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Steady-state analysis of ac subharmonic generation in photorefractive sillenite crystals
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The stationary solution is obtained for the photorefractive subharmonic gratings excited in crystals of the
sillenite family by a standing light interference pattern and an applied ac electric field. We show that the main
subharmonic with doubled spatial period may become unstable against excitation of the subharmonic with
quadrupled spatial period. The threshold condition for this bifurcation is fdB1D50-294{@8)05808-9

PACS numbdss): 42.65.Hw, 42.65.Ky, 42.70.Nq

Excitation of parametric waves can take place in varioussured experimentally recently and show that the mechanism
continuous media. This type of process is known for plasmaf stabilization of the instability in the present ac case is
waves[1,2], spin waveg3], and optical wavef4]. The latest  different from that in the dc case.
example of excitation of this wave type is the so-called pho- We consider a standing light interference pattern in the
torefractive parametric oscillatid®—8]. The special case of form I=1¢[1+m cosKx)], wherel, is the average light in-
excitation of parametric waves in photorefractive mediatensity, mis the contrast, an is the fundamental grating
named subharmonic generation is the case that has attracteégctor. In addition, we assume that a square-wave field,
most attention since the first experimental verificationEel(t), is applied in thex direction (parallel toK) and is
showed the existence of such states. Photorefractive subhagiven by
monic generation refers to the effect in which a fundamental

holographic grating recorded in a photorefractive crystal be- Eed(t)=Eop(1),

comes unstable against the excitation of additional gratings

with grating vectors assuming integer fractidfg, K/3, or 1 t<t<(n+ U2t

K/4 of the fundamental grating vecttt The first generation p(t)=1 " Nto=<t<(n+1/2)to

of photorefractive subharmonics was observed in a crystal of -1, (n+12t<t<(n+1)to,

the sillenite family, B{,SiO,, subjected to a running light

interference pattern and a dc electric figll] (dc cas&  wherenis an integer anty, is the period. In this case, we can
Shortly after, generation of subharmonics was demonstratestrict ourselves to the one-dimensional problem. In what
by illuminating a sillenite crystal with a standing light pat- follows we also assume that the amplitude of the induced
tern and applying an alternatin@o electric field(ac casg  space-charge fieldz(x,t), is small compared with the am-
[10,11. An analytical theory based on the concept of spaceplitude of the externally applied electric field, i.gE|
charge wavegl2] has allowed a description of the linear part <E,. This enables us to apply a perturbational approach
of the problem, including the calculation of the thresholdand, thus, to start from Eq33) of Ref.[12], which can be
condition for the subharmonic generation in both casesewritten in the form

[13,14]. In spite of the great amount of accumulated experi-

mental data only few analytical treatments of the nonlinear j3g keT o\ ?E ¢l JE 1 (g
stage of the subharmonic excitation have been made; see—+| wy+ ——5) = p(t) 0 — =

e.g., Ref[15], which contains analysis of the steady state for?xdt 9 Eo) X Eo X nTEp

the simplest dc case, thH€/2 subharmonic. The amplitudes P E2

of the saturating parametric waves were shown to be deter- =/{15— | m cogKx)— —2} (1)
mined largely by the nonlinear frequency shifts by which X Eo

also various stationary states beyond threshold as well as the
feedback from these parametric waves to the fundamentavherekg is the Boltzmann constant, is the absolute tem-
wave may be described. Moreover, the concept of renormalperatureg is the elementary charge, ang is the lifetime
ization of the nonlinear coupling constant was introducedmobility product for free electrons. The parametegsand ¢
with the nonlinear theory. This is very important when ana-are given bywo=SlgNp /Ny and{=sqNy /eqes, Wheresis
lyzing the stability of the nonlinear regimes. the photoexcitation constariy, is the density of donorsy,

In this paper we give a stationary solution to the problemis the density of acceptors, aagde is the permittivity of the
of subharmonic generation for the case where a square-wawgystal. The left-hand side of Eql) is linear inE and de-
ac electric field is applied to a sillenite crystal. The thresholdtermines the linear characteristics of the space-charge waves.
condition for excitation of secondary subharmonic gratingsThe first term on the right-hand side is the effective driving
with wave vectorK/4 and X/4 is also found. Moreover, we force whereas the second term governs the nonlinear cou-
explain the existence of two types of spatial domains meapling.
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By introducing the Fourier representation 6y k; andk, meeting the spatial synchronism conditiks= K
—k;. Their amplitudes obey the following coupled equa-
E( D)= Ege.(t)explixx), tons:
K (?gkl B | _
where e,(t) is the dimensionless field amplitude and the o VB = 21 0k B i »
summation is assumed over all physically actual values of
the grating vectors, we can represent Eql) in the form Jek
% _ e
se - Cm gt T YKkl T T 20Kk Bk B, (6)
t T ytiwp(t)]ex=—iwg > (Sk,k T 6k, —k)

To find the threshold for growth of subharmonics let us seek
. a solution to Eq.6) in the form ekl,eK_klocexp(vt). From
T wk}; € Gk - (2> the condition of solvability of the resultant algebraic system
k . . . . i,
we obtain two solutions for the increment of the instability
Here & k is the Kronecker symbol. The frequenay, and ¥+ -

the damping coefficienty, entering Eq(2) are given by
Yy T Vi K

Eq(k) vemT T F

Eo 12

2

( Yo, Ykl—K) 2
W= Wqo

Y

+4wy oy, —lex]?

Eq(K)Em(K)+Eq(K)Ep(K) +E3
Y= wo = : &)

If v, is positive, the amplitudes of the subharmonic gratings
experience exponential growth starting from noise level. The

=1/kur are the characteristic photorefractive fields.thresmld equation for this instability reads =0 from

. . ; >*which, using Eq(5), we find the threshold value of the con-
Throughout this paper we consider the case of high qualit I . . .
factor,Q,=|wy/y|/>1, when the subharmonics can be gen- rast, M= Qy "y Qi Qr=,- This definesmy, as a function
erated [12]. This means that the inequalitiekEy (k) of ky: The minimum of this function specifies the lowest
+Ep(K)|<Eg<|E4(K)| have to be fulfilled. Actually, these threshold of the contrast for a givéq Using Eq.(3) for the
inequalities have already been used in deriving Esand ~ quality factor one can show that the minimum takes place at
(3). In the most interesting case for subharmonics generatiof=K/2 if the inequality Ej<4(2+ 5)Ep(K)E4(K)
the temporal period of the ac field is much smaller than the- Ep(K)Eq(K) is fulfilled. In this case the threshold of sub-
grating formation time and much larger than the electrorharmonic instability is given by12]
lifetime. Thus, we can adopt the period averaging procedure

where E(k)=qNa/keoes, Ep(k)=kgTk/q, and Ey(k)

to Eq.(2); see, e.g., Refl6]. The equation for the amplitude — 1 ®)
e, averaged over a periodty, ie., g(t) th QkQkr2’
=ft+t°/2ek(t’)dt’/to, is given by

t=ty/2 Otherwise, the minimum is reachedlgt between 0 and.

e m Since Q¢ and Qg/» are both much greater than unity, the
k i i = a hreshold of the contrast is very small.
— =~k 5 (Skt O —k) FioD el i, t y
gt K kg Tk T koK K K Kk __ When the contrast exceeds the threshold value(&dor
(4) ek is no longer valid and we have to take into account the

o ] ) feedback from the subharmonics to the fundamental grating.
where the fast oscillating part of the field amplitude has beefy, this case Eq(4) leads to the following generalization of
neglected since it is small, of the ordekt,, in comparison  gq_ (5):

with e, .

Within the linear approximation Ed¢4) has the following _ ) m _,
steady state solution for the fundamental grating amplitude: ex=—1Qx 2 €2 - 9

— . Mmog o mQ¢ . mQ Together with Eq(6) this equation has two steady-state so-

ex=—1 = —=—1i , €=i—5—, K=>0, (5 ; )
2 Yk 2 2 lutions given by

where the asterisk denotes the complex conjugate. This so- o~ 1 =~ _= _ MMy v 10
lution characterizes the initial periodic state for a sufficiently &= 1 2Qk;’ k2= k2™ = 2 - (10

low contrastm, when the higher spatial harmonicsK 2

3K,..., arenegligible[12,16. According to Eq.5) the fun-  One can see from Eq&) and(10) that the amplitude of the

damental grating has the amplitudeQx/2 and is shifted by fundamental grating grows linearly as a function roffor

— /2 with respect to the light interference pattern. m<my, and remains constant fan>my,. The phasepy
Let us analyze the stability of the fundamental grating=arg(x) remains equal to- 7/2 above threshold. The sub-

against the excitation of subharmonics with grating vectordiarmonic amplitude is zero below the threshatekimy,;
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above the threshold it grows as the square roamnefmy,. 0.30 . . . . . ; . ; .
The phase of the subharmonic gratingy,=arg@€xs,), )
meets the phase matching conditiopb= ¢k + /2, which 0.25 ~ o
can be found from the steady-state version of &).with ] Ey=4 kViem
k,=K—k;=K/2. Since phase is indeterminate by a factor of .

2m, the subharmonic phase is either 0 mrwhich is seen  F 0207 ' |
from Eq.(10). The choice between 0 andis arbitrary and, % !
consequently, two types of spatial domains with these two & *'*7 | 7

values of phase can coexist simultaneously. Such domains

have been found experimental[¢7]. The phase matching % 0.10-

condition elucidates the mechanism of stabilization of theé

instability for the ac case. Sina, is positive, the nonlin- 0.05 |

ear term in Eq.(9) tends to decrease the amplitude of the

fundamental grating. Whefex| is reduced down to its 0.00 —_— e ——
threshold value (@) ~?, the increment of the subharmon- 0 5 10 15 20 25
ics goes to zero, i.ey, =0 and, as a result, the growth of @ Fringe spacing A (um)

subharmonics is stopped. Freezing the fundamental grating 0.0 ' . ' . . ' ' .

amplitude at the threshold level owing to the feedback from
the subharmonics is the essence of the stabilization meche
nism in the ac case. This mechanism is also known from %257 E =7 kV/em
other fields of nonlinear scien¢&8] and it differs basically 1
from the mechanism of stabilization for the dc case. )
Increasing the contrast can result in a new instability
against excitation of additional gratings with wave vector
ki, K—k;, K/2—kz, andK/2+k; . From the above analy-
sis we have learned that the threshold of the subharmonicg o.10
instability is usually lowest for th&/2 grating and we there- &
fore assume that the threshold of the subsequent instability it ;5 |
lowest for the grating withk; =K/4. This is also supported
by experiment$10]. Using this assumption and Ef) one

0.20

tion

0.15

old modula

can obtain the coupled equations for the amplitudes o 5 1o 15 2 25
€k/4,€3k/a IN the form () Fringe spacing A (pm)
— 0.30 — , . .
aeK/4 - _ . — _* - _* __,‘ I I
ot + Yi1a€k1a= 21 0k a( €28k /4T €3k 148K 2 €K EGK/4)
0.25 —
. E=10kV/
_ (1D \ S
d€3k /4 — . _—— = — & 0.20
ot + Vaka€ak/a= 21 03/ €K j4 T €K /128K /4) - §
é 0.15
The complex conjugate of this system gives the necessarg
equations_for eg,, and e’3‘K,4._ By inserting the ansatz E‘“O‘
eK,4,e3K,4,.e’,;,4,e’3‘K,4oce?<p(v1t) into Eqg. (11, we arrive at
the following two solutions for the increment: 0.05
0.00
+ (7K/4+ YaKia _ e, |) 0 5 10 15 20 25
Ve =— | F+w
1 2 Kial=K2 © Fringe spacing A (jum)
2 -
" YKIaT Y3KI4 _ |— | FIG. 1. The threshold values of the contras, (solid line) and
2 + Okial k2 M, (dashed lingas functions of the fringe spacinty for different
1 values of the amplitud&,.
=12 (A |2
+ 4wy awska( el — ekl )} : (12

1 (1+ yaxial Yiia)?
Qx Q2 2Q%/4

M= (13

Changing the sign in front of the square root to minus gives

the third and fourth solutions far, . By combining Eq(12) Figure 1 shows the threshold values of the contnggtfrom
with the expressions foex andey,, given by Eq.(10) and  Eg. (8) and M, from Eg. (13) as functions of the fringe
setting the real part of the increment; , equal to zero one spacing,A =2#/K, for different values of the amplitude of
can obtain the second threshold value of the contvigt the ac field,Ey. The curves are plotted for parameters rel-
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evant to B{,SiO,, crystals[19]. It is seen that threshold of In conclusion, we have obtained the steady-state solution
modulation for both thé</2 and theK/4 subharmonics de- for the photorefractive subharmonics with grating vedté2
creases with increasing ac field amplitude at fixed fringeexcited by an ac field. It is also shown that, with increasing
spacing. Moreover, the difference between these two thresteontrast, theK/2 subharmonic becomes unstable against ex-
olds is reduced. citation of theK/4 subharmonic grating. Experiments are be-
Further increasing the contrast can result in new instabiliing planned to verify the theoretical predictions of this paper.
ties for next subharmonic gratings, and a cascade of thresh-
olds can be found by repeating the procedure outlined here. The authors acknowledge financial support from The
The presence of higher spatial harmonic gratings can alsBanish Natural Research Council under Grant Nos. 9502764,
influence the amplitude of both the fundamental grating and®600852, and 9600986. Partial financial support from
subharmonic gratings, leading to a growth in dissipation. INTAS is also gratefully acknowledged.
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