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Semiclassical analysis of the metastable driven and damped quantized anharmonic oscillator
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Recent numerical work has demonstrated how one of the bistable states of a driven, damped, anharmonic
classical oscillator is metastable in the corresponding quantum oscillator@D. Enzer and G. Gabrielse, Phys.
Rev. Lett.78, 1211 ~1997!#. Based on an analysis of the classical oscillator, we present a simple analytical
treatment of the quantum oscillator. Calculated fluctuations in the quantum observables and the estimated
decay rate of the metastable state are in an excellent agreement with the numerical results of Enzer and
Gabrielse.@S1050-2947~98!01708-9#

PACS number~s!: 42.50.Lc, 03.65.Sq, 42.65.Pc
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I. INTRODUCTION

An electron in a Penning trap is an anharmonic oscilla
in that the relativistic mass increase causes the cyclotron
quency to decrease with the energy of the electron@1#. With
anharmonicity comes the potential for bistability. Enzer a
Gabrielse@2# argue that it will be possible to operate a
externally driven, damped one-electron cyclotron oscilla
in a regime in which the classical system would exhibit
stability, yet the electron should be treated quantum m
chanically. They also demonstrate numerically how quant
fluctuations alone may cause transitions from one bista
state to the other@2#.

In fact, the effects of fluctuations in nonlinear system
@3–6#, be it thermal fluctuations, classical noise, or quant
fluctuations, are a much-studied subject, e.g., in optical
stability @7,8#. The charm of the quantum-mechanic
driven, damped, anharmonic oscillator@quantum nonlinear
oscillator~QNLO!# is that it is just about as elementary the
retically as a bistable system can be. It is then no wonder
the QNLO has long served as a paradigm of optical bista
ity @9–11#. For instance, characteristic time scales of
QNLO were studied numerically in Ref.@10# using matrix
continued fractions, and lifetimes of the bistable states
discussed analytically in Ref.@12#.

The thrust of the present paper is that we match
straightforward numerical experiments of Ref.@2# with an
equally straightforward analytical treatment of the QNLO,
the same limits that are anticipated to be experimentally
most relevant. We start with an explicit, detailed analysis
the corresponding classical, driven, damped, anharmonic
cillator ~CNLO!. The problem of the QNLO is next formu
lated in terms of a Fokker-Planck equation~FPE! for the Q
quasiprobability distribution@13#. We then proceed to a dis
cussion of a feature not shared by the CNLO, namely, fl
tuations. These are studied in the standard manner by lin
izing the FPE, with an emphasis on the close similarit
between CNLO and QNLO. We demonstrate energy a
phase fluctuations in complete agreement with Ref.@2#.

In the second part of our development we address
lifetime of the metastable excited state of the QNLO. Here
PRA 581050-2947/98/58~2!/1537~8!/$15.00
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where our pedagogical approach pays off. We combin
global picture of the Hamiltonian from the CNLO, local con
siderations of fluctuations from the QNLO, and the classi
Kramer analysis@15,16# into a prediction of the lifetime of
the metastable state. In this conceptually delicate but tec
cally simple manner we arrive at a lifetime that exac
agrees with the numerical results of Ref.@2#.

The paper is organized as follows. In Sec. II we study
CNLO. The emphasis is on fixed points in the phase spac
the system, which are the potential multistable states. In S
III we begin our analysis of the QNLO in terms of theQ
function. The focus is initially on the close analogies b
tween the CNLO and the QNLO. In Sec. IV we analy
fluctuations of the QNLO by linearizing the FPE around t
classical fixed points and in Sec. V we develop our estim
for the lifetime of the metastable state of the QNLO. A com
parison with Ref.@12# is included. The brief remarks in Sec
VI conclude our paper.

II. CLASSICAL DRIVEN DAMPED ANHARMONIC
OSCILLATOR

Although there are physical differences between an e
tron subject to cyclotron motion and a one-dimensional h
monic oscillator, for pedagogical reasons we first conside
classical, driven, damped oscillator that is nonlinear beca
of relativistic mass increase. The equations of motion
position and momentumX andP are

Ẋ5P/m2aP3, ~1a!

Ṗ52mv2X2gP1Fcos~nt !. ~1b!

The notation is self-explanatory, except for the coefficient
nonlinearitya51/2m3c2.

We convert Eqs.~1! to a frame rotating in the (X,P)
plane at the frequency of the driving forcen and make the
familiar rotating-wave approximation of quantum optic
This entails that we keep in the corotating frame only tho
terms in the equations of motion that vary slowly in com
parison to oscillations at the frequencyn. We also adjust the
1537 © 1998 The American Physical Society
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1538 PRA 58BJARNE VESTERGAARD AND JUHA JAVANAINEN
dimensions by definingX[A\/mvx and P[A\mvp. We
are naturally at liberty to use the constant\ in the scaling,
even if our approach is classical at this point. The variablex
andp are thereby made dimensionless. In the rotating fra
we have the equations of motion

ẋ52
g

2
x1dp2

x

2
p~p21x2!, ~2a!

ṗ52
g

2
p2dx1

x

2
x~p21x2!1

V

A2
. ~2b!

Striving at quantum-optics-like notation, we have introduc
the Rabi frequencyV5F/A2\vm, a parameter of cubic
nonlinearityx53a\m2v2/4, and detuning

d5v2n. ~3!

In this paper we only consider the case when the freque
of the driving forcen is below the resonance frequency
the oscillator at zero energyv. The notation is such that the
the detuningd is positive. If damping is neglected, the equ
tions of motion~2! may be derived from the Hamiltonian

H5
d

2
~p21x2!2

x

8
~p21x2!22

V

A2
x. ~4!

The key feature of our CNLO is that, without an extern
drive, its oscillation frequency decreases with energy. In
rotating frame, the effective detuning decreases with the
cillator energy. A one-electron cyclotron oscillator in a Pe
ning trap behaves in the same way because of the relativ
dependence of cyclotron frequency on energy. In a o
electron oscillator the damping is due to synchrotron rad
tion from the electron. From this point onward our mod
and the model of Ref.@2# are mathematically indistinguish
able and we freely mix terms when speaking about the
models. There are only a few minor differences in the no
tion. In Ref. @2# no explicit symbol is introduced for the
detuning, while we follow standard conventions in quantu
optics and denote detuning byd. In addition in Ref.@2# the
variabled was used to characterize the nonlinearity, wh
here we usex for precisely that purpose. Finally, we deno
the Rabi frequency byV not VR .

Ignoring the driving force proportional toV for a mo-
ment, the Hamiltonian~4! exhibits rotational invariance in
phase space. It is natural to investigate the system in term
variables that reflect this symmetry. A possible choice is
energylike variablee and an anglef defined as

e5
1

2
~x21p2!, ~5a!

tanf5x/p. ~5b!

The transformation (x,p)↔(f,e) is canonical@17#, making
f the generalized coordinate ande the generalized momen
tum. The transformed Hamiltonian takes the form

H5de2
x

2
e22AeVsinf, ~6!
e
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while the equations of motion, including the damping, are

ḟ5d2xe2
V

2Ae
sinf, ~7a!

ė52ge1AeV cosf. ~7b!

Both sets of coordinates will be used for the rest of t
paper. Locally, such as in linearized studies of fluctuatio
the coordinate systems (x,p) and (f,e) work equally well,
although the (f,e) representation yields the quantities
interest more easily. On the other hand, in the numer
results in Ref.@2# one sees crescent-shape distributions
coordinates analogous tox and p, which suggests that ove
large, global, scales the coordinates (f,e) might be more
appropriate.

In the absence of damping, the CNLO will follow
constant-energy surface in phase space. Damping rel
conservation of energy. In the case of a very weak damp
one may think that the CNLO almost follows energy su
faces, except that it slowly drifts from one surface to t
other. For the purposes of the present paper we make
plausible assumption that the time evolution eventually le
to a steady state, a fixed point found by equating the der
tives in either Eqs.~2a! and~2b! or Eqs.~7a! and~7b! to zero
and solving forx andp, or f ande.

We useMATHEMATICA @18# to assist in the calculations
so we easily find exact expressions for the fixed points. Ho
ever, here we rather utilize the scales of the parameter
given in Ref.@2# to extract simple approximate results. Th
relative magnitudes of the frequency parameters in the p
lem are such that

g!x,V,d, x!d. ~8!

For that reason, all of our final results involve an expans
in the small parameterx/d or often actually inAx/d. Also,
whenever it is helpful for the interpretation of the results, w
take the limit when the damping coefficientg is the smallest
frequency parameter. We find three fixed points, which a

~xe ,pe!5S 2A2d

x
2

V

2A2d
,
A2gd

xV
1

g

A2dx
2

gV

4A2d2D ,

~9a!

~xr ,pr !5SA2d

x
2

V

2A2d
,
A2gd

xV
2

g

A2dx
2

gV

4A2d2D ,

~9b!

~xg ,pg!5S V

A2d
,

gV

2A2d2D ~9c!

in terms of Cartesian coordinates and

~sinfe ,ee!5S g2d

2xV2
21,

d

x
1

V

2Axd
2

V2

8d2D , ~10a!

~sinf r ,e r !5S 12
g2d

2xV2
,
d

x
2

V

2Axd
2

V2

8d2D , ~10b!
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~sinfg ,eg!5S 12
7x2V4

32d6
,

V2

4d2
1

xV4

8d5 D ~10c!

in terms of the energy-angle variables.
The question remains whether these fixed points are

tractors or repellors. We have already anticipated the ans
in the subscripts given to the fixed points:e for attracting
excited state,r for repelling state, andg for attracting ground
state. These assignments are verified in the standard ma
By linearizing the equations of motion around the fix
points we find the equations of motion for small deviatio
from equilibrium x̃i5x2xi and p̃i5p2pi , where the sub-
script i corresponds to one of the indicese, r , or g. Sym-
bolically,

@x8 i ,p8 i #
T5Mi

xp@ x̃i ,p̃i #
T, ~11!

whereMi
xp is a constant 232 matrix. If the real parts of both

eigenvalues ofMi
xp are negative, the time evolution force

x̃i→0 and p̃i→0 and we have an attractor. On the oth
hand, if the real part of an eigenvalue is positive, the line
ized equations of motion have an exponentially growing
lution. In physics it always takes over and removes
CNLO from the neighborhood of the fixed point. This is th
signature of a repellor. An equivalent calculation can
done for the (f,e) variables. The actual eigenvalues are

lxp,e
6 5lfe,e

6 52 1
2 g6 id1/4x1/4V1/2, ~12a!

lxp,r
6 5lfe,r

6 52 1
2 g6d1/4x1/4V1/2, ~12b!

lxp,g
6 5lfe,g

6 52 1
2 g6 id. ~12c!

Our initial labeling is seen to be correct.
Though neither attractors nor repellors, the undam

motion has three fixed points as well. These are obtai
from Eqs.~9! or ~10! by settingg50. In the undamped cas
the fixed points are possible extrema of the Hamiltonian.
illustrate the global structure of the Hamiltonian in Fig.
which gives a contour plot ofH(x,p). The fixed points are
identified with the same letters we use to designate the
responding fixed points in the case of a weak damping
turns out that the fixed pointg is a local minimum,e a local
maximum, andr a saddle point of the Hamiltonian. Tw
constant-energy curves cross atr , as appropriate for a hyper
bolic fixed point. One of these curves wraps around the m
mum g and the other around both extremag ande. Outside
of the latter curve the Hamiltonian drops steeply to2` as
eitherx→` or p→`.

A weak damping shifts the fixed points slightly. For in
stance,e no longer resides at exactly the maximum of t
Hamiltonian. In our qualitative discussions we often igno
such fine distinctions. It should be borne in mind, thoug
that in the calculations one should use the expressions fo
fixed points that properly include the damping. Ignoring t
damping prematurely may lead to quite puzzling wrong
sults.

To the leading order inx, the fixed pointg does not
depend on the nonlinearity of the CNLO. In fact, it simp
corresponds to the steady state of the driven harmonic o
t-
er

er:
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lator, which reflects a balance between the drive strength
the detuning. The fixed pointe corresponds in the laborator
frame to the situation in which the energy of the CNLO
just right, so that the nonlinearity has decreased the oscill
frequency sufficiently to render it on resonance with the dr
ing force. Correspondingly, to the leading order inV this
fixed point does not depend on the strength of the exte
drive.

It may seem paradoxical that the CNLO is attracted to
maximumof the energy ate. After all, here the potentia
energy has a maximum too and in the neighborhood of
point e the force on the oscillator points down the potent
hill. One way to resolve this paradox is to note that t
effective mass@]2H/]p2#21 is negative arounde. The oscil-
lator thus rolls opposite to the force, i.e., uphill.

There are two apparent oddities in our formalism: ene
is not bounded from below and the effective mass of
oscillator may be negative. We have expanded the relativi
mass increase to only the lowest nontrivial order in mom
tum, which unduly removes the lower limit from energy.
addition, we are analyzing the oscillator in the rotati
frame, which both exacerbates the drop of energy tow
2` and leads to a volatile effective mass. The seemin
bizarre features of our model are not a sign of an inher
failure, but basically reflect the fact that our formulation is
the rotating frame.

The CNLO may be bistable. One of the operating pointg
is essentially the same stable state as for a driven harm
oscillator, while the second operating pointe is a nonlinear
resonance. Our mission now is to find out what happen
the bistability in the presence of both thermal and quant
fluctuations.

III. CLASSICAL DESCRIPTION
OF THE QUANTUM OSCILLATOR

We now quantize the nonlinear oscillator. The positi
and the momentum in Eqs.~1!, X and P, become quantum
operatorsX̂ and P̂ with the commutator@X̂,P̂#5 i\. The

FIG. 1. Contour plot of the classical HamiltonianH(x,p) in the
(x,p) plane for representative values of the parametersd, x, andV.
The extrema and the saddle point of the Hamiltonian are labe
with the same symbolse, g, and r as in their corresponding fixed
points. For clarity of the visualization, the contours are not equa
spaced.
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quantum counterparts of the dimensionless position and
mentumx and p therefore have the commutator@ x̂,p̂#5 i .
The rising and lowering operatorsa anda† with the commu-
tator @a,a†#51 may be defined as

a5
1

A2
~ x̂1 i p̂ !, a†5

1

A2
~ x̂2 i p̂ !. ~13!

Unfortunately, we cannot obtain the correct quantum Ham
tonian by simply substituting the operatorsx̂ and p̂ into the
classical Hamiltonian. This comes about because the tr
formation (X,P)→(x,p) involves the extra factor\ and is
not canonical in the sense of classical mechanics. To ob
Heisenberg equations of motion forx̂ and p̂ that resemble
the classical equations of motion as closely as possible
insertx̂ andp̂ into the classical Hamiltonian~4! andmultiply
the Hamiltonian by\. The result is written in terms of the
operatorsa anda† as

H

\
5da†a2

x

2
a†a†aa2

V

2
~a1a†!. ~14!

We have dropped scalar constants from the Hamiltonian
It should be noted that, as the Hamiltonian~4! contains

products of what become the noncommuting operatorsx̂ and
p̂, quantization is not unique. For instance, one particu
ordering of the operator products would give (a†a)2 instead
of a†a†aa in Eq. ~14!. Such a Hamiltonian could be cast in
the form ~14! as well, except that the oscillator frequen
would then bed2x/2. We have no prescription for resolvin
ambiguities of operator order and simply choose to use
one in Eq.~14!.

Damping, on the other hand, cannot be represente
Hamiltonian form. It must be described in terms of a mas
equation, which includes both the Hamiltonian evolution a
the damping@13#. In the rotating frame the master equatio
reads

ṙ52 i Fda†a2
x

2
a†a†aa2

V

2
~a1a†!,rG

1
g

2
~2ara†2a†ar2ra†a!

1N̄g~a†ra1ara†2a†ar2raa†!. ~15!

This equation is identical to the one used in Ref.@2#, except
for operator ordering. The parameterN̄ is the number of
thermal excitations at the oscillator frequencyv. N̄50 cor-
responds to zero temperature with only quantum noise
maining.

The Fock space representation of the density operato
in Ref. @2#, may be advantageous in direct computatio
Alternatively, there exist well-known methods in quantu
optics that allow us to representr in terms of quasiprobabil-
ity distributions in the phase space of the classical oscilla
@13#. We may then draw from analogies between class
and quantum systems. We have chosen to work with thQ
representation, in which one basically takes the expecta
value of the density operator in coherent statesua&:
o-

l-

s-

in

e

r

e

in
r
d

e-

as
.

r
al

n

Q~a!5
1

p
^aurua&. ~16!

All quantum expectation values can be calculated from theQ
function. The explicit rule is

^am~a†!n&QM5E d2a am~a* !nQ~a!. ~17!

The subscript QM is a reminder of the fact that the resul
the true quantum expectation value, even though it is
tained as something analogous to a phase-space integra

In quantum optics one often introduces two quadraturex
and p such thata5x1 ip. However, in order to make the
connection to our CNLO explicit, we have found it mo
convenient to define the quadratures as

a5
1

A2
~x1 ip !. ~18!

In this way, theQ function may be qualitatively interprete
as the distribution function of either the quantum variab
( x̂,p̂) or the classical-mechanics position and moment
(x,p), as things might be. It should be noted that the cha
of the variablesa↔(x,p) involves a change in the integra

tion measureda5 1
2 dx dp. Whenever we writeQ(x,p), we

assume thatQ has been properly normalized to mak
*dx dpQ(x,p)51. With this convention, Eq.~17! may be
developed further as

^am~a†!n&QM

5S 1

2D ~m1n!/2E dx dpQ~x,p!~x1 ip !m~x2 ip !n. ~19!

The equation of motion for theQ function, a FPE in the
variablesa and a* @13#, may be derived from Eq.~15!.
However, since we are looking for an analogy with t
CNLO, we are more interested in the FPE in terms ofx and
p,

Q̇~x,p!5H ]

]x Fg2 x2dp1
x

2
p~x21p2!G

1
]

]p Fg

2
p1dx2

x

2
x~x21p2!2

V

A2
G

1
]

]x S g
11N̄

2
1

x

2
pxD ]

]x

1
]

]x

x

4
~p22x2!

]

]p
1

]

]p S g
11N̄

2
2

x

2
pxD ]

]p

1
]

]p

x

4
~p22x2!

]

]x J Q~x,p!. ~20!

In the process the detuning has been renormalized,d1x→d.
Of course, in the relevant limit of the parameters~8!, this
change is of little consequence.
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The two pairs of square brackets in the drift terms in E
~20! enclose the negatives of the right-hand sides of
equations of motion~2a! and ~2b! for the CNLO. In fact,
suppose that the symmetric 232 matrixD of the coefficients
Dxx , Dxp , . . . , in thediffusion terms

]

]x
Dxx~x,p!

]

]x
Q1

]

]x
Dxp~x,p!

]

]p
Q1¯

is positive-definite everywhere. Then the functionQ(x,p)
may be interpreted as the phase-space density for a diffu
CNLO that evolves according to the classical equations
motion, plus some added noise@13#:

dx52
g

2
x dt1dp dt2

x

2
p~x21p2!dt1dhx , ~21a!

dp52
g

2
p dt2dx dt1

x

2
x~x21p2!dt1

V

A2
dt1dhp .

~21b!

Heredhx anddhp are random increments with an approp
ate statistics. Our diffusion matrix actually is not positiv
definite, but we disregard this mathematical inconvenie
and make use of the physical picture that the classical in
pretation conveys to us.

The effect of noise~diffusion! is that an oscillator tha
would otherwise travel on a deterministic trajectory in pha
space will now make random excursions around the class
path. Otherwise, our analysis of the CNLO may be tak
over directly. Fixed points and their stability properties a
the same as before. Nonetheless, the possibility opens up
fluctuations make the QNLO hop between the fixed poin
This is the topic of Sec. V below.

The analogy between CNLO and QNLO is not limited
the (x,p) representation. Simply by making the transform
tion of variables~5!, we find aQ(f,e) and its equation of
motion

Q̇~f,e!5F ]

]f S xe2d1
Vsinf

2Ae
D 1

]

]e
~ge2AeVcosf!

1
]

]e
eg~11N̄!

]

]e
1

]

]e

xe

2

]

]f
1

]

]f

xe

2

]

]e

1
]

]f

g~11N̄!

4e

]

]fGQ~f,e!. ~22!

A canonical transformation of coordinates and mome
does not change positive-definiteness, or lack thereof, of
diffusion matrix. With precisely the same caveats as befo
we thus interpret the FPE~22! as the equation of motion of
diffusing CNLO,

df5d dt2xe dt2
V sinf

2Ae
dt1dhf , ~23a!

de52ge dt1AeV dt cosf1dhe , ~23b!

wheredhe anddhf are appropriate random noises.
.
e

ng
f

e
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e
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n

hat
.

-
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IV. CORRELATIONS OF QUANTUM OBSERVABLES

According to Eq.~17!, the shape of theQ function is
needed for a calculation of the correlation functions ofa and
a†, e.g., for the moments ofx andp, or f ande. However,
if we are only interested in~steady-state equal-time! correla-
tion functions up to order 2, we may resort to a simple te
nique that allows us to analyze these quantities without s
ing for Q globally. We assume that theQ function is tightly
localized in phase space around one of the fixed points.
may then put the diffusion matrix equal to its value at t
fixed point and expand the drift terms to first order inx and
p ~or f ande) around the fixed point. Finally, we multiply
the linearized FPE with second-order products ofx̃5x2xi

andp̃5p2pi ~or f̃5f2f i andẽ5e2e i), wherei denotes
one of the three fixed points, and integrate over the ph
space using partial integration to eliminate the derivativ
from the equations.

For instance, for the moment ofx̃2 we find

d

dt
^x̃2&5E

2`

`

dxE
2`

`

dp x̃2Q̇~x,p!

.E
2`

`

dxE
2`

`

dp„@xxipi1g~11N̄!#

22x̃$@~ 1
2 g1xpixi !x̃

1~2d1 3
2 xpi

21 1
2 xxi

2! p̃#%…Q~x,p!

5g~11N̄!1xpixi2~g12xpixi !^x̃
2&

1~2d23xpi
22xxi

2!^x̃p̃&. ~24!

The first-order moments cancel after the proper fixed po
including the damping~9! is inserted and the correspondin
terms have been omitted in Eq.~24!. The other moment
equations have a similar structure, so that the second-o
moment equations form a closed set. Since we are intere
in steady-state moments, we equate the time derivative
the moments to zero and solve the resulting set of lin
equations. To leading order inx/d we find

^x̃2&e5^x̃2& r5
312N̄

4
, ~25a!

^ p̃2&e52^ p̃2& r5A d3

xV2
~112N̄!, ~25b!

^x̃2&g5^ p̃2&g511N̄, ~25c!

^ẽ2&e5^ẽ2& r5
d

x

312N̄

2
, ~25d!

^f̃2&e52^f̃2& r5Adx

V2

112N̄

2
, ~25e!
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^ẽ2&g5
V2

d2

11N̄

2
, ~25f!

^f̃2&g5
2d2

V2
~11N̄!. ~25g!

All cross correlations such aŝx̃p̃& are of the orderg and
thus negligible. The negative moments encountered at
fixed pointr indicate that, as expected, there is no station
solution for the FPE localized around the repellorr .

Similar results were obtained for the excited statee in the
numerical investigation in Ref.@2#. In order to see how wel
our results actually agree one should note that

n̄[^n&QM5^a†a&QM5E d2a~ uau221!Q~a!

5E dx dpS 1

2
~x21p2!21DQ~x,p!

5
1

2
^x21p2&215E deE df@e21#Q~f,e!

5^e&21, ~26!

~Dn!2[^~Dn!2&QM5Š~a†a2^a†a&!2
‹QM

5E d2a@~ uau22^uau2&!22uau2#Q~a!

5
1

4
Š~x21p22^x21p2&!2

‹2
1

2
^x21p2&

5^ẽ2&2^e&. ~27!

Again, the subscript QM stands to denote the true quant
mechanical expectation value, while the expectation val
without this subscript are computed as ifQ was a classica
probability distribution for its variables. By virtue of Eq
~10a!, at the excited state we have^e&5ee.d/x. Combining
this observation with Eqs.~25d! and ~27! gives

Dn.A112N̄

2
An̄. ~28!

In comparison, according to Ref.@2#, Dn is proportional to
An̄, with the proportionality constant that is 0.7 forN̄50
and increases by 20% whenN̄50.2. Our result is in perfec
agreement with this description.

Reference@2# also gives a phase widthDf for the excited
statee. The question of the phase conjugate to the numbe
quanta is somewhat delicate, but the phase width quote
Ref. @2# is much larger than the minimum-uncertainty lim
one would surmise for phase and number of excitations.
therefore simply ignore possible quantum corrections
use the phase spread from Eq.~25e! as the square of the
width. We find
he
y

-
s

of
in

e
d

Df.DnA x

An̄V

. ~29!

This too agrees with the numerical results of Ref.@2#, up to
a ‘‘proportionality constant approximately equal to unity.
Since the definition of the phase width is not given una
biguously in Ref.@2#, we cannot assess the accuracy of t
numerical constant.

V. DECAY RATE OF THE METASTABLE STATE

The final issue we address is the lifetime of the metasta
state. Usually, the lifetime would be estimated by an ap
cation of Kramers analysis of a particle diffusing over a p
tential barrier@15,16#. However, in the present case we ha
a highly nontrivial situation since our FPE does not have
potential solution@16#. We therefore have to invoke a few
quite subtle arguments and deviate slightly from a direct
proach in terms of Kramers reasoning. Nonetheless, in
end we will again reach a complete agreement with num
cal experiments.

We begin with a reflection on the meaning of theQ func-
tion. It is well known that in a coherent stateua0& the opera-
tor quadraturesx̂ and p̂ both ~separately! have a Gaussian
probability distribution with the spreads (D x̂)25(D p̂)25 1

2 .
The correspondingQ function, though, is

Q~a!5
1

p
z^aua0& z25

1

p
e2ua2a0u2, ~30a!

Q~x,p!5
1

2p
e2@~x2x0!21~p2p0!2#/2. ~30b!

If we were to calculate the spreads of the variablesx andp
from this Q function, we would find (Dx)25(Dp)251.
Here the functionQ behaves as if it were the distribution fo
the underlying ‘‘physical’’ variablesxp andpp smeared by a
convolution with a Gaussian of the form

K~x,p!5
1

p
e2~x21p2!. ~31!

In general, theQ function is derived from the density
operatorr as in Eq.~16!. We thus posit that the function
Q(x,p) is not the ‘‘true’’ distribution W(xp ,pp) for the
physical observablesxp andpp , but rather the distributionW
blurred by the size of the coherent state. In precise terms
view Q(x,p) as the result after the true distributio
W(xp ,pp) has been blurred by a convolution with the Gau
ian ~31!, whose spreads are (Dx)25(Dp)25 1

2 . Similarly,
consider the variablese andf, with e.e0 large enough that
over the region we are considering the version of the m
ping (x,p)↔(f,e) linearized about a point (f0 ,e0) may be
used to transfer between the coordinate systems. In this
gion the functionQ(f,e) represents the true distribution o
fp and ep as viewed through a Gaussian blur with th
spreads (De)2.e0 and (Df)2.1/4e0.

In fact, we have seen an example of the latter already
direct calculation with theQ function in the neighborhood o



h
i-

th

il-

ex
e
th

s
is
em
, i
o

rv
in

ac
r

e

re

to
n

ical

the

uch
not

the
ad,

tate
und
out

bu-

E.
s

he
PE,
f
dis-
e
tum

a
on-

that
the

ex-
ur
al
ne
sen-

u-

of
re
-

en-
e
an

ing
d to
on-

re-

ch
an-

PRA 58 1543SEMICLASSICAL ANALYSIS OF THE METASTABLE . . .
the fixed point e gives the spread (De)2.e(312N̄)/2.
However, this is contaminated bye worth of blur, so that the
physical energy variable would have the spread (Dep)2

.e(112N̄)/2. The physical energy should be related to t
excitation number byn5ep , so that the spread of the exc
tation number is also (Dn)25n̄(112N̄)/2. This agrees with
Eq. ~28!.

In the second step we assume that theQ function is con-
centrated strongly in the neighborhood of the fixed pointe.
We therefore expand the Hamiltonian to second order in
variables to obtain the local HamiltonianHe(f,e). We de-
rive the drift terms in the FPE from this linearized Ham
tonian and simply use the fixed-point values ofe andf for
the diffusion coefficients. The ensuing linearized FPE is
actly solvable and gives a Gaussian distribution. Howev
according to our argument above, this Gaussian is not
true distribution of the variablese andf. We have to decon-
volute the blur. In the limitg→0 this gives a probability
distribution of the form

W~fp ,ep!}expF2
He~fp ,ep!

T
G ~32!

for the physical variables. In the leading order inx/d the
temperaturelike parameterT is given by

T52
d

x

112N̄

2
. ~33!

What exactly is the meaning of the parameterT and its
relation to the actual temperature~if there is any! is a thorny
issue, which we will not attempt to address. Nonethele
formally T looks exactly like temperature in classical stat
tical mechanics and henceforth we treat it as such. The t
perature is negative, but this is just a fluke of our system
that a tightly bound distribution is set up in the neighborho
of the maximum of the Hamiltonian.

In the last step of our argument we reiterate the obse
tion that energy is not conserved as a result of the damp
proportional tog. Thus the system explores the energy sp
at the innate time scaleg21. We assume that the oscillato
switches from the fixed point (fe ,ee) to the fixed point
(fg ,eg) once such an excursion has brought it past the
ergy surface of the unstable fixed pointH(f,e)5H(f r ,e r);
cf. Fig. 1 and its discussion. The rate for switching is the
fore estimated as

Re.g expF2
H~f r ,e r !2H~fe ,ee!

T
G , ~34!

where the exponential is nothing but the Boltzmann fac
Inserting the known coordinates of the fixed points, we fi
to the leading order inx/d

Re.g expF2
4V

An̄x~112N̄!
G . ~35!
e

e

-
r,
e

s,
-

-
n
d

a-
g
e

n-

-

r.
d

This is exactly the result found numerically in Ref.@2#, albeit
the N̄ dependence was not clearly resolved in the numer
experiments.

The same argument may also be carried out to analyze
stability of the ground stateg. This gives the rate for the
hopsg→e as

Rg.g expF2
d

2x~11N̄!
G . ~36!

The escape rate from the ground state seems to be m
lower than that from the metastable excited state. This is
due to a large temperature difference. In fact, forN̄50 the
temperature in the ground state is positive and twice
magnitude of the temperature in the excited state. Inste
the explanation is to be found in the depth of the ground s
well. As soon as the oscillator reaches the stable gro
state, the fluctuations are too small to kick the oscillator
of the well again.

An astute reader may have noticed that our true distri
tion W(xp ,pp) is nothing but the Wigner function@13#. We
have used theQ function mainly because it obeys a FP
Moreover, theQ function is non-negative everywhere, thu
featuring an interpretation in terms of probabilities. T
Wigner function, on the other hand, does not obey a F
nor does it need to be non-negative. The deconvolution oQ
is therefore not guaranteed to produce a valid classical
tribution for xp andpp . In our cases it did, though, and w
crassly interpret the results as classical position-momen
distributions.

On a more fundamental level, we have quietly made
number of implicit assumptions. For instance, after the n
linear canonical transformation (x,p)→(f,e), the precise
quantum mechanical significance of the functionQ(f,e) is
obscure. Nonetheless, we silently continue to assume
there are some quantum observables corresponding to
variablesf ande (e>a†a) and that the functionQ gives us
a slightly hazy glimpse of these observables. As another
ample, the diffusion tensor is not positive-definite in o
FPE. We avoid the issue by only studying explicitly loc
solutions in the neighborhoods of the fixed points. O
should not expect that one may treat quantum systems es
tially classically without having to resort to this type of he
ristic reasoning at some point.

Dykman and Smelyanskii address the same problem
the lifetime of the bistable states analytically using mo
sophisticated techniques@12#. They adopt the position repre
sentation for the density operator instead of theQ represen-
tation and resort to a quasiclassical approximation, ess
tially the density matrix analog of the WKB method. Th
quasiclassical density operator may be found by solving
auxiliary two-particle problem in complex phase space us
the methods of classical mechanics, which they procee
do. For the metastable state, in the same limits we are c
sidering, their result is precisely the same as our Eq.~35!. On
the other hand, for the lifetime of the ground state their
sults are qualitatively different from our Eq.~36!. These au-
thors also point out that their predicted rate may be mu
smaller than the rate of genuine quantum tunneling. Qu
tum tunneling is fully incorporated in theQ function, but it



e-
v

Eq

lif
,
h
io

we

et
s
th
c

in
e

ly
the

ree-
but
and
ill

re-

lem
ark

of
is
ant

1544 PRA 58BJARNE VESTERGAARD AND JUHA JAVANAINEN
can only be treated correctly if the failure of positiv
definiteness of the diffusion tensor is accounted for. Ob
ously, in the absence of numerical corroboration, our
~36! should be viewed with caution.

VI. CONCLUSION

At least in the absence of thermal fluctuationsN̄50, the
finite spreads of the energy and the angle and the finite
time of the nonlinear resonancee of the driven, damped
anharmonic oscillator are purely quantum mechanical p
nomena. Quantum mechanics gives us certain diffus
terms in the FPE to work with. From there on, though,
have used essentially classical arguments to reproduce
results obtained numerically in Ref.@2#.

The estimates of the energy and angle widths of the m
stable state were derived by linearizing the FPE. This i
standard approach@14# and should be accurate as long as
metastable state is sufficiently well localized in phase spa

Our analysis of the lifetime of the metastable state
volves both local and global arguments in the phase spac
A

,

i-
.

e-

e-
n

the

a-
a
e
e.
-
of

the oscillator. While studies of the lifetime would probab
have been quite demanding if ordinary techniques for
FPE had been applied@10,16# andare demanding within the
quasiclassical framework@12#, we were able to obtain an
accurate estimate in a simple fashion. The complete ag
ment with the numerical experiments may be fortuitous,
we find it remarkable nonetheless. The questions of why
how our simple argument worked so well and whether it w
work in other similar situations should make interesting
search topics in their own right.
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