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I. INTRODUCTION

For more than three decades, the study of the tim
dependent harmonic oscillator has been one of the impor
problems in classical and quantum mechanics@1–5# because
it can be treated as an exact solvable model and offers m
applications in various fields of physics. The origin of th
development for a time-dependent harmonic oscillator w
based on the discovery of an exact invariant, the so-ca
time-dependent dynamical invariant, given by Lewis a
Risenfeld@6#. After their work, many different derivation
for the dynamical invariant have been presented: Lutzky@7#
applied Noether’s theorem, Ray and Reid@8# obtained the
invariants from Ermakov’s method, Leach and Gu¨nter @9#
introduced the time-dependent canonical transformation,
Korsch@10# constructed the invariant via dynamical algeb

Recently some authors have investigated the harmonic
cillator with time-dependent mass and frequency separa
or together@11,12#. For constant mass, Dantaset al. @13#
obtained the wave function that satisfies the Schro¨dinger
equation, and Pedrosa@14# evaluated an exact wave functio
for the harmonic oscillator with time-dependent mass a
frequency. One can also find quantum mechanical stu
@15,16# of the harmonic plus inverse harmonic potential
the type

V~x,t !5a1~ t !x21
a2

x2
, ~1!
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where a1 and a2 are the time-dependent and tim
independent coefficients, respectively. It can be easily fo
that the reduced Schro¨dinger equation for a central harmon
potential is related to an effective potential of the ty
V(x,t).

In several previous papers we have obtained the w
function, energy expectation values, uncertainty relatio
and coherent states for the Calidrola-Kanai Hamiltonian
the path integral method@17# and utilizing various time-
dependent quantum systems@18,19#. Moreover, we have de
veloped the exact quantum theory of a time-dependent bo
quadratic Hamiltonian system@12,20#. We have also ob-
tained the exact wave function for the Caldirola-Kan
Hamiltonian through the Lewis-Risenfeld dynamical inva
ant method@21# and the relations of canonical and unita
transformations for a general time-dependent quadr
Hamiltonian system@22#.

The main purpose of this paper is to evaluate an ex
invariant and Schro¨dinger wave function for the harmoni
oscillator plus inverse harmonic potential with tim
dependent mass and frequency, wherea2 is not constant but
a time-dependent coefficient in Eq.~1!. In Sec. II we will
treat a time-dependent harmonic plus inverse potential.
classical invariant and Schro¨dinger solution will be given in
Sec. III. Finally, we give a summary in Sec. IV.

II. TIME-DEPENDENT HARMONIC PLUS INVERSE
HARMONIC POTENTIAL

We first consider the harmonic plus inverse harmonic
tential with time-dependent mass and frequency of the ty
1574 © 1998 The American Physical Society
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H5
p2

2M ~ t !
1

M ~ t !v~ t !2q2

2
1

1

2M ~ t !q2
, ~2!

wherep and q are canonical conjugates and satisfy a co
mutation relation, i.e.,@q,p#5 i\, and M (t) and v(t) are
time-dependent mass and frequency. TakingM (t)5megt

andv(t)5v0 , and neglecting the third term, the Caldirol
Kanai Hamiltonian@1,17# can be recovered:

H5e2gt
p2

2m
1egt

mv0
2q2

2
. ~3!

To take the time-dependent canonical transformation, we
troduce the generating function

G~q,P,t !5qP@M ~ t !#1/22
M ~ t !g~ t !q2

4
, ~4!

whereg(t) is given by

g~ t !5
d@ ln M ~ t !#

dt
. ~5!

Making use of this generating function, we obtain the n
canonical variables and Hamiltonian as follows:

Q5
]G~q,P,t !

]P
5q@M ~ t !#1/2, ~6!

p5
]G~q,P,t !

]q
5P@M ~ t !#1/22

@M ~ t !#1/2g~ t !Q

2
, ~7!

HN5
]G~q,P,t !

]t
1H~ t !. ~8!

Through this transformation, we can obtain the new Ham
tonianHN as

HN5
P2

2
1

V2~ t !Q2

2
1

1

2Q2
, ~9!

V2~ t !5v2~ t !2
g2~ t !

4
2

ġ~ t !

2
, ~10!

whereV(t) is the new frequency. We notice that the com
mutation relation@Q,P#5@q,p# holds for both coordinates

III. CLASSICAL INVARIANT AND THE EXACT
SOLUTION FOR THE SCHRÖ DINGER EQUATION

As mentioned earlier, for the construction of an exact
variant for the time-dependent classical dynamical syst
several methods are developed. With the use of Ermak
technique@8#, we construct the invariant for the Hamiltonia
@Eq. ~9!#. To derive the invariant for this Hamiltonian, w
consider the equation of motion from Eq.~9!:

Q̈~ t !1V2~ t !Q~ t !5
1

Q3~ t !
. ~11!
-

n-

l-

-

-
,

’s

If r(t) is some classical solution of Eq.~11!, then this equa-
tion can be expressed as

r̈2S Q̈

Q
2

1

Q4D r5
1

r3
~12!

or

Qr̈2Q̈r5
Q

r3
2

r

Q3
. ~13!

Multiplying Eq. ~13! by (Qṙ2Q̇r), we arrive at

~Qṙ2Q̇r!
d

dt
~Qṙ2Q̇r!5S Q

r3
2

r

Q3D ~Qṙ2Q̇r!

~14!

or

1

2

d

dt
@~Qṙ2Q̇r!#252

1

2

d

dt F S r

QD 2

1S Q

r D 2G . ~15!

Then the invariant can be written as

I ~ t !5
1

2F ~rQ̇2 ṙQ!21S r

QD 2

1S Q

r D 2G . ~16!

Our invariant coincides with that of Ref.@14# that has been
obtained by using the Lie algebra method.

Now we introduce the transformation

r~ t !5x~ t !M1/2~ t !, ~17!

wherex(t) is a function of time to be determined. Substit
tion of Eqs.~7!, ~10!, and~15! into Eq. ~11! gives the equa-
tion

q̈1g~ t !q̇1v2~ t !q5
1

M2~ t !q3
. ~18!

If x(t) is some classical solution of Eq.~18!, the invariant,
Eq. ~16!, becomes

I ~ t !5
1

2FM2~ t !~qẋ2xq̇!21S x

qD 2

1S q

xD 2G . ~19!

Therefore Eq.~18! constitutes an Ermakov system or th
Hamiltonian given as Eq.~2!, that has an invariant in the
form of Eq.~19!. TakingM (t)51, Eq.~19! is reduced to Eq.
~15!. In this case, the generating function, Eq.~4!, corre-
sponds to the identity transformation, and the structure of
Hamiltonian corresponding to Eq.~11! turns out to be

H̄5
1

2F p̄21V2~ t !r21
1

r2G , ~20!

wherep̄5 ṙ, and Eq.~20! is analogous to the form of Eq.~9!.
The invariant, Eq.~16!, mapsH into H̄ and vice versa. Fur-
thermore, whenM (t) is time-independent and the third ter
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is neglected, one can recover the well-known time-depend
harmonic oscillator. The invariantI (t) satisfies Hamilton’s
equation@2,6#

dI

dt
5

]I

]t
1

1

i\
@ I ,H#50, I†5I, ~21!

and the eigenstatesfn(Q,t) of the invariant I (t) are as-
sumed to form a complete orthogonal set with tim
dependent eigenvalueln :

Ifn~Q,t !5lnfn~Q,t !. ~22!

We first consider the unitary transformation

fn8~Q,t !5expF2
i ṙQ2

2\r
Gfn~Q,t !. ~23!

Performing this transformation, we can obtain new invari
I 8(t)@ I 85UIU †#:

I 8fn8~Q,t !5lnfn8~Q,t !, ~24!

I 852
\2

2
r2

]2

]Q2
1

1

2 S Q

r D 2

1
1

2 S r

QD 2

. ~25!

Taking s5Q/r, we can write Eq.~26! as

S 2
\2

2

]2

]s2
1

s2

2
1

1

2s2D fn8~s!5lnfn8~s!. ~26!

Equation~26! represents an ordinary one-dimensional Sch¨-
dinger equation with potentialV(s)5s2/211/2s2, and the
solution @4# is given as

fn85S 4

\ D 1/4F G~n11!

G~n1a11!G
1/2S s2

\ D ~2a11!/4

3expS 2
s2

2\ DLn
aS s2

\ D ~27!

and

ln5\~2n1a11!, a5
1

2S 11
4

\2D 1/2

, ~28!

whereLn
a are the associated Laguerre polynomials.

Now, we consider the time-dependent Schro¨dinger equa-
tion for the Hamiltonian, Eq.~9!,

i\
]cn

]t
5HNcn , ~29!

HN52
\2

2

]2

]Q2
1

1

2
V2~ t !Q21

1

2Q2
, ~30!

where we have usedP52 i\]/]Q. According to Lewis and
Riesenfeld@2,6#, the solution of this Schro¨dinger equation
differs by only a time-dependent phase factor from the eig
states of the invariant@6#; we may write the wave function
cn(Q,t) as
nt

-

t

n-

cn~Q,t !5exp@ ian~ t !#fn~Q,t !, ~31!

wherean(t) satisfies the equation

\
dan~ t !

dt
5 K fnUS i\

]

]t
2HN~ t ! D UfnL . ~32!

Using Eqs.~23!, ~24!, and ~27!, we obtain the Schro¨dinger
solution for Eq.~29!:

fn~s,t !5S 4

\ D 1/4F G~n11!

G~n1a11!G
1/2S s2

\ D ~2a11!/4

3expF2
s2

2\
1

i ṙs2

2\r
GLn

aS s2

\ D . ~33!

Applying the transformation Eq.~17! to Eq. ~33!, the eigen-
statesfn(q,t) of the invariant, Eq.~19!, can be expressed a

fn~q,t !5S 4

\ D 1/4F G~n11!

G~n1a11!G
1/2S q2

\x2D ~2a11!/4

3expF iM ~ t !

2\ S ẋ

x
1

g~ t !

2
1

i

M ~ t !x2D q2GLn
aS q2

\x2D .

~34!

Finally, we evaluate the phase factoran(t) that connects the
solution for the original Schro¨dinger equation to that of the
invariant. Performing the unitary transformation, Eq.~32!
becomes

\
dan~ t !

dt
5K fn8U i\ ]

]t
2

\ṙQ

ir

]

]Q
1 i\

ṙ

2r
2

I 8

r2Ufn8L . ~35!

With the use of the normalization offn and Eq.~26!, we get

an~ t !52F2n111
1

2S 11
4

\2D 1/2G E t dt8

M ~ t8!x2~ t8!
. ~36!

For the case of constant mass, i.e.,M (t)5m0, Eq. ~36! is
exactly reduced to our previous result@12#.

IV. SUMMARY

In this paper, taking advantage of canonical and unit
transformations and the Lewis-Riesenfeld invariant meth
we have derived the exact Schro¨dinger wave function for the
harmonic plus inverse harmonic potential with tim
dependent coefficienta2, mass, and frequency. WhenM (t)
is constant, anda250, our wave function is exactly reduce
to those given in Refs.@12,14#.
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