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[. INTRODUCTION where a; and a, are the time-dependent and time-
independent coefficients, respectively. It can be easily found

For more than three decades, the study of the timethat the reduced Schdinger equation for a central harmonic
dependent harmonic oscillator has been one of the importafotential is related to an effective potential of the type

problems in classical and quantum mechafics5] because  V(X.t). . .

it can be treated as an exact solvable model and offers many !N Several previous papers we have obtained the wave
applications in various fields of physics. The origin of this function, energy expectation values, uncertainty relations,
development for a time-dependent harmonic oscillator waémd coherent states for the Calidrola-Kanai Hamiltonian via

based on the discovery of an exact invariant, the so-calleg1e pr?éhnltntegrri]itl methi@g}gi%d I\L/Jlt'lr'z'n\? rV"j\‘ArI'OL;]S Vt|mde-
time-dependent dynamical invariant, given by Lewis and ependent quantum systepis, 13. Moreover, we have de-

Risenfeld[6]. After their work, many different derivations veloped the exact quantum theory of a time-dependent bound

for the dynamical invariant have been presented: Lufzky quadratic Hamiltonian systerfi.2,20. We have also ob-

) i ; tained the exact wave function for the Caldirola-Kanai
applied Noether's theorem, Ray and R¢8] obtained the 5 mijtonian through the Lewis-Risenfeld dynamical invari-
invariants from Ermakov’'s method, Leach and r@ar [9]

. . - L ant method 21] and the relations of canonical and unitary
introduced the time-dependent canonical transformation, anglansformations for a general time-dependent quadratic

Korsch[10] constructed the invariant via dynamical algebra. yamiltonian systeni22].

_ Recently some authors have investigated the harmonic 0S- The main purpose of this paper is to evaluate an exact
cillator with time-dependent mass and frequency separately,yariant and Schidinger wave function for the harmonic
or together[11,12. For constant mass, Dant@ al. [13]  qgcillator plus inverse harmonic potential with time-
obtained the wave function that satisfies the Sdimger dependent mass and frequency, wheesés not constant but
equation, and Pedro$a4] evaluated an exact wave function 5 time-dependent coefficient in E). In Sec. Il we will
for the harmonic oscillator with time-dependent mass anreat 4 time-dependent harmonic plus inverse potential. The

frequency. One can also find quantum mechanical studiegassical invariant and Schaimger solution will be given in
[15,1¢ of the harmonic plus inverse harmonic potential of go¢ 1. Finally, we give a summary in Sec. IV.

the type

II. TIME-DEPENDENT HARMONIC PLUS INVERSE
HARMONIC POTENTIAL

V(X,t)=a,(t)x2+ %, (1) We first consider the harmonic plus inverse harmonic po-
X tential with time-dependent mass and frequency of the type
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p2 M (1) (t)2q? 1 If p(t) is some classical solution of E¢L1), then this equa-
H= + + , (2)  tion can be expressed as
2M(t) 2 2M(t)g?
. ) . . (Q 1 1
wherep andq are canonical conjugates and satisfy a com- =5 =Z|P=— (12)
mutation relation, i.e.[q,p]=i%, and M(t) and o(t) are Q Q P
time-dependent mass and frequency. TakMdgt)=me"
and w(t)=w,, and neglecting the third term, the Caldirola- ©"
Kanai Hamiltonian[1,17] can be recovered: 0
. p
- 02 o Mwlq? , Qp—Qp—E—E. (13)
=e oMt ® o
Multiplying Eq. (13) by (Qp—Qp), we arrive at
To take the time-dependent canonical transformation, we in-
troduce the generating function . d .. Q
(Qp—Qp) 5;(Qp—Qp)= —3——3 (Qp—Qp)
1o MDY R
G(q.PH)=gPIM(D]*- ——, @ (14)
o or
where y(t) is given by
1d_ . . 1d[[p\? (Q)2
dlinM(t — — u— L T ) 1
- M) o 5 sl@-ao=—3 /(2] <3 ] s
Then the invariant can be written as
Making use of this generating function, we obtain the new
canonical variables and Hamiltonian as follows: I 2 1Q)\2
(=5 (PQ=pQ*+| 5| + —) } (16)
9G(q,P,t) o Qe
=— 5 =dM®I* (6) S
Our invariant coincides with that of Ref14] that has been
12 obtained by using the Lie algebra method.
_ 9G(a.P.1) =P[M(t)]¥2— MO ¥VQ @) Now we introduce the transformation
dq 2 '
p(H=x(OM), 17
dG(q,P,t)
NT T TH. (8)  wherex(t) is a function of time to be determined. Substitu-

tion of Egs.(7), (10), and(15) into Eq.(11) gives the equa-
Through this transformation, we can obtain the new Hamil-tion

tonianHy as
1

Z(t) 37

HN:7 + T + 2—Q2, (9)
If x(t) is some classical solution of E¢L8), the invariant,

2 Eq. (16), becomes
02 - o 2020, (10

2
+

2

q

- 19

1 .
I(t)= 5 MAD)(ax=xQ)*+| =
where()(t) is the new frequency. We notice that the com- q

mutation relatior{ Q,P]=[q,p] holds for both coordinates. perefore Eq.(18) constitutes an Ermakov system or the

Hamiltonian given as Eq(2), that has an invariant in the
1. CLASSICAL INVARIANT AND THE EXACT form of Eq.(19). TakingM(t)=1, Eq.(19) is reduced to Eq.
SOLUTION FOR THE SCHRO DINGER EQUATION (15). In this case, the generating function, E¢), corre-

As mentioned earlier, for the construction of an exact in- _sponds to the identity transformation, and the structure of the

variant for the time-dependent classical dynamical systend,i@miltonian corresponding to E¢L1) tums out to be
several methods are developed. With the use of Ermakov’s

techniqud 8], we construct the invariant for the Hamiltonian H=
[Eqg. (9)]. To derive the invariant for this Hamiltonian, we 2
consider the equation of motion from E@®):

(20

. 1
P2+ 02(1)p?+ |,
p

wherep=p, and Eq(20) is analogous to the form of E(9).

_ (12) The invariant, Eq(16), mapsH into H and vice versa. Fur-
Q3(t) thermore, wherM (t) is time-independent and the third term

Q) +Q*1)Q(t)=
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is neglected, one can recover the well-known time-dependent

harmonic oscillator. The invariar{(t) satisfies Hamilton’s
equation[2,6]

al_a 1 I,LH]=0, IT=I
__E—"_E[! ]_1 - hL

T (21)

and the eigenstate,(Q,t) of the invariantl(t) are as-
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In(Q, ) =exdian(t)]da(Q,t), (31
where «,(t) satisfies the equation
dary(t)
f T <¢> (Iﬁ——H (t))’¢n>. (32

sumed to form a complete orthogonal set with time-Using Eqs.(23), (24), and(27), we obtain the Schinger

dependent eigenvalue, :

solution for Eq.(29):

(A T(n+1)
‘i’“("'t)_(%) T(n+ta+1)

a? |p0'
Xex Zﬁ fL

f

%)

1/2( o ) (2a+1)/4

(33

Performing this transformation, we can obtain new invariantAPplying the transformation Eq17) to Eq.(33), the eigen-

I pn(Q,1) =Anepn(Q,1). (22)

We first consider the unitary transformation

2
¢;<Q,t>=exp[ QY Q. (23
I"()[1'=UIU™]:
1" $n(Q, ) =Nnebp(Q,1), (24)
. B 1({Q\* 1[p)\?

e rgtaly) talgl e

Taking c=Q/p, we can write Eq(26) as

( n? ? 0P

1
2 (902+ 2 +§) bn(0)=Nndg(0).  (26)

states¢,(q,t) of the invariant, Eq(19), can be expressed as

4 1/ F(n+1) 1/2 q2 (2a+1)/4
¢4q*):(ﬁ) 1??515113 ( )

X2
iM(t){x ¥(t) i
xexp{ % \;-F 5 +M(t)x2)q2

| 9
i &)
(34

Finally, we evaluate the phase factg(t) that connects the
solution for the original Schitinger equation to that of the

Equation(26) represents an ordinary one-dimensional Sehroinvariant. Performing the unitary transformation, E§2)

dinger equation with potential(o)=c?/2+ 1/20, and the
solution[4] is given as

4\ v I'(n+1) 12/ 2\ (2a+1)/4
0= %)4&7313113 (7{)
0'2 0'2
Xexr{ o7 La( ﬁ) (27
and
4 12
Ap=%f(2n+a+1), aZE 1+ﬁ , (28

whereL? are the associated Laguerre polynomials.
Now, we consider the time-dependent Sclinger equa-
tion for the Hamiltonian, Eq(9),

. Y
ih P =Hn¢n, (29
G P |
HN__?a_QZ Z25(HQ +2_Qz’ (30

where we have used= —i%d/dQ. According to Lewis and
Riesenfeld[2,6], the solution of this Schdtinger equation

becomes
dan(t) [ |9 #hpQ d  p I'| |
h 4t T T, g0 T, T ¢n ). (39

With the use of the normalization @f,, and Eq.(26), we get

1/2
4

1+ —

1
2n+1+ -
ﬁZ

5 (36)

an(t)=—

[
M(t")x4(t")

For the case of constant mass, il.(t)=m,, Eq. (36) is
exactly reduced to our previous respig].

IV. SUMMARY

In this paper, taking advantage of canonical and unitary
transformations and the Lewis-Riesenfeld invariant method,
we have derived the exact Schimger wave function for the
harmonic plus inverse harmonic potential with time-
dependent coefficierd,, mass, and frequency. Wheh(t)
is constant, and,=0, our wave function is exactly reduced
to those given in Refd12,14].
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