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Moment equations for probability distributions in classical and quantum mechanics

L. E. Ballentine and S. M. McRae
Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 27 January 1998!

The equations of motion for phase-space moments and correlations are derived systematically for quantum
and classical dynamics, and are solved numerically for chaotic and regular motions of the He´non-Heiles model.
For very narrow probability distributions, Ehrenfest’s theorem implies that the centroid of the quantum state
will approximately follow a classical trajectory. But the error in Ehrenfest’s theorem does not scale with\, and
is found to be governed essentially by classical quantities. The difference between the centroids of the quantum
and classical probability distributions, and the difference between the variances of those distributions, scale as
\2, and so are the true measures of quantum effects. For chaotic motions, these differences between quantum
and classical motions grow exponentially, with a larger exponent than does the variance of the distributions.
For regular motions, the variance of the distributions grows ast2, whereas the differences between the
quantum and classical motions grow ast3. @S1050-2947~98!13009-3#

PACS number~s!: 03.65.Sq, 03.20.1i, 05.45.1b
o
o
ce

in
b
an
he

it
m
nc

e
a

ce
e

n
s

ro

r
rr
il

th
cl

o

o

o-

the
ose

died
u-
ly

o-
u-
on,
be

nal

nt
em.

age
de-

of
I. INTRODUCTION

In several areas of current research, such as mesosc
quantum systems and quantum chaos, it is important to
tain a better understanding of the similarities and differen
between classical and quantum dynamics, and of the em
gence of classical behavior from quantum mechanics. S
the predictions of quantum theory are in the form of pro
abilities, it is appropriate to compare the dynamics of a qu
tum state with that of a classical statistical distribution, rat
than with a single classical trajectory@1#. If the initial quan-
tum state is chosen to be a small wave-packet, and the in
classical ensemble is chosen to match its position and
mentum distributions, then we can distinguish three disti
dynamical regimes, as follows.

~a! The Ehrenfest regime, in which the widths of th
quantum and classical probability distributions are sm
compared to the physical dimensions of the system. The
troid of the quantum state, and also that of the classical
semble, approximately follow a classical trajectory~Ehren-
fest’s theorem!.

~b! The widths of the quantum and classical distributio
are comparable to the dimensions of the system. Ehrenfe
theorem does not apply, but the quantum and classical p
ability distributions are approximately equal.

~c! The fully quantum regime, characterized by interfe
ence and quantum recurrence, in which there is no co
spondence between the classical and quantum probab
distributions.

We have chosen to study the equations satisfied by
phase-space moments and correlations of quantum and
sical systems for several reasons, as follows.

~i! In a numerical integration of the Schro¨dinger equation,
it is impractical to use a dimensionless Planck constant~es-
sentially the ratio of the de Broglie wavelength to the size
the system! that is much smaller than 1023. No such restric-
tion applies to the moment equations.

~ii ! The corrections to Ehrenfest’s theorem involve m
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ments of the probability distributions, hence their time ev
lution is of interest.

~iii ! The moment equations offer another way to study
differences between the quantum dynamics of states wh
classical motions are chaotic or regular.

The structure of the moment equations has been stu
formally @2#, but they have not previously been applied n
merically. We shall find that the moment method works on
in the Ehrenfest regime~a!, but in that regime it yields some
new and interesting results.

II. MOMENT EQUATIONS

The equations of motion for the average position and m
mentum of both classical and quantum probability distrib
tions depend upon the higher moments of the distributi
creating, in general, an infinite hierarchy of equations to
solved. We shall study them for one- and two-dimensio
systems.

A. One-dimensional quantum moment hierarchy

In this section, we will derive a hierarchy of mome
equations that arises from corrections to Ehrenfest’s theor

Assume a Hamiltonian operator of the form

Ĥ5
p̂2

2
1V~ q̂!. ~1!

We are interested in the time development of the aver
position and average momentum. The equations can be
rived by using the time dependent Schro¨dinger equation and
integrating by parts~as Ehrenfest did in his 1927 paper@3#!,
but it is easier to start from the Heisenberg equations
motion:
1799 © 1998 The American Physical Society
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dq̂

dt
5

i

\
@Ĥ,q̂#5 p̂, ~2!

dp̂

dt
5

i

\
@Ĥ,p̂#52

dV~ q̂!

dq̂
. ~3!

Taking the average in some initial state yields

d

dt
^q̂&5^ p̂&, ~4!

d

dt
^ p̂&52K dV~ q̂!

dq̂
L . ~5!

Let us define the mean position and momentum,

Q5^q̂&, P5^ p̂&, ~6!

and the operators for the deviations from the means,

dq̂5q̂2Q, d p̂5 p̂2P. ~7!

The Hamiltonian operator and the time evolution equatio
can be written in terms of these new quantities as

Ĥ5
~d p̂!2

2
1P~d p̂!1

P2

2
1(

l 50

`
dlV~Q!

dQl

~dq̂! l

l !
, ~8!
s

dQ

dt
5P, ~9!

dP

dt
52(

l 50

`
^~dq̂! l&

l !

dl 11V~Q!

dQl 11
. ~10!

If the terms in Eq.~10! with l .0 could be neglected, the
the quantum averages,Q and P, would satisfy the classica
equations of motion. But, in fact, the time dependence oP
depends, not only on the mean, but also on the higher
ments of the position distribution,^(dq̂) l&. The resulting dif-
ference between the time development of the mean pos
Q and the classical orbit constitutes the error that would
committed by applying Ehrenfest’s theorem.

Not only are the higher moments of the position distrib
tion involved in the time development ofP, but the time
development of̂ (dq̂) l& involves more complicated momen
of the form ^(d p̂)k(d p̂)n&.

From Heisenberg’s equations of motion we have

d

dt
@~d p̂!k~dq̂!n#5

i

\
@Ĥ,~d p̂!k~dq̂!n#1

]

]t
@~d p̂!k~dq̂!n#,

~11!

where the final term involving]/]t accounts for the explicit
time dependence ofQ and P in Eq. ~7!. The required com-
mutator relationships can be calculated using Eq.~A1! from
the Appendix. The final result is
ments:
d

dt
^~d p̂!k~dq̂!n&5n^~d p̂!k11~dq̂!n21&1k^~d p̂!k21~dq̂!n&(

l 50

`
^~dq̂! l&

l !

dl 11V~Q!

dQl 11
2k(

l 50

`
dl 11V~Q!

dQl 11

^~d p̂!k21~dq̂!n1 l&
l !

1
i\n~n21!

2
^~d p̂!k~dq̂!n22&2k!(

l 51

`
dl 11V~Q!

dQl 11 (
s52

min~ l 11,k!
~ i\!s21

s! ~ l 112s!! ~k2s!!
^~d p̂!k2s~dq̂! l 112s1n&.

~12!

Similarly, using Eq.~A2!, we find that

d

dt
^~dq̂!n~d p̂!k&5n^~dq̂!n21~d p̂!k11&1k^~dq̂!n~d p̂!k21&(

l 50

`
^~dq̂! l&

l !

dl 11V~Q!

dQl 11
2k(

l 50

`
dl 11V~Q!

dQl 11

^~dq̂!n1 l~d p̂!k21&
l !

2
i\n~n21!

2
^~dq̂!n22~d p̂!k&2k!(

l 51

`
dl 11V~Q!

dQl 11 (
s52

min~ l 11,k!
~2 i\!s21

s! ~ l 112s!! ~k2s!!
^~dq̂! l 112s1n~d p̂!k2s&.

~13!

Using Eq.~A3!, we can obtain a set of equations for the symmetrized operator products, which are the quantum mo
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d

dt
^ 1

2 @~d p̂!k,~dq̂!n#1&5n^ 1
2 @~d p̂!k11,~dq̂!n21#1&1k^ 1

2 @~d p̂!k21,~dq̂!n#1&(
l 50

`
^~dq̂! l&

l !

dl 11V~Q!

dQl 11

2k(
l 50

`
dl 11V~Q!

dQl 11

1

l !
^ 1

2 @~d p̂!k21,~dq̂!n1 l #1&

1
n!k!

2 (
l 51

min„[ ~n21!/2],[~k11!/2]…
~21! l\2lE2l 21~0!

~2l 21!! ~n22l 21!! ~k22l 11!!
^ 1

2 @~d p̂!k22l 11,~dq̂!n22l 21#_1&

2k!(
l 51

`
dl 11V~Q!

dQl 11
H (

j 51

[min„l /2,~k21!/2…] ~21! j\2 j K 1

2
@~d p̂!k22 j 21,~dq̂!n1 l 22 j #1L

~k22 j 21!! ~2 j 11!! ~ l 22 j !!

1 (
j 51

[min„~ l 1n!/2,~k21!/2…] ~21! j\2 j K 1

2
@~d p̂!k22 j 21,~dq̂!n1 l 22 j #1L

~k22 j 21!! ~ l 1n22 j !!

3(
s51

j
~ l 1n22s11!!E2 j 22s11~0!

~2s!! ~ l 22s11!! ~2 j 22s11!!
J . ~14!
-

le

en

ca
t
ic

fine

s of
Here the anticommutator,@Â,B̂#15ÂB̂1B̂Â, is the symme-
trized operator product. In the limits of the sums,@x# indi-
cates the integer part ofx. En(0) is the zeroth order coeffi
cient of the nth Euler polynomial ~see Abramowitz and
Stegun@4#, p. 809!.

B. One-dimensional classical moment hierarchy

Ballentine, Yang, and Zibin@1# have pointed out that a
classical analog of Ehrenfest’s theorem can be obtained
considering a classical ensemble of noninteracting partic
The usual method of derivation is to letr(q,p,t) be the
probability distribution in phase space for a classical
semble, which satisfies the Louiville equation,

]

]t
r~q,p,t !52p

]

]q
r~q,p,t !1

dV~q!

dq

]

]p
r~q,p,t !.

~15!

The classical average of a functionf (q,p) is defined as

^ f ~q,p!&c5E
2`

` E
2`

`

f ~q,p!r~q,p,t !dqdp. ~16!

This approach is analogous to using the Schro¨dinger picture
in quantum mechanics, in which the time dependence is
ried by the state function. Instead, we use a derivation tha
analogous to the Heisenberg equations of motion, in wh
the time dependence is carried by the variablesq andp, and
the probability distributionr is a distribution over initial
states.

Consider a Hamiltonian of the form

H5
p2

2
1V~q!. ~17!
by
s.

-

r-
is
h

From Hamilton’s equations of motion we have

dq

dt
5p, ~18!

dp

dt
52

dV~q!

dq
. ~19!

For the initial position and momentum,q0 andp0 , the solu-
tion of the above equations is of the formq5q(q0 ,p0 ,t) and
p5p(p0 ,q0 ,t). Letting r(q0 ,p0) be the initial probability
distribution in phase space for an ensemble, we can de
the following classical averages:

Qc5^q&c5E
2`

` E
2`

`

q~q0 ,p0 ,t !r~q0 ,p0!dq0dp0 ,

~20!

Pc5^p&c5E
2`

` E
2`

`

p~q0 ,p0 ,t !r~q0 ,p0!dq0dp0 .

~21!

Let dq5q2Qc and dp5p2Pc be the deviations from the
mean values. Taking the ensemble average of both side
Eqs.~18! and ~19! yields

dQc

dt
5Pc , ~22!

dPc

dt
52 K dV~q!

dq L
c

52(
l 50

`
^~dq! l&c

l !

dl 11V~Qc!

dQc
l 11

, ~23!

where we have expandedV(q) in a Taylor series indq about
the centroid. Notice that the equation fordPc /dt depends
upon the momentŝ(dq) l&c for l>0. In general, we need to
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know all higher order moments of the distribution. Usin
Hamilton’s equations of motion and Eqs.~22! and ~23!, we
obtain

d

dt
~dp!k~dq!n5n~dp!k~dq!n21~Pc1dp!

2k~dp!k21~dq!n
dV~q!

dq
~24!

2n~dp!k~dq!n21Pc2k~dp!k21~dq!n
dPc

dt
.

~25!

By taking the average of both sides of this equation,
obtain a general formula for the time derivatives of all t
moments of the classical distribution,

d

dt
^~dp!k~dq!n&c

5n^~dp!k11~dq!n21&c

1k^~dp!k21~dq!n&c(
l 50

`
^~dq! l&c

l !

dl 11V~Qc!

dQc
l 11

2k(
l 50

`
^~dp!k21~dq!n1 l&c

l !

dl 11V~Qc!

dQc
l 11

. ~26!

C. Differences between the quantum and classical moment
equations

The first three terms in the quantum hierarchy of Eq.~14!
have the same form as those in the classical hierarchy of
~26!, but the remaining terms in Eq.~14! are corrections
involving \. As we can see from Eq.~14!, the first appear-
ance of\ occurs in the equation ford/dt^(d p̂)3&. That the
difference between the classical and quantum equations
curs only in third and higher orders provides part of t
explanation for the fact that the classical and quantum pr
ability distributions agree quite well for modest time inte
vals.

We have defined the quantum moments as the expecta
values of the symmetrized products of the operators. O
could ask whether there might be some other ordering of
dq̂ and d p̂ operators that could be used to define quant
moments that would correspond more closely to their cla
cal analogs, and for which the first occurrence of\ in the
moment equation hierarchy would be pushed to a higher
e

q.

c-

b-

on
e
e

i-

r-

der. Suppose, for example, that instead of us
1
2 @(d p̂)2,(dq̂) l #1 for the quantum moment corresponding
^(dp)2(dq) l&, we redefined that quantum moment to be

1

3
@~d p̂!2,~dq̂! l #11

1

3
d p̂~dq̂! ld p̂2

\2

6
l ~ l 21!~dq̂! l 22.

~27!

The classical limit of this moment would not be affected, a
we would eliminate all \ terms in the equation for
d/dt^(d p̂)3&. But thissameredefinition wouldnot eliminate
all occurrences of \ in the expression for

d/dt^ 1
2 @(d p̂)3,dq̂#1&. Indeed, no matter what ordering o

operators is used, there will remain a difference between
evolution equations for the classical and quantum mome
It is the noncommutativity of thedq̂ and thed p̂ operators
that is the source of this difference, and hence is the sou
of the difference between classical and quantum mechan

D. Conservation of energy

By writing the averages of the classical and quant
Hamiltonians as

^H&c5
1

2
@^~dp!2&c1Pc

2#1(
l 50

`
^~dq! l&c

l !

dlV~Qc!

dQc
l

~28!

and

^Ĥ&5
1

2
@^~d p̂!2&1P2#1(

l 50

`
^~dq̂! l&

l !

dlV~Q!

dQl
, ~29!

respectively, it follows directly from the moment hierarchi
thatd/dt^H&c50 andd/dt^Ĥ&50. The accuracy with which
these formal identities are satisfied in a numerical compu
tion can be used to test the accuracy of the numerical s
tions.

E. Two-dimensional moment hierarchy

The hierarchy of moment equations can be generalize
higher dimensional systems. We will develop them for a s
tem of two degrees of freedom, since that is the smal
dynamical system that can exhibit chaos.

For a classical Hamiltonian of the form

H5
1

2
~p1

21p2
2!1V~q1 ,q2!, ~30!

we have
dQca

dt
5Pca , a51,2, ~31!

dPca

dt
52(

l 50

`

(
j 50

l
^~dq1! l 2 j~dq2! j&c

~ l 2 j !! j !

] l 11V~Qc1 ,Qc2!

]Qca]Qc1
l 2 j]Qc2

j
, a51,2, ~32!
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and

d

dt
^~dp1!k1~dp2!k2~dq1!n1~dq2!n2&c5n1^~dp1!k111~dp2!k2~dq1!n121~dq2!n2&c1n2^~dp1!k1~dp2!k211~dq1!n1~dq2!n221&c

2k1

dPc1

dt
^~dp1!k121~dp2!k2~dq1!n1~dq2!n2&c

2k2

dPc2

dt
^~dp1!k1~dp2!k221~dq1!n1~dq2!n2&c

2k1(
l 50

`

(
j 50

l
^~dp1!k121~dp2!k2~dq1!n11 l 2 j~dq2!n21 j&c

~ l 2 j !! j !

] l 11V~Qc1 ,Qc2!

]Qc1
l 2 j 11]Qc2

j

2k2(
l 50

`

(
j 50

l
^~dp1!k1~dp2!k221~dq1!n11 l 2 j~dq2!n21 j&c

~ l 2 j !! j !

] l 11V~Qc1 ,Qc2!

]Qc1
l 2 j]Qc2

j 11
. ~33!

The subscripta labels the degrees of freedom.
The corresponding equations for a quantum Hamiltonian of the form

Ĥ5
1

2
~ p̂1

21 p̂2
2!1V~ q̂1 ,q̂2! ~34!

are

dQa

dt
5Pa , a51,2, ~35!

dPa

dt
52(

l 50

`

(
j 50

l
^~dq̂1! l 2 j~dq̂2! j&

~ l 2 j !! j !

] l 11V~Q1 ,Q2!

]Qa]Q1
l 2 j]Q2

j
, a51,2, ~36!

and

d

dt
^~d p̂1!k1~d p̂2!k2~dq̂1!n1~dq̂2!n2&

5n1^~d p̂1!k111~d p̂2!k2~dq̂1!n121~dq̂2!n2&1n2^~d p̂1!k1~d p̂2!k211~dq̂1!n1~dq̂2!n221&

2k1

dP1

dt
^~d p̂1!k121~d p̂2!k2~dq̂1!n1~dq̂2!n2&2k2

dP2

dt
^~d p̂1!k1~d p̂2!k221~dq̂1!n1~dq̂2!n2&

1
i\n1~n121!

2
^~d p̂1!k1~d p̂2!k2~dq̂1!n122~dq̂2!n2&1

i\n2~n221!

2
^~d p̂1!k1~d p̂2!k2~dq̂1!n1~dq̂2!n222&

2k1!(
l 50

`

(
j 50

l
1

j !

] l 11V~Q1 ,Q2!

]Q1
l 112 j]Q2

j (
s51

min~ l 112 j ,k1!
~ i\!s21^~d p̂1!k12s~d p̂2!k2~dq̂1!n11 l 112 j 2s~dq̂2!n21 j&

s! ~k12s!! ~ l 112 j 2s!!

2k2!(
l 50

`

(
j 50

l
1

~ l 2 j !!

] l 11V~Q1 ,Q2!

]Q1
l 2 j]Q2

j 11 (
s51

min~ j 11,k2!
~ i\!s21^~d p̂1!k1~d p̂2!k22s~dq̂1!n11 l 2 j~dq̂2!n21 j 112s&

s! ~k22s!! ~ j 112s!!

2k1!k2!(
l 50

`

(
j 50

l
] l 12V~Q1 ,Q2!

]Q1
l 112 j]Q2

j 11 (
s51

min~k1 ,l 112 j !
1

s! ~k12s!! ~ l 112 j 2s!!

3 (
r 51

min~k2 , j 11!
~ i\!s1r 21^~d p̂1!k12s~d p̂2!k22r~dq̂1!n11 l 112 j 2s~dq̂2!n21 j 112r&

r ! ~k22r !! ~ j 112r !!
. ~37!

A similar equation can be found ford/dt^(dq̂1)n1(dq̂2)n2(d p̂1)k1(d p̂2)k2&. We do not have an explicit formula for th
symmetric two-dimensional quantum hierarchy. Instead, we have used Maple procedures to calculate the hierarch
place the operators in symmetric order.~Details of these rather lengthy Maple procedures may be obtained from the aut!
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The infinite hierarchy of equations is truncated by dropping all moments beyond some chosen maximum order. The
of equations increases rapidly as the order of the moments increases. For two degrees of freedom, the number of eq
14, 34, 69, 125, 209, . . . when the maximum order of the moments is 2, 3, 4, 5, 6, . . . .
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III. APPLICATION TO THE HE ´ NON-HEILES POTENTIAL

The Hénon-Heiles potential@5# is a well studied system
that has a rich phase space structure, containing both ch
and regular regions. Its classical Hamiltonian is given by

H5
1

2
~p1

21p2
2!1

1

2
~q1

21q2
2!1q1

2q22
1

3
q2

3 . ~38!

The quantum Hamiltonian is obtained by replacingq andp

with the operatorsq̂ and p̂. The first few equations of the
quantum moment hierarchy for the He´non Heiles system are

d

dt
Q15P1 ,

d

dt
Q25P2 , ~39!

d

dt
P152Q122Q1Q222^~dq̂1!~dq̂2!&, ~40!

d

dt
P252Q22Q1

21Q2
22^~dq̂1!2&1^~dq̂2!2&. ~41!

It is apparent from Eq.~40! that we need to know the tim
development of̂ (dq̂1)(dq̂2)&, which is given by

d

dt
^~dq̂1!~dq̂2!&5^~d p̂1!~dq̂2!&1^~d p̂2!~dq̂1!&. ~42!

It is apparent from Eq.~41! that we will need

d

dt
^~dq̂1!2&52^ 1

2 @~d p̂1!,~dq̂1!#1& ~43!

and

d

dt
^~dq̂2!2&52^ 1

2 @~d p̂2!,~dq̂2!#1&. ~44!

From Eq.~42!, it is clear that we will need

d

dt
^~d p̂1!~dq̂2!&5^~d p̂1!~d p̂2!&2~112Q2!^~dq̂1!~dq̂2!&

22Q1^~dq̂2!2&22^~dq̂1!~dq̂2!2&, ~45!

d

dt
^~d p̂2!~dq̂1!&5^~d p̂1!~d p̂2!&22Q1^~dq̂1!2&

1~2Q221!^~dq̂1!~dq̂2!&2^~dq̂1!3&

1^~dq̂1!~dq̂2!2&, ~46!

and from Eq.~43! we will need
tic

d

dt
^ 1

2 @~d p̂1!,~dq̂1!#1&5^~d p̂1!2&2~2Q211!^~dq̂1!2&

22Q1^~dq̂1!~dq̂2!&

22^~dq̂1!2~dq̂2!&. ~47!

These first few equations illustrate the fact that each equa
brings in higher order moments and the system does
terminate.

So far there has not been any appearance of\ in the
quantum equations. The first occurrence of\ is in the ex-
pression ford/dt^(d p̂2)3&. Until that point, the classical and
quantum hierarchies have the same form.

A. Initial state

For our initial state, we have chosen a minimum unc
tainty wave packet centered at an arbitrary point in ph
space, whose coordinates and momenta are distinguishe
a subscript ‘‘o’’:

c~q1 ,q2!5
1

A2pa
expF2

~q12q1o!2

4a2
1

ip1oq1

\

2
~q22q2o!2

4a2
1

ip2oq2

\ G . ~48!

Herea25^(dq)2& is the mean squared half-width of the p
sition probability distribution for each degree of freedom
The initial values of the quantum moments are compu
from this wave function. The initial values of the classic
moments were first chosen to be equal to the initial quan
moments, but this choice will be reconsidered later, sin
some of the quantum moments take on classically imposs
values.

B. Computational accuracy

The hierarchy of moment equations was truncated at v
ous orders and solved numerically. Essentially the same
sults were obtained when the truncation was at fourth, fi
or sixth order moments. But as the moments grow in mag
tude, there comes a time when the system becomes unst
This is signaled by various moments diverging to infinit
and even-order moments taking on physically impossi
negative values. This happens when the width of the pr
ability distribution is no longer small compared to the sca
of the potential. We have tried reformulating the mome
expansion in terms of cumulants, and truncating the cum
lant expansion, but this did not improve the stability of t
system. Evidently, no truncation of the moment hierarchy
valid outside of the regime of narrow wave packets~Ehren-
fest regime!. But within this regime, the method is very re
liable.
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The expectation value of the Hamiltonian should be
constant of motion, and the accuracy to which it is conser
is a check on the accuracy of the numerical computation.
found it to be accurately conserved to one part in 1010 in
double precision until the distributions became too broad
the system became unstable.

C. Results

Most of the figures show four quantities as a function
time. ‘‘Ehr-err,’’ the error in applying Ehrenfest’s theorem
is the distance between the centroid of the wave packet
the classical trajectory. ‘‘uQq2Qcu ’’ is the distance between
the centroids of the quantum and classical probability dis
butions. In calculating both of these distances, the posi
coordinatesq1 andq2 are regarded as the rectangular co
dinates of a two-dimensional vector, and the magnitude
vector difference is plotted as a suitable measure of the
tance between two objects. The sum of the variances of
two coordinates,

V5^~dq1!2&1^~dq2!2&, ~49!

is taken as the measure of the spread of the probability
tributions. We plot ‘‘Vq’’, the total variance of the quantum
position distribution, and ‘‘uVq2Vcu ’’, the magnitude of the
difference between the variances of the quantum and cla
cal distributions.

The initial state for Figs. 1–6 is located in a region
phase space known to contain a chaotic trajectory, on a
persurface of energyE50.125. Because the moment expa
sion diverges and the equations of motion become unst
when the probability distribution becomes too broad, we h
the computation when the total varianceVq rises to approxi-
mately 1022.

The differences, uQq2Qcu and uVq2Vcu, are much
smaller than the quantities being subtracted, and so the
sults must be examined for numerical significance. BothQq

FIG. 1. Initial classical moments equal to quantum momen
Parameters for chaotic initial state:q1o50, q2o520.15, p1o

50.474 61,p2o50. a51026, \52310212. See text for definition
of the curves.
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and Qc are of order unity, so their difference computed
double precision cannot be significant below 10216. In fact
other computational errors limit the reliability ofuQq2Qcu
to computed values greater than about 10214, so the distance
between the centroids is not plotted unless it exceeds
safe minimum. However, the difference between the va
ances,uVq2Vcu, is no smaller than a factor of 10210 below
Vq , so the computed values ofuVq2Vcu are reliable for the
full range plotted in the figures.

Since the variance of the position distribution is the lo
est order correction to Ehrenfest’s theorem@see Eq.~10!#, it
is not surprising that the varianceVq and the Ehrenfest-
theorem error exhibit a similar time dependence in Fig.
But it is much more appropriate to compare the quant
probability distribution with the classical distribution than
compare the centroid of the quantum distribution with
single classical trajectory. The distance between the c
troids of the quantum and classical probability distribution
uQq2Qcu, is much smaller than the distance between
centroid of the wave packet and a single classical traject

In computing Fig. 1, the classical moments were given
same initial values as the quantum moments for the ini
Gaussian state. But some of the values of the quantum
ments are impossible for a classical probability distributi
to realize. For example, the following quantum moment h
a negative value:

^ 1
2 @d p̂1d p̂2 ,dq̂1dq̂2#1&52

\2

4
, ~50!

whereas the corresponding classical mome
^dp1dp2dq1dq2&, has the value zero, because it is the av
age of the product of four independent Gaussian variab
The quantum moment̂(d p̂1)2(dq̂2)2& has the value\2/4,
the same as the corresponding classical moment. But
quantum moment12 ^@(d p̂1)2,(dq̂1)2#1& has the negative
value 2\2/4, whereas the corresponding classical mom
has the positive value\2/4. The differences between th

. FIG. 2. Same as Fig. 1, except that the initial classical mome
are derived from a Gaussian distribution.
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classical and quantum moments are due to the noncomm
tion of the quantum operators.

For all calculations from Fig. 2 onwards, the initial cla
sical moments were given values that correspond to inde
dent Gaussian distributions of the position and momen
variables, having the same mean and variance as the q
tum probability distributions. The results shown in Fig.
differ from Fig. 1 only through these changes in the init
classical data. Notice that the distance between the centr
of the classical and quantum distributions,uQq2Qcu, and the
difference between the variances of the two distributio
uVq2Vcu, becomesmallerwhen this change is made to th
classical initial data. Evidently, a better classical approxim
tion to the quantum state is obtained if we use a physic
realistic classical probability distribution, instead of trying
mimic those quantum moments whose values are classic
impossible. It appears that the differences between the c
sical and quantum equations of motion are partly comp
sated by the differences between the classical and quan
initial data.

It is apparent in Fig. 2 that there are two time scales:
growth rate of ‘‘Ehr-err’’ andVq , and that ofuQq2Qcu and
uVq2Vcu. The former time scale is, as we shall argue, ess

FIG. 3. Ratio of the difference between classical and quan
variances to the quantum variance, showing that the differe
grows more rapidly than do the variances themselves.

FIG. 4. Similar to Fig. 2, except that\52310214.
ta-
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tially classical, whereas the latter is a true measure of
difference between quantum and classical dynamics. The
ference between the two scales is made explicit in Fig
where the ratiouVq2Vcu/Vq is plotted.

The differences between the quantum and classical p
ability distributions are very much smaller than the quantit
themselves, as can be seen from Fig. 2. To graphical a
racy,Vq cannot be distinguished from the classical varian
Vc , and the distance between the classical trajectory and
centroid of the quantum probability distribution, labele
‘‘Ehr-err,’’ cannot be distinguished from the distance b
tween the trajectory and the centroid of the classical dis
bution. Thus, to a high degree of approximation, both ‘‘Eh
err’’ and Vq grow at a rate determined by classical dynami
The more rapid growth rate of the small differences betwe
quantum and classical probability distributions is due to
\ dependent terms that distinguish the quantum equation
motion from their classical counterparts.

m
ce

FIG. 5. Similar to Fig. 2, except that\52310210.

FIG. 6. Similar to Fig. 2, except thata51025.
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By varying the parameters\ anda ~the width of the ini-
tial state!, we can distinguish truly quantum mechanical e
fects from effects due to the shape of the initial state.
shall see that the quantities ‘‘Ehr-err’’ andVq depend mainly
on the initial state, whereas the differences between
quantum and classical probability distributions,uQq2Qcu
and uVq2Vcu, scale as\2.

Figure 4 differs from Fig. 2 by reducing\ by a factor of
1022 but keepinga constant. The difference between th
centroids of the quantum and classical distributio
uQq2Qcu, and the difference between their varianc
uVq2Vcu, are reduced by a factor of 1024. However, ‘‘Ehr-
err’’ and Vq change by only a small amount. As\ is further
reduced witha held constant, those two quantities are pra
tically unchanged, whileuQq2Qcu anduVq2Vcu continue to
scale as\2.

When \ is increased with a constant, in Fig. 5,
uQq2Qcu and uVq2Vcu increase as\2. ‘‘Ehr-err’’ and Vq
also increase, even thougha is constant, because of the in
creased width of the momentum distribution,Dp5\/2a.
The greater velocity dispersion in the initial state is resp
sible for the larger values of the varianceVq , which in turn
governs the growth of ‘‘Ehr-err.’’

In Fig. 6 we have increaseda with \ held constant. The
differences uQq2Qcu and uVq2Vcu are essentially un-
changed, whileVq and ‘‘Ehr-err’’ become larger. All these
results together show that the true measures of the size o
quantum effects are the differences between the quantum
classical distributions,uQq2Qcu and uVq2Vcu, which scale
with \2. The difference between the quantum average an
single classical trajectory, ‘‘Ehr-err,’’ depends mainly on t
shape of the initial state, and is not directly related to\.

The initial state for Fig. 7 is located in a region of pha
space that contains regular trajectories. The widths of
distributions and the various differences grow much m
slowly in this case than in the chaotic case. The magnitud
the Ehrenfest-theorem error parallels the growth of the v
anceVq ; it is not plotted so as not to obscure the latter. T
difference between centroids of the quantum and class

FIG. 7. Parameters for regular initial state:q1o50, q2o50.20,
p1o50.46 404,p2o50. a51026, \52310212.
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distributions,uQq2Qcu, is so small that it cannot be calcu
lated accurately in double precision, so it is not plotted. T
differenceuQq2Qcu can be made large enough to compu
by making\ sufficiently large, and by that means it has be
verified that the evolution ofuQq2Qcu closely parallels that
of the difference between the variances,uVq2Vcu.

Since the width of the classical distribution usually grow
linearly in time for regular orbits, we expect the variancesVc
and Vq to grow ast2. This expectation is verified by the
slope of the upper envelope of the curve ofVq vs t on the
log-log plot. However, the upper envelope of the differen
between the quantum and classical variances,uVq2Vcu,
grows ast3.

IV. CONCLUSIONS

We have shown that a truncation of the moment hierar
forms a useful method for studying the evolution of quantu
and classical probability distributions, provided those dis
butions are sufficiently narrow. Within this regime Ehre
fest’s theorem applies: the centroid of the quantum proba
ity distribution approximately follows a classical trajector
But, surprisingly, the error in Ehrenfest’s theorem is not
essentially quantum effect. The deviation of the centroid
the probability distribution from a classical trajectory is go
erned by the variance of the probability distribution. With
the Ehrenfest regime, the classical and quantum varian
are nearly equal, to several significant figures, so the erro
applying Ehrenfest’s theorem is effectively governed
classical quantities. In particular, it does not scale with\,
but rather is controlled by the width of the initial probabilit
distribution.

A true measure of quantum effects is obtained by co
paring quantum and classical probability distributions, i.
by comparing the quantum state to an ensemble of class
trajectories. The difference between the centroids of
quantum and classical distributions, and between the v
ances of the two distributions, was found to scale as\2 and
to be insensitive to the width of the initial state.

The differences between regular and chaotic motions
also be investigated by this method. For chaotic motions,
variances of the distributions grow exponentially, in analo
to the classical Lyapunov exponent. The difference betw
the centroids of the quantum and classical distributio
uQq2Qcu, and the difference between the variances of
distributions,uVq2Vcu, also grow exponentially, but with a
larger exponent. In spite of their more rapid growth rate,
differences do not become comparable in magnitude to
quantities themselves. Before that happens the distribut
become so wide that the moment expansion ceases t
valid, and the system enters a different dynamical regim

For regular motions, the widths of the distributions gro
linearly with time, and hence the variances grow ast2. The
differences between the quantum and classical centroids,
between the variances, grow more rapidly ast3. Here also,
the moment expansion breaks down before the differen
become comparable to the quantities themselves.

These results allow us to resolve a problem that w
posed by Joseph Ford~private communication!. Chaotic
classical mechanics has the attribute ofalgorithmic complex-
ity, which is not possessed by quantum mechanics@6#. One
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of the implications of this fact is that numerical errors gro
exponentially in chaotic classical mechanics, and this lim
the possibility of future prediction. Since numerical errors
quantum mechanics do not grow exponentially, some
might attempt to beat the prediction limit imposed by clas
cal complexity by computing the path of a narrow quantu
wave packet. Now such an attempt is almost certainly
misguided as attempting to build a heat engine that beats
second law of thermodynamics, but it is of interest to det
mine just why it must fail. Two possibilities suggest them
selves. They are as follows.

~i! In a chaotic system the effect of a very small pert
bation in the equation of motion can grow to dominate
solution. Perhaps the small differences between the quan
and classical equations~of order \2) can cause the path o
the wave packet to diverge from the classical trajectory,
that the wave packet cannot be used to predict a cha
classical trajectory.

~ii ! The width of the wave packet grows exponentia
~with approximately the classical Lyapunov exponen!.
When its width becomes comparable to the size of the s
tem, the wave packet cannot predict even an approxim
trajectory.

Our results show that it is~ii ! that prevents quantum me
chanics from circumventing the prediction limits of chao
classical mechanics. Although the differences between qu
tum and classical dynamics grow more rapidly than
width of the probability distribution, they do not catch up
it before the width of the distribution becomes comparable
the size of the system.
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APPENDIX: COMMUTATOR IDENTITIES

This Appendix contains several commutator identities t
are useful for deriving the quantum hierarchy of mome
equations. Assume that we have two operatorsÂ andB̂ that
satisfy @Â,B̂#5KÎ , whereK is a constant andÎ is the iden-
tity operator. The commutator identity

@Âj ,B̂k#5 (
l 51

min~ j ,k!
j !k!Kl

l ! ~k2 l !! ~ j 2 l !!
B̂k2 l Â j 2 l ~A1!

52 (
l 51

min~ j ,k!
j !k! ~2K ! l

l ! ~k2 l !! ~ j 2 l !!
Âj 2 l B̂k2 l

~A2!

has been proved by Wilcox@7# and has been rediscovered
least once@8#. It is also useful to have a symmetric form o
the above commutator identity,
@Âj ,B̂k#52 (
l 51

min„[ ~ j 11!/2],[~k11!/2]…
K2l 21 j !k!E2l 21~0!

~2l 21!! ~k22l 11!! ~ j 22l 11!!
@Âj 22l 11,B̂k22l 11#1 , ~A3!
n

where@x# indicates taking the integer part ofx andEn(0) is
the zeroth order coefficient of thenth Euler polynomial~see
Abramowitz and Stegun@4#, p. 809!. The first few values of
En(0) areE0(0)51, E1(0)521/2, E2(0)50, E3(0)51/4,
E4(0)50, E5(0)521/2, E6(0)50, E7(0)517/8, E8(0)
50, andE9(0)5231/2. To prove this result, we can use E
~A1! to reorder@Âj 22l 11,B̂k22l 11#1 so that theB̂’s are on
the left and theÂ’s are on the right. After some rearrang
ment, the right-hand side of Eq.~A3! becomes

2 j !k! (
l 51

min~ j ,k!
KlB̂k2 l Â j 2 l

~k2 l !! ~ j 2 l !! F2El~0!

l !
1(

s51

l 21
Es~0!

s! ~ l 2s!! G ,

~A4!

where we have used the fact thatE2n(0)50. By converting
En(0) to Bernoulli numbers (Bn) using,

En~0!52
2

~n11!
~2n1121!Bn11 , n51,2, . . .

~A5!
.

~see Abramowitz and Stegun@4#, p. 805 23.1.20!, and using
the following properties:

(
k50

n21
n!

~n2k!!k!
Bk50, nÞ1 ~A6!

~see Gradshteyn and Ryzhik@9#, p. 1105 9.612!,

Bn~x!5 (
k50

n
n!

k! ~n2k!!
Bkx

n2k ~A7!

~see Gradshteyn and Ryzhik@9#, p. 1106 9.620!, Bn(1/2)5
2(12212n)Bn ~see Abramowitz and Stegun@4#, p. 805
23.1.21!, and B1521/2, we can show that the quantity i
square brackets in Eq.~A4! equals21/l !, which completes
the proof of Eq.~A3!.
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