PHYSICAL REVIEW A VOLUME 58, NUMBER 3 SEPTEMBER 1998

Derivation of the equations of nonrelativistic quantum mechanics using the principle
of minimum Fisher information
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The many-particle time-dependent Satirger equation is derived using the principle of minimum Fisher
information. This application of information theory leads to a physically well motivated derivation of the
Schralinger equation, which distinguishes between subjective and objective elements of the theory.
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INTRODUCTION y=6+X. 1)

The main result of this paper is a derivation of the many-r exampley might be a measurement of the position of a

particle time-dependent Scitiager equation using the prin- particle, while 8 is the actual position of the particle. The

ciple of minimum Flshe_r mforma’uoq T.here are wo basic robability distributionP(x) for the noisex will be related to
assumptions that enter into this derivation: that one can a (y|6) by

sociate a wave front with the motion of particles, and that the
probability distribution that describes the position of par- P(y|6)=P(y—6)=P(x), 2
ticles should satisfy the principle of minimum Fisher infor-
mation. This information-theoretic approach is of interest inwhere the first equality is a consequence of the invariance of
that it provides a physically well motivated derivation of the P(y| ) under translations. In this case, the Fisher informa-
Schralinger equation that isolates the subjective and objection | is given by[2—4]
tive aspects of the formalism. From this point of view, the
epistemological content of the theory lies in the prescription ZJ' 1 IP(y|6)\? _f 1 [dP(X) 2
to minimize the Fisher information associated with the prob- "~ | P(y|) a0 ) P(x) | dx X
ability distribution that describes the position of particles. 3
The physical content of the theory is contained in the as-
sumption that one can associate a wave front with the motiof can be shown that the mean-square error in any unbiased
of particles. Although the principle of minimum Fisher in- estimate of # must exceed 1/ which is known as the
formation has been used before to arrive at the equations giramer-Rao boun{B,4].
nonrelativistic quantum mechanitsee, for example, the dis- The principle of minimum Fisher information asserts that
cussion in Frieden and Soff¢l], and references ther@jn one should choose the probability distribution which mini-
these previous derivations of the Soffirger equation can mizes the Fisher information subject to the constraints
be criticized in that they only permit solutions that are realknown about the system. Note that the probability distribu-
and time independent. The derivation presented here leadion that minimizes the Fisher information will also maxi-
directly to the time-dependent Schiinger equation for a mize the mean square error. In this sense, it will be as non-
complex wave function. informative as possible while still satisfying the constraints.

| start with a brief discussion of the Fisher information  The Fisher information matrik,, is a generalization of
and the Fisher information matrix. Consider the problem ofthe Fisher information to the case where the probability dis-
estimating a parameterin the presence of unknown added tribution is a function of am-dimensional parametet' and
noisex. A measuremeny of the parameter will be related to an n-dimensional vector random variabl'. When
x and 6 by y'=#0'+x', the Fisher information matrix can be written as

[ 9 . . [ d 9 . .
IKIEJ P(Y'lﬁ')(ﬁ[ln P(y'[6] —r [In P(y'|0')])dﬂ(y')=J POX)| 7w [In PO 7 [In PO ] [ du(X). (4)

The relationship that exists between the mean-square error The Fisher information is closely related to the Kullback
and the Fisher information can be extended to an inequalitdiscrimination informatior(also known as the cross entropy
relating the covariance matrix and the inverse of the Fisheor Kullback-Liebler distance Suppose thad' and '+ A ¢'
information matrix[5]. are neighboring points in the parameter space. Then it can be
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shown [5] that under certain regularity conditions and to 3 1 9P 9P 3
within the second-order terms, q)B:i;:L g'k 5 o ok dx dt= E g . (9
D i. pi A i\ — =] i pi In (yl l d . ..
(6:6'+A0")=| P(y'[6) Py |0'+A0) w(y") Note that the asymmetry between space and tim@gris a

consequence of the different role that they play in nonrela-
—1 | AGIA K ®) tivistic mechanics. Such a distinction is not present in the
2 ik : derivation of the Klein-Gordon equatidsee the Appendix
I now consider the consequences of applying the principle
Because of this relationship, the Fisher information and th@f minimum Fisher information with the constraint that Eq.

Kullback discrimination information share similar properties. (7) must be satisfied. While not the only way, the simplest
way to ensure consistency is to minimigeith respect to

DERIVATION OF THE SCHRO DINGER EQUATION bothP and$S) a function® that is a linear combination @b 5

FROM THE PRINCIPLE OF MINIMUM FISHER and®g,
INFORMATION
Js k IS S
| first derive the Schrdinger equation for the case of a <I>=<I>A+)\¢>B=f “t3 E g'* — —¢|d"x dt
single free particle of mags, and later generalize to the case 2ik=1 IX X

of many particles moving in a potential. 1 9P oP
Consider the case of an ensemble of particles described 1)\ > gk| = _— _— ¢n

by a normalized probability densif(x',t). Assume that the ik=1 P ax' dx

set of particle trajectories forms a coherent system, or

equivalently, that one can associate a wave front with therhe parametek, which is assumed fixed, has units of action

motion of the particles. Then the velocity vectd(x',t) ofa  squared. It determines the relative weight of the two terms

particle at pomix' can be related to a real functi@{x',t) by that enter into the minimization.

an expression of the form For variations that vanish at the boundary, the variation of

® with respect toS and P leads to the two equations

. 9 ( as)
g o 0, (11

X dt. (10

3
. ﬁS
UJ_El g'k (6) 3
+ >
ik=1

where the inverse metrigl“= diag(1m,1/m,1/m) is the one
commonly used to define the kinematical line element in

configuration spacgg]. It follows that the probability distri- s L o IS 39S 3 2 J°P

bution must satisfy a conservation law of the form Eﬂél 29" ax oxk kE P axioxk
aP+§ k¥ (oS, , 1 0P oP)| "
Tt 9 o |\ P70 @ B2 ox x|~ (12

Equation(7) can be derived from a variational principle, by Equations(11) and (12) are identical to the free-particle
minimization of the expression Schralinger equation,

3
dS dS 2 3 2
ch:f —+;Z g"‘———R)d”xdt (®) Loy —h w O
G 7 ox h 5= .élg X Xk (13

with respect taS. . ]

Note that variation ofb , with respect tcP leads trivially ~ Provided that the parametaris set equal to
to the Hamilton-Jacobi equation for the free particle. There-
fore, minimization of®, and with respect to bots and P h?
will lead to the equations of motion of an ensemble of par- A= 8 (14)
ticles in classical mechanics. There is still considerable free-
dom in the choice of probability density that can be used tg
describe the ensemble, since it is only subject to(Eg.To
arrive at the equations of quantum mechanics, one needs to
restrict the choice of probability densities using the principle
of minimum Fisher information.

One can define the amount of informationRrusing the In the limit where4—0, Eq. (12) becomes the classical
Fisher information matrix. Without introducing additional Hamilton-Jacobi equation for the free particle. The generali-
structure, there is only one natural definition of the amountation to the Schidinger equation fon particles in a poten-
of information in P, obtained by contracting the metrig<  tial is straightforward, in that it only requires modifying
with the elements of the Fisher information matrix, by the addition of a potential teri(x;), which leads to

and the wave functiony is expressed in terms & andS as

y=PY%expiS/t). (15)
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3n The Schrdinger equation appears in the form of two
S 1 W S 9S 3 ! 1 ) : _ ) _
o= P E+ > E g' o 5‘2+V d®"x dt coupled nonlinear differential equations, which are identical
hk=1 to the equations used by Bohm in his formulation of
3n 1 9P oP guantum mechanic$7]. Bohm interprets Eq.18) as a
+A 2 g'kJ P o axk d3"x dt (16 Hamilton-Jacobi equation, and assumes that the last term
ik=1

on the left-hand sidéwhich he calls the quantum potential

Q) is part of the potential that acts on the patrticles. This is
pstrange, in that it forces the potential acting on the particles
to depend on the probability assignment used to infer their

and extending the inverse metg to the case of the kine-
matical line element in a configuration space of dimensio
3n. Variations of® g with respect td&SandP leads to the two

equations positions, with the result that in his formulation the potential
3n is a mixture of both ontological elementhe potential func-
£+ 2 g _al_ =) a_SR) =0, (17) tion V) and _epistemological elementhe probability a;sign—
gt k=1 OX J mentP). This suggests that Bohm’s quantum potential is not
an a property of the systerfand therefore not part of the ontol-
IS 1 K 9S S ogy of quantum mechanics in the sense of JayBed), but
EJF 2 iél 9 a_x"g_xR+V(X) a consequence of the process of inference used here. It is
perhaps remarkable that there is a connection between the
s o 52p 1 9P 9P average of the quantum potenti@land the Fisher informa-
-\ g'k(g —l—R——2—|—R):0- (18 tion:
ik=1 ox' gx®  P% ox' dx
|
n2 & 2 #P 1 9P 9P n2 38 19P oP
n _ ik 3n _ ik 3n
J Pstth__Ei,kz:lg fP(B_—Ré?X'é?X_aﬁ_XI—(?_XRd th—gi'glg J B&_XI—&_XRd X dt. (19)

The average value of the quantum potential introduced byhe constraint expressed in E@). There are, however, im-
Bohm is proportional to the Fisher information. portant differences with respect to the procedure used in the
information-theoretic approach to statistical mechanics. The
constraint on the probability density is not derived from mea-
surements on the system, but is due to assumipgori that

The approach used here to derive the equations of nonrekq. (7) holds. Furthermore, the main concern here is with a
ativistic quantum mechanics parallels in some ways therobability assignment that is optimal with respect to mea-
information-theoretic approach to statistical mechanics initi-surements of the position of particles. Position and momen-
ated by Jaynefl0], which considers statistical mechanics to tum are not on the same footing, in the sense that position is
be a form of inference. In his formulation, the probability considered the fundamental variable, and the probability as-
distribution function describing an ensemble of systems subsjgnment is one in configuration space, as opposed to a prob-
ject to constraintgsuch as mean energy, mean number ofapjity assignment in phase space. Possible modifications of
particles, etg.is derived using the maximum entropy prin- quantum mechanics can by arrived at by modifyibg in
ciple, which asserts that the probability distribution that hasEq. (16), by replacing the Fisher information by a different

the maximum statistical entropy subject t0 whatever iSheagyre of information, or by modifying the nature of the
known provides the most unbiased representation of oULynstraint used in the minimization.

knowledge of the state of the system. For example, given a
constraint on the mean energy of the system, the principle of
maximum entropy leads to the well-known canonical distri-
bution function. The information-theoretic approach to sta-
tistical mechanics leads to a formulation that maintains a _ i
sharp distinction between the ontological and epistemologi- ! Wish to thank Harold Beck, Engelbert Schucking, and
cal contents of the theory. From this point of view, the maxi-€ter Shebell for helpful discussions.
mization of entropy is not an application of a law of physics,
but a method of inference. The physical content is in the
constraints that are enforced. APPENDIX: DERIVATION OF THE KLEIN-GORDON

The derivation of the Schrodinger equation presented here EQUATION
seems to indicate that one can also view quantum mechanics
as a form of inference. In this case, the epistemological con- The derivation of the Klein-Gordon equation is similar to
tent of the theory lies in the prescription to minimize thethe derivation of the Schrodinger equation. It can be derived
Fisher information, while the physical content of the theoryfrom minimizing (with respect to bottP and S a function
lies in assuming the relationship in E@), which leads to  ®y¢ given by

CONCLUDING REMARKS
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4
dS 9S

— ik 4

(I)KG f P(i’kZO Y {9XI _RaX mcz)d X

4
) 1 0P 0P
+ IkJ - 4
)\iéo Y P ax' ox d’x,

(A1)

where y'k=

result from the minimization ofb ¢ take the form

i « 7 (b 5|0 A2
in:O)’ W &R =y, (A2)
4 4
JS 9S
ik + _ ik
i,éoy axt gxk me* )\I2=07
" 2 #P 1 9P 9P 0 A3
P axax Plaxaxk) 0 A

MARCEL REGINATTO

diag (—1/m,1/m,1/m,1/m). The equations that
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Equations(A2) and (A3) are identical to the Klein-Gordon
equation,

é 1k ——Razqf mczqr—o A4
ik=0 Y axioxk RZ T (A4)
provided that the parametaris set equal to

ﬁZ

and the wave functior is expressed in terms &f andS as

y=PY%exp(iS/%). (AB)
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