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Moment equations for probability distributions in classical and quantum mechanics
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The equations of motion for phase-space moments and correlations are derived systematically for quantum
and classical dynamics, and are solved numerically for chaotic and regular motions ohitre-Heiles model.
For very narrow probability distributions, Ehrenfest’s theorem implies that the centroid of the quantum state
will approximately follow a classical trajectory. But the error in Ehrenfest’s theorem does not scale, \aitil
is found to be governed essentially by classical quantities. The difference between the centroids of the quantum
and classical probability distributions, and the difference between the variances of those distributions, scale as
#2, and so are the true measures of quantum effects. For chaotic motions, these differences between quantum
and classical motions grow exponentially, with a larger exponent than does the variance of the distributions.
For regular motions, the variance of the distributions growst?aswhereas the differences between the
quantum and classical motions growtds[S1050-2947©8)13009-3

PACS numbg(s): 03.65.Sq, 03.26:i, 05.45+b

I. INTRODUCTION ments of the probability distributions, hence their time evo-
lution is of interest.

In several areas of current research, such as mesoscopic (i) The moment equations offer another way to study the
quantum systems and quantum chaos, it is important to olslifferences between the quantum dynamics of states whose
tain a better understanding of the similarities and difference§lassical motions are chaotic or regular.
between classical and quantum dynamics, and of the emer- The structure of the moment equations has been studied
gence of classical behavior from quantum mechanics. Sinc@rmally [2], but they have not previously been applied nu-
the predictions of quantum theory are in the form of prob-merically. We shall find that the moment method works only
abilities, it is appropriate to compare the dynamics of a quanin the Ehrenfest regime), but in that regime it yields some
tum state with that of a classical statistical distribution, rathef"€W and interesting results.
than with a single classical trajectofy]. If the initial quan-
tum state is chosen to be a small wave-packet, and the initial
classical ensemble is chosen to match its position and mo-

mentum diStI’ibutionS, then we can dlStII’]gUISh three distinct The equations of motion for the average position and mo-
dynamical regimes, as follows. mentum of both classical and quantum probability distribu-

(@ The Ehrenfest regime, in which the widths of the tions depend upon the higher moments of the distribution,
guantum and classical probability distributions are smallcreating, in general, an infinite hierarchy of equations to be
compared to the physical dimensions of the system. The cesolved. We shall study them for one- and two-dimensional
troid of the quantum state, and also that of the classical ersystems.
semble, approximately follow a classical traject@¢Bhren-
fest's theorem

(b) The widths of the quantum and classical distributions A. One-dimensional quantum moment hierarchy
are comparable to the dimensions of the system. Ehrenfest’s . . . ) )
theorem does not apply, but the quantum and classical prob- N this section, we will derive a hierarchy of’moment
ability distributions are approximately equal. equations that arises fr_om corrections to Ehrenfest’'s theorem.

(c) The fully quantum regime, characterized by interfer- Assume a Hamiltonian operator of the form
ence and quantum recurrence, in which there is no corre-
spondence between the classical and quantum probability . p? .
distributions. H=> +V(a). (1)

We have chosen to study the equations satisfied by the
phase-space moments and correlations of quantum and clas-
sical systems for several reasons, as follows.

(i) In a numerical integration of the Schiinger equation, We are interested in the time development of the average
it is impractical to use a dimensionless Planck constast  position and average momentum. The equations can be de-
sentially the ratio of the de Broglie wavelength to the size ofrived by using the time dependent Sctfirger equation and
the systemthat is much smaller than 18. No such restric-  integrating by partgas Ehrenfest did in his 1927 padé),
tion applies to the moment equations. but it is easier to start from the Heisenberg equations of

(i) The corrections to Ehrenfest's theorem involve mo-motion:

Il. MOMENT EQUATIONS
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= _[A,p]= - —. 3 —=—
¢~ 7 H.P] a () n |=20 T I (10)

Taking th i initial state yiel
aking the average in some initial state yields If the terms in Eq.(10) with >0 could be neglected, then

the quantum average®, and P, would satisfy the classical
(4) equations of motion. But, in fact, the time dependenc® of
depends, not only on the mean, but also on the higher mo-
. ments of the position distributioki(5g)'). The resulting dif-
a B dv(q) 5 ference between the time development of the mean position
dt'P’ = dq /|’ © Q and the classical orbit constitutes the error that would be
committed by applying Ehrenfest’'s theorem.
Not only are the higher moments of the position distribu-
tion involved in the time development &?, but the time

. . development o{(5&)'> involves more complicated moments
Q=(a), P=(p), ©) o the form((8p)(3p)™.
From Heisenberg’'s equations of motion we have

d .. .
gl =),

d .

Let us define the mean position and momentum,

and the operators for the deviations from the means,

o A~ . d . - i - J . -
59=9-Q, dp=p—P. @ L (80" =2H.(8p) (80)"]+ —[(8p) ()],
11
The Hamiltonian operator and the time evolution equations v

can be written in terms of these new quantities as
where the final term involving/dt accounts for the explicit

~ 5 5 =y N time dependence d@ andP in Eq. (7). The required com-
N (5p) 0 P_ dVv(Q) @ mutator relationships can be calculated using d.) from
A +P(8p)+ 5+ 2, . ®

2 2 =0 dQ I the Appendix. The final result is

d*vQ) & dTV(Q) ((sp)ktsa)™!)
Ql+l (=) dQ|+l |1

1
dt<(5p)k(5q)n> n<(5p)k+1(5q)” 1)+k<(5p)k 1(5q n>20 (( Q)>

d|+lV(Q)min(|+1’k) (ih)sfl

|hn(n—
i 49+t & Si(it1-s)i(k-9)

<(56)k—5( 5&)I+1—s+n>_

((8p)(80)"2) k! 21

(12)
Similarly, using Eq.(A2), we find that

d"V(Q & dTVQ) (39" (sp)f )
QI+1 =) dQ|+1 |

|+1V(Q)min(|2+1,k) (—iﬁ)S—l
dQitt &2 sl(l+1-9)!(k—9)!

(5
dt<(6q )"(8p)K)=n((8q)""L(Sp) <L)+ k((89)"(Sp)*~ 1>ZO< )

©

(89" 2(5p))— k'El

m <(5a)l+1—s+n(5ﬁ)k—s>_

(13

Using Eq.(A3), we can obtain a set of equations for the symmetrized operator products, which are the quantum moments:
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<5q )"y d'FV(Q)
dQH—l

BB =AD" .+ 5 S,

i d*v(Q) 1
=5 dQ|+l
Al k1 ™0 =121, [(k+1)/2) (_1)|ﬁ2IE2|71(0)

T ) A= Din—2i— 1)l (k=21 D1 LR o)™ _+)

| iz [(6p)< L,(80)" '] 4)

I\)

LT . _
= gy (Q) M2k 1) (—1)Jﬁ2’<§[(5p)k211,(5Q)"+'2']+>
-k

=1 dQ'*t jzl (k=2j=DN2j+D!(I-2j)!

. . .
[min((1 +n)2,(k—1)/2)] (—1)‘ﬁ2’<5[(5p)"‘2"1,(5q)”+"2’]+>
+ le (k=2j—1)!(1+n—2j)!

(I+n—=2s+1)!Epj_25+1(0)

i
X2 BeTI= 25T 1)i(2] 257 1)1 (14)
|
Here the anticommutatofA,B], = AB+BA, is the symme- From Hamilton’s equations of motion we have
trized operator product. In the limits of the sumg] indi- d
cates the integer part of E,(0) is the zeroth order coeffi- _q: P, (18)
cient of the nth Euler polynomial (see Abramowitz and dt
Stegun([4], p. 809.
dp_ dV(q) 19
dt dq

B. One-dimensional classical moment hierarchy

Ballentine, Yang, and Zibiri1] have pointed out that a For the initial position and momenturgg andpg, the solu-
classical analog of Ehrenfest’'s theorem can be obtained byon of the above equations is of the foqa= q(qg,pg,t) and
considering a classical ensemble of noninteracting particless=p(py,qg,t). Letting p(qe,po) be the initial probability
The usual method of derivation is to le{(q,p,t) be the distribution in phase space for an ensemble, we can define
probability distribution in phase space for a classical enthe following classical averages:
semble, which satisfies the Louiville equation,

(q,p.t)= ap+ D 9o Qc=(a)c= f_mf_wq(qo,po.t>p(qo.po)dqodpo,
(15
The classical average of a functidfq,p) is defined as P.=(p).= J_wf_mp(%’po't)P(%,po)dqod Po.
(21

(f(a.p))c= f f f(a.p)p(q.p.t)dadp (16 Let 5g=q— Q. and p=p— P, be the deviations from the
mean values. Taking the ensemble average of both sides of

This approach is analogous to using the Sdinger picture  Eds.(18) and(19) yields
in quantum mechanics, in which the time dependence is car-

ried by the state function. Instead, we use a derivation that is dQc =P, (22)
analogous to the Heisenberg equations of motion, in which dt ¢

the time dependence is carried by the varialjesdp, and

the probability distributionp is a distribution over initial dP, dV(q) 2 (89 d'FIV(Qy)
states. dt ~ \ dq_ DT TR (23

Consider a Hamiltonian of the form

where we have expand&t{q) in a Taylor series irdq about
the centroid. Notice that the equation foP./dt depends
upon the moment§(5q)')., for 1=0. In general, we need to

p2
H= "5 +V(a). (17)
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know all higher order moments of the distribution. Usingder. Suppose, for example, that instead of using
Hamilton’s equations of motion and EqQZ) and (23), we %[(5&)2,(561)']_*_ for the guantum moment Corresponding to

obtain ((8p)?(59)"), we redefined that quantum moment to be
d k n k n-1 1 ~ ~ 1 . . ~ ﬁz ~
g1 (9P)*(80)"=n(3p)"(69)" *(Pc+ p) 3L(om2.(80)' 11+ 3 8p(80)'op— 1 (1= 1) (o) 2.
~K(8p)< 3 5g)n D 24 -
(8p)™*(éa) dq (24 The classical limit of this moment would not be affected, and

we would eliminate all# terms in the equation for
dPc  d/dt((sp)° i initi imi
B K -1 K1 e p)°). But thissameredefinition wouldnot eliminate
n(op)"(oq)™ "Pc—k(op)™ 7(4q) dt all  occurrences of £ in the expression for
(25 d/dt(3[(8p)3,59].). Indeed, no matter what ordering of
By taking the average of both sides of this equation, we operators is used, there will remain a difference between the
obtain a general formula for the time derivatives of all the€V0lUtion equations for the classical and quantum moments.

moments of the classical distribution, It is the noncommutativity of theSq and thesp operators
that is the source of this difference, and hence is the source

d " N of the difference between classical and quantum mechanics.
FRIAC IS
D. Conservation of energy
=n((8p)"1(69)" )¢ By writing the averages of the classical and quantum
Hamiltonians as
1 an <(5q> )e d'TV(Q,)
+K((3p)*H(89) "¢ E —
=0 dQc 2 2 <(5q) )e d'V(Qo)
<H>c——[<<5p Yot P2 ]+20 e
o (DM e I V(Qy 26 Q
a I dqL? C
1 Y
C. Differences between the quantum and classical moment (A)= —[((5p)2>+ P2]+2 { q) ) d (?) , (29
equations =0 dQ

The first three terms in the quantum hierarchy of Bal)  respectively, it follows directly from the moment hierarchies

have the same form as those in the classical hierarchy of E%atd/dt(H)czo andd/dt(l:|>=0. The accuracy with which

(26), but the remaining terms in Eq14) are COMections  hege formal identities are satisfied in a numerical computa-
involving 7. As we can see from Ed14), the first appear- tjon can be used to test the accuracy of the numerical solu-

ance offi occurs in the equation faﬂ/dt((éﬁ)e‘). That the  tions.

difference between the classical and quantum equations oc-

curs only in third and higher orders provides part of the E. Two-dimensional moment hierarchy
explanation for the fact that the classical and quantum prob-
ability distributions agree quite well for modest time inter-
vals.

We have defined the quantum moments as the expectatlo
values of the symmetrized products of the operators. On
could ask whether there might be some other ordering of the
59 and 8p operators that could be used to define quantum .
moments that would correspond more closely to their classi- H=5(p1+ p2)+V(041,02), (30
cal analogs, and for which the first occurrencefioin the
moment equation hierarchy would be pushed to a higher orwe have

The hierarchy of moment equations can be generalized to
higher dimensional systems. We will develop them for a sys-
m of two degrees of freedom, since that is the smallest
ynamical system that can exhibit chaos.

For a classical Hamiltonian of the form

dQc,

¢ =Pear @=12, (3D)

dpP,, > dsanTics iy, 8 WV(Qy, 0,
:_Zz« q1) '(692)") (Qc1,Qc2)

Lo L2 a=1,2, 32
oi=0  (I=]j! 9Qca?Qt1'QL, : >
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and
d
m« Sp1)¥1(8P2)*2( 801) "(802)"2) = N1{(SP1) 1T H(P2)*2( 81) " L(802) "2) + No{(SP1)*1(Po) 2T H(8a1) "(8G2) "2 ),

—k dp <(5 )kl 1(5 ko S NS ny
17 gt ((oP1 P2)*%(801)"(802)"2),

o | _ i f
((8p)* 7 Y(8p2)*2(8g1) ™ 7I(80,) "2 ). ¢ V(Qe1,Qc)
_klgo ,Zo (I=p1j! JQ1719Ql,

Kk, <(5p1)k1(5p2)k2 Y(8a7)" 1 7I(80,)"2 ) ' TV(Qe, Qcz)
%5 %6 (I=p)'j! aQL;1aQLE?

(33

The subscriptr labels the degrees of freedom.
The corresponding equations for a quantum Hamiltonian of the form

IEO
H—z(p1+p2)+V(Q1,Q2) (34
are

dQ,

sza, a=12, (395

[
2 =12, (36)

dP. & v ((890)'71(892)) 9" V(Q1,Qy)
a 2012:0 (=" 9Q,0Q19Q)"

and
d oo a .
&«5!31) 1(8p,)"2(5q1)"(5q,)"2)
=n1((8p1) 1" 1(8p2)*2(891)™ 1(80G,)"2) + Ny((8p1) U 8p2) 2 H(801)"(8G,) "2 L)
dP ~ R R R dP R “ R R
_kld_tl<(5p1)k171(5p2)k2(5Q1)n1(5QZ)n2>_kzd_t2<(5p1)k1(5p2)k271(5Q1)n1(5Q2)n2>

ih -1 . . ~ - iiny(ny,—1) “ n - -
T (B ) o 503"+ 2 T2 () 5 8" B )

min(l+1—j,kq)

5w 107V(QL.Qy) (i1)5 X(8p) 1™S(8po)a( 8q,) " L7178 5q,) "2 )
B D TS =Y
=0 =0 ! Q" 1sqQ) &S st(k;—=s)!(I+1—-j—s)!

—k 'i L TV(0) (#1)* (8P 4( 5D,) 2 (840)"* 71 5G)"717179)
2: =5 o(|_])' (7Q| laQH’l s=1 5!(k2—S)!(j+1—s)!

min(j +1ky)

J+1-])

Cw AV(Q,Q) ™M 1
kil EZW & slkg—9)l(I+1-j—9)!

min(ky,j+1)

(ih)str™ 1<(5pl)k1 s(5p2)k2 r(ﬁq yratl+i=j— S(5q Jnai+1- r>
g 21 rH(k,—n)!(j+1—r)!

(37

A similar equation can be found fai/dt((5q;)"(50,)"2(5p1)*1(8p,)¥2). We do not have an explicit formula for the
symmetric two-dimensional quantum hierarchy. Instead, we have used Maple procedures to calculate the hierarchy and to
place the operators in symmetric ordéetails of these rather lengthy Maple procedures may be obtained from the guthors.
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The infinite hierarchy of equations is truncated by dropping all moments beyond some chosen maximum order. The number
of equations increases rapidly as the order of the moments increases. For two degrees of freedom, the number of equations is
14, 34, 69, 125, 209.. when the maximum order of the moments is 2, 3, 4, 5,.6 .

lll. APPLICATION TO THE HE ~NON-HEILES POTENTIAL

The Heon-Heiles potential5] is a well studied system

that has a rich phase space structure, containing both chaotic

and regular regions. Its classical Hamiltonian is given by

1 1 1
H=2(pi+p))+5(qi+a3)+aid.— 30;. (39

The quantum Hamiltonian is obtained by replactgnd p

with the operatorg] and p. The first few equations of the
quantum moment hierarchy for the #en Heiles system are

d d

anzpla anzpz, (39
d R “
apl:_Q1_2Q1Q2_2<(5q1)(6q2)>1 (40

SPa= Q- Q1+ Q3 (8 + (60
at2 2~ Q1+ Q5 q1)%) +((69z)%). (41

It is apparent from Eq(40) that we need to know the time

development of (69)(805,)), which is given by

d . . L L
g1 ((841)(892))=((8P1)(802)) +((8P2)(80y)). (42)

It is apparent from Eq41) that we will need

d . L
gi((601)%)=2(3[(p1).(5G2)]+) (43

and

d . L
1((802)%) =2(3[(8p2),(502)1+). (44)

From Eq.(42), it is clear that we will need

d “ “ “ R “ “
&((&31)(6(42»:<(5p1)(5p2)>_(1+ 2Q,)((601)(602))

—2Q41((892)%)—2((801)(502)%), (45)

d . . R - .
a(@pz)( 801))=((8p1)(p2)) —2Q4(( 5CI1)2>

+(2Qo—1)((891)(802)) —((61)%)
+((801)(592)?), (46)

and from Eq.(43) we will need

d - - - -
gi¢2L(8P0),(8a1)].) =((8p1)*) ~ (2Q2+ 1){(801)?)

—2Q4((89,)(50y))
—2((801)2(892)). (47)

These first few equations illustrate the fact that each equation
brings in higher order moments and the system does not
terminate.

So far there has not been any appearancé oh the
quantum equations. The first occurrencehofs in the ex-

pression ford/dt((5p,)3). Until that point, the classical and
quantum hierarchies have the same form.

A. Initial state

For our initial state, we have chosen a minimum uncer-
tainty wave packet centered at an arbitrary point in phase
space, whose coordinates and momenta are distinguished by
a subscript ‘0™

1 (Q1_Q1o)2 iP1o01
, = expg — +
llf(ql QZ) \/ﬂa F{ 4a2 ﬁ
(Q2_QZ0)2 iP2002
— o + | (48)

Herea?=((45q)?) is the mean squared half-width of the po-
sition probability distribution for each degree of freedom.
The initial values of the quantum moments are computed
from this wave function. The initial values of the classical
moments were first chosen to be equal to the initial quantum
moments, but this choice will be reconsidered later, since
some of the quantum moments take on classically impossible
values.

B. Computational accuracy

The hierarchy of moment equations was truncated at vari-
ous orders and solved numerically. Essentially the same re-
sults were obtained when the truncation was at fourth, fifth,
or sixth order moments. But as the moments grow in magni-
tude, there comes a time when the system becomes unstable.
This is signaled by various moments diverging to infinity,
and even-order moments taking on physically impossible
negative values. This happens when the width of the prob-
ability distribution is no longer small compared to the scale
of the potential. We have tried reformulating the moment
expansion in terms of cumulants, and truncating the cumu-
lant expansion, but this did not improve the stability of the
system. Evidently, no truncation of the moment hierarchy is
valid outside of the regime of narrow wave packéisren-
fest regime. But within this regime, the method is very re-
liable.
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FIG. 1. Initial classical moments equal to quantum moments. F|G, 2. Same as Fig. 1, except that the initial classical moments
Parameters for chaotic initial state;o=0, 020=-0.15, P1o  are derived from a Gaussian distribution.
=0.47461,p,,=0.a=10 %, =2x10"12 See text for definition

of the curves. and Q. are of order unity, so their difference computed in

double precision cannot be significant below 19 In fact

The expectation value of the Hamiltonian should be ayine computational errors limit the reliability 6@, Q|
constant of motion, and the accuracy to which it is conserve computed values greater than about ¥ so the distance
is a check on the accuracy of the numerical computation. Wgeeen the centroids is not plotted unless it exceeds this

found it to be accurately conserved to one part i1 afe minimum. However, the difference between the vari-
double precision until the distributions became too broad an nces|Vq— V|, is no smaller than a factor of 16° below
the system became unstable. V,, so the computed values pf,—V,| are reliable for the
full range plotted in the figures.
C. Results Since the variance of the position distribution is the low-

Most of the figures show four quantities as a function of€st order correction to Ehrenfest's theorgsee Eq(10)], it
time. “Ehr-err,” the error in applying Ehrenfest’s theorem, is not surprising that the variancé, and the Ehrenfest-
is the distance between the centroid of the wave packet ari#eorem error exhibit a similar time dependence in Fig. 1.
the classical trajectory.|Q,—Qc|” is the distance between But it is much more appropriate to compare the quantum
the centroids of the quantum and classical probability distrirobability distribution with the classical distribution than to
butions. In calculating both of these distances, the positio§ompare the centroid of the quantum distribution with a
Coordinategql andq2 are regarded as the rectangu|ar Coor_Single classical trajectory. The distance between the cen-
dinates of a two-dimensional vector, and the magnitude of &roids of the quantum and classical probablllty distributions,
vector difference is plotted as a suitable measure of the didQq— Qcl, is much smaller than the distance between the

tance between two objects. The sum of the variances of theentroid of the wave packet and a single classical trajectory.
two coordinates, In computing Fig. 1, the classical moments were given the

same initial values as the quantum moments for the initial
V=((80d1)%)+((59,)?), (49 Gaussian state. But some of the values of the quantum mo-
ments are impossible for a classical probability distribution
is taken as the measure of the spread of the probability digo realize. For example, the following quantum moment has
tributions. We plot V", the total variance of the quantum a negative value:
position distribution, and [V4,—V,|”, the magnitude of the
difference between the variances of the quantum and classi- e %2
cal distributions. (3[6P16P2,60160,] )= — R (50)

The initial state for Figs. 1-6 is located in a region of
phase space known to contain a chaotic trajectory, on a hy- . .
persurface of energf=0.125. Because the moment expan-Whereas the corresponding classmal_ . moment,
sion diverges and the equations of motion become unstabf?P19P26d1802), has the value zero, because it is the aver-
when the probability distribution becomes too broad, we half9€ ©f the product of four |2deApe|;dent Gaussian v;':mables.
the computation when the total variandg rises to approxi-  1he quantum momen{(5p;)*(6d2)°) has the valuei®/4,
mately 10 2. the same as the correAspondelg classical moment. But the

The differences,|Q,— Q.| and |V,—V|, are much quantum moment;([(6p1)? (59:)*],) has the negative
smaller than the quantities being subtracted, and so the reralue —#2/4, whereas the corresponding classical moment
sults must be examined for numerical significance. BQth  has the positive valué?/4. The differences between the
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FIG. 3. Ratio of the difference between classical and quantum {420 —E=IV.-V :;:
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grows more rapidly than do the variances themselves. 10 e e e o MBS W

0 20 40 60 80 100 120 140

classical and quantum moments are due to the noncommuta- t

tion of the quantum operators. o FIG. 5. Similar to Fig. 2, except that=2x 10" 1°.
For all calculations from Fig. 2 onwards, the initial clas-

sical moments were given values that correspond to indepen-

dent Gaussian distributions of the position and momentuntn"."lIIy classical, whereas the latter is a true measure of the
variables, having the same mean and variance as the qu fference between quantum and classical dynamics. The dif-

tum probability distributions. The results shown in Fig. 2 erence between the two scales is made explicit in Fig. 3,

differ from Fig. 1 only through these changes in the initial where the ratigV,—V|/Vq is plotted.

classical data. Notice that the distance between the centroid The ‘?"ff‘?fef?ces between the quantum and classical p(ob-
of the classical and quantum distributiof®, — Q.|, and the ability distributions are very much smaller than the quantities
q~ Ncb

difference between the variances of the two distributions?hemselves' as can be seen from Fig. 2. To graphical accu-

|Vq—Vc|, becomesmallerwhen this change is made to the racy, Vg cannc_)t be distinguished from the clas_sical variance
classical initial data. Evidently, a better classical approxima-’c: nd the distance between the classical trajectory and the
tion to the quantum state is obtained if we use a physicall)gentro'OI ,,Of the quantum probabiliy distribution, labeled
realistic classical probability distribution, instead of trying to Ehr-err, cannot be dlst|ngU|shed.from the dlstr_:mce .be-.
mimic those quantum moments whose values are classicalgwe.en the trajectory and the centroid of_the 'classwal F'St”'
impossible. It appears that the differences between the cla2ution. Thus, to a high degree of approximation, both “Ehr-

sical and quantum equations of motion are partly Compen(_arr” andV, grow at a rate determined by classical dynamics.

sated by the differences between the classical and quantum‘e more rapid 9f°.Wth rate of _the S'.“a'.' dif_ferenpes between
quantum and classical probability distributions is due to the

initial data. NI .
It is apparent in Fig. 2 that there are two time scales: thdr dependent terms that distinguish the quantum equations of

growth rate of “Ehr-err” andV,, and that OﬂQq—Qc| and motion from their classical counterparts.
|Vq—VC|. The former time scale is, as we shall argue, essen-
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FIG. 4. Similar to Fig. 2, except thdt=2x 1014, FIG. 6. Similar to Fig. 2, except that=10"5.
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distributions,|Q4— Q,/, is so small that it cannot be calcu-
10°® 7 lated accurately in double precision, so it is not plotted. The
T ; difference|Qq—QC| can be made large enough to compute
10"y by making# sufficiently large, and by that means it has been
1010k . verified that the evolution dfQ,— Q.| closely parallels that
: R LAY of the difference between the variancpé,—V.|.
1024000 ! : Since the width of the classical distribution usually grows
aaE 1 linearly in time for regular orbits, we expect the varianvgs
10 eees v and V, to grow ast?. This expectation is verified by the
1016 L :vq-v | slope of the upper envelope of the curve\gf vs t on the
9 ¢ log-log plot. However, the upper envelope of the difference
10 18- between the quantum and classical variand®g,— V.|,
i grows ast®.
1020 : A i
: d bl
10224 £ \”.‘\,“ IV. CONCLUSIONS
1024 L e P RN We have shown that a truncation of the moment hierarchy
1 10 100 1000 forms a useful method for studying the evolution of quantum

and classical probability distributions, provided those distri-
butions are sufficiently narrow. Within this regime Ehren-
fest’s theorem applies: the centroid of the quantum probabil-
ity distribution approximately follows a classical trajectory.
By varying the parameters anda (the width of the ini-  But, surprisingly, the error in Ehrenfest's theorem is not an
tial statg, we can distinguish truly quantum mechanical ef-essentially quantum effect. The deviation of the centroid of
fects from effects due to the shape of the initial state. Wehe probability distribution from a classical trajectory is gov-
shall see that the quantities “Ehr-err” aiw} depend mainly  erned by the variance of the probability distribution. Within
on the initial state, whereas the differences between thﬂqe Ehrenfest regime, the classical and quantum variances
quantum and classical probability distributionQ,—Qc|  are nearly equal, to several significant figures, so the error in
and|Vq— V|, scale agi’. applying Ehrenfest's theorem is effectively governed by
Figure 4 differs from Fig. 2 by reducing by a factor of  classical quantities. In particular, it does not scale with
1072 but keepinga constant. The difference between the put rather is controlled by the width of the initial probability
centroids of the quantum and classical distributionsdistribution.
|Qq—Qcl, and the difference between their variances, A true measure of quantum effects is obtained by com-
IVq— V|, are reduced by a factor of 16. However, “Ehr-  paring quantum and classical probability distributions, i.e.,
err” and V, change by only a small amount. Asis further by comparing the quantum state to an ensemble of classical
reduced witha held constant, those two quantities are prac-rajectories. The difference between the centroids of the
tically unchanged, whil¢Q,— Q.| and|V,—V,| continue to  quantum and classical distributions, and between the vari-
scale asi?. ances of the two distributions, was found to scaléiasind
When # is increased witha constant, in Fig. 5, to be insensitive to the width of the initial state.
|Qq—Qc| and|V4—V,| increase agi®. “Ehr-err” and V, The differences between regular and chaotic motions can
also increase, even thoughis constant, because of the in- also be investigated by this method. For chaotic motions, the
creased width of the momentum distributioAp=7#/2a. variances of the distributions grow exponentially, in analogy
The greater velocity dispersion in the initial state is responto the classical Lyapunov exponent. The difference between
sible for the larger values of the variang, which in turn  the centroids of the quantum and classical distributions,
governs the growth of “Ehr-err.” |Qq—QC|, and the difference between the variances of the
In Fig. 6 we have increaseal with # held constant. The distributions,|V,—V,|, also grow exponentially, but with a
differences [Q,— Q.| and |V4—V.| are essentially un- larger exponent. In spite of their more rapid growth rate, the
changed, whilev, and “Ehr-err” become larger. All these differences do not become comparable in magnitude to the
results together show that the true measures of the size of tlipiantities themselves. Before that happens the distributions
quantum effects are the differences between the quantum at@come so wide that the moment expansion ceases to be
classical distributions,Qq,— Q| and|V4—V,|, which scale valid, and the system enters a different dynamical regime.
with 2. The difference between the quantum average and a For regular motions, the widths of the distributions grow
single classical trajectory, “Ehr-err,” depends mainly on thelinearly with time, and hence the variances growtasThe
shape of the initial state, and is not directly related:to differences between the quantum and classical centroids, and
The initial state for Fig. 7 is located in a region of phasebetween the variances, grow more rapidlytdsHere also,
space that contains regular trajectories. The widths of théhe moment expansion breaks down before the differences
distributions and the various differences grow much moreébecome comparable to the quantities themselves.
slowly in this case than in the chaotic case. The magnitude of These results allow us to resolve a problem that was
the Ehrenfest-theorem error parallels the growth of the variposed by Joseph For@private communication Chaotic
anceVy; it is not plotted so as not to obscure the latter. Theclassical mechanics has the attributeatgforithmic complex-
difference between centroids of the quantum and classicaly, which is not possessed by quantum mechaf¢sOne

FIG. 7. Parameters for regular initial statp;,=0, g,,=0.20,
P1o=0.46 404,p,,=0.a=10"%, #=2x10"12
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of the implications of this fact is that numerical errors grow ACKNOWLEDGMENTS
exponentially in chaotic classical mechanics, and this limits
the possibility of future prediction. Since numerical errors in
guantum mechanics do not grow exponentially, someon
might attempt to beat the prediction limit imposed by classi-
cal complexity by computing the path of a narrow quantum
wave packet. Now such an attempt is almost certainly a
misguided as attempting to build a heat engine that beats the

second law of thermodynamics, but it is of interest to deter- APPENDIX: COMMUTATOR IDENTITIES

mine just why it must fail. Two possibilities suggest them- This A di . | identities th
selves. They are as follows. is Appendix contains several commutator identities that

(i) In a chaotic system the effect of a very small pertur- are useful for deriving the quantum hierarchy of moment

bation in the equation of motion can grow to dominate theeguations. Assume that we have two operafoandB that
solution. Perhaps the small differences between the quantusatisfy[A,B]=KI, whereK is a constant andl is the iden-
and classical equation®f order#?) can cause the path of tity operator. The commutator identity

the wave packet to diverge from the classical trajectory, so

that the wave packet cannot be used to predict a chaotic

The authors are grateful for the financial support provided
Qy the Natural Sciences and Engineering Research Council

of CanadaNSERQ. L.E.B. would like to acknowledge con-
versauons with Joseph Ford, which motivated the study of
%hls problem.

classical trajectory. min(j,k) JTKIK!
(i) The width of the wave packet grows exponentially [Al BX]= BTAI-! (A1)
(with approximately the classical Lyapunov exponent =1 1H(k=D!(j -nt-
When its width becomes comparable to the size of the sys-
tem, the wave packet cannot predict even an approximate min(j, k) Tkl (—K)!
trajectory. == > Al—Igk-!
Our results show that it ifii) that prevents quantum me- =1 k=D =D
chanics from circumventing the prediction limits of chaotic (A2)

classical mechanics. Although the differences between quan-

tum and classical dynamics grow more rapidly than the

width of the probability distribution, they do not catch up to has been proved by Wilcd¥] and has been rediscovered at
it before the width of the distribution becomes comparable tdeast oncd8]. It is also useful to have a symmetric form of
the size of the system. the above commutator identity,

min([(j +1)72],[(k+1)/2]) K2I71j!k! Ey_1(0)

;1 2I—DIk=21F )21+ 1)1t

[Aj,ék]:_ Aj—2|+1'ék—2|+l]+' (A3)

where[ x] indicates taking the integer part fandE,(0) is  (see Abramowitz and Stegu#], p. 805 23.1.20) and using
the zeroth order coefficient of theth Euler polynomialsee the following properties:

Abramowitz and Steguf4], p. 809. The first few values of

E,(0) areEq(0)=1, E;(0)=—1/2, E5(0)=0, E5(0)=1/4,

EL(0)=0, E5(0)=-1/2, E4(0)=0, E,(0)=17/8, Eg(0) _

=0, andEq(0)= — 31/2. To prove this result, we can use Eq. 20 n— k)' i Bk=0, n#l (AB)
(A1) to reorderf Ai—2+1 Bk=21+1] 50 that theB's are on

the left and theA’s are on the right. After some rearrange-
ment, the right-hand side of E¢A3) becomes

(see Gradshteyn and RyzHig], p. 1105 9.61},

MO KIBCIAIT [2E(0) ' El(0)
SR GG & a-sn) "

(A4) Bo(¥)= 2 it —jor B " (A7)

where we have used the fact tHat,(0)=0. By converting

E,(0) to Bernoulli numbersH,)) using, (see Gradshteyn and RyzHiR], p. 1106 9.62)) B,(1/2)=
—(1-2'""B, (see Abramowitz and Stegu], p. 805
23.1.22, andB;=—1/2, we can show that the quantity in
square brackets in E§A4) equals— 11!, which completes

(A5)  the proof of Eq.(A3).

(2"1-1)B,.;, n=12,...

E0O="
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