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Realization of a collective decoding of code-word states
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A physical model for the optimum collective decoding that attains the minimum average error probability in
distinguishing code-word states is presented. This model is based on a cavity QED technique which is avail-
able at present. It will open a possibility for a quantum decoder that realizes the superadditivity in classical
capacity of quantum channel which was demonstrated in M. Sasaki, preceeding paper, Phys5Bel4&

(1998. [S1050-294{@8)05207-X]

PACS numbgs): 03.67.Hk, 89.70tc, 42.79.Sz, 89.86:h

I. INTRODUCTION ity is attained when the output from the circuit is detected by
the given separate measurement. In the following, the decod-
Distinguishing nonorthogonal quantum states at the miniing scheme proposed in the preceding paper is briefly re-
mum error is a fundamental problem in quantum communiviewed in Sec. Il, and then quantum circuit structures are
cation. The optimum strategy minimizing the average erropresented in Sec. lll. In particular, a concrete model for dis-
probability can be, in principle, derived from a linear opti- tinguishing two code-word states of length 2 at the minimum
mization in terms of a Bayesian decision problem. Such average error will be proposed for an experimental demon-
strategy is generally represented by a probability operatostration of the principle of collective decoding. Section IV is
measurgPOM) which is a set of nonnegative Hermitian op- for concluding remarks.

eratorsl; satisfying the resolution of the identifyt],
Il. DECODING SCHEME

Let binary letter states bg+),| —)} whose state overlap
k=(+|—) is assumed to be real. They span the two-
dimensional Hilbert spacé{,. By concatenating them into
&)Iock sequences of length, the 2" possible sequences are
tedious job to derive explicit expressions foi;} [2]. In tmhgg :r:\iieem)?gdp;gsuy _ér}llsse%?(a(nh;izii C;?s L\I/lc;r(tjhsétr?]tes
addition, even when they can be obtained, corresponding,ith input probabilitiles,{g ' Mg 1. The }est of the se-
physical processes are not necessarily obvious. Mathemat(ﬁ'uences are denoted &, b '>' o M|ézn>} Since the code-
cally, the optimum POM can be specified in the Hilbert ' =" """~ =" 0 Iinea'\lill;/l i’n.d.e.p’ender;t, they span the

space of the minimum dimension that a set of signal stateg, ..\ \<ional Hilbert spactl. Let thenth extended Hil-
spans. However, it can often hardly be interpreted physically, s’

@n ; : TR

For practical physical implementation, the POM should beber.t space bé{,; . The optimum collective decoding is de-
constructed in a larger Hilbert space which can fully describe‘?'cr'be‘j@nby an orthonormal - sef|wy), ... Jom)} on
the physical system making the signal states. Such exampl SCHI, T i
have been known only in certain cases of binary sigf@ils This is ach|eve_d, in some cases, by the square-root mea-
In the preceding paper, the problem of decodihgary code-  Suremen{1,4—@ given by
word states at the minimum average error probability was | ->=A*1’2|~Si> 24
discussed. For attaining the minimum erroc@lective de- Kiry=p '
codingwas essential in which each code-word state is de- M
tected as a single state vector rather than detected as the p=>, |S)5], (2b)
individual letter states separately. It was shown that when it i=1
is applied to the properly selected code-word states, the ~
quantum gainin transmittable information can be obtained. S)=\¢ilS). (20)

In this paper we present a physical scheme for the opti- i -~ =
mum collective decoding oM-ary code-word states, par- -€t Us define the Gram matrk=((S|[S))).
ticularly in the case where the letter states are pure and bi-
nary. This scheme consists of a quantum circuit and a simple
separate measurement on the individual letter states. In the For O0<«<1, the square-root measuremefiiu;)} be-
quantum circuit, a certain unitary transformation is carriedcomes optimum when all of the diagonal componen&!6f
out on the received code-word state and a superposition @fre equal
the code-word states is generated. This unitary transforma- Unless it is not the cas¢|u;)} forms, at least, an ortho-
tion is designed so that the minimum average error probabilnormal set inH,. So it is connected with the optimum mea-

> 1,=1, 0,=o. (1)

Except for pure-state signals with a certain symmetry, it is

Theorem
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surement state§|w;)} via a unitary operatol in H, as lo)y=0TA) (i=1,....,2), (89
|w;)=V|u). A straightforward method to construct such a

unitary operator is the Bayes-cost-reduction algorithm pro¥Where

posed by Helstromi7]. In this algorithm, one chooses a pair o

of code-word stateg|S;),|S;)}, solves the binary decision - P

problem in the plane spanned by the corresponding pair of U ZIEP uii[A(AL - ui=(BTIC); (8b)

measurement basis vectdig;),| )}, and gets the revised

basis vectorg|u(),|x{)} which can be connected with the Thus the optimuntollective decoding|w,), . .. |oy)} can

previous ones via a (@) operatorVY) in H as be effected by(i) transforming the code-word statékS;)}
1!y =VO| ) (33) by the unitary transformatioty, and (i) applying the mea-
Ki Kifs surement{|A,), ... ,|Aw)} into the transformed code-word

=y 3b states. Note thaf|A;)} are the product basis vectors and

|/"i>_ |'““J'>' (3b) hence represent the separate measurement on the individual

After revising the basis vectors, the average error probabilitetter states. The unitary transformatidnplays a role of an
will decrease or, at worst, remain the same. This kind of stedaptorto this separate measurem¢a}. The minimum er-
i to be continued till reaching the optimum point. Thus start-'0f Probability is obtained as
ing from the square-root measurement basis vectors, the op- M
timum ones are derived as Pe(OIOt)Zl—zl (s |0T|A). ©)
<
|wiy=---VEVO ) Vi, 4)

| der t i hvsical sch K When the code-word states have a certain symmetry, the

n order fo consider a physica scnéme, we m%ne an Ofesnstruction ofJ will become much easier by choosing the
thonormal sef|w), . . . |wan)} on the whole spack( " by 0 ¢ rement basis Vectof$A,), ... |Ay)} taking that
adding the other basis vectors obtained by using the SChm'%g/mmetry into account. See the example later
orthogonalization, ' )

Construction of the quantum circuit f&r can be donéi)

i-1 by decomposing it into (2) operators?[j,i] by applying the
1S)— > |o{wdS) algorithm proposed by Reck and oth¢8 as
k=1
;)= i=M+1,...,2). (5 A A2 - -
| I> i—1 ( ) ( ) U :T[Z,l]T[3,l]' . ‘T[Z",anZ]T[Zn,anl] y (10@
1- 2 KodS)HP
k=1 where
We denote the expansion of all the sequences by the above Trn=exd — v (IA)A] = [A)(AD], (10
basis vectors as
and (ii) by applying the formula established by Barenco
[S0) |@1) et al. for simulating a discrete unitary opera{®]. Here the
: =B : , (6a following point should be noted. Since quantum kdsbity
1S,0) P in the circuit are the letter states themselves constituting the
n on

code-word states, the gates should consist of the single
_ _ physical species from which the letter states are made. Such
B=(Bi))=({w;|S)). (6b) gates known so far are Sleator and Weinfurter’'s gate consist-
Let {|a),|b)} be the measurement basis vectors distinguish:-ﬂg g‘;tmf'tﬁftffn;%ﬁ]zgggntgﬁa?gﬁqmm phase gale act
ing the individual letter states. By concatenating them into 9 P P '

the block sequences of lengtihhthe 2' product basis vectors

in H{°" are made. We pick upd-ary basis vectors from IIl. QUANTUM CIRCUIT STRUCTURES
them, and denote them @A), . .. [Ay)}, and the rest of In this section the structure of the quantum circuit is pre-
them as{|[Ay 1), ... [Asn)}. All the sequences can be ex- sented. A model using a physically two-state system such as
panded alternatively by these basis vectors as a two-level atom or a pair of single-mode photon polariza-
tions is considered first, aiming at an experimental demon-
|S0) A1) stration of the collective decoding. Then, an implementation
: =C : , (7a  in the case of coherent-state signals is discussed.

|S2n) |Azn)

A. Physically two-state system
C=(Cip=(Ajls)). (7b) Let{|1),]])} be the upper-level and lower-level states of
) an atom, or two orthogonal linear polarization states of a
The two basis sets are connected via a unitary opetaton  single-mode optical field. The measurement basis vectors
the whole spacé(/" as {|a),|b)} can then be taken naturally & ),||)} represent-
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ing a level detection or a linear polarizer. Suppose that thenainly consist of|11) and || |), respectively, when the
letter states are made by rotating the stadeby the angled  letter-state overlap is small. In addition, the expansion of

or 7m— 6 around they axis, Eq. (14) is symmetric in terms of these basis vectors. There-
R fore choosing{|A;),|As)} as the final measurement seems
|+)=Ry()|1)=v1-p[T)— Jpl 1), (113  very natural, and actually simplifies a construction of a quan-

. tum circuit for U.
|=)=Ry(m=0)1)=VpI1)=VI-pll), (11D The transformed code wordd)|+ +),0|——)} are al-

ways within the space spanned f4;),|A;)}. The output is

where . ! .
always either{1 or | |. The decomposition of the unitary
0 .0 operatorU into the U2) operators can be done in the fol-
8 (0) cos,  siny ( Ji-p  \p ) lowing way:
Ry(0)= = ,
0 6] \ —\p J1- N A A A A A A oA
—sin; - cos; VP P U=TeyTeyTe2 s ey Tz Tes (17)
(12)

where the rotation angleg;; in 'AI'“-J] are determined by

andp=(1—1-«9)/2.

Let us consider a simple case of distinguishing two code- Ya3 dot+1 Y43 K
word stateg|+ +),|— — )}, where|+ +) meang +)®|+), Sy =7q, © M4 (183
etc. The two measurement basis vectors of the optimum col-
lective decoding are given by dy= (gt 1)2+ <2, (18b)
1-p; P2
|wl>: m|++>— 1_K4|__>, (133 Cos'y_42:$ sin7_42:_£ (180
2 dy’ 2 d,’
P2 1-p,
lw2)=—\ 1@t +)+\Vi—al——) (13 dp=\dZ+ 2, (18d)
wherep,=(1— 1— «%)/2 is the minimum bound of the av- v d dn—1
. 41 2 . Ya1 0
erage error probability. The code-word states are expanded cos5-=g.r SIS =~ 54 (18¢
as 1 0
|++)=(1—p)|TT)—\/(1—p)p(|Tl)+|lT))+p|u(>, " ¥32= Va1, Ya1T T Va2, Y21= T Va3 (18f)
14

The above (2 rotations’l'[j,i] can be performed by the
|[==)=plT)—V@A=p)p(TH)+[LTN+(L-p)|L]), guantum circuits shown in Fig. 1. All the notations that are
(14b not explained particularly are borrowed from Rgd]. In the
. _ figure, the time evolves from the left to the right. Denoting a
here again17)=|1)®|T), etc. Let us denoté 1), |1]), _
[L1), and|]]) as|A1), |Az), |As), and|A,), respectively. It guantum state to be processed,as:)—(|u)®|1_/)), the up-
is easy to see the optimum measurement basis vectors can ?J%r and "?".V?r lines correspond to the _evolutlc_m_s_ of the first
expressed as with the initial state|x)) and secondwith the initial state

|v)) quantum bitgqubits, respectively. The two-bit gates in

|w1>=UT|A1), (153 these circuitle(Ifiy(yji)) can be further decomposed into
the circuits of the type shown in Fig. 2. Thf[ﬁ,i]’s can be
lw,)=UT|A,), (15h  carried out by the circuits consisting of the one-bit gates and
the controlledNOT gates.
where the unitary operatda is defined by the fo”owing - As mentioned in the preceding section, the candidates to
matrix representation in terms of the basis vectorgmplement these gates are Sleator and Weinfurter's gate for
(1A ALY, |AS), AL} two-state atom$10] and the quantum phase gate for binary
photon polarizationfl1]. For readers’ convenience, we give
1+dy —« -k 1-dg explicit constructions of the gates required in our circuits,
1 p 1+d. 1-d p supplementing the original papgt0] by practical formula
O=-—"— 0 0 , (16  for our particular application. As shown later for the case
2do| « 1-do 1+dy K =3, basic gates for our purpose are the two-bit gate
1-dg -« —« 1+dg 0y(Vor), the one-bit gatesiy(o,) and Oo(Ry(y)). The

) _ _ controllednoT gate [0;(oy) is obviously equivalent to
with dy= 1+ «2. Thus the optimum collective decoding by 0,(Nory) Oy (Vo).
{lw1),|2)} has been decomposed into the unitary transfor- ~ jmplementations of the one-bit gates are straightforward
mation byU and the separate measurement{y,),|A,)}. by using the Ramsey zon@&Z) which is characterized by
As seen in Eq(14), the code-word statds- +) and|——)  the Hamiltonian,
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. expio2) 0 -
RelO=1¢ exgd—i6/2)) @2

By using themR,(6) can be realized as,

6 0
) cos; ising| o
Rx(e): o 0 0 :RZ E RY(G)RZ _E .
i sin;  cos;

(23

R,(7) plays a role ofy(c). We also introduce the other
rotations for a later purpose,

Uri=Ur(7|€])

with |e| 7= 7 (24)

A~ A a
URZZUR(T,,|€,|) with |EI|T,:Z, (25)
wherer# 7' in general.

On the other hand, the implementation of the two-bit gate

employs a microcavity and the Ramsey zones. The atom-

FIG. 1. Diagram representing the quantum circuits for realizingcavity field interaction is described by the Jaynes-Cummings

the U(2) rotations in Eq(17). The time evolves from the left to the
right. Denoting a quantum state

evolutions of the firstwith the initial state]«)) and secondwith
the initial statg| »)) qubit, respectively.

n 1
HRZZEﬁV(|T><T|_|l><“)
+inlel(e ™ T)(LI—e" L)1, (19

whose time evolution is described by the unitary operator,

e "2 cod | €| 7)
—e"""2 sin(| €| 7)

e "2 sin(| | )

UR(T'|6|): eiVT/Z CO$|€|T)

(20

in the spinor representation, wherg is the pumping field
amplitude, the angular frequeneycorresponds to an atomic
level separation, ané is an interaction period. This is ca-
pable of implementing the following one-bit operations:

6 0

CO% SII’E

A @y
—Slnz COSE

fan
A\ %4
fan)
A

o f A
—R, DR, (D

_R\y(ﬁ

FIG. 2. The diagrammatic representation for a decomposition of

the rotation of one qubit around tlyeaxis ?{y( ) conditioned by the
state of the other qubit.

Hamiltonian,

to be processed as
|uv) (=|p)®|v)), the upper and lower lines correspond to the

R a1
H=fwa'a+ EﬁV(IT)(ﬂ—H)(H)

+rg(@')(1l+al )LD, (26)
wherea (éT) is an annihilation(creation operator for the
cavity field with the angular frequenay, andg is the cou-
pling constant between the cavity field and the atom. It is
assumed that is originally detuned from the cavity resonant
frequencyw so that the atom undergoes an off-resonant in-
teraction whose time evolution is given as

e—i(v/2+ Jefp)t—iNgest

0

0

ei vt/2+ingggt | 1

(27)

whereg.=9% 8, 6=v—w, and|n) is the n-photon state.
Phase factors involvingy have been omitted since it will
give no physical effect. I§ is tuned tow by an appropriate
Stark shifting, an on-resonant interaction can be carried out
as

Uon(t)= 2, In)(n|e

R 0
Yon™| _ij1(0]

where the interaction peridg is chosen agty= 7/2 and the
fact is taken into account that the cavity field is eith@y or
|1) throughout the gate operation. Denoting the control-,
target-bit atoms and the cavity as b, andc, respectively,
0,(Vo,) can be realized by applying a unitary process,

—i]o)(1]

, 28
10¢0] (28

RA(=5mRE(mUEI0R (7', |e'H0R (1)
XUR(7,]el)URORD (), (29)

where the superscript indicates on what sysgeitne opera-
tor acts. Herde|7=|€'| 7' = w/4 and
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-

FIG. 3. The quantum circuit effecting the rotatiofﬁss
=exd —y(ITLTUTL=1LTITLT)] which is used for con-

structing the decoder of the code-word states of length 3. @ _lkyml—{ﬁy(‘y)l—{ﬁymF

w(r=7') vt et . FIG. 4. The diagrammatic representation for decompositions of
| ———i5-i—5-=2mn (n=intege) the 3-bit gatesT,(a,) and 0,(R,(27)) into the 2-bit gates.
should be satisfied. {ITLThILT DY into{[L1T).[111)}. Inthe mapped plane, the
In the decoder based on the above cavity QED systenflesired rotation is carried out as the three-bit gate operation
either of the code-word statest++) or |——) passes Dz(ﬁy(zy)). The two three-bit gates in Fig. 3 can be further

through the sequence of the Ramsey zones and the cavitigecomposed into circuits of the two-bit gates as illustrated in
that are mounted according to the circuit for Efj7), and  Fig. 4. Thus it is easy to see that the basic gates for our

then detected by a level detector. P ; £
i o L circuits are the one-bit gatesy(R,(= y)) and Oy(oy), and
In the case of binary photon polarizations which is a MOre, - 1wo-bit gateT; (Vo).

practical system for communication, the decoder structure is
quite parallel to the two-state atomic case by replacing the
Ramsey zone and the two-bit gate with a polarizer and the
guantum phase gate, respectively.

So far, distinguishing code-word states at the minimum We would like to mention the case of binary phase-shift-
average error probability has never been done even for theeyed (BPSK) signals of optical coherent state§a),
simplest cas¢|+ +),| — —)}. Possible methods for it are not |—«)}. This signal system is the most basic keying in long
necessarily the above kind of scheme. As shown by Brodylistance and ultrafast coherent light communications. If the
and Meistef12], the separate measurement together with theollective decoding for this case could be realized, it will
suitable feedback arrangement is capable of distinguishingave a great impact on communication technology. Although
thetwo code-word states at the minimum average error probthe |etter states are binary, the signal systemasa physi-
ability. For code-word states made of spin particles, the gencgjly two-state system in this case. Therefore in order to

eralized Stern-Gerlach measurement may effect the optimurgpmy the above decoding scheme, a new class of gates must

collective decoding13]. As yet, however, it is strongly de- ne jnvented. Their specifications depend directly on what

sired to demonstrate the scheme based on quantum circu"gﬁqd of measurement basis vectors are chosefjas|b)}

plus a simple standard measurement proposed in this paper Let us consider the following example. We first transform

bec_aus_e It seems the most natural and systematic method ft le received code-word state by combining each field of the
designing a practical decoder.

Recently. an experiment desianed to distinguish binar letter state|a) or | — a), sequentially with a local oscillating
y, an exp gned « g Yield with very large intensity via a beam splitter having
photon polarizationg| +),| —)} at the minimum average er-

ror probabilityp was done by Barnett and Riig4]. It has a almost perfect transmittance. Each process is represented by

significant meaning for optical communication. The next2 unitary operatoD(a)=_exp(aaT—a*a). The transformed
step might be to demonstrate the discrimination of¢ode-word states consist of the new letter stafi),
{|++),]— =)} at the error rate,. It will be possible if the —2a)}. The optimum collective decoding is then perf_ormed
Barnett-Riis experiment is assisted with the circuits involy-fOr the transformed code-word states. In that decoding they
ing the quantum phase gate. Once a breakthrough is made imdergo further the certain unitary transformatiorand are

this direction, an extension to the optimum collective decod-detected by the separate measurement that distinguishes each
ing for M-ary code-word states of optical polarizations might letter statg0) or | —2a«) according to the measurement basis

B. Binary phase-shift-keyed signals

be straightforward. vectors|a) or |b) such as
From an information theoretic point of view, the optimum _
collective decoding of the four code-word states of length 2)=10), (303

n=23 is of significant importance, because the superadditiv-
ity of classical capacity can appear as shown in the preceding

paper. The circuits foflj;;'s become more complicated. It _[=2a)—[0)(0[ - 20)

might be worth giving one of such circuits. The principle of [b) 1—[(0[—2a)]
the formula can easily be understood by showing an

example, say, a rotationTgs=exd— y(|11T){111]

—[LTLXT11D]. It can be executed by the circuit shown in The stateb) only includes the Fock states with finite pho-
Fig. 3. The block denoted asM is for mapping tons. Therefore this final measuremefita)(al,|b){b|}

(30b)
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is equivalently accomplished by the photon counting IV. CONCLUDING REMARKS

{|O><O|’E”:1|n><n|.}' . . . . As shown in the preceding paper, the collective decoding
The quantum circuit realizing the required unitary trans-p|avs an essential role in realizing true benefits of quantum
formationU should act on the qubits consisting{¢0),|b)}.  communication. A systematic design of such a decoder be-
In particular, the basic two-bit gaté,(\/o,) is specified as comes possible when techniques established in quantum
computation are applied. The concrete scheme for the sim-
plest collective decoding dff+ +),|— —)} at the minimum
10)a/0)ul#)e—10)al0)el e error rate was presented.cﬂit is i>m|plem>gntable by use of the
current cavity QED technique. Experimental demonstration
[0)albYp| ) c—[0)albYal ) is strongly desired. Further it is a challenging task to dem-
onstrate experimentally the information theoretic quantum
1 gain |,/n—C;>0 which must be seen for the code-word
i w4 —iml4 state§|++ +),|+ ——),|——+),|— + —)}. The amount of
|b>a|0>b|w>°_>|b>a\/§(e 100+ b)) [ ¥)e gain iS:Q{,'quantiga'tiver s>m|all but ?t |vviII bec>c})me measurable by
increasing numbers of trials of transmission. From a practical
viewpoint of coherent light communication, the problem was
1b).[b)] e D) 1 (e“”"‘|o> e be)| ) addressed on an implementation of a new class of gates that
al?/bl¥/c a b b/ ¥/c» t on the binary coherent states.
2 can ac y
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