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Derivation of the equations of nonrelativistic quantum mechanics using the principle
of minimum Fisher information

Marcel Reginatto
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The many-particle time-dependent Schro¨dinger equation is derived using the principle of minimum Fisher
information. This application of information theory leads to a physically well motivated derivation of the
Schrödinger equation, which distinguishes between subjective and objective elements of the theory.
@S1050-2947~98!07809-3#

PACS number~s!: 03.65.Bz, 03.65.Ca, 89.70.1c
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INTRODUCTION

The main result of this paper is a derivation of the man
particle time-dependent Schro¨dinger equation using the prin
ciple of minimum Fisher information. There are two bas
assumptions that enter into this derivation: that one can
sociate a wave front with the motion of particles, and that
probability distribution that describes the position of pa
ticles should satisfy the principle of minimum Fisher info
mation. This information-theoretic approach is of interest
that it provides a physically well motivated derivation of th
Schrödinger equation that isolates the subjective and ob
tive aspects of the formalism. From this point of view, t
epistemological content of the theory lies in the prescript
to minimize the Fisher information associated with the pro
ability distribution that describes the position of particle
The physical content of the theory is contained in the
sumption that one can associate a wave front with the mo
of particles. Although the principle of minimum Fisher in
formation has been used before to arrive at the equation
nonrelativistic quantum mechanics~see, for example, the dis
cussion in Frieden and Soffer@1#, and references therein!,
these previous derivations of the Schro¨dinger equation can
be criticized in that they only permit solutions that are re
and time independent. The derivation presented here le
directly to the time-dependent Schro¨dinger equation for a
complex wave function.

I start with a brief discussion of the Fisher informatio
and the Fisher information matrix. Consider the problem
estimating a parameteru in the presence of unknown adde
noisex. A measurementy of the parameter will be related t
x andu by
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y5u1x. ~1!

For example,y might be a measurement of the position of
particle, whileu is the actual position of the particle. Th
probability distributionP(x) for the noisex will be related to
P(yuu) by

P~yuu!5P~y2u!5P~x!, ~2!

where the first equality is a consequence of the invarianc
P(yuu) under translations. In this case, the Fisher inform
tion I is given by@2–4#

I[E 1

P~yuu! S ]P~yuu!

]u D 2

dy5E 1

P~x! S dP~x!

dx D 2

dx.

~3!

It can be shown that the mean-square error in any unbia
estimate ofu must exceed 1/I , which is known as the
Cramer-Rao bound@3,4#.

The principle of minimum Fisher information asserts th
one should choose the probability distribution which min
mizes the Fisher information subject to the constrai
known about the system. Note that the probability distrib
tion that minimizes the Fisher information will also max
mize the mean square error. In this sense, it will be as n
informative as possible while still satisfying the constrain

The Fisher information matrixI kl is a generalization of
the Fisher information to the case where the probability d
tribution is a function of ann-dimensional parameteru i and
an n-dimensional vector random variablexi . When
yi5u i1xi , the Fisher information matrix can be written a
I kl[E P~yi uu i !S ]

]uk @ ln P~yi uu i !#
]

]u l @ ln P~yi uu i !# Ddm~yi !5E P~xi !S ]

]xk @ ln P~xi !#
]

]xl @ ln P~xi !# Ddm~xi !. ~4!
ck
y

n be
The relationship that exists between the mean-square e
and the Fisher information can be extended to an inequa
relating the covariance matrix and the inverse of the Fis
information matrix@5#.
ror
ty
r

The Fisher information is closely related to the Kullba
discrimination information~also known as the cross entrop
or Kullback-Liebler distance!. Suppose thatu i andu i1Du i

are neighboring points in the parameter space. Then it ca
1775
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shown @5# that under certain regularity conditions and
within the second-order terms,

D~u i :u i1Du i ![E P~yi uu i !lnS P~yi uu i !

P~yi uu i1Du i ! Ddm~yi !

5 1
2 (

j ,k
I jkDu jDuk. ~5!

Because of this relationship, the Fisher information and
Kullback discrimination information share similar propertie

DERIVATION OF THE SCHRO¨ DINGER EQUATION
FROM THE PRINCIPLE OF MINIMUM FISHER

INFORMATION

I first derive the Schro¨dinger equation for the case of
single free particle of massm, and later generalize to the cas
of many particles moving in a potential.

Consider the case of an ensemble of particles descr
by a normalized probability densityP(xi ,t). Assume that the
set of particle trajectories forms a coherent system,
equivalently, that one can associate a wave front with
motion of the particles. Then the velocity vectorv j (xi ,t) of a
particle at pointxi can be related to a real functionS(xi ,t) by
an expression of the form

v j5 (
k51

3

gjk
]S

]xk , ~6!

where the inverse metricgjk5diag(1/m,1/m,1/m) is the one
commonly used to define the kinematical line element
configuration space@6#. It follows that the probability distri-
bution must satisfy a conservation law of the form

]P

]t
1 (

i ,k51

3

gik
]

]xi S P
]S

]xkD50. ~7!

Equation~7! can be derived from a variational principle, b
minimization of the expression

FA5E PS ]S

]t
1 1

2 (
i ,k51

3

gik
]S

]xi

]S

]xkD dnx dt ~8!

with respect toS.
Note that variation ofFA with respect toP leads trivially

to the Hamilton-Jacobi equation for the free particle. The
fore, minimization ofFA and with respect to bothS and P
will lead to the equations of motion of an ensemble of p
ticles in classical mechanics. There is still considerable fr
dom in the choice of probability density that can be used
describe the ensemble, since it is only subject to Eq.~7!. To
arrive at the equations of quantum mechanics, one need
restrict the choice of probability densities using the princi
of minimum Fisher information.

One can define the amount of information inP using the
Fisher information matrix. Without introducing addition
structure, there is only one natural definition of the amo
of information in P, obtained by contracting the metricgik

with the elements of the Fisher information matrix,
e
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FB5 (
i ,k51

3

gikE 1

P

]P

]xi

]P

]xk dnx dt5 (
i ,k51

3

gikI ik . ~9!

Note that the asymmetry between space and time inFB is a
consequence of the different role that they play in nonre
tivistic mechanics. Such a distinction is not present in
derivation of the Klein-Gordon equation~see the Appendix!.

I now consider the consequences of applying the princ
of minimum Fisher information with the constraint that E
~7! must be satisfied. While not the only way, the simple
way to ensure consistency is to minimize~with respect to
bothP andS! a functionF that is a linear combination ofFA
andFB ,

F5FA1lFB5E PS ]S

]t
1

1

2 (
i ,k51

3

gik
]S

]xi

]S

]xkD dnx dt

1l (
i ,k51

3

gikE 1

P

]P

]xi

]P

]xk dnx dt. ~10!

The parameterl, which is assumed fixed, has units of actio
squared. It determines the relative weight of the two ter
that enter into the minimization.

For variations that vanish at the boundary, the variation
F with respect toS andP leads to the two equations

]P

]t
1 (

i ,k51

3

gik
]

]xi S P
]S

]xkD50, ~11!

]S

]t
1 (

i ,k51

3
1
2 gik

]S

]xi

]S

]xk2l (
i ,k51

3

gikS 2

P

]2P

]xi]xk

2
1

P2

]P

]xi

]P

]xkD50. ~12!

Equations~11! and ~12! are identical to the free-particle
Schrödinger equation,

i\
]c

]t
5

2\2

2 (
i ,k51

3

gik
]2c

]xi]xk ~13!

provided that the parameterl is set equal to

l5
\2

8
~14!

and the wave functionc is expressed in terms ofP andS as

c5P1/2exp~ iS/\!. ~15!

In the limit where \→0, Eq. ~12! becomes the classica
Hamilton-Jacobi equation for the free particle. The gener
zation to the Schro¨dinger equation forn particles in a poten-
tial is straightforward, in that it only requires modifyingF
by the addition of a potential termV(xi), which leads to
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FS5E PS ]S

]t
1

1

2 (
i ,k51

3n

gik
]S

]xi

]S

]xk 1VD d3nx dt

1l (
i ,k51

3n

gikE 1

P

]P

]xi

]P

]xk d3nx dt ~16!

and extending the inverse metricgik to the case of the kine
matical line element in a configuration space of dimens
3n. Variations ofFS with respect toSandP leads to the two
equations

]P

]t
1 (

i ,k51

3n

gik
]

]xi S P
]S

]xkD50, ~17!

]S

]t
1

1

2 (
i ,k51

3n

gik
]S

]xi

]S

]xk 1V~x!

2l (
i ,k51

3n

gikS 2

P

]2P

]xi]xk2
1

P2

]P

]xi

]P

]xkD50. ~18!
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The Schro¨dinger equation appears in the form of tw
coupled nonlinear differential equations, which are identi
to the equations used by Bohm in his formulation
quantum mechanics@7#. Bohm interprets Eq.~18! as a
Hamilton-Jacobi equation, and assumes that the last t
on the left-hand side~which he calls the quantum potentia
Q! is part of the potential that acts on the particles. This
strange, in that it forces the potential acting on the partic
to depend on the probability assignment used to infer th
positions, with the result that in his formulation the potent
is a mixture of both ontological elements~the potential func-
tion V! and epistemological elements~the probability assign-
mentP!. This suggests that Bohm’s quantum potential is n
a property of the system~and therefore not part of the onto
ogy of quantum mechanics in the sense of Jaynes@8,9#!, but
a consequence of the process of inference used here.
perhaps remarkable that there is a connection between
average of the quantum potentialQ and the Fisher informa-
tion:
E PQ d3nx dt52
\2

8 (
i ,k51

3n

gikE PS 2

P

]2P

]xi]xk2
1

P2

]P

]xi

]P

]xkDd3nx dt5
\2

8 (
i ,k51

3n

gikE 1

P

]P

]xi

]P

]xk d3nx dt. ~19!
-
the
he
a-

a
a-

en-
n is
as-
rob-
s of

nt
he

nd

to
ed
The average value of the quantum potential introduced
Bohm is proportional to the Fisher information.

CONCLUDING REMARKS

The approach used here to derive the equations of non
ativistic quantum mechanics parallels in some ways
information-theoretic approach to statistical mechanics in
ated by Jaynes@10#, which considers statistical mechanics
be a form of inference. In his formulation, the probabili
distribution function describing an ensemble of systems s
ject to constraints~such as mean energy, mean number
particles, etc.! is derived using the maximum entropy prin
ciple, which asserts that the probability distribution that h
the maximum statistical entropy subject to whatever
known provides the most unbiased representation of
knowledge of the state of the system. For example, give
constraint on the mean energy of the system, the principl
maximum entropy leads to the well-known canonical dis
bution function. The information-theoretic approach to s
tistical mechanics leads to a formulation that maintain
sharp distinction between the ontological and epistemolo
cal contents of the theory. From this point of view, the ma
mization of entropy is not an application of a law of physic
but a method of inference. The physical content is in
constraints that are enforced.

The derivation of the Schrodinger equation presented h
seems to indicate that one can also view quantum mecha
as a form of inference. In this case, the epistemological c
tent of the theory lies in the prescription to minimize t
Fisher information, while the physical content of the theo
lies in assuming the relationship in Eq.~6!, which leads to
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the constraint expressed in Eq.~7!. There are, however, im
portant differences with respect to the procedure used in
information-theoretic approach to statistical mechanics. T
constraint on the probability density is not derived from me
surements on the system, but is due to assuminga priori that
Eq. ~7! holds. Furthermore, the main concern here is with
probability assignment that is optimal with respect to me
surements of the position of particles. Position and mom
tum are not on the same footing, in the sense that positio
considered the fundamental variable, and the probability
signment is one in configuration space, as opposed to a p
ability assignment in phase space. Possible modification
quantum mechanics can by arrived at by modifyingFS in
Eq. ~16!, by replacing the Fisher information by a differe
measure of information, or by modifying the nature of t
constraint used in the minimization.

ACKNOWLEDGMENTS

I wish to thank Harold Beck, Engelbert Schucking, a
Peter Shebell for helpful discussions.

APPENDIX: DERIVATION OF THE KLEIN-GORDON
EQUATION

The derivation of the Klein-Gordon equation is similar
the derivation of the Schrodinger equation. It can be deriv
from minimizing ~with respect to bothP and S! a function
FKG given by
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FKG5E PS (
i ,k50

4

g ik
]S

]xi

]S

]xk 1mc2D d4x

1l (
i ,k50

4

g ikE 1

P

]P

]xi

]P

]xk d4x, ~A1!

where g ik5diag (21/m,1/m,1/m,1/m). The equations tha
result from the minimization ofFKG take the form

(
i ,k50

4

g ik
]

]xi S P
]S

]xkD50, ~A2!

(
i ,k50

4

g ik
]S

]xi

]S

]xk 1mc22l (
i ,k50

4

g ik

3S 2

P

]2P

]xi]xk2
1

P2

]P

]xi

]P

]xkD50. ~A3!
ns
Equations~A2! and ~A3! are identical to the Klein-Gordon
equation,

(
i ,k50

4

g ik
]2C

]xi]xk2
mc2

\2 C50 ~A4!

provided that the parameterl is set equal to

l5
\2

4
~A5!

and the wave functionc is expressed in terms ofP andS as

c5P1/2exp~ iS/\!. ~A6!
s
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