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Semiclassical analysis of the metastable driven and damped quantized anharmonic oscillator
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Recent numerical work has demonstrated how one of the bistable states of a driven, damped, anharmonic
classical oscillator is metastable in the corresponding quantum osciltdEnzer and G. Gabrielse, Phys.
Rev. Lett.78, 1211(1997]. Based on an analysis of the classical oscillator, we present a simple analytical
treatment of the quantum oscillator. Calculated fluctuations in the quantum observables and the estimated
decay rate of the metastable state are in an excellent agreement with the numerical results of Enzer and
Gabrielse[S1050-2947©@8)01708-9

PACS numbegps): 42.50.Lc, 03.65.Sq, 42.65.Pc

I. INTRODUCTION where our pedagogical approach pays off. We combine a
global picture of the Hamiltonian from the CNLO, local con-
An electron in a Penning trap is an anharmonic oscillatorsiderations of fluctuations from the QNLO, and the classical
in that the relativistic mass increase causes the cyclotron fré&<ramer analysig15,16 into a prediction of the lifetime of
quency to decrease with the energy of the e|ectﬂanith the metastable state. In this conceptually delicate but techni-
anharmonicity comes the potential for bistability. Enzer andcally simple manner we arrive at a lifetime that exactly
Gabrielse[2] argue that it will be possible to operate an agrees with the numerical results of R].
externally driven, damped one-electron cyclotron oscillator The paper is organized as follows. In Sec. Il we study the
in a regime in which the classical system would exhibit bi- CNLO. The emphasis is on fixed points in the phase space of
stability, yet the electron should be treated quantum methe system, which are the potential multistable states. In Sec.
chanically. They also demonstrate numerically how quantund!l we begin our analysis of the QNLO in terms of i
fluctuations alone may cause transitions from one bistablé&inction. The focus is initially on the close analogies be-
state to the othdi2]. tween the CNLO and the QNLO. In Sec. IV we analyze
In fact, the effects of fluctuations in nonlinear systemsfluctuations of the QNLO by linearizing the FPE around the
[3-6], be it thermal fluctuations, classical noise, or quantunglassical fixed points and in Sec. V we develop our estimate
fluctuations, are a much-studied subject, e.g., in optical bifor the lifetime of the metastable state of the QNLO. A com-
stability [7,8]. The charm of the quantum-mechanical, Parison with Ref[12] is included. The brief remarks in Sec.
driven, damped, anharmonic oscillataguantum nonlinear VI conclude our paper.
oscillator(QNLO)] is that it is just about as elementary theo-
retically as a bistable system can be. It is then no wonder that Il. CLASSICAL DRIVEN DAMPED ANHARMONIC
the QNLO has long served as a paradigm of optical bistabil- OSCILLATOR
ity [9-11]. For instance, characteristic time scales of a

QNLO were studied numerically in Ref10] using matrix Although there are physical differences between an elec-

fron subject to cyclotron motion and a one-dimensional har-

discussed analytically in RefL2]. monic oscnlator, for pedagogl_cal reasons we fI!‘S'[ consider a
The thrust of the present paper is that we match thé:lassma_ll,_dflven, damped oscillator that is nonlinear because

straightforward numerical experiments of REZ] with an of r_e-latlwstlc mass increase. The equations of motion for

equally straightforward analytical treatment of the QNLO, in POSition and momenturi andP are

the same limits that are anticipated to be experimentally the

. g X 7 N\ — _ 3
most relevant. We start with an explicit, detailed analysis of X=P/m—aP, (1a
the corresponding classical, driven, damped, anharmonic os- _
cillator (CNLO). The problem of the QNLO is next formu- P=—mw?X— yP+Fcog rt). (1b)

lated in terms of a Fokker-Planck equati@fPE for the Q

guasiprobability distributiofi13]. We then proceed to a dis- The notation is self-explanatory, except for the coefficient of

cussion of a feature not shared by the CNLO, namely, fluchonlinearitya=1/2m3c?.

tuations. These are studied in the standard manner by linear- We convert Eqs(1) to a frame rotating in theX,P)

izing the FPE, with an emphasis on the close similaritiesplane at the frequency of the driving foreeand make the

between CNLO and QNLO. We demonstrate energy andamiliar rotating-wave approximation of quantum optics.

phase fluctuations in complete agreement with R2f. This entails that we keep in the corotating frame only those
In the second part of our development we address théerms in the equations of motion that vary slowly in com-

lifetime of the metastable excited state of the QNLO. Here igparison to oscillations at the frequeneyWe also adjust the

1050-2947/98/5@)/153718)/$15.00 PRA 58 1537 © 1998 The American Physical Society



1538 BJARNE VESTERGAARD AND JUHA JAVANAINEN PRA 58

dimensions by defining=yA/mwx and P=+\Aimwp. We  while the equations of motion, including the damping, are
are naturally at liberty to use the constdnin the scaling,

even if our approach is classical at this point. The variakles o .

andp are thereby made dimensionless. In the rotating frame bp=0—xe— 2—\/2 sing, (79
we have the equations of motion

. y X €e=— ye+ \/EQ COSp. (7b)
X=— =X+ p— = p(p?+x?), (2a)
2 P=2Pip Both sets of coordinates will be used for the rest of this
paper. Locally, such as in linearized studies of fluctuations,
- X 5 o 8 the coordinate systems,(p) and (¢,e) work equally well,
p——Ep—5x+ Ex(p *X Hﬁ' (2b) although the ¢,€) representation yields the quantities of

interest more easily. On the other hand, in the numerical
Striving at quantum-optics-like notation, we have introducedresults in Ref[2] one sees crescent-shape distributions in
the Rabi frequency)=F/\2%wm, a parameter of cubic coordinates analogous toandp, which suggests that over

nonlinearity y = 3a#m?w?/4, and detuning large, global, scales the coordinateg, €) might be more
appropriate.
S=w—v. 3 In the absence of damping, the CNLO will follow a

) . constant-energy surface in phase space. Damping relaxes
In this paper we only consider the case when the frequencyonservation of energy. In the case of a very weak damping
of the ervmg forcev is below the resonance frequency of gne may think that the CNLO almost follows energy sur-
the oscillator at zero energy. The notation is such that then faces, except that it slowly drifts from one surface to the
t_he detunmg_ﬁ is positive. If dar_nplng is neglected,_ the_equa- other. For the purposes of the present paper we make the
tions of motion(2) may be derived from the Hamiltonian  paysible assumption that the time evolution eventually leads
to a steady state, a fixed point found by equating the deriva-
H= é(p +x2)— K(p2+x2)2— ﬂx_ 4) tives in e.ither Eqgs(2a) and(2b) or Egs.(7a and(7b) to zero
2 8 J2 and solving forx andp, or ¢ ande.
We useMATHEMATICA [18] to assist in the calculations,
The key feature of our CNLO is that, without an external so we easily find exact expressions for the fixed points. How-
drive, its oscillation frequency decreases with energy. In thever, here we rather utilize the scales of the parameters as
rotating frame, the effective detuning decreases with the oggiven in Ref.[2] to extract simple approximate results. The
cillator energy. A one-electron cyclotron oscillator in a Pen-relative magnitudes of the frequency parameters in the prob-
ning trap behaves in the same way because of the relativistiem are such that
dependence of cyclotron frequency on energy. In a one-
electron oscillator the damping is due to synchrotron radia- y<x<Q<98, x<o. (8)
tion from the electron. From this point onward our model . . :
and the model of Ref2] are mathematically indistinguish- _For that reason, all of our final results qulve an expansion
able and we freely mix terms when speaking about the twd! the small parametex/é or often actually inyx/ 8. Also,
models. There are only a few minor differences in the nota¥vhenever it is helpful for the interpretation of the results, we
tion. In Ref.[2] no explicit symbol is introduced for the take the limit when the damping coefficieptis the smallest
detuning, while we follow standard conventions in quantumfréduency parameter. We find three fixed points, which are

optics and denote detuning & In addition in Ref[2] the

variable § was used to characterize the nonlinearity, while (Xe,pe)=| — [26 Q ‘/57’5+ y 0
here we use for precisely that purpose. Finally, we denote "¢’ ¢ X 2y28" xQ  25x 428%)
the Rabi frequency b¥) not Q. (93
Ignoring the driving force proportional té) for a mo-
ment, the Hamiltoniar(4) exhibits rotational invariance in 26 O 295 v Q)
phase space. It is natural to investigate the system in terms of (X ,P;) = I , - 5|
variables that reflect this symmetry. A possible choice is an X 2425 X 20x 425 (9b)
energylike variables and an anglep defined as
€= 1(x2+ p?) (5a) (Xg,Pg) = 2 ,—YQ ) (90
2 ' V28" 2\26°
tang=x/p. (5b) in terms of Cartesian coordinates and

The transformationX,p) < (¢, €) is canonica[17], making . ) 5 Q 0?
¢ the generalized coordinate amsdhe generalized momen- (Singe, €¢) = 2v02 1’)_(+ 2\/—5_ as?)’ (109
tum. The transformed Hamiltonian takes the form X X

y26 & Q Q2
2¥0%' x  2\xs 84°

Hzae—gez—ﬁnsinqs, (6) (sing, ,er)=(1 ) (10b
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PO U G AP (I B e
(singy,€q)= 3255 252 8o (109 /

in terms of the energy-angle variables.
The question remains whether these fixed points are at-
tractors or repellors. We have already anticipated the answer
in the subscripts given to the fixed poings:for attracting P
excited stater, for repelling state, and for attracting ground
state. These assignments are verified in the standard manner:
By linearizing the equations of motion around the fixed
points we find the equations of motion for small deviations

from equilibrium;=x—x; andp;=p—p;, where the sub-

scripti corresponds to one of the indicesr, or g. Sym- Z
bolically, x
[ii,ﬁi]T: MiXp[’)’(i 15i]T- (11) FIG. 1. Contour plot of the classical Hamiltoni&t{(x,p) in the

(x,p) plane for representative values of the paramedens and(}.

whereM*? is a constant X 2 matrix. If the real parts of both 1€ €xtrema and the saddle point of the Hamiltonian are labeled
with the same symbols, g, andr as in their corresponding fixed

SlgenvaIUEE oMi® are negative, the time evolution forces points. For clarity of the visualization, the contours are not equally

xi—0 andp;—0 and we have an attractor. On the otherspaced.

hand, if the real part of an eigenvalue is positive, the linear-

ized equations of motion have an exponentially growing so{ator, which reflects a balance between the drive strength and

lution. In physics it always takes over and removes thehe detuning. The fixed poimt corresponds in the laboratory

CNLO from the neighborhood of the fixed point. This is the frame to the situation in which the energy of the CNLO is

signature of a repellor. An equivalent calculation can bgust right, so that the nonlinearity has decreased the oscillator

done for the ¢,€) variables. The actual eigenvalues are  frequency sufficiently to render it on resonance with the driv-
ing force. Correspondingly, to the leading order{nthis

Mpe=Ngee=—1y*i8" 0, (128 fixed point does not depend on the strength of the external
drive.
Npr=Nger=— 37+ 8012, (12b It may seem paradoxical that the CNLO is attracted to the
maximumof the energy atk. After all, here the potential
Mpg=Ngeg=—3Y*ié. (120  energy has a maximum too and in the neighborhood of the
point e the force on the oscillator points down the potential
Our initial labeling is seen to be correct. hill. One way to resolve this paradox is to note that the

Though neither attractors nor repellors, the undampe@ffective mas§d?H/9p?]~* is negative around. The oscil-
motion has three fixed points as well. These are obtainethtor thus rolls opposite to the force, i.e., uphill.
from Egs.(9) or (10) by settingy=0. In the undamped case  There are two apparent oddities in our formalism: energy
the fixed points are possible extrema of the Hamiltonian. Wés not bounded from below and the effective mass of the
illustrate the global structure of the Hamiltonian in Fig. 1, oscillator may be negative. We have expanded the relativistic
which gives a contour plot ofi(x,p). The fixed points are mass increase to only the lowest nontrivial order in momen-
identified with the same letters we use to designate the cotum, which unduly removes the lower limit from energy. In
responding fixed points in the case of a weak damping. laddition, we are analyzing the oscillator in the rotating
turns out that the fixed poirg is a local minimumg a local  frame, which both exacerbates the drop of energy toward
maximum, andr a saddle point of the Hamiltonian. Two —o and leads to a volatile effective mass. The seemingly
constant-energy curves cross aas appropriate for a hyper- bizarre features of our model are not a sign of an inherent
bolic fixed point. One of these curves wraps around the minifailure, but basically reflect the fact that our formulation is in
mumg and the other around both extremande. Outside the rotating frame.
of the latter curve the Hamiltonian drops steeply-te as The CNLO may be bistable. One of the operating points
eitherx—oo or p—oo. is essentially the same stable state as for a driven harmonic

A weak damping shifts the fixed points slightly. For in- oscillator, while the second operating poinis a nonlinear
stance,e no longer resides at exactly the maximum of theresonance. Our mission now is to find out what happens to
Hamiltonian. In our qualitative discussions we often ignorethe bistability in the presence of both thermal and quantum
such fine distinctions. It should be borne in mind, though fluctuations.
that in the calculations one should use the expressions for the

fixed points that properly include the damping. Ignoring the Il. CLASSICAL DESCRIPTION
damping prematurely may lead to quite puzzling wrong re- OF THE QUANTUM OSCILLATOR
sults.
To the leading order iry, the fixed pointg does not We now quantize the nonlinear oscillator. The position

depend on the nonlinearity of the CNLO. In fact, it simply and the momentum in Eqg¢l), X and P, become quantum
corresponds to the steady state of the driven harmonic oscibperatorsX and P with the commutatof X,P]=i%. The
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guantum counterparts of the dimensionless position and mo- 1
mentumx and p therefore have the commutatpx,p]=i. Qla)= ;<“|P|“>' (16)
The rising and lowering operatossanda’ with the commu-
tator[a,a’]=1 may be defined as All guantum expectation values can be calculated fronQQhe
function. The explicit rule is
A 1 . .
a=—(x+ip), al=—=(x—ip). (13
V2 V2 <am(aT)n>QM:f d’a a™(a*)"Q(a). 17

Unfortunately, we cannot obtain the correct quantum Hamil-

ian by simol bstituti h candp i h The subscript QM is a reminder of the fact that the result is
tonian by simply substituting the operatorsandp into theé  pe trye quantum expectation value, even though it is ob-

classical Hamiltonian. This comes about because the trangsined as something analogous to a phase-space integral
formation _(X,P_)—>(x,p) involves th? extra facto_ﬁ and is . In quantum optics one often introduces two quadratures
not canonical in the sense of classical mechanics. To obtaig,, 4 p such thata=x+ip. However, in order to make the

Heisenberg equations of motion farand p that resemble  connection to our CNLO explicit, we have found it more
the classical equations of motion as closely as possible, Wegonvenient to define the quadratures as

insertx andp into the classical Hamiltoniaf#) and multiply
the Hamiltonian byf. The result is written in terms of the

t a=—(X+ip). 18
operatorsa anda' as \/5( p) (18)
;z sata— )2—(aTaTaa— %(aJra’r)_ (14) In this way, theQ function may be qualitatively interpreted

as the distribution function of either the quantum variables
(x,p) or the classical-mechanics position and momentum
It should be noted that, as the Hamiltoni&® contains (x,p), as things might be. It should be noted that the change

products of what become the noncommuting operatasd of the variablesx«(x,p) involves a change in the integra-

p, quantization is not unique. For instance, one particula;[Ion measurala= 3 dx dp. Whenever we writd(x,p), we

ordering of the operator products would give'4)? instead assume thatQ has _been_ properly_normallzed to make
of a'a'aain Eq.(14). Such a Hamiltonian could be cast into JdxdpQ(x,p)=1. With this convention, Eq(17) may be
the form (14) as well, except that the oscillator frequency developed further as

would then be5— x/2. We have no prescription for resolving am(a‘r)n>

ambiguities of operator order and simply choose to use thé QM

one in Eq.(14). (1

We have dropped scalar constants from the Hamiltonian.

(m+n)/2

Damping, on the other hand, cannot be represented in =
Hamiltonian form. It must be described in terms of a master
equation, which includes both the Hamiltonian evolution and
the dampind13]. In the rotating frame the master equation
reads

2

f dxdpQx,p)(x+ip)M(x—ip)". (19

The equation of motion for th® function, a FPE in the
variablesa and o* [13], may be derived from Eq(15).
However, since we are looking for an analogy with the

_ Y O CNLO, we are more interested in the FPE in terms @ind
p=—i 5aTa—§aTaTaa— §(a+aT),p P,
+ Z(Za a'—a'ap—pa'a) Q(x,p)= 2 ZX—5I0+ KD(XZWL p?)
> (2ap p=p - x| 2 2
+Ny(a'pa+apa’—atap—paal). (15) 9 Q
y(a'patap p—paa’) . %p—h‘)‘x—)z—(x(xz—i—pz)——
This equation is identical to the one used in Réi, except P V2
for operator ordering. The parametlr is the mjmber of 9 1+N Y 9
thermal excitations at the oscillator frequensyN=0 cor- + Ix YT+ EIOX X
responds to zero temperature with only quantum noise re-
maining. a 9 9 1+N ]
The Fock space representation of the density operator, as + — )_((pz_xz)_ +— y—— )—(px —
in Ref. [2], may be advantageous in direct computations. ax 4 p Ip 2 27 )dp
Alternatively, there exist well-known methods in quantum
- - - i J x d
optics that allow us to represeptin terms of quasiprobabil +— 2 (p2=x3)—  Q(x,p) (20)
ity distributions in the phase space of the classical oscillator ap 4 X e

[13]. We may then draw from analogies between classical

and quantum systems. We have chosen to work withQhe In the process the detuning has been renormaligeg— o.
representation, in which one basically takes the expectatio®f course, in the relevant limit of the paramet¢8s, this
value of the density operator in coherent states change is of little consequence.
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The two pairs of square brackets in the drift terms in Eq. V. CORRELATIONS OF QUANTUM OBSERVABLES
(20) enclose the negatives of the right-hand sides of the
equations of motior(2a and (2b) for the CNLO. In fact,
suppose that the symmetriex2 matrixD of the coefficients

According to Eq.(17), the shape of th& function is
needed for a calculation of the correlation functionsa@fnd
a', e.g., for the moments of andp, or ¢ ande. However,

Dyx: Dyps - - - In thediffusion terms if we are only interested ifsteady-state equal-timeorrela-
9 9 g 9 tion functions up to order 2, we may resort to a simple tech-
&—XDXX(x,p) a_xQ+ &—XDXp(x,p) %Q+--~ nique that allows us to analyze these quantities without solv-

ing for Q globally. We assume that th@ function is tightly
is positive-definite everywhere. Then the functiQ{x,p) localized in phase space around one of the fixed points. We

may be interpreted as the phase-space density for a diffusifg@y then put the diffusion matrix equal to its value at the

CNLO that evolves according to the classical equations ofx€d point and expand the drift terms to first ordenximnd
motion, plus some added noiEE3]; p (or ¢ ande) around the fixed point. Finally, we multiply

the linearized FPE with second-order productsxefx—x;
andp=p—p; (or $=— ¢, ande=e—¢;), wherei denotes

one of the three fixed points, and integrate over the phase
space using partial integration to eliminate the derivatives

Y X . 5. 5 Q from the equations.
dp=- 2P dt=oxdt+ XX ydt+ EdeﬂP' For instance, for the moment &f we find

(21b

dx=— %/x dt+ Sp dt— %p(x2+ pd)dt+dy,, (213

d - % o
Heredn, andd 7, are random increments with an appropri- a<X2>: f,deJ’,wdp X¥Q(X,p)
ate statistics. Our diffusion matrix actually is not positive-
definite, but we disregard this mathematical inconvenience % o _
and make use of the physical picture that the classical inter- zf dxf dp([xXipi+ y(1+N)]
pretation conveys to us. T
The effect of noisg(diffusion) is that an oscillator that

. TR : —2X{[ (3 y+ xpix))X
would otherwise travel on a deterministic trajectory in phase LGy +xpx)

space will now make random excursions around the classical —5+23vp2+ LA\

path. Otherwise, our analysis of the CNLO may be taken (2O aXP 20)PINRX.P)

over directly. Fixed points and their stability properties are = 7(1+W)+Xpixi_(7+ 2Xpixi)<§(2>

the same as before. Nonetheless, the possibility opens up that

fluctuations make the QNLO hop between the fixed points. +(28—3xpZ— xx?)(xp). (24)

This is the topic of Sec. V below.

The analogy between CNLO and QNLO is not limited t0 The first-order moments cancel after the proper fixed point
the (x,p) representation. Simply by making the transforma-inciuding the damping9) is inserted and the corresponding
tion of variables(5), we find aQ(¢,€) and its equation of terms have been omitted in E¢R4). The other moment
motion equations have a similar structure, so that the second-order
moment equations form a closed set. Since we are interested

: d Qsing J in steady-state moments, we equate the time derivatives of
Q)= %(Xe_ ot 2./e )+£(ye— VeQeosp) the moments to zero and solve the resulting set of linear
equations. To leading order j@/ 6 we find
+(7 1+ﬁ(9+(9)(6(3’+(7)(6(9
19667( )&6 de 2 d¢p d¢p 2 Je _ _ 3+ 2N
- (X%)e=(x?)r= . (253
¢ 2N 7 o 4,0 22 *
T 7 yE€).
dp  4e I
~ ~ 53 _
A canonical transformation of coordinates and momenta (Pe=—(p?),= \/?(LLZN), (25b
X

does not change positive-definiteness, or lack thereof, of the

diffusion matrix. With precisely the same caveats as before,

we thus interpret the FP&2) as the equation of motion of a &2)9:@2)9: 1+N, (250
diffusing CNLO,

5 34+2N

Q sin ~ -

d¢=35dt— yedt— 2\/E¢dt+d17d,, (239 <52>e:<62>r:; > (250
de=— yedt+\eQ dt cosp+dr,, (23b _ _ ’_5x1+2W

<¢2>e:_<¢2>r: Q_ 5 (25¢

whered 7, anddz, are appropriate random noises.
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. Q214N ) X
(€ >g—§ R (25 Ap=An~ [ —. (29
Vno
. 28% - - -
(BPg=" (1+N). (259 Th‘!s too agrees with the numerical results of Réf, up to )
02 a “proportionality constant approximately equal to unity.

Since the definition of the phase width is not given unam-

) e biguously in Ref[2], we cannot assess the accuracy of the
All cross correlations such axp) are of the ordery and |, merical constant.

thus negligible. The negative moments encountered at the
fixed pointr indicate that, as expected, there is no stationary

solution for the FPE localized around the repelor V. DECAY RATE OF THE METASTABLE STATE

Sim.ilar results_ were qbtained for the excited staia the The final issue we address is the lifetime of the metastable
numerical investigation in Ref2]. In order to see how well state. Usually, the lifetime would be estimated by an appli-
our results actually agree one should note that cation of Kramers analysis of a particle diffusing over a po-

tential barrief{15,16. However, in the present case we have
_ a highly nontrivial situation since our FPE does not have a
nE<n>QM:<aTa>QM:J d?a(]al®*~1)Q(a) potential solution[16]. We therefore have to invoke a few
quite subtle arguments and deviate slightly from a direct ap-
1., proach in terms of Kramers reasoning. Nonetheless, in the
:f dxdp 5 (x*+p9)—1/Q(x,p) end we will again reach a complete agreement with numeri-
cal experiments.
1 We begin with a reflection on the meaning of R€unc-
=5(+p%)-1= f def déle=1]Q(.€) tion. It is well known that in a coherent stdie,) the opera-

tor quadraturex and p both (separately have a Gaussian
probability distribution with the spread\&)?=(Ap)2=1.
The correspondin@ function, though, is

=(e)—1, (26)

(An)2=((An)%ou={((a’a—(a'a))?ou

1 1 )
=_ 2" g la—ay|
- | @atdlal*= (o>~ laIQ(@) A= el =gememeen, 0
1 1 _ b txx0?+ (p-po12
= 20+ p?=(x*+p%))%) = 5 (x*+p?) Q(x,p)=5—e [0 07112 (30D
=X\ —(¢€). 2 If we were to calculate the spreads of the variabdesnd p
(e)—(e) (27)

from this Q function, we would find Ax)?=(Ap)?=1.

Again, the subscript QM stands to denote the true quantunt|ere the fu_nctiorQ bghaves as if it were the distribution for
mechanical expectation value, while the expectation value'e underlying “physical” variables, andp, smeared by a
without this subscript are computed asQfwas a classical convolution with a Gaussian of the form

probability distribution for its variables. By virtue of Eg. 1

(109, at the excited state we haye) = e,= &/ y. Combining K(x,p)= Z e 0F+p?) (31)
this observation with Eqg25d) and(27) gives ™

_ In general, theQ function is derived from the density
1+2N\/: operatorp as in Eq.(16). We thus posit that the function
An= V 2 n. (28) Q(x,p) is not the “true” distribution W(x,,p,) for the
physical observables, andp,, but rather the distributioldV
. . . . blurred by the size of the coherent state. In precise terms, we
In comparison, according to Re2], An is proportional to iy Q(x,p) as the result after the true distribution
Vn, with the proportionality constant that is 0.7 fot=0  W(x,,p,) has been blurred by a convolution with the Gauss-
and increases by 20% whéh=0.2. Our result is in perfect ian (31), whose spreads areAk)?=(Ap)2=3. Similarly,
agreement with this description. consider the variables and ¢, with e= ¢, large enough that
Referencg?2] also gives a phase width¢ for the excited  over the region we are considering the version of the map-
statee. The question of the phase conjugate to the number aping (X,p) < (¢, €) linearized about a pointgg,e,) may be
quanta is somewhat delicate, but the phase width quoted insed to transfer between the coordinate systems. In this re-
Ref. [2] is much larger than the minimum-uncertainty limit gion the functionQ(¢,€) represents the true distribution of
one would surmise for phase and number of excitations. Web, and €, as viewed through a Gaussian blur with the
therefore simply ignore possible quantum corrections angpreads 4 €)%= ¢, and (A ¢)?=1/4e,.
use the phase spread from E@5¢ as the square of the In fact, we have seen an example of the latter already. A
width. We find direct calculation with th€ function in the neighborhood of
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the fixed pointe gives the spread Ne)2=e(3+2N)/2.  This is exactly the result found numerically in REZ], albeit
However, this is contaminated kyworth of blur, so that the the N dependence was not clearly resolved in the numerical
physical energy variable would have the sprearle;{)2 experiments.

~e(1+ zﬁ)/z, The physical energy should be related to the The same argument may also be carried out to analyze the
excitation number byi=¢,,, so that the spread of the exci- Stability of the ground statg. This gives the rate for the

tation number is alsoXn)2=n(1+2N)/2. This agrees with OPSg—€ as
Eq. (28).

In the second step we assume that @éunction is con- R~ _ o (36)
centrated strongly in the neighborhood of the fixed peint =Y 2X(1+ﬁ) ’

We therefore expand the Hamiltonian to second order in the

variables to obtain the local Hamiltoniat(¢,€). We de- 1o egcape rate from the ground state seems to be much

[ive_ the d(;ift_terrlns in t{‘he I;PEdfror_n tthisl Iinej)gzzd I—f|ami|— lower than that from the metastable excited state. This is not
onian and simply use the fixed-point valuesecén or . —
Py P ¢ due to a large temperature difference. In fact, §br 0 the

the diffusion coefficients. The ensuing linearized FPE is ext mperature in the around state i itive and twice th
actly solvable and gives a Gaussian distribution. However.cnperature € ground state IS posilve a ce the
agnitude of the temperature in the excited state. Instead,

according to our argument above, this Gaussian is not th o ;
true distribution of the variablesand ¢. We have to decon- e explanation is to be fou_nd in the depth of the ground state
well. As soon as the oscillator reaches the stable ground

\c;?sltjrgguttri]c?n tg?:hénf;?ri limity—0 this gives a probability state, the fluctu_ations are too small to kick the oscillator out
of the well again.

An astute reader may have noticed that our true distribu-
tion W(x,,pp) is nothing but the Wigner functiofi.3]. We
have used th& function mainly because it obeys a FPE.
Moreover, theQ function is non-negative everywhere, thus
featuring an interpretation in terms of probabilities. The
Wigner function, on the other hand, does not obey a FPE,
nor does it need to be non-negative. The deconvolutio® of
_ is therefore not guaranteed to produce a valid classical dis-

_ 01+2N tribution for x, andp,,. In our cases it did, though, and we
T=- ; 2 (33 crassly interpret the results as classical position-momentum
distributions.

On a more fundamental level, we have quietly made a

What exactly is the meaning of the .param_eTeand its number of implicit assumptions. For instance, after the non-
relation to the actual temperatuiiethere is any is a thorny linear canonical transformatiorx(p)— (&.€), the precise

issue, which we will not attempt to address. Nonethelessquan,[urn mechanical significance of the functigfe, ) is

formally T looks exactly like temperature in classical statis- . . ’

tical chhanics and heynceforth v[\)/e treat it as such. The te obscure. Nonetheless, we silently continue to assume that
. . L : . there are some quantum observables corresponding to the

perature is negative, but this is just a fluke of our system, in

. ST . . variables¢ ande (e=a'a) and that the functio® gives us
that a tlghtl_y bound d|str|but|(_)n is setupin the nelghborhooda slightly hazy glimpse of these observables. As another ex-
of the maximum of the Hamiltonian.

In the last steb of our arqument we reiterate the observ. ample, the diffusion tensor is not positive-definite in our
P 9 & PE. We avoid the issue by only studying explicitly local

tion that energy is not conserved as a result of the damplngolutions in the neighborhoods of the fixed points. One

proportional toy. Thus the system explores the energy spacé )
at the innate time scalg” 1. We assume that the oscillator should not expect that one may treat quantum systems essen

switches from the fixed pointd, e.) to the fixed point t[al[y cIassmgIIy without hav!ng to resort to this type of heu-
. . ristic reasoning at some point.

(cg.€g) Once such an excursion has brougit It past th_e en- Dykman and Smelyanskii address the same problem of

efrg;lé.surlface do_ftthde. unstable f?‘ﬁd pct)thch,e)—.tHh(_@ ’.Ef)ﬂ'] the lifetime of the bistable states analytically using more

;:o.re Ie?s.tima;r'c‘edl ZS IScussion. The rate for switching 1s ere'sophisticated techniqu¢$2]. They adopt the position repre-
sentation for the density operator instead of @eepresen-
tation and resort to a quasiclassical approximation, essen-

R exr{ H(¢,,€) —H(de,€e) tially the density matrix analog of the WKB method. The
e=~7Y -

He(d’paep)l 32)

W(¢p,ep)ocex% - T

for the physical variables. In the leading order jhé the
temperaturelike paramet@ris given by

T ' (34 quasiclassical density operator may be found by solving an

auxiliary two-particle problem in complex phase space using

- . the methods of classical mechanics, which they proceed to
where the exponential is nothing but the Boltzmann factory, ror the metastable state, in the same limits we are con-

Inserting the known coordinates of the fixed points, we ﬁndsidering, their result is precisely the same as our(&§). On

to the leading order iy/$ the other hand, for the lifetime of the ground state their re-
sults are qualitatively different from our E(36). These au-

40) thors also point out that their predicted rate may be much

(35 smaller than the rate of genuine quantum tunneling. Quan-

Re=yexg ———|.
\/ﬁx(1+2N) tum tunneling is fully incorporated in th@ function, but it
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can only be treated correctly if the failure of positive- the oscillator. While studies of the lifetime would probably
definiteness of the diffusion tensor is accounted for. Obvi-have been quite demanding if ordinary techniques for the
ously, in the absence of numerical corroboration, our EQFPE had been appligd0,16 andare demanding within the

(36) should be viewed with caution. quasiclassical frameworkl2], we were able to obtain an
accurate estimate in a simple fashion. The complete agree-
VI. CONCLUSION ment with the numerical experiments may be fortuitous, but

_ o we find it remarkable nonetheless. The questions of why and
At least in the absence of thermal fluctuatidis:0, the  how our simple argument worked so well and whether it will

finite spreads of the energy and the angle and the finite lifepork in other similar situations should make interesting re-
time of the nonlinear resonance of the driven, damped, search topics in their own right.

anharmonic oscillator are purely quantum mechanical phe-
nomena. Quantum mechanics gives us certain diffusion
terms in the FPE to work with. From there on, though, we
have used essentially classical arguments to reproduce the
results obtained numerically in RdR]. Gerald Gabrielse has repeatedly suggested the problem

The estimates of the energy and angle widths of the metaaddressed in this paper to J.J. over many years and Mark
stable state were derived by linearizing the FPE. This is @&ykman gave us the bibliographic data of REf2]. B.V.
standard approadi4] and should be accurate as long as thewishes to acknowledge the hospitality of the University of
metastable state is sufficiently well localized in phase spaceConnecticut, where this work was performed. This work is

Our analysis of the lifetime of the metastable state in-supported in part by the National Science Foundation, Grant
volves both local and global arguments in the phase space d¢fo. PHY-9421116.
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