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Realization of a collective decoding of code-word states
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A physical model for the optimum collective decoding that attains the minimum average error probability in
distinguishing code-word states is presented. This model is based on a cavity QED technique which is avail-
able at present. It will open a possibility for a quantum decoder that realizes the superadditivity in classical
capacity of quantum channel which was demonstrated in M. Sasaki, preceeding paper, Phys. Rev. A58, 146
~1998!. @S1050-2947~98!05207-X#

PACS number~s!: 03.67.Hk, 89.70.1c, 42.79.Sz, 89.80.1h
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I. INTRODUCTION

Distinguishing nonorthogonal quantum states at the m
mum error is a fundamental problem in quantum commu
cation. The optimum strategy minimizing the average er
probability can be, in principle, derived from a linear op
mization in terms of a Bayesian decision problem. Suc
strategy is generally represented by a probability oper
measure~POM! which is a set of nonnegative Hermitian o
eratorsP̂ i satisfying the resolution of the identity@1#,

(
i

P̂ i5 Î , P̂ i>0. ~1!

Except for pure-state signals with a certain symmetry, it i
tedious job to derive explicit expressions for$P̂ i% @2#. In
addition, even when they can be obtained, correspond
physical processes are not necessarily obvious. Mathem
cally, the optimum POM can be specified in the Hilbe
space of the minimum dimension that a set of signal sta
spans. However, it can often hardly be interpreted physica
For practical physical implementation, the POM should
constructed in a larger Hilbert space which can fully descr
the physical system making the signal states. Such exam
have been known only in certain cases of binary signals@3#.
In the preceding paper, the problem of decodingM -ary code-
word states at the minimum average error probability w
discussed. For attaining the minimum error, acollective de-
coding was essential in which each code-word state is
tected as a single state vector rather than detected as
individual letter states separately. It was shown that whe
is applied to the properly selected code-word states,
quantum gainin transmittable information can be obtained

In this paper we present a physical scheme for the o
mum collective decoding ofM -ary code-word states, par
ticularly in the case where the letter states are pure and
nary. This scheme consists of a quantum circuit and a sim
separate measurement on the individual letter states. In
quantum circuit, a certain unitary transformation is carr
out on the received code-word state and a superpositio
the code-word states is generated. This unitary transfor
tion is designed so that the minimum average error proba
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ity is attained when the output from the circuit is detected
the given separate measurement. In the following, the dec
ing scheme proposed in the preceding paper is briefly
viewed in Sec. II, and then quantum circuit structures
presented in Sec. III. In particular, a concrete model for d
tinguishing two code-word states of length 2 at the minimu
average error will be proposed for an experimental dem
stration of the principle of collective decoding. Section IV
for concluding remarks.

II. DECODING SCHEME

Let binary letter states be$u1&,u2&% whose state overlap
k5^1u2& is assumed to be real. They span the tw
dimensional Hilbert spaceHl . By concatenating them into
block sequences of lengthn, the 2n possible sequences ar
made. We then pick upM -ary sequences as code-word sta
that are denoted as$uS1&, . . . ,uSM&% (M<2n), and use them
with input probabilities$z1 , . . . ,zM%. The rest of the se-
quences are denoted as$uSM11&, . . . ,uS2n&%. Since the code-
word states are linearly independent, they span
M -dimensional Hilbert spaceHs . Let thenth extended Hil-
bert space beH l

^ n . The optimum collective decoding is de
scribed by an orthonormal set$uv1&, . . . ,uvM&% on
Hs,H l

^ n .
This is achieved, in some cases, by the square-root m

surement@1,4–6# given by

um i&[r̂21/2uS̃i&, ~2a!

r̂[(
i 51

M

uS̃i&^S̃i u, ~2b!

uS̃i&[Az i uSi&. ~2c!

Let us define the Gram matrixG[(^S̃i uS̃j&).

Theorem

For 0<k,1, the square-root measurement$um i&% be-
comes optimum when all of the diagonal components ofG1/2

are equal.
Unless it is not the case,$um i&% forms, at least, an ortho

normal set inHs . So it is connected with the optimum mea
159 © 1998 The American Physical Society
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160 PRA 58SASAKI, SASAKI-USUDA, IZUTSU, AND HIROTA
surement states$uv i&% via a unitary operatorV̂ in Hs as

uv i&5V̂um i&. A straightforward method to construct such
unitary operator is the Bayes-cost-reduction algorithm p
posed by Helstrom@7#. In this algorithm, one chooses a pa
of code-word states$uSi&,uSj&%, solves the binary decision
problem in the plane spanned by the corresponding pai
measurement basis vectors$um i&,um j&%, and gets the revised
basis vectors$um i8&,um j8&% which can be connected with th
previous ones via a U~2! operatorV(1) in Hs as

um i8&5V~1!um i&, ~3a!

um j8&5V~1!um j&. ~3b!

After revising the basis vectors, the average error probab
will decrease or, at worst, remain the same. This kind of s
is to be continued till reaching the optimum point. Thus sta
ing from the square-root measurement basis vectors, the
timum ones are derived as

uv i&5•••V~2!V~1!um i& ; i . ~4!

In order to consider a physical scheme, we make an
thonormal set$uv1&, . . . ,uv2n&% on the whole spaceH l

^ n by
adding the other basis vectors obtained by using the Sch
orthogonalization,

uv i&5

uSi&2 (
k51

i 21

uvk&^vkuSi&

A12 (
k51

i 21

z^vkuSi& z2

~ i 5M11, . . . ,2n!. ~5!

We denote the expansion of all the sequences by the a
basis vectors as

S uS1&

A

uS2n&
D 5BS uv1&

A

uv2n&
D , ~6a!

B5~Bi j !5~^v j uSi&!. ~6b!

Let $ua&,ub&% be the measurement basis vectors distingu
ing the individual letter states. By concatenating them i
the block sequences of lengthn, the 2n product basis vectors
in H l

^ n are made. We pick upM -ary basis vectors from
them, and denote them as$uA1&, . . . ,uAM&%, and the rest of
them as$uAM11&, . . . ,uA2n&%. All the sequences can be ex
panded alternatively by these basis vectors as

S uS1&

A

uS2n&
D 5CS uA1&

A

uA2n&
D , ~7a!

C5~Ci j !5~^Aj uSi&!. ~7b!

The two basis sets are connected via a unitary operatorÛ on
the whole spaceH l

^ n as
-

of

ty
p
-
p-

r-

idt

ve

-
o

uv i&5Û†uAi& ~ i 51, . . . ,2n!, ~8a!

where

Û†[(
i , j

2n

uji uAj&^Ai u, uji [~B21C! i j . ~8b!

Thus the optimumcollective decoding$uv1&, . . . ,uvM&% can
be effected by~i! transforming the code-word states$uSi&%
by the unitary transformationÛ, and ~ii ! applying the mea-
surement$uA1&, . . . ,uAM&% into the transformed code-wor
states. Note that$uAi&% are the product basis vectors an
hence represent the separate measurement on the indiv
letter states. The unitary transformationÛ plays a role of an
adaptor to this separate measurement@3#. The minimum er-
ror probability is obtained as

Pe~opt!512(
i 51

M

z i z^Si uÛ†uAi& z2. ~9!

When the code-word states have a certain symmetry,
construction ofÛ will become much easier by choosing th
measurement basis vectors$uA1&, . . . ,uAM&% taking that
symmetry into account. See the example later.

Construction of the quantum circuit forÛ can be done~i!
by decomposing it into U~2! operatorsT̂[ j ,i ] by applying the
algorithm proposed by Reck and others@8# as

Û5T̂[2,1]T̂[3,1]•••T̂[2n,2n22]T̂[2n,2n21] , ~10a!

where

T̂[ j ,i ]5exp@2g j i ~ uAi&^Aj u2uAj&^Ai u!#, ~10b!

and ~ii ! by applying the formula established by Baren
et al. for simulating a discrete unitary operator@9#. Here the
following point should be noted. Since quantum bits~qubits!
in the circuit are the letter states themselves constituting
code-word states, the gates should consist of the sin
physical species from which the letter states are made. S
gates known so far are Sleator and Weinfurter’s gate con
ing of two-state atoms@10# and the quantum phase gate a
ing on two photon-polarization states@11#.

III. QUANTUM CIRCUIT STRUCTURES

In this section the structure of the quantum circuit is p
sented. A model using a physically two-state system suc
a two-level atom or a pair of single-mode photon polariz
tions is considered first, aiming at an experimental dem
stration of the collective decoding. Then, an implementat
in the case of coherent-state signals is discussed.

A. Physically two-state system

Let $u↑&,u↓&% be the upper-level and lower-level states
an atom, or two orthogonal linear polarization states o
single-mode optical field. The measurement basis vec
$ua&,ub&% can then be taken naturally as$u↑&,u↓&% represent-
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ing a level detection or a linear polarizer. Suppose that
letter states are made by rotating the stateu↑& by the angleu
or p2u around they axis,

u1&5R̂y~u!u↑&5A12pu↑&2Apu↓&, ~11a!

u2&5R̂y~p2u!u↑&5Apu↑&2A12pu↓&, ~11b!

where

R̂y~u!5S cos
u

2
sin

u

2

2sin
u

2
cos

u

2

D 5S A12p Ap

2Ap A12p
D ,

~12!

andp5(12A12k2)/2.
Let us consider a simple case of distinguishing two co

word states$u11&,u22&%, whereu11& meansu1& ^ u1&,
etc. The two measurement basis vectors of the optimum
lective decoding are given by

uv1&5A12p2

12k4u11&2A p2

12k4u22&, ~13a!

uv2&52A p2

12k4u11&1A12p2

12k4u22&, ~13b!

wherep25(12A12k4)/2 is the minimum bound of the av
erage error probability. The code-word states are expan
as

u11&5~12p!u↑↑&2A~12p!p~ u↑↓&1u↓↑&)1pu↓↓&,
~14a!

u22&5pu↑↑&2A~12p!p~ u↑↓&1u↓↑&)1~12p!u↓↓&,
~14b!

here againu↑↑&5u↑& ^ u↑&, etc. Let us denoteu↑↑&, u↑↓&,
u↓↑&, andu↓↓& asuA1&, uA2&, uA3&, anduA4&, respectively. It
is easy to see the optimum measurement basis vectors c
expressed as

uv1&5Û†uA1&, ~15a!

uv2&5Û†uA4&, ~15b!

where the unitary operatorÛ is defined by the following
matrix representation in terms of the basis vect
$uA1&,uA2&,uA3&,uA4&%:

Û5
1

2d0S 11d0 2k 2k 12d0

k 11d0 12d0 k

k 12d0 11d0 k

12d0 2k 2k 11d0

D , ~16!

with d05A11k2. Thus the optimum collective decoding b
$uv1&,uv2&% has been decomposed into the unitary trans
mation byÛ and the separate measurement by$uA1&,uA4&%.
As seen in Eq.~14!, the code-word statesu11& and u22&
e

-

l-

ed

be

s

r-

mainly consist of u↑↑& and u↓↓&, respectively, when the
letter-state overlapk is small. In addition, the expansion o
Eq. ~14! is symmetric in terms of these basis vectors. The
fore choosing$uA1&,uA4&% as the final measurement seem
very natural, and actually simplifies a construction of a qu
tum circuit for Û.

The transformed code words$Ûu11&,Ûu22&% are al-
ways within the space spanned by$uA1&,uA4&%. The output is
always either↑↑ or ↓↓. The decomposition of the unitar
operatorÛ into the U~2! operators can be done in the fo
lowing way:

Û5T̂[2,1]T̂[3,1]T̂[3,2]T̂[4,1]T̂[4,1]T̂[4,2]T̂[4,3] , ~17!

where the rotation anglesg j i in T̂[ j ,i ] are determined by

cos
g43

2
5

d011

d1
, sin

g43

2
52

k

d1
, ~18a!

d15A~d011!21k2, ~18b!

cos
g42

2
5

d1

d2
, sin

g42

2
52

k

d2
, ~18c!

d25Ad1
21k2, ~18d!

cos
g41

2
5

d2

d1
, sin

g41

2
52

d021

2d0
, ~18e!

g325g41, g3152g42, g2152g43. ~18f!

The above U~2! rotations T̂[ j ,i ] can be performed by the
quantum circuits shown in Fig. 1. All the notations that a
not explained particularly are borrowed from Ref.@9#. In the
figure, the time evolves from the left to the right. Denoting
quantum state to be processed asumn&5(um& ^ un&), the up-
per and lower lines correspond to the evolutions of the fi
~with the initial stateum&) and second~with the initial state
un&) quantum bits~qubits!, respectively. The two-bit gates i
these circuits,∧1„R̂y(g j i )… can be further decomposed int
the circuits of the type shown in Fig. 2. ThusT̂[ j ,i ] ’s can be
carried out by the circuits consisting of the one-bit gates a
the controlled-NOT gates.

As mentioned in the preceding section, the candidate
implement these gates are Sleator and Weinfurter’s gate
two-state atoms@10# and the quantum phase gate for bina
photon polarizations@11#. For readers’ convenience, we giv
explicit constructions of the gates required in our circui
supplementing the original paper@10# by practical formula
for our particular application. As shown later for the casen
53, basic gates for our purpose are the two-bit g
∧1(Asx), the one-bit gates∧0(sx) and ∧0„R̂y(g)…. The
controlled-NOT gate ∧1(sx) is obviously equivalent to
∧1(Asx)∧1(Asx).

Implementations of the one-bit gates are straightforw
by using the Ramsey zone~RZ! which is characterized by
the Hamiltonian,
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ĤRZ5
1

2
\n~ u↑&^↑u2u↓&^↓u!

1 i\ueu~e2 intu↑&^↓u2eintu↓&^↑u!, ~19!

whose time evolution is described by the unitary operato

ÛR~t,ueu!5S e2 int/2 cos~ ueut! e2 int/2 sin~ ueut!

2eint/2 sin~ ueut! eint/2 cos~ ueut!
D

~20!

in the spinor representation, whereueu is the pumping field
amplitude, the angular frequencyn corresponds to an atomi
level separation, andt is an interaction period. This is ca
pable of implementing the following one-bit operations:

R̂y~u!5S cos
u

2
sin

u

2

2sin
u

2
cos

u

2

D , ~21!

FIG. 1. Diagram representing the quantum circuits for realiz
the U~2! rotations in Eq.~17!. The time evolves from the left to the
right. Denoting a quantum state to be processed
umn& (5um& ^ un&), the upper and lower lines correspond to t
evolutions of the first~with the initial stateum&) and second~with
the initial stateun&) qubit, respectively.

FIG. 2. The diagrammatic representation for a decompositio

the rotation of one qubit around they axisR̂y(g) conditioned by the
state of the other qubit.
R̂z~u!5S exp~ iu/2! 0

0 exp~2 iu/2!
D . ~22!

By using them,R̂x(u) can be realized as,

R̂x~u!5S cos
u

2
i sin

u

2

i sin
u

2
cos

u

2

D 5R̂zS p

2 D R̂y~u!R̂zS 2
p

2 D .

~23!

R̂x(p) plays a role of∧0(sx). We also introduce the othe
rotations for a later purpose,

ÛR15ÛR~t,ueu! with ueut5
p

4
, ~24!

ÛR25ÛR~t8,ue8u! with ue8ut85
p

4
, ~25!

wheretÞt8 in general.
On the other hand, the implementation of the two-bit g

employs a microcavity and the Ramsey zones. The at
cavity field interaction is described by the Jaynes-Cummi
Hamiltonian,

Ĥ5\vâ†â1
1

2
\n~ u↑&^↑u2u↓&^↓u!

1\g~ â†u↓&^↑u1âu↑&^↓u!, ~26!

where â (â†) is an annihilation~creation! operator for the
cavity field with the angular frequencyv, andg is the cou-
pling constant between the cavity field and the atom. It
assumed thatn is originally detuned from the cavity resona
frequencyv so that the atom undergoes an off-resonant
teraction whose time evolution is given as

Ûoff~ t !5 (
n50

`

un&^nu ^ S e2 i ~n/21geff!t2 ingefft 0

0 eint/21 ingefftD ,

~27!

wheregeff5g2/d, d5n2v, and un& is the n-photon state.
Phase factors involvingv have been omitted since it wil
give no physical effect. Ifn is tuned tov by an appropriate
Stark shifting, an on-resonant interaction can be carried
as

Ûon5S 0 2 i u0&^1u

2 i u1&^0u u0^0u D , ~28!

where the interaction periodt0 is chosen asgt05p/2 and the
fact is taken into account that the cavity field is eitheru0& or
u1& throughout the gate operation. Denoting the contro
target-bit atoms and the cavity asa, b, andc, respectively,
∧1(Asx) can be realized by applying a unitary process,

R̂z
~a!~2 5

4 p!R̂x
~a!~p!Ûon

~a,c!ÛR
~b!~t8,ue8u!Ûoff

~b,c!~ t !

3ÛR
~b!~t,ueu!Ûon

~a,c!R̂x
~a!~p!, ~29!

where the superscript indicates on what system~s! the opera-
tor acts. Hereueut5ue8ut85p/4 and

g

s

f
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i
n~t2t8!

2
2 i

nt

2
2 i

gefft

2
52pn ~n5 integer!

should be satisfied.
In the decoder based on the above cavity QED syst

either of the code-word statesu11& or u22& passes
through the sequence of the Ramsey zones and the ca
that are mounted according to the circuit for Eq.~17!, and
then detected by a level detector.

In the case of binary photon polarizations which is a m
practical system for communication, the decoder structur
quite parallel to the two-state atomic case by replacing
Ramsey zone and the two-bit gate with a polarizer and
quantum phase gate, respectively.

So far, distinguishing code-word states at the minim
average error probability has never been done even for
simplest case$u11&,u22&%. Possible methods for it are no
necessarily the above kind of scheme. As shown by Br
and Meister@12#, the separate measurement together with
suitable feedback arrangement is capable of distinguish
the two code-word states at the minimum average error pr
ability. For code-word states made of spin particles, the g
eralized Stern-Gerlach measurement may effect the optim
collective decoding@13#. As yet, however, it is strongly de
sired to demonstrate the scheme based on quantum cir
plus a simple standard measurement proposed in this p
because it seems the most natural and systematic metho
designing a practical decoder.

Recently, an experiment designed to distinguish bin
photon polarizations$u1&,u2&% at the minimum average er
ror probabilityp was done by Barnett and Riis@14#. It has a
significant meaning for optical communication. The ne
step might be to demonstrate the discrimination
$u11&,u22&% at the error ratep2. It will be possible if the
Barnett-Riis experiment is assisted with the circuits invo
ing the quantum phase gate. Once a breakthrough is ma
this direction, an extension to the optimum collective dec
ing for M -ary code-word states of optical polarizations mig
be straightforward.

From an information theoretic point of view, the optimu
collective decoding of the four code-word states of len
n53 is of significant importance, because the superadd
ity of classical capacity can appear as shown in the prece
paper. The circuits forT̂[ j i ] ’s become more complicated.
might be worth giving one of such circuits. The principle
the formula can easily be understood by showing
example, say, a rotation T̂6,35exp@2g(u↑↓↑&^↓↑↓u
2u↓↑↓&^↑↓↑u)#. It can be executed by the circuit shown
Fig. 3. The block denoted asM̂ is for mapping

FIG. 3. The quantum circuit effecting the rotationT̂6,3

5exp@2g(u↑↓↑&^↓↑↓u2u↓↑↓&^↑↓↑u)# which is used for con-
structing the decoder of the code-word states of length 3.
,
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$u↑↓↑&,u↓↑↓&% into $u↓↓↑&,u↓↓↓&%. In the mapped plane, th
desired rotation is carried out as the three-bit gate opera

∧2„R̂y(2g)…. The two three-bit gates in Fig. 3 can be furth
decomposed into circuits of the two-bit gates as illustrated
Fig. 4. Thus it is easy to see that the basic gates for

circuits are the one-bit gates∧0„R̂y(6g)… and ∧0(sx), and
the two-bit gate∧1(Asx).

B. Binary phase-shift-keyed signals

We would like to mention the case of binary phase-sh
keyed ~BPSK! signals of optical coherent states$ua&,
u2a&%. This signal system is the most basic keying in lo
distance and ultrafast coherent light communications. If
collective decoding for this case could be realized, it w
have a great impact on communication technology. Althou
the letter states are binary, the signal system isnot a physi-
cally two-statesystem in this case. Therefore in order
apply the above decoding scheme, a new class of gates
be invented. Their specifications depend directly on w
kind of measurement basis vectors are chosen as$ua&,ub&%.

Let us consider the following example. We first transfor
the received code-word state by combining each field of
letter state,ua& or u2a&, sequentially with a local oscillating
field with very large intensity via a beam splitter havin
almost perfect transmittance. Each process is represente
a unitary operatorD̂(a)5exp(aâ†2a* â). The transformed
code-word states consist of the new letter states$u0&,
u22a&%. The optimum collective decoding is then perform
for the transformed code-word states. In that decoding t
undergo further the certain unitary transformationÛ and are
detected by the separate measurement that distinguishes
letter stateu0& or u22a& according to the measurement bas
vectorsua& or ub& such as

ua&5u0&, ~30a!

ub&5
u22a&2u0&^0u22a&

A12u^0u22a&u2
. ~30b!

The stateub& only includes the Fock states with finite pho
tons. Therefore this final measurement$ua&^au,ub&^bu%

FIG. 4. The diagrammatic representation for decompositions

the 3-bit gates∧2(sx) and∧2„R̂y(2g)… into the 2-bit gates.
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is equivalently accomplished by the photon counti
$u0&^0u,(n51

` un&^nu%.
The quantum circuit realizing the required unitary tran

formationÛ should act on the qubits consisting of$u0&,ub&%.
In particular, the basic two-bit gate∧1(Asx) is specified as

u0&au0&buc&c→u0&au0&buc&c ,

u0&aub&buc&c→u0&aub&auc&c ,

ub&au0&buc&c→ub&a

1

A2
~eip/4u0&b1e2 ip/4ub&b)uc&c ,

ub&aub&buc&c→ub&a

1

A2
~e2 ip/4u0&b1eip/4ub&b)uc&c ,

where uc&c represents a certain ancillary system. That
depending on whether the control bit is the vacuum state
consists only of the finite-photon Fock states, the target
should remain unchanged or should be transformed into
superposition betweenu0& andub&, respectively. It is an open
question to find physical models accomplishing this functi
ry

d
.

.

-

,
or
it
e

.

IV. CONCLUDING REMARKS

As shown in the preceding paper, the collective decod
plays an essential role in realizing true benefits of quant
communication. A systematic design of such a decoder
comes possible when techniques established in quan
computation are applied. The concrete scheme for the s
plest collective decoding of$u11&,u22&% at the minimum
error rate was presented. It is implementable by use of
current cavity QED technique. Experimental demonstrat
is strongly desired. Further it is a challenging task to de
onstrate experimentally the information theoretic quant
gain I n /n2C1.0 which must be seen for the code-wo
states$u111&,u122&,u221&,u212&%. The amount of
gain is quantitatively small but it will become measurable
increasing numbers of trials of transmission. From a pract
viewpoint of coherent light communication, the problem w
addressed on an implementation of a new class of gates
can act on the binary coherent states.
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