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Steady-state analysis of ac subharmonic generation in photorefractive sillenite crystals

Per M. Johansen,1 Henrik C. Pedersen,2 Evgeny V. Podivilov,3 and Boris I. Sturman4
1Optics and Fluid Dynamics Department, Riso” National Laboratory, DK-4000 Roskilde, Denmark

2University of Kent, School of Physical Sciences, Canterbury, Kent CT2 7NR, United Kingdom
3Institute of Automation and Electrometry, Russian Academy of Sciences, Koptyg Prospect 1, Novosibirsk 630090, Russi

4International Institute for Non-Linear Studies, Siberian Branch, Koptyg Prospect 1, 630090 Novosibirsk, Russia
~Received 22 January 1998!

The stationary solution is obtained for the photorefractive subharmonic gratings excited in crystals of the
sillenite family by a standing light interference pattern and an applied ac electric field. We show that the main
subharmonic with doubled spatial period may become unstable against excitation of the subharmonic with
quadrupled spatial period. The threshold condition for this bifurcation is found.@S1050-2947~98!05808-9#

PACS number~s!: 42.65.Hw, 42.65.Ky, 42.70.Nq
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Excitation of parametric waves can take place in vario
continuous media. This type of process is known for plas
waves@1,2#, spin waves@3#, and optical waves@4#. The latest
example of excitation of this wave type is the so-called p
torefractive parametric oscillation@5–8#. The special case o
excitation of parametric waves in photorefractive me
named subharmonic generation is the case that has attr
most attention since the first experimental verificati
showed the existence of such states. Photorefractive sub
monic generation refers to the effect in which a fundamen
holographic grating recorded in a photorefractive crystal
comes unstable against the excitation of additional grati
with grating vectors assuming integer fractionsK/2, K/3, or
K/4 of the fundamental grating vectorK. The first generation
of photorefractive subharmonics was observed in a crysta
the sillenite family, Bi12SiO20, subjected to a running ligh
interference pattern and a dc electric field@9# ~dc case!.
Shortly after, generation of subharmonics was demonstr
by illuminating a sillenite crystal with a standing light pa
tern and applying an alternating~ac! electric field~ac case!
@10,11#. An analytical theory based on the concept of spa
charge waves@12# has allowed a description of the linear pa
of the problem, including the calculation of the thresho
condition for the subharmonic generation in both ca
@13,14#. In spite of the great amount of accumulated expe
mental data only few analytical treatments of the nonlin
stage of the subharmonic excitation have been made;
e.g., Ref.@15#, which contains analysis of the steady state
the simplest dc case, theK/2 subharmonic. The amplitude
of the saturating parametric waves were shown to be de
mined largely by the nonlinear frequency shifts by whi
also various stationary states beyond threshold as well a
feedback from these parametric waves to the fundame
wave may be described. Moreover, the concept of renorm
ization of the nonlinear coupling constant was introduc
with the nonlinear theory. This is very important when an
lyzing the stability of the nonlinear regimes.

In this paper we give a stationary solution to the probl
of subharmonic generation for the case where a square-w
ac electric field is applied to a sillenite crystal. The thresh
condition for excitation of secondary subharmonic gratin
with wave vectorsK/4 and 3K/4 is also found. Moreover, we
explain the existence of two types of spatial domains m
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sured experimentally recently and show that the mechan
of stabilization of the instability in the present ac case
different from that in the dc case.

We consider a standing light interference pattern in
form I 5I 0@11m cos(Kx)#, whereI 0 is the average light in-
tensity,m is the contrast, andK is the fundamental grating
vector. In addition, we assume that a square-wave fi
Eex(t), is applied in thex direction ~parallel to K! and is
given by

Eex~ t !5E0p~ t !,

p~ t !5H 1, nt0,t,~n11/2!t0

21, ~n11/2!t0,t,~n11!t0 ,

wheren is an integer andt0 is the period. In this case, we ca
restrict ourselves to the one-dimensional problem. In w
follows we also assume that the amplitude of the induc
space-charge field,E(x,t), is small compared with the am
plitude of the externally applied electric field, i.e.,uEu
!E0 . This enables us to apply a perturbational approa
and, thus, to start from Eq.~33! of Ref. @12#, which can be
rewritten in the form

]3E

]x2]t
1S v01

kBT

q

zI 0

E0
2 D ]2E

]x22
zI 0

E0
p~ t !

]E

]x
2

1

mt

zI 0

E0
2 E

5zI 0

]

]x Fm cos~Kx!2
E2

E0
2G , ~1!

wherekB is the Boltzmann constant,T is the absolute tem-
perature,q is the elementary charge, andtm is the lifetime
mobility product for free electrons. The parametersv0 andz
are given byv05sI0ND /NA andz5sqND /«0«s , wheres is
the photoexcitation constant,ND is the density of donors,NA
is the density of acceptors, and«0«s is the permittivity of the
crystal. The left-hand side of Eq.~1! is linear in E and de-
termines the linear characteristics of the space-charge wa
The first term on the right-hand side is the effective drivi
force whereas the second term governs the nonlinear
pling.
1601 © 1998 The American Physical Society
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By introducing the Fourier representation forE,

E~x,t !5(
k

E0ek~ t !exp~ ikx!,

where ek(t) is the dimensionless field amplitude and t
summation is assumed over all physically actual values
the grating vectorsk, we can represent Eq.~1! in the form

]ek

]t
1@gk1 ivkp~ t !#ek52 ivk

m

2
~dk,K1dk,2K!

1 ivk(
k8

ek8ek2k8 . ~2!

Here dk,K is the Kronecker symbol. The frequencyvk and
the damping coefficient,gk entering Eq.~2! are given by

vk5v0

Eq~k!

E0
,

gk5v0

Eq~k!EM~k!1Eq~k!ED~k!1E0
2

E0
2 , ~3!

where Eq(k)5qNA /k«0«s , ED(k)5kBTk/q, and EM(k)
51/kmt are the characteristic photorefractive field
Throughout this paper we consider the case of high qua
factor,Qk5uvk /gku@1, when the subharmonics can be ge
erated @12#. This means that the inequalitiesuEM(k)
1ED(k)u!E0!uEq(k)u have to be fulfilled. Actually, these
inequalities have already been used in deriving Eqs.~2! and
~3!. In the most interesting case for subharmonics genera
the temporal period of the ac field is much smaller than
grating formation time and much larger than the elect
lifetime. Thus, we can adopt the period averaging proced
to Eq.~2!; see, e.g., Ref.@16#. The equation for the amplitud
ēk , averaged over a period t0 , i.e., ēk(t)
5* t2t0/2

t1t0/2ek(t8)dt8/t0 , is given by

]ēk

]t
1gkēk52 ivk

m

2
~dk,K1dk,2K!1 ivk(

k8
ēk8ēk2k8 ,

~4!

where the fast oscillating part of the field amplitude has b
neglected since it is small, of the ordervKt0 , in comparison
with ēk .

Within the linear approximation Eq.~4! has the following
steady state solution for the fundamental grating amplitu

ēK52 i
m

2

vK

gK
52 i

mQK

2
, ēK* 5 i

mQK

2
, K.0, ~5!

where the asterisk denotes the complex conjugate. This
lution characterizes the initial periodic state for a sufficien
low contrast m, when the higher spatial harmonics, 2K,
3K,..., arenegligible@12,16#. According to Eq.~5! the fun-
damental grating has the amplitudemQK/2 and is shifted by
2p/2 with respect to the light interference pattern.

Let us analyze the stability of the fundamental grati
against the excitation of subharmonics with grating vect
f

.
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e
n
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k1 andk2 meeting the spatial synchronism conditionk25K
2k1 . Their amplitudes obey the following coupled equ
tions:

]ēk1

]t
1gk1

ēk1
52ivk1

ēKēK2k1
* ,

]ēK2k1
*

]t
1gK2k1

ēK2k1
* 522ivK2k1

ēK* ēk1
. ~6!

To find the threshold for growth of subharmonics let us se
a solution to Eq.~6! in the form ēk1

,ēK2k1
}exp(nt). From

the condition of solvability of the resultant algebraic syste
we obtain two solutions for the increment of the instabil
n6 :

n652
gk1

1gk12K

2
6F S gk1

2gk12K

2
D 2

14vk1
vk12KueKu2G1/2

. ~7!

If n1 is positive, the amplitudes of the subharmonic gratin
experience exponential growth starting from noise level. T
threshold equation for this instability readsn150 from
which, using Eq.~5!, we find the threshold value of the con
trast,mth5QK

21AQk1

21QK2k1

21 . This definesmth as a function

of k1 : The minimum of this function specifies the lowe
threshold of the contrast for a givenK. Using Eq.~3! for the
quality factor one can show that the minimum takes place
k15K/2 if the inequality E0

2,4(21A5)EM(K)Eq(K)
2ED(K)Eq(K) is fulfilled. In this case the threshold of sub
harmonic instability is given by@12#

mth5
1

QKQK/2
. ~8!

Otherwise, the minimum is reached atk1 between 0 andK.
Since QK and QK/2 are both much greater than unity, th
threshold of the contrast is very small.

When the contrast exceeds the threshold value, Eq.~5! for
ēK is no longer valid and we have to take into account
feedback from the subharmonics to the fundamental grat
In this case Eq.~4! leads to the following generalization o
Eq. ~5!:

ēK52 iQKS m

2
2ēK/2

2 D . ~9!

Together with Eq.~6! this equation has two steady-state s
lutions given by

ēK52 i
1

2QK/2
, ēK/25ēK/2* 56S m2mth

2 D 1/2

. ~10!

One can see from Eqs.~5! and~10! that the amplitude of the
fundamental grating grows linearly as a function ofm for
m,mth and remains constant form.mth . The phasewK
5arg(ēK) remains equal to2p/2 above threshold. The sub
harmonic amplitude is zero below the threshold,m,mth ;
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above the threshold it grows as the square root ofm2mth .
The phase of the subharmonic grating,wK/25arg(ēK/2),
meets the phase matching condition 2wK/25wK1p/2, which
can be found from the steady-state version of Eq.~6! with
k15K2k15K/2. Since phase is indeterminate by a factor
2p, the subharmonic phase is either 0 orp, which is seen
from Eq. ~10!. The choice between 0 andp is arbitrary and,
consequently, two types of spatial domains with these
values of phase can coexist simultaneously. Such dom
have been found experimentally@17#. The phase matching
condition elucidates the mechanism of stabilization of
instability for the ac case. SinceēK/2

2 is positive, the nonlin-
ear term in Eq.~9! tends to decrease the amplitude of t
fundamental grating. WhenuēKu is reduced down to its
threshold value (2QK/2)

21, the increment of the subharmon
ics goes to zero, i.e.,n150 and, as a result, the growth o
subharmonics is stopped. Freezing the fundamental gra
amplitude at the threshold level owing to the feedback fr
the subharmonics is the essence of the stabilization me
nism in the ac case. This mechanism is also known fr
other fields of nonlinear science@18# and it differs basically
from the mechanism of stabilization for the dc case.

Increasing the contrast can result in a new instabi
against excitation of additional gratings with wave vecto
k18 , K2k18 , K/22k18 , andK/21k18 . From the above analy
sis we have learned that the threshold of the subharmo
instability is usually lowest for theK/2 grating and we there
fore assume that the threshold of the subsequent instabili
lowest for the grating withk185K/4. This is also supported
by experiments@10#. Using this assumption and Eq.~4! one
can obtain the coupled equations for the amplitud
ēK/4 ,ē3K/4 in the form

]ēK/4

]t
1gK/4ēK/452ivK/4~ ēK/2ēK/4* 1ē3K/4ēK/2* 1ēKē3K/4* !,

]ē3K/4

]t
1g3K/4ē3K/452iv3K/4~ ēKēK/4* 1ēK/2ēK/4!.

~11!

The complex conjugate of this system gives the neces
equations for ēK/4* and ē3K/4* . By inserting the ansatz
ēK/4 ,ē3K/4 ,ēK/4* ,ē3K/4* }exp(n1t) into Eq. ~11!, we arrive at
the following two solutions for the increment:

n1
652S gK/41g3K/4

2
7vK/4uēK/2u D

1F S gK/42g3K/4

2
7vK/4uēK/2u D 2

14vK/4v3K/4(uēKu22uēK/2u2)G1/2

. ~12!

Changing the sign in front of the square root to minus giv
the third and fourth solutions forn1 . By combining Eq.~12!
with the expressions forēK and ēK/2 given by Eq.~10! and
setting the real part of the increment,n1

1 , equal to zero one
can obtain the second threshold value of the contrastM th :
f
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M th5
1

QKQK/2
1

~11g3K/4 /gK/4!
2

2QK/4
2 . ~13!

Figure 1 shows the threshold values of the contrastmth from
Eq. ~8! and M th from Eq. ~13! as functions of the fringe
spacing,L52p/K, for different values of the amplitude o
the ac field,E0 . The curves are plotted for parameters r

FIG. 1. The threshold values of the contrastmth ~solid line! and
M th ~dashed line! as functions of the fringe spacingL for different
values of the amplitudeE0 .
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evant to Bi12SiO20 crystals@19#. It is seen that threshold o
modulation for both theK/2 and theK/4 subharmonics de
creases with increasing ac field amplitude at fixed frin
spacing. Moreover, the difference between these two thr
olds is reduced.

Further increasing the contrast can result in new instab
ties for next subharmonic gratings, and a cascade of thr
olds can be found by repeating the procedure outlined h
The presence of higher spatial harmonic gratings can
influence the amplitude of both the fundamental grating a
subharmonic gratings, leading to a growth in dissipation.
u-

n.
-

g-

ys

P.
e
h-

i-
h-
e.
so
d

In conclusion, we have obtained the steady-state solu
for the photorefractive subharmonics with grating vectorK/2
excited by an ac field. It is also shown that, with increas
contrast, theK/2 subharmonic becomes unstable against
citation of theK/4 subharmonic grating. Experiments are b
ing planned to verify the theoretical predictions of this pap
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