2N,c ^ M2N&.

This information is sufficient to compute all matrix elemen
^c1

^ M ,T(uw1
^ N&^w1

^ Nu)c2
^ M&, i.e., T is uniquely determined

and equal toT̂. Q.E.D.
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