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It is well known that environment may decohere a quantum(dnibit) system immersed in it, making a
guantum computation invalid. But the quantitative features of the decoherence seem to depend on both the
constitution of the environment and the details of its coupling with the qubit system. In this paper, based on the
dynamic approach for quantum measurement developed from the Hepp-Colemar Kdtigp, Helv. Phys.

Acta 45, 237(1972], we generally model the environment as a collection of a large number of subsystems and
then consider to what extent and in which way the environment and its coupling with the qubit system may
affect a quantum computation process. In the weak-coupling limit, we find that as far as decoherence time is
concerned, there is no essential difference between an environment of two-level subsystems and an environ-
ment of harmonic oscillators. This implies that there exists some universality independent of specific consti-
tutions of environments. However, it is also shown that this is not true at finite temperature or in the case of
strong coupling. So only if the coupling is weak and the temperature low does there exist the possibility of
developing a universal scheme of controlling a qubit system such that the decoherence is avoided. The possible
effect of environment on the efficiency of a quantum algorithm is also explicitly illustrated through the
example of Shor's prime factorization algorithf$1050-294{@8)06909-1

PACS numbe(s): 03.67.Lx, 03.65.Bz, 89.78.c

[. INTRODUCTION tuitively, one should know the details of the constitution of
the environment and its coupling with the qubit system. But
Quantum computationgQC) can be understood as the environment may be very complicated with many un-
quantum-mechanical evolution processes of certain quantuknown elements. So it seems impossible to control decoher-
systems[quantum bits(so-called qubit§ [1-9], in which ~ ence in a qubit systeff23,24.
nonclassical dynamic features, such as quantum coherence of AS in various quantum irreversible processes, such as
states, play a dominant role. Indeed, it is purely quantunfluantum dissipatiorj25-30 and wave function collapse

characters that make it possible for a theoretical quanturh?7,31,33, the environment in quantum computatidi, 12

computer to solve certain difficult mathematical problemsWas often modeled as a bath of harmonic oscillators with a
efficiently. In this respect, perhaps the most important ex_llnear coupling to the qubit system and some procedures to
ample is Shor's prime factorization algorithié]. As quan- control decoherence have been presented based on such a

tum computation is a quantum process, preserving Coher_nodel. Then a natural question is whether or not it is reason-

ence, at least to some extent, throughout the whole proces bIe_ to mode] the environment universally as a har_m(_)mc
is thus an essential requirement. This is because the decoh o$_c_|lle§tor bath for prqcucgl quantum com_putatlons. This is a

i ) S . Fhain issue handled in this paper. Caldeira and Led@&it
ence resulting from coupling with environment may make

laorithm invalid and | nd Leggetet al. [26] have shown that, dealing with quan-
quantum algorithm invalid and may cause unwelcome expog,y, dissipation in tunneling process in the weakly coupling
nential increase of errors in output resutt®—12. Actually,

limit, one can generally treat the environment as a harmonic
a decoherence process was even regarded as a mechaniggijiator bath. In this paper, by modeling the environment as

for enforcing classical behaviors in the macroscopic realny path of a large number of two-level subsystems, we will
[13]. For this reason we may well view a decohered quantungonsider the validity of this argument for the decoherence

computer as a classical one. To overcome the difficultieproblem in quantum computation. If it is valid, one can de-
caused by decoherence, some schemes have been proposgfh a universal decoherence-avoiding scheme in the weakly

in the last several yeaf44—-20. Among them are the quan- coupling limit. Otherwise one will have to design different
tum error-correcting technique developed from the classicalecoherence-avoiding schemes to cope with different cir-
error-correction theory and the decoherence-avoidingumstances because different models may have very differ-
schemes reduced from the quantum measurement theoent behaviors. Therefore we have to consider to what extent
[21-24. For the decoherence-avoiding schemes to work, inthe constitution of environment and the details of its cou-
pling with the qubit system affect a quantum computation

process. It is shown that, in the weakly coupling limit, the

*Electronic address: suncp@itp.ac.cn decoherence time derived from the two-level subsystem
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model of environment coincides with that derived from theSec. Ill, in the view of effective interaction, we show how
harmonic oscillator model. This implies the existence of acertain superposition states lose their coherence and we sug-
universality independent of the constitution of environmentsgest a decoherence-avoiding scheme. In Sec. IV, in the
Nevertheless, there are some differences among differefitamework of the two-level subsystems model of environ-
models not to be overlooked in the case of finite temperaturéent, we study the decoherence problem of a two-qubit sys-
or in the case of strong interaction between the environmeriem at zero temperature by explicitly calculating the deco-
and the qubit system. So only when the coupling is weak an#iering factor. In Sec. V, in the weakly coupling limit, by
the temperature is low can we expect to find a Commorcomparing results from different models we pOiﬂt out the
decoherence-avoiding scheme for various systems. existence of a universality among different environments in
The starting point of this paper is the quantum dynamicrespect to the decoherence properties of a qubit system at
approach(QDA) [33-43 to the wave function collapse Z€ro temperature. In Sec. VI we take into account the size of
(WFC, also called von Neumann’s reductipt8]) problem @ qubit system and the effect of finite temperature and reveal
in quantum measurement. It is deve|oped from the originaﬁ further universality. In Sec. VIl we make a short discussion
contribution made by Hepp and Colem@dC) [33] with a  as a brief summary of this paper. Finally, in the Appendix,
clarified physical presentation by BdIB4]. This approach by the example of Shor’s prime factorization algorithm, we
may be thought of as a dynamic realization of von Neu-demonstrate another fatal influence that environment may
mann’s theon|43] about the quantum measuring apparatus/mpose on guantum computation—destroying the efficiency
which was proposed in contrast to Bohr's theory. Bohr be-0f @ quantum algorithm.
lieved that the apparatus must be classical. On the contrary,
according to the quantum dynamic approach both the mea- |I. DECOHERENCE IN QUANTUM COMPUTATION
sured system and the measuring apparatus obey the-Schro VIA DYNAMIC FACTORIZATION
dinger equation and the dynamic evolution governed by their . , i )
interaction is supposed to result in WFC under certain con- [N this section we consider the effect of environment on
ditions. For example, the collapse happens if the detectdiu@ntum computation in general from the Hepp-Coleman ap-
contains a great number of particles or if the detector is in Lroach for quantum measurement thel@9]. We recall that
state with a very large quantum number. These two cases afedu@ntum computer has at least one register. Usually a reg-
usually referred to as the macroscopic limit and as the clagSter is an array of qubits, each of which has two staBgs
sical limit, respectivelyi38]. We recall that, in the traditional and [1), so its states can be represented @B
theory of quantum measuremdad], the WFC postulate is =|MoN1Nz,, - .. N -1) where the labels satisfy the unique
only an extra assumption added to the ordinary quantum melinary representation==3t"gn;2' (n;=0,1). The process
chanics. Under this postulate, once we measure an obser9f & quantum computation is none other than a series of
able and obtain a definite valug the state of the system transformations among the states of the register. Generally,
must collapse into the corresponding eigenstijefrom a  in the beginning of a computation one puts the register in a
coherent superpositioi) = = ,c,|k)(k|. In the terminology ~ Superposition statfp(0)) =X c,/n) and then lets it evolve
of a density matrix this process is described by a projectior@ccording to the Schdinger equation with a specific Hamil-
p=| ) (Bl —p=3/c?|k)(K| from a pure state to a mixed tonian. Without the influence from environment, this evolu-

state. This projection, which was treated in the HC modefion could be described with a unitary operaltift). Thus in

[33] as a dynamic evolution process governed by the Schrdh€ end the machine would be in the pure statdt))
dinger equation, means the loss of quantum coherence. = >n.mCnU(t)ma[n). Then in some way the results of com-
There is a strong resemblance between this phenomené’rﬁ’tat'on could be drayvn from this coherent superposmon.
and the quantum decoherence of a quantum computer resulh— When we take the influence of environment into account,
ing from the coupling with the surrounding environment, It t€ coherence if(t)) may be demolished, possibly leading
is then recognized that there exists a substantially close reld? the failure of computation. According to Zur¢k3], the
tion between the problem of decoherence in quantum cominfluénce of environment on quantum computation can be
putation and the problem of WFC in quantum measuremenﬁnalyzed in the view of state entanglement or state correla-

Thus, when the environment surrounding a quantum comton. Let|®(0))=|#(0))@|e)=3,cqn)®le) be an initial

puter corresponds to the measurement instrument monitorir':%‘}""t_e of the total system consisting of a qublt_ system :_;md the
the system to be measured, we can apply the known resulfvironment. Herele)=[e;)®[e,)® - - - @|ey) is the initial
in quantum dynamic mode[81] for quantum measurement state of the enqunment without correlation with the statg of
to discuss such problems concerned with decoherence i€ Machine. Notice that we have assumed that the environ-
quantum computation as the dynamic mechanism of decdner_‘t consists oiN partlc_les. The m_teractlon between th_e
herence, quantum error-avoiding techniques, and calculatiohubit system and the environment drives the total system into
of decoherence time. We can also reconsider the strategy 8 €ntanglement pure state
grouping quantum states of qubits to form decoherence free
subsets[21-23 a_nd analyze the decohering behaviors of |CI>(t))=E ca(t|ny@le[n]), (2.1)
states not belonging to decoherence free subsets. n

The arrangement of this paper is as follows. To study the
influence of environment on quantum computation from awhere|e[n])=U,(t)|e) andU(t) is the effective evolution
guantum measurement approach, in Sec. Il we describe @perator describing the correlation between the environment
general model of decoherence in quantum computation withand the statén). To proceed along with the discussion we
out referring to the concrete construction of environment. Inshould consider the reduced density matrix
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p()=Tr|D(1))(D(1)[] be written as a surils=3"%_,E,|n)(n| of projections onto
the subspace spanned [m}. Physically, to satisfy the basic
_2 ) 2 N . requirement that the states of the qubit system should not
< |Cn(t)] |n><”|+n¢m Ca(t)e(t)[n)(m[F(n,m;t) change too much when coupled to the environment, the in-
teractionH, in the present model should be chosen to be of a
+H.c. (2.2 1E0rr]n with the character of quantum nondemoliti@@ND)
44

Here we have traced over the environment variables and de-

fined the decohering factd¥(n,m;t) =(e[n]|e[m]), which .

is a transition matrix elemerfe| U/ (t)U(t)|e) of the envi- HI:; 2 gn,j(xj)|”><n|- 24
ronment. The contribution of environment is completely de-

termined by the decohering factor.F{n,m;t) =1, we have It satisfies [|:|| ,FIS]=0, and generally,[ﬂ, .95]7&0- It

p()=]¢()(S(1)|. This is the ideal case. On the contrary, gno14 be emphasized that, in the dynamic theory of quan-

if F(n,m;t)=0, the environment causes a complete decohery, measurement, it is required that the interaction has dif-
ence. In such a case, a quantum computation may beco

M&rent strengths for different stat i.e., itis required that
invalid (see the Appendix for more precise informajioh g by, i.e., d

hould b hasized h that not v th nj# 9mj for m#n. This is because the so-called measure-
shou € emphasized here that not only Ih€ NOrMS Of,antisy scheme to read out the states of the system from the
F(n,m;t), but also their phases affect the quantum compuz,

: umber counting of the detector, different numbers corre-
tation governed by(t).

i ind he ol f th duced densi __sponding to different states of the system. However, this re-
we Index the elements of the reduced density matrlXquirement of nondegeneracy is not necessary when we turn
p(t) by mandn, then the equatioft(n,m,t)=0 means that

! . ) 1o consider quantum computation.
its off-diagonal elements vanish. Such a case appeared in the |t 1o coupling of the system to the environment is de-

dynamic t_heory of_ quantum measurement as a conseqqenagnerate, namelyg, :(x)) =g (x;) for certainn#m, we
of a certain factorization structure of the effective evolution o~ ragroup  the coefficients of the interaction in  the

operato{38—42,31,32 In fact, if U,(t) can be factorized as ¢, ,owing wav: gx = - - - =0 =k . . _
Un(t) =TINUL(t), whereU(t) only concerns théth particle g Way: 9u,j Ga,j= 1) 9dy 41 9a,+ayi

in the environment, the decohering factor can be expressed 2/ " "+ Jdi+-+dg_+1)= " = 0d+. v dgi=Kajo - - -
as anN-multiple product Correspondingly, the Hilbert spate{|n)|n=1,2, ... L} of

the qubit system is decomposed into a direct svigr =,

® VY of the subspaces
N

N
Finmt)=]] (g|ullult)ley=I1 Fi(n,m;t)
] J

n=m)=|1m)m=1,... d v,

2.3 {In=m)=|1m)| b (V9

of the single decohering factors Fi(n,m;t) {In=m+d)=[2m)|m=1,... d,} (V?),
=(e|UlT(t)U! (t)|e) with norms less than unity. In the mac-

roscopic limit N—oo, it is possible that-(n,m;t)—0, for

a’+a, namely,(e[m]|e[n])= &, ,. This factor reflects al-  {|[n=d;+---+dq_;+m)=[gm)im=1,... d} (V9.
most all the dynamic features of the influence of environ-

ment on a quantum computation process. For example, whebhis decomposition enjoys the property that the coupling has
it can be written in the form exp(t/ty), the coherence will the same strengtky; for the states belonging to the same
experience a characteristic decay in the time stalety,  subspac&/9 and has the different strengtlxg; and «/; for
which characterizes the speed of decoherence, is called tilee statesq,m) and|q’,m’) belonging to the different sub-
decoherence time. Its value depends on the physical featurgpaces/® andV® . Now the interaction Hamiltonian can be
of the quantum system and their interaction with the envitewritten as

ronment. So further discussion should concern the micro-

scopic dynamics of interaction between a qubit system and

the environment. In the following we will deal with it in the

context of a generalized HC model. H,=qu 2 Kq,i (X)) d,m){(a,m|. (2.9
We assume the environment is made uNgfarticles and
has a free Hamiltonian in the general fothE:EJ-NHj. As will be shown in the next section, the above general

Here, the single-particle HamiltoniaH, only depends on HamiltonianH=H¢+Hg+H, can indeed result in a factor-
dynamical variablex; (such as canonical coordinate, mo- ization of the decoherence factors defined for any two differ-

mentum and spin, efc.Not knowing further details ofi;, ~ ent stategq,m) and|q’,m’) of the qubit system belonging
we will generally consider the problem of to what extent theto different subspaceg® andV9 . Without referring to any
constitution of environment and its coupling with the qubit concrete modeling of environment and further details of the
system can affect a quantum computation. If the staténteraction, we are able to get some useful dynamic informa-
[ny(n=1,2,...L) of the quantum register corresponds totion about decoherence in quantum computation from this
the energy levek, (n=1,2,... M), the Hamiltonian can general model. The obtained conclusions, which are indepen-
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dent of concrete models, should be helpful to the further p(1)=Trg[| ()W D(1)|]
consideration of the decoherence problem.
Before going ahead, we would like to point out that envi-
ronment may also cause another unwelcome effect on the =E 2 |Cﬁn|2|q,m><q,m|
computation process, namely, dissipating the energy of a qu- am
bit system into the environment. Mathematically, it can be
dgscrjbed by gddlng f:\n add!tlorTaI _telhﬁ not commutlng n 2 eXpliEquyt—iEqut] ch |g,m)(q,m’|
with Hg to the interaction. This dissipation effect due to im- m#.m’
perfect isolation is characterized by the relaxation time scale
Trel- IS relatively easy to make systems having a very large

7o @and thus allowing a reasonable number of operations to + E E eXHiEq mt—iEqmt]CHCH
completeg[10]. In contrast, the effect of decoherence is much g#g’ m.m
more insidious because the coherence information leaks out N
into the environment in a time scatg much shorter tham, P q't q

X|q,m ,m (0)| U H(HUH(t)|o(0)),
as a quantum system evolvg®,13. Thus the sensibility of l9.m){a |H1 {oi(OIUJ (O U(D)]a;(0))

guantum computation mainly depends gyrather thanr,.

For this reason, the present discussions in this paper only (3.2

focus on the decoherence problem rather than the dissipation

effect. where T means taking partial trace over the variables of the
environment. From this expression we see that each off-

lll. STATE REDUCTION IN TIME EVOLUTION diagonal element 0p(t), labeled byq andq’, is accompa-
nied by a factorized decohering factor

In this section we first show that the above general struc-
ture of space decomposition indeed dynamically leads to a N N
scheme of grouping the states of the qubit system to avoi _ q't q _ j
decoherence. Le¥y=V,;®V,® - --®Vy_1®Vy denote the ?: a4 (N’t)_[[l (o;(0)]U; (t)Ui(t”Ui(o))_jHl Faq(®
direct product Hilbert space for the environmenf,(k (3.3
=1,2,... N) denotes the Hilbert space of tkth particle in
the environment. We will prove that, if the QND interaction in the form of a factorized function. This kind of factoriza-
(2.4 or (2.5 is assumed, any coherent superpositiontion structure in the evolution of a wave function is crucial to
=mCmlg,m) of states belonging to the same subspéés  the occurrence of decoherence or WE38,31,32.

decoherence free and a coherent superposEigidq|d, mg) Obviously, if the initial statgf(0)) belongs to a single
of states belonging to different subspaces may experienagubspaca/d, then the terms accompanied qu (N,t) do
WEFC or decoherence. not appear. Thus the system will remain in the pure state

Let us choose an initial state(0))=II}'|;(0)) e Vg, of  exd —iH4]|f(0))f(0)|exdiH4] throughout the evolution pro-
the environment, and an initial stth(O))zEm,qC?nlq,m), cess. This fact is significant for developing schemes of error
of the qubit system. Then the initial state of the total systenfree quantum computations. The express{8r8) also im-
|®(0))=|f(0))®|a(0)) will evolve into an entangling state plies the occurrence of decoherence when a superposition of

states mixes the vectors belonging to different subspaces.
_ q ] Intuitively, as Fq q'(N,t) is a multiplication of N factors
|‘D(t)>:§n eXF[_'Eqmt]Cm|q'm>®H Uf(t)]5(0)), F; o() with norms not larger than unity, it may approach
(3.D zero in the macroscopic limit with very largé To deal with
this problem precisely, we define a real number not less than
whereEqn=Eq +...+a,_,+m:M=12,...dy. We observe zero,A}" ()= — In|quq (t)]. Then the norm of the accompa-
that the effective evolution operatbi,(t) of environmentis nying factorFq q'(N,t) is expressed as
determined by the evolution operatoti;?(t)=exp[—i[l3|j
+Kq,j(>g)]t} for particles through the factorized formq(t) N
=IT;Uj/(t). It follows from Eq.(3..l) that stgtes belonging to IEo (N t)|—exp< _2 Aq*q/).
the same subspasé entangle with the environment through a.q = -l
the same factonU?(t)|aj(0)). This fact is the essential
reason why coherence of the superposittypC,,|q,m) of
states belonging to the same subspdtean be preserved in
the dynamic evolution despite the fact that there is interac:
tion between the qubit system and the environment. Th
similar conclusions can be specially obtained with a concret
model, such as the harmonic oscillator model of environmenEJ?"= 1A19'q (t) diverges on (G9]. The second case is that the
[20-24. series converges to a monotonic function tovhich ap-

We can go further to calculate exactly the following re- proaches positive infinity as—oo. Therefore it is possible

duced density matrix of the qubit system at titne that

(3.9

Obviously, the serieZ[_ ;A" 9’ (t)=0 since each term is not
less than zero. There are two cases in which the accompany-
ng factor F, (N,t) approaches zero in the macroscopic

mit with very large N. The first case is that the series
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of each harmonic oscillator in the environment though it has
p()—2 | X |Cohl2la,m)(q,m| many energy levels. Therefore in such a case we can also
am describe the environment as a combination of many two-
level subsystems without losing generality. In fact, for quan-
+ > exXdiEqmt—iEqut]lCHCr: [q,m)(q,m’| tum computation, Unrufil1] and Palmaet al.[12] have con-
m#.m’ sidered the harmonic oscillator environment. Their model is
(3.5 equivalent to the one introduced to explain the WFC in quan-
tum measurement by Swuet al. [31,32. A similar model has
asN—x. In the next section, some examples will be pre-also been touched by Leggett and co-workig2§,2€ and
sented to illustrate the above mentioned circumstances exsardiner[27] in studying the tunneling effect in a quantum
plicitly. dissipative process. Here we choose equivalently the two-
In some cases the above classification of state vectors islavel subsystem model to manifest some characters indepen-
reflection of the structure of some irreducible representatioment of environment in the weakly coupling limit and to
of a certain group chaiGDK whereG,K are chosen such demonstrate explicitly the qualitative calculation of decoher-
thatH, is G invariant andH, is at mostK invariant. As an  ence time through a sample example without quantum dissi-
example let us consider the group ch&®3)DS0O(2). It  pation.
defines the standard angular bdsigv ) through the Casimir Let |g;) and|e;) be the ground and excited states of the

operatorsd? and J; of SO(3) and SO(2). Inhis case, we jth subsystem. We define the quasispin operators

can takel:|S=H(32,33) to be the Zeeman Hamiltonian in a o1(D)=|e)ail +]g;) e,
central force field(not Coulomb fieldl if the interactionH,

=H,(J?). A special case of the above general discussion has oa(j)=—i[le;){(g;| —g;) (g1,
already been given in Ref21] where a totally factorized

interaction of the formH,=Q® =, f;(x;) is used. Her&) o)) =[e;)(ejl ~1g;){gjl-

is a system variable commuting with the free Hamiltortén  Then we introduce the Hamiltonian of the environment

of the qubit system ang; (j=1,2,... N) are the variables ==L hw;o3(j) and the interaction coupling to a qubit sys-
of the environment with the free Hamiltonidhy =3 ,NH,. temH,= f(S)EJNZlﬁgjo-z(j) wheref(S) is a function of the
The Hilbert spaceVs for the system is spanned by variable S of the qubit system. Let us for the time being
lg.m) (m=12,...4dq for a givenq), and the common focus on the simplest case where the system consists of two
eigenstates of) andH are labeled byy andm. qubits with the Hamiltonian

Qlg,my=eyla,m),Ada,my=Eqylg,m). (3.6 Hs=%7:S3(1) +:7,S3(2). 4.9

Then we have the direct sum decompositivg=3, Here S(1)=o@15(2)=1®0s (s=12,3) denote spin
®V9 with the eigenspaces V9=Spad|q,m)|m  OPerators acting on the first and the second qubits, respec-

=1,2,...dg}. This special interaction can be extended to allVely; andos (s=1,2,3) is the usual Pauli matrix. We con-

most general form with several system variablé§(j sider the special interaction given by

=1,2, ... K) that annihilate certain subspaces of the qubit f(S)=S5(1) + Ss(2). (4.2
system simultaneously. In fact a generalization along this

line leads to an elegant mathematical struc{®2,23. For It means that in our model the interaction has the same
mathematical details we refer the readers to &3] where  strength for different states. This model is very simple, or
it was systematically described in the framework of error-even too simple in some sense. But we would like to point

avoiding quantum coding. out that some decoherence-avoiding scheme such as the free
Hamiltonian elimination model in Ref21] is substantially
V. DYNAMIC DECOHERENCE IN AN ENVIRONMENT only a plain generalization of the present example to the
CONSISTING OF N TWO-LEVEL SUBSYSTEMS multipair case if one takes into account the (3)Jrotation

L ) transformation.
To make a deeper elucidation of the above mentioned | gt |1) and |0) be the qubit states that satisg|k)=

quantum dynamic mechanism of decoherence in quantum_yk+1|iy (k=1,0). Then the Hilbert space, spanned by
computation and the relevant trick of grouping the states of a

qubit system, in this section we model the environment as {11,D=]1)®|1),/]1,00=|1)®|0),
consisting ofN two-level subsystems. We recall that Cal-
deira and Leggefi25] have pointed out that any environment |0,)=|0)®]|1),|0,00=|0)®|0)}

weakly coupling to a system may be approximated by a bath

of oscillators. On the condition that “each environmentalcontains a null subspaceé’ of H, spanned by1,0) and
degree of freedom is only weakly perturbed by its interaction/0,1). Any superposition|¢(0))=A|1,00+B[0,1) in this

with the system,” they have also justified describing the in-subspace will preserve its purity in the evolution process
fluence of environment by a coupling term linear in the bathdespite the fact that there is interaction between the system
variables up to the first order perturbation. We observe thagnd the environment. Precisely, the pure stgig0))( 4(0)|

any linear coupling only involves the transitions between thewill evolve into the pure stateUO(t)|¢(0)><¢(0)|Ug(t)
lowest two levelgground state and the first excitation sjate where Uy(t) =exd —imtS;(1)—iptS;(2)] is the free evolu-
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tion operator of the qubit system. Physically, this fact impliescorresponding to the qubit staté8,0) and |1,1), respec-

that no useful information leaks out of the system in thetively. Using the formula expo-A]=cosA+ic-n, sinA for

process and the coherence is prgserved. This analysis can gegiven vectorA of norm A along the directiom,, , we get
easily generalized to the many-bit case where the free-qub, '

the explicit form ofU . (t
Hamiltonian takes the form=3;"2% 7,S;(k) and its in- P ja(D),

teraction with the environment is determined by ] o ] .
Uj,=cogQ;,t)—i[oo(j)sin 0;,+ o3(j)cos 0;,]sin(Q,1),
L-1 4.7
(8= 2 MSs(k), (4.3
where tand; ,= £,0;/o;, Qj,=V(9;£,)*+ wjz_ Then, using
Eq. (4.7), after some straightforward calculation we get the

wherelL is the number of qubits used and a '
real factorized decohering factor

k—1times

Syk)=10 -0l ®s,®1Q---@1. N N
s s FINO=]IT F(,o=]I [1-2sirfg;sirPQ;t], (4.9
=1 =1
The different\’s indicate that each single qubit has a dif- : :

ferent coupling to the same environment. In the Hilbert space = ) i
of this L-qubit system with the basis which is an N-multiple product of the factors=(j,t) of

norms less than 1. Here, we have used the new definitions
|9)=]do)®@|a1)®@|a)® - - - ®|qL_1), tand;=2g;/ wj, Qj=\/4gj2+wj2 for the speqial labelst,
=2,¢,=—2. Therefore the temporal behavior of decoher-
q,=0,1, k=0,1,2...,L  enceis described by

the coherence-preserving subspatecan be spanned by N g2
those basis vectollg)) satisfying IF(N,t)|=e"SV=exp>, In 1—80—12 Sinf(Q;t)] .
=1 <
L-1 ! 4.9

kEO A (— )% 1=consi &
This is an exact result without any approximation. A spe-

Let us return to the two-qubit example. If a superpositioncial case 'is that the subsy§tems constituting the envirqnment
contains a vector outside the decoherence free subspace, @€ identical and the environment has a constant discrete
coherence will happen due to the entanglement of systerfP€ctrum, i.e.w=constantw, g,=constantg. In this case,
states with environment states. For example, if the initiathe decohering factdF (N,t)| becomes an exponential func-
state|¢(0))=C|0,0)+D|1,1) of the qubit system involves tion exg—pN] of N with a positive coefficient=—In|1
states not belonging t¢° and the environment is initially in  —(897V49”+ 0?)sin’(\4g*+ *t)|=0. So asN—», the
the vacuum statd0)e=|g;)®|g,)®---®|gy), the corre- off-diagonal elements with the decohering fact&i(N,t)|
sponding pure state density matrix(0)) (¢(0)|®|0),  approach zero for alt except those satisfying/4g®+ w?
® (0] of the total system will experience a unitary evolution =(2k#/t) (k=0,1,2...). For more information, one
to reach a pure state density matpix(t). The reduced den- needs a detailed analysis on the behavior of the s&(gs

sity matrix of the qubit system = —EJN:1In|1—8(gf/Qj2)sin2(th)| for various spectrum distri-
butions of environments. Of special interest is the case with
p(t)=Trepr(1)=|C|?/0,0(0,d+|D|?1,1)(1,1 a continuous spectrum. In such a c#@) can be reex-

ressed in terms of a spectrum distributj as
+{CD*exf 2i (91 + p)tIF(ND|0,O(L Y +He) P P o)

4.9 2

g .
1—8—sirf(Q;t)
2 j
Qj

dwk . (41@

S(t)=— f:pwk)m

is no longer pure because the environment state becomes
correlated with the qubit system state. Here the decohering

factor . . P
If the above integral diverges to positive infinity, or con-

N N verges to a monotonously increasing function tpfe.g.,
H Fi(t)= H <gj|UjTl(t)Uj0(t)|gj> (4.5 S(t_)—_>?/t, the norm of the decoherence factor decays to zero
j=1 =1 at infinite N ast— oo.
Physically, infiniteN means that the environment is a
is determined by the effective evolution operators of themacroscopic object since it is made of infinite numbers of
form subsystems in that case. Therefore the occurrence of deco-
herence of the qubit system at infinlemanifests a transi-
Uj()=exd —iwjos(j)t—i.gjo2()t], tion of the qubit system from the quantum realm to the clas-
sical realm as the environment surrounding it becomes

£&=2, &=-2, (a=0,1) (4.9 macroscopic.

F(N,t)



1816 C. P. SUN, H. ZHAN, AND X. F. LIU PRA 58

V. UNIVERSALITY OF ENVIRONMENTS of the present notation81]. Let a] anda; be the creation
IN THE WEAK-COUPLING LIMIT and annihilation operators for thgh harmonic oscillator in

In the preceding section the analysis of decoherence fotrhe enwronme'?t. The |T—|am|lto.n|a_n of thg enwronment ta.kes
quantum computation is made by modeling the environmenth€ formH =2 ,iw;aja and its interaction with the qubit
as a bath of a large number of two-level subsystems. ThaYStém can be modeled as a linear coupling:
results seem to be different from those obtained from the
harmonic oscillator model of environmefit3,31]. Actually
this is a specious observation. Indeed, an environment sur- H,=f(s)j21 ﬁgi(aJT+aJ)' 53
rounding a qubit system for quantum computation may be
very complicated. Intuitively, the dynamic process of deco-

h . . hould d q h dWheref(s) is a linear or nonlinear function of the qubit
erence in quantum computation snou'd depend on te System variables. Let the initial state of the qubit system

tails of interaction between the qubit system and the environ oN=C -
) . - = +D be a coherent superposition of two
ment. Different environments should cause dlfferentr(P( ) @) 18) Perp

decoherence processes with distinct characters for the saf@?jf[g: i?fi;t,ijlgl>in (fr']? \’/‘jg}umﬂ L@F@i:i |Igi>g|e02e>rg|
gublthsystem..So geg_erallyt it seNems |rrr]1p|035|ble to control I"®|0N> where|0,) is the ground state of thith single

econherence in a qu '.t system. | evert eless, one may V\{(ﬂarmonic oscillator. The corresponding decohering factor
expect that in some limit situations there exists a certain N gt o N
universality in the dynamics of interaction so that the physi-F (N/) =I17=1 n(OJU} () UF(1)[0)n=I1}_,F;(t) can be
cal parameters dominating a quantum computation proceg¥tained by solving the Schiinger equations ob7(t) (y
would not depend on the details of environment. For the=af) governed by the Hamiltonian of a forced harmonic
tunneling problem in the quantum dissipation process, thi®scillator
kind of universality has been considered by Caldeira and
Leggett[25,26 by modeling the environment as a bath of ij=ﬁwja;raj+f(y)gj(a;r+aj). (5.9
harmonic oscillators with a linear coupling to the system.

In this section, we illustrate that, in the weakly coupling In fact, by the so-called Wei-Norman algebraic expansion

limit, the decoherence time obtained from the two-level subtechnique one has the following exact regal2,31,35:
system model of environment coincides with that from the
harmonic oscillator model. In the case of weak coupling, we N 2g? ot
haveg;<w; . Thus the norn{4.8) of the decohering factor in F(N,t)=ex;{ —[f(a)— f(lg)]ZE —stinz<—')
the two-level subsystem model of environment becomes =1 w; 2

N

N gg? N9l sin(wgt)
|F(N,t)|=e5<t>ze><p(—2 S&Sinz(wjt)). (5.1) Xexr{—i[f(a)z—f(ﬁ)z];ljj(H—n(U,)’ ”
=1 B

wjz j
. (5.9
In the case of continuous spectrum, the sugft)
_ <N 27 2\ H . . .
=31 1(8gj/ wj)sif(wjt) can be reexpressed in terms of aThe decoherence time is decided by the norm part of

spectrum distributiom(wy) as F(N,t), which is the same as that in E¢.1) from the
8 two-level subsystem model of environment in the weakly
sit)= | — 26irPwvdan | 5.2 coupl!ng limit. This can ef’;\sny pe seen if only one replaces
(t J wﬁp(wk)ngI PRk 52 /2 in the above equation witly; in the case that we

choose the initial state withe)={0,0), |8)=11,1) and the

From some concrete spectrum distributions, interesting cireoupling function(4.2). This simply implies that in this case
cumstances may arise. For instance, wherfw,) the details of environment do not affect the speed at which a
=(1/m) y/gﬁ the integral converges to a negative numberquantum system approaches the classical kingdom. There-
proportional to timet, namely, S(t) =yt [31]. This shows fore we have shown that there exists a universality of deco-
that the norm of the decoherence factor is exponentially deherence independent of the constitution of environments, that
caying and as— , the off-diagonal elements of the density is, in the weakly coupling limit, the decoherence time, de-
matrix vanish simultaneously. Another example of spectrunfived from the model of two-level subsystems, indeed coin-
distribution is p(wk)zznwﬁ/wgﬁ of Ohmic type[25,26], cides with that derived from the model of harmonic oscilla-
which leads to a divergent integra(t) — for t+0. There-  tOrS.
fore, in the present example, we can choose the spectrum Notice that, for the specific choicge(0))=C|0,0
distributions of the two-level subsystems in the environmentt D|1,1) of the initial state, the phases of both decohering
such that the serieS(t) diverges to infinity. Then the dy- factors(4.7) and (5.5 obtained from two different models
namical evolution of the whole system will result in a com- are zero due td(a)?—f(8)?=0=&;—£. But this is only
plete decoherence in the reduced density matrix. This obseccidental. If we start from a general initial state, even in the
vation is quite similar to that made in the context of theweakly coupling limit, the differences in these two different
harmonic oscillator model of environment. models of environment are reflected in the phases of the

To compare these models of environment in the weaklydecohering factors. For instance, we takg0))=C|0,1)
coupling limit, we should first briefly summarize conclusions +D|1,1) in the weakly coupling limit, we show that the

from the harmonic oscillator model of environment in termsphaseX|_,(g7/w?)sin(2v;t) of decohering factors
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N 92 importance of the phase of the decohering factor cannot be
FL(N,t):exp( - —’2[2 Sirf(w;t) +i sin(2w;t)] overemphasized as to a large extent it actually determines the
=1 wj probability of success of a quantum computation.
(5.6 Let us consider thé&-qubit system coupling to the envi-

ronment mentioned in the preceding section. The interaction
obtained from the two-level subsystem model is essentiallgonstants\, are chosen such that the eigenvalugs)
different from that= L, 4(g7/ w;)[t+sin(w;t)/w] i EQ.(5.5)  =3L-I\,(—1)%"* are not degenerate f¢g,=0,1}. Start-
from the harmonic oscillator model. In the large time scaleing from an initial statel¢(0))=C|q)+D|q’), where|p)
limit, the latter is proportional to timé and thus leads to a =T1I;_1®|p,),p=q,q’, the initial pure state density matrix
fast oscillation factor |immeXd—4i(gf/wj)t] with a quite  of the total system will experience a unitary evolution to
uncertain phase, but the former, with the time-dependenteach a pure state density matyix(t). Imitating the calcu-
term sin(2t), leads to the slow oscillation factor lation process in Sec. IV, we can obtain the reduced density
exr{i(gjzl4wj2)sin(2mjt)] with a finite phase. Thus the present matrix p(t) =Trp (t). Its off-diagonal elements are propor-
result seems to be more reasonable. Furthermore, it will bgonal to the decohering factor
shown in the next section that when the temperature is not
low, different phase effects happen for different models of N N
environment, or for different environments in practice. These _ S +
differences do affect the success probability of a quantum F'-(N’t)_jﬂl F'-(J't)=11;[1 (9i[Ujg(L D Ujqr (LD]g)),
computation. So only in the case of weak coupling at low (6.1
temperature can there exist a common scheme of controlling
a qubit system in various environments such that decohewhereUq(L,t) =exd —iw;o3(j)t—i&0)g;o-(j)t] is the effec-

ence is avoided. tive evolution operator acting on the subsystem in the envi-
ronment. Using the notions taf)(q) = £(q)g;/wj, Q;(q)
VI. DECOHERENCE FOR THE L-QUBIT SYSTEM =V[9;¢é(q)]"+wj, and the matrix representation of

AND AT EINITE TEMPERATURE Ujq(L,t), after a straight calculation we get

In this section the influences of the size of quantum reg- o , _ - ,
ister and the temperature of environment on the process of Fr(i,t)=sin 6;(@)sinQ;(q)t]sin 6;(q")sin Q;(q")t]
decoherence in quantum computation are investigated in the

framework of the two-level model. In comparison with the +{cod Q;(q)t]—i cosd;(q)sif Q;(q)t]}
harmonic oscillator model, it will be shown that as far as the

size effect is concerned, the difference between the two mod- x{codQ;(q")t]+i cos#;(q’)sin Q;(q’)t]}.
els is reflected in the phases of the decohering factors. Even

in the weakly coupling limit, this difference still exists. As (6.2

for the effect of finite temperature, it is observed that, though Triviallv. i (N1 b itv whea=q’. H
the decoherence time may be independent of the temperatur% y; _L( 1) becomes unity wheg=q'. Howevet,
of environment, the decohering factors have different phase¥ eng#q’, in the weakly c?uplmg limig;<w;, we have
at different temperatures. Physically, the phase of a decohe?!" 6(@)=6,(a), cos6j(a)=1-36(a), andQ;(q)=w; . Thus
ing factor is closely associated with the probability with
which the machine ends in a specific state. Consequently, it 1
will affect the success probability of a quantum computation Fu(j,ty=1— E{aj(q)_ 0,(q")}3sin(w;t)
(see the Appendix

Usually, decoherence tinmig depends on the physical fea- i
tures of the quantum system and their interaction with the D020 mN — p2( Vi _
environment. For a single qubit system some numerical esti- +4{'9j (@)= 07(a)}sin2o;t).
mates ofty have been made by DiVincenZd5] for several
physical realizations. It ranges from“@ (for nuclear spins ~ Considering  the  approximations 6;(q)=sin ¢(q)
to 10" s(for the electron-hole excitation in bulk of a semi- =&(0)g;/w;, we obtain the decohering factors
conductoy. In practice, to carry out a quantum computation,
one needs a large number of qubits. The dynamic analysis in
the following shows that the speed of decoherence becomes
larger as the number of qubits increases. Notice that the de-
pendence of decoherence time on the size of quantum regis-

. g .
FL(.D=1— —5{&(@) - &(a)}>sirf(w;t)

ter has already been discussed in various references i02
[4,5,10,12 in the framework of the harmonic oscillator +i{f-z(q)—g-z(q’)}sin(Zw-t), 6.3
model of environment. But it should be emphasized that here 4ot ' !

the same dependence of decoherence time on the size of

guantum register will be derived in the context of a generaWwhich just has the same real part as that obtained from the
model to expose a universality. An important by-product ofharmonic oscillator model of environment. Consequently,
our analysis is the derivation of the imaginary part of thethe temporal behavior of the decoherence is described by
decohering factor. We would also like to point out that theF(N,t), and actually determined by
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|FL(N,D)|=exg — S (1)] Notice that the effect of finite temperature only appears in
the imaginary part of the decohering factor. In general the
o N gj2 ) speed of decoherence characterized by the norm
=exp —[&(q)—£(q')] le ES'“Z(‘”J'U - I 4|FL(j,1)| of F(N,t) depends on temperature and there
! is not a global time scale characterizing the coherence decay-
(6.4 ing.
Here SL(t)=[§(q)—f(q’)]22?':1(gj2/2w]-2)sin2(wjt) is a In the weakly coupling limit, it is not difficult to see that

non-negative series. When the qubits are identical we have C 1 Liaca)— .’ V12 ,

M¢=1. Then the fastest decoherence happens if we choose P D=1=2{i() — (a")sirLwjt]
la)=lgo=1)®|q;=1)®---®[q.-1=1) and |q")=|do —(i/4)tant Bw;)sin 2w;t][ 67(q) — 67(q")]
=0)®|0,=0)®---®|q._1=0). In this case|F (N,t)]
=ex{d —L?Yt)]. Thus for the instance witt(t)=yt, we  OF
have|F(N,t)|=exd —L?yt] where rg4=y~ ! is the decoher-
ence time for a single qubit. This shows that the characteris-
tic time of the fastest decoherence happening inLtftpibit
system id_? times that of a single qubit. This conclusion was

2

FL(0 =1 —{£(0)— £(q") }sir?(w)t)2
2wj

obtained by Palmat al.[12]. But it should be stressed that igj? ) ) _

the imaginary partS]_,(g7/4w?){£7(q) - £(q")}sin(2w;t) +F{é—(CI)—fj(Q’)}tanf(ﬁwj)sm(ijt)-
appearing here is also essentially different frg(a)? “j

—f(ﬁ)z]Ele(ng/wj)[Hsin(w]-t)/wj]. Thus the present re- (6.7)

sult seems to be more reasonable. To conclude, &J8).
and (5.5 demonstrate that different models of environmen _
might lead to quite different results when the system is faform:
away from the weakly coupling limit. o2
All of the above discussions about decoherence in quan- Fl( ,t)=exp< _ z—al)z{é(Q)—é(Q')}ZSinz(wjt))
j

tThis result can be rewritten as the following exponential

tum computation only concern the situation of zero tempera-
ture. Let us now take the influence of finite temperature into

account. Suppose the environment is initially prepared in an igj2 ) 5
equilibrium state described by the canonical density matrix X ex m{fj (@—§@a"}
N N J
exp(— BH,)
po(0)= ———————=]] pjp(0) |
Trpexp(—BHe) =1 Xtanh Bw;)sin(2w;t) |, (6.9
efﬁwjoﬁ(]—)
=j:1 m, B= KaT (6.5  where we have used the approximatidn+ e +ie|=|exde

+i€]|=e’=1+¢ for real infinitesimale and . In the case

iesS (a2/2w? — E(a V2SI (w: -
and the initial state of the qubit system is a pure staté[hat the seriesz,(gj/2w}){£(q) — £(d)} sz(th)] con

a e ~verges to a linear functiont of timet, the decoherence time
/toeslgr?)i; |ﬁfjg()s)gégég)|byThtehr;th§r£S§tl s;aetssti)t;th;;?g(los;ys is 74=1/y by definition. This reveals the novel fact that, in

— 5(0)® p(0) an environment weakly interacting with the qubit system, the
pFSor a ‘;b eciél initial state of the forrf(0))=A|0,0) decoherence time does not depend on temperature, as a result
+B[11 P btain the decohering facter(N t =H'-\" 1 of the temperature-independent norm f(j,t). Thus in
[1,1), we obtain the decohering factéi,(N,t) =TI this case thermal fluctuation plays a role in quantum compu-

— 2 sir? 6 sirf((1)], which is the same as that derived under i, only through affecting the phases of the off-diagonal
the condition of zero temperature. This is only an accidentaljements of the reduced density matrix.

situation owing to the special choice of the initial state. Fora |, conclusion, in the weakly coupling and low tempera-

general initial state, we will see, the decoherence procesg e |imit, there exists an interesting universality in respect to
indeed shows a temperature dependence. In fact, for a geflje pehavior of decoherence of a qubit system. In other

eral initial statel¢(0))=C|q)+D|q’), we can calculate the 6145 under certain conditions the decoherence time or the

factor F (N,t) =I1jZ1F (j.1) as follows: speed of decoherence is independent of the adopted models
FL( ,t)ETI’b[qur(L,t)p]-b(O)UJ-Tq(L,t)] of environment and the temperature of environment.
=sin 6;(q)sin Q;(a)t]sin 6;(q’)sin;(q’)t] VII. DISCUSSION
+cog Qj(q)t]cod Q;(q’)t] From the above discussions about decoherence in quan-

tum computation, we have seen, at least in the weakly cou-
pling limit, that for a quantum register with qubits the
i . relevant coherence may experience a decay characterized by
— stanh Bo))sin 2Q;(a)t] the factor exp{[L?/t4]t) wherety is the typical decoherence
time for a single bit. Thus, in general, if a quantum algorithm
x{cos 6;(q)—cos 6;(q")}. (6.6 calls forK elementary computation steps and each step takes

+cos 6;(q)sin Q;(q)t]cos 6;(q")sin(2;(q")t)
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time 7 on the average, in order that the algorithm could betion of q statesla) (a=0,1,...g—1) and the second one

feasible we should have the condition in a single staté0). This leaves the machine in the state
L27K <tq. (7.2 q 97t
N . . [4(0))=—= 2 |a)®|0). (A1)
Generally speaking, this would impose a strong restriction on \/a a=0

L and K. We need to develop proper quantum error- ) , ,
correction schemes to cope with this difficulty caused by\eXt, one computes’mod(n) in the second register, leaving
decoherence, which is unavoidable in the quantum kingdonfh® machine in the state

Along this line there has been some progress. Nevertheless q-1 q-1

there is another severe problem which may endanger the agz 1yy—= — a)® [xqmod n))= — a.x®modn
sumed great utility of quantum computers. In the Appendix%( ) Jgq aZO )2 an) Jq aZO 2, dn)).
we have shown that environment may affect the efficiency of (A2)

a quantum algorithm. Although our discussion is not sophis- ) ] ]
ticated enough it indeed gives us frustrating information.Then one performs a Fourier transfoAy on the first regis-
This problem, deeply rooted in the quantum kingdom, seemt€r- This leaves the machine in the state

to have been ignored. We think it is now time to face it g-1gq-1 D miac
seriously. _ m ) a
. . t)=—- ex c,x*modn)).
Even if one can effectively control the speed of decoher- |4e(1) q aZO (:Zo | am)
ence owing to the existence of a universality, so that the (A3)

above condition is satisfied, there is still another stubborn . o

problem to handle. Though different environments may lead-inally one observes the machine. One easily finds that the
to the same decoherence time, the decoherence proces%@?(ab”'ty that the machine ends in a particular state
may be quite different, characterized by different phases inc.x“mod(n))=|c,k(x;n)) is

decohering factors. This will make it almost impossible to q-1 .

bring a quantum computation under control in different en- D(C.k)= — > ex;{ 2miac
vironments. To be more precise, let us take Shor's prime ’ 02| a:xa= xkmodn) q
factorization algorithm as an example. In this case, as refor-

mulated in the Appendix, the effect of decoherence is reShor shows that i€ lies in a particular region one can deter-
flected in the probability mine a nontrivial factor oh from the value oft. Denote the
one-try-success probability of this method py. Then one
has the following result:

2

(Ad)

2mi(a—a’)c
———  |F(a,a’), (7.2

19
p'(ck)== > ex

a" aa’ P=1é(r)p(c,k)=1/Inn=1/3 Inn, (A5)
with which the machine ends in a particular state
|c,x*mod(n))=|c,k(x;n)) (for the notations and their mean-
ings see the Appendix Here, the decohering factors
F(a,a’)=F(a,a’;t) are usually complex. It is easily seen 0 some extent. Assume that the environment consists of
that the probability closely depends on both their norms ané il | th'. denot 0).&(1) 0’ (C.K
their phases. Since this probability is at the core of Shord®" |c,es. n this case we denote kY (0),be(1).p’(C.K),
prime factorization algorithm, the phases of decohering facEind Ps t_he correspondences ¢(0),4¢(t),p(c.k), andps,
tors play a crucial role here. At present as far as we know/€SPectively. Then we have

wherer is the least integer such thet=1(modn) and ¢ is
Euler’s quotient function.
Now let us take the influence of environment into account

how to control the influences of different phases due to dif- 1 ot
ferent environments is still an open problem in quantum |’ (0))= — E lay®|0)®|e), (A6)
computation. Jg &=o
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APPENDIX: DECOHERENCE IN THE SHOR |¢'(1))=
FACTORIZATION ALGORITHM

q-1
go la)®|x?mod(n))®|e[a])

5l

In this appendix we illustrate the possible influence of
environment on the validity of a quantum algorithm through
the example of Shor’s prime factorization algorithm. In this
case, we recall, the so-called quantum computer has two reg¢here|e[a])=U4(t)|e) andU 4(t) is the effective evolution
isters in use. According to Shor's methf#l, to factorize a  operator of the environment correlated with the staje For
numbern one should first of all choose a numbeiThen the  simplicity we do not consider the influence of environment
first step is to put the first register in the uniform superposi-in the process of the Fourier transfordy. Thus we have

q-1
ago |a,x?modn))®|e[a]), (A7)

Sl
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2miac

N N
)|c,xamoc{n)>®|e[a]). F(a,a’)=H <ej|ug(t)ug(t)|ej>EH |Fi(a,a’)
(A8) (A14)

As the only difference between the present model and thef the decohering factorléi(a,a’):(e|ULT,(t)U£(t)|e) with
original one is the involvement of the environment variablesnorms less than unity. In the macroscopic liMit-, it is

|e[a]) in the entanglement, to proceed along with the dis-possible thaF (a,a’)—0, for a’ #a, namely,(e[a’]|e[a])
cussion we should consider the reduced density matrix = Then we have

p(1) =Trel [ $()){ Ar(D)]]

1 1q 1
“19-1 g-1 g "(c,k)==[(g—1-kK/r]ls—=—-=— (AlH
1 9°1a-1a-1 g-1 2mi(ac—a’c’) P o @ ar
=33 Y Y ex el S i
g a=0c=04a'=0c'=0 q and
x(e[a']le[al)|c,x®modn))(c’ ,x* modn)|. p'(S)=rp(r)p’(c,k)=d(r)/q<¢(r)/n’><1n.
(A9) (A16)

Here we have traced over the environment variables. We Let us proceed to discuss the possible influence of envi-
notice that the contribution of environment is given by thefonment on the efficiency of Shor's algorithm. Generally

decohering factor speaking, a deterministic algorithm is said to be efficient if
the number of the computation steps taken to execute it in-
F(a,a’)=(e[a']le[a])= <e|U;,(t)Ua(t)|e>. creases no faster than a polynomial function dillwhereN

(A10) s the input. For a randomized algorithm this definition
should be modified to fit in the probability character. Sup-

Now it directly follows that pose the one-try-success probability of a randomized algo-
. rithm A is s, thenA is said to be efficient iWe>0,3 p(x)
p’(c,k)=Tr{p(t)|c,k)(c,k[} such thatyYN(1—s)P("N<g, wherep(x) is a polynomial.

Obviously, the polynomiap(x) here should have real coef-
F(a,a’). _ficie_nts and satﬁsf;p(ln N)?O. All the polynomials. appear-
ing in the following are tacitly assumed to have this property.
ALl It is also clear that in quantum computations all algorithms
(ALD) should be randomized ones.

This general expression directly shows the effect of environ- L€t Abe a quantum algorithm. Suppose for an inliuhe
ment on Shor’s algorithm. Both the norms and the phases a@€-try-success probability ok is f(N) wheref is a real
crucial to the success of Shor’s algorithm. We have arguegontmuou_s function defined on the real line. Then we have
that the norms decide the decoherence time while the phas#€ following lemma. - .

can affect the probability in the text. Lemma. If there exists a polynomia{>p) such that

We are now in a position to consider two extreme cases.

== > ex

2 . ,
q a,a’:x%=x"mod n)=x2

1 -l F{eri(a—a’)c

H In N
For the first case, suppose that the qubit system is completely ,\I"Tw[l_ fF(N)JPin <1 (A17)
isolated. In this case we have, =U, for a’#a, so
(e[a’]le[a])=1. As a result we get then A is efficient. Conversely, if for an arbitrary polynomial
-1 _ p(x) we have
1 2miac
p'(c.k)=— > exp( >| =p(c,k). lim[1—f(N)]PI"N =1 (A18)
d°| a:x2=xKmod(n) q N o

(A12)

) A is not efficient.
For the second case, suppose that the environment causes apgof Let p(x) be a polynomial such that lign...[1

complete decpherenge. If we if\dexed the elements qf thgf(N)]p(m N<1. ThenVe>03a(e) such thatlimy ..[1
redu_ced density matrix by _anda , then this means that its — £(N)JP0n N)}a(s)<8_ Namely, lim_..[1—f(N)]P0nNate)
off-diagonal elements vanish completely. Such a case ap- Defining

peared in the dynamical theory as a consequence of a certain

factorizable structure of the effective evolution operator. In p’(X)=a(e)p(x)

fact, if U, can be factorized as

we come to the conclusion that there exists sdigesuch
that YVN>No, [1—f(N)]? ("N<¢. It is now evident that
one can choose a suitable polynomiglk) such thatVN,

. [1—f(N)]90"N<¢. This proves the first part of the lemma.
where UL(t) only concerns thgth particle in the environ- For the second part of the lemma, if the conclusion were
ment, the decohering factor can be expresseh-asultiple  not true,Ve>0, there would exist a polynomidl,(x) such
product that VN, [1—f(N)]P=("N<g. Thus we would have

N
Ut =11 ui), (A13)
]
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limy_..[1—f(N)]P:("N<g, leading to the contradiction 1 case, we havef(N)<1/N. It is easy to prove lif_..(1

<g. The lemma is consequently proved. —1/N)'”mN=1 for all integeram so for all polynomialg(x),
Before concluding this Appendix let us takk to be limy_..(1—1/N)P("N=1_ Consequently, for all polynomials

Shor’s prime factorization algorithm and return to the abovep(x)

mentioned two extreme cases. For the first case, we have

f(N)>1/3 InN. As a result, lim [1— F(N)TP" M= fim (1— 1/N)PIT N =1,

N—o N— o0
im[1—f(N)]?"N< Iim[1-1/(3 InN)]®""N=1/e< 1. (A20)
N— o0 N—o

Al9
(A19) This means that the algorithm is no longer efficient in this

So according to the lemma is efficient. For the second case.
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